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Specifying properties

MSO (Monadic Second-Order logic):

φ,ψ := a(x) | E (x , y) | ∃x .φ | ∃X .φ | x ∈ X | φ ∨ ψ | ¬φ

Example: φ(r) for “∃ ∞ path from r”:
∃X .
r ∈ X∧
∀x .x ∈ X ⇒ ∃y .E (x , y) ∧ y ∈ X

µ-calculus:

φ,ψ := a | ⋄φ | □φ | µX .φ | νX .φ | φ ∨ ψ | ¬φ

Example: ψ for “∃ ∞ path from the current vertex”: νX . ⋄ X

Fact: µ-calculus ⊊ MSO (e.g. ∃ self-loop)
µ-calculus is bisimulation-invariant.
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Bisimulation
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Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

µ-calculus → bisim-inv MSO : Easy

Bisim-inv MSO → µ-calculus : Hard
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Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:
Infinite trees suffice to define bisim-inv properties of systems.
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Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.
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Example of the difference

MSO formula φ for “∃ cycle”:

▶ φ is not bisim-invariant on all systems.

a a a a

▶ φ is bisim-invariant on finite systems.

▶ Equivalent to ψ = νX . ⋄ X on finite systems.

=⇒ using Janin-Walukiewicz does not work for finite systems.
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Ranked systems

“Bisimulation = unfold + children duplication”
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The free algebra of systems

Systems have open ports and arities:
a2
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c3 x2

x1

Operation: Plug into context.
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Algebra: compressing information

Idea: Remember only relevant information about a system.

Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

h7→ a0 b2

b1

h7→
b2

b2

h :Systems(A) → A.

Then L = {Systems evaluating to a0}.
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Another example of algebra

Language L = {∃ cycle containing a}.

Then An = {⊤n} ∪ P({1, . . . , n})
b2

a1
h7→

h7→ ⊤0

b1

h7→

L = h−1(⊤0)

A is rankwise-finite and unfold-invariant.
Intuition: Captures “finite-memory computation”.
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Recognizability
Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra,
then L is recognized by some automaton model.

Add operators such as intersection to the algebra.

Key Lemma
In any context:

a

vi,1

vi,n

⇝

Consequences

▶ A1 actually contains all the information about An.

▶ Algebras can be turned into automata.
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Key Lemma Example

Algebra: An = {an, bn}, for “∃a”.
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Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO ⇝ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra ⇝ automaton by the key lemma.

▶ Bisim-invariant automaton ⇝ µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.

15 / 15



Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO ⇝ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra ⇝ automaton by the key lemma.

▶ Bisim-invariant automaton ⇝ µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.

15 / 15



Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO ⇝ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra ⇝ automaton by the key lemma.

▶ Bisim-invariant automaton ⇝ µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.

15 / 15



Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO ⇝ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra ⇝ automaton by the key lemma.

▶ Bisim-invariant automaton ⇝ µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.

15 / 15



Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO ⇝ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra ⇝ automaton by the key lemma.

▶ Bisim-invariant automaton ⇝ µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.

15 / 15


