Emile Hazard, Olivier Idir, Denis Kuperberg

Highlights 2024, Bordeaux, September 20th 2024

History-Deterministic Automata

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

A is explorable if it is k-explorable for some k.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

A is explorable if it is k-explorable for some k.

A non-explorable safety NFA

Results

Theorems [Hazard, K. 2023]

Explorability is ${\rm ExpTime}$ -complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

Results

Theorems [Hazard, K. 2023]

Explorability is ${\rm ExpTime}$ -complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

NFA needing exponentially many tokens.

Results

Theorems [Hazard, K. 2023]

Explorability is $\mathrm{ExpTime}$ -complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

NFA needing exponentially many tokens.

Theorems [Idir, K.]

Explorability is EXPTIME for coBüchi, [0, 2]-Parity.

What happens if we allow a countable infinity of tokens?

What happens if we allow a countable infinity of tokens?

not explorable but ω -explorable

not ω -explorable

What happens if we allow a countable infinity of tokens?

Intuition:

Non- ω **-explorable**: Adam can always kill any run

What happens if we allow a countable infinity of tokens?

Intuition:

Non- ω **-explorable**: Adam can always kill any run

Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

What happens if we allow a countable infinity of tokens?

Intuition:

Non- ω **-explorable**: Adam can always kill any run

Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

Decidability open for Büchi.

Deterministic

Non-deterministic

Theorem (Idir, K.)

[1,3]-explorability decidable \Leftrightarrow Parity explorability decidable Büchi ω -explorability decidable \Leftrightarrow Parity ω -explorability decidable

Future work

- ▶ Open decidability: [1,3]-expl., Büchi ω -expl.
- Complexity of k-expl. with k in binary?
- ▶ Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.

Future work

- ▶ Open decidability: [1,3]-expl., Büchi ω -expl.
- Complexity of k-expl. with k in binary?
- ▶ Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.

Thanks for your attention!