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Properties:
» J transition a — b
» 3 oo path

2/15



Specifying properties
MSO (Monadic Second-Order logic):

o, =a(x) | E(x,y) | Ixp[IXp[xeX[pV]p

Example: ¢(r) for “3 oo path from r":
3X.

re XA

Vx.x € X =3Jy.E(x,y) Ny € X
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MSO (Monadic Second-Order logic):

o, =a(x) | E(x,y) | Ixp[IXp[xeX[pV]p

Example: ¢(r) for “3 oo path from r":
3X.

re XA

Vx.x € X =3Jy.E(x,y) Ny € X

p-calculus:
o, :=alop |Up | uXplvXeleVi| e
Example: v for "3 oo path from the current vertex": v.X. o X

Fact: p-calculus C MSO  (e.g. 3 self-loop)
p-calculus is bisimulation-invariant.
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Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:
1. Being MSO-definable and bisimulation-invariant.

2. Being p-calculus-definable.

p-calculus — bisim-inv MSO : Easy

Bisim-inv MSO — p-calculus : Hard
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Proof sketch for bisim-inv M5O — u-calculus
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> ¢ is in particular a formula on infinite trees.
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Proof sketch for bisim-inv M5O — u-calculus

Let ¢ € bisim-inv MSO:
> ¢ is in particular a formula on infinite trees.
» ¢ ~~ automaton A on infinite trees. [Rabin 1968|
» A~ p-calculus formula 9. [Janin-Walukiewicz 1996]

Correctness:
Infinite trees suffice to define bisim-inv properties of systems.
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Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.
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Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:
1. Being MSO-definable and bisimulation-invariant.

2. Being p-calculus-definable.
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Example of the difference

MSO formula ¢ for “J cycle”:

» ¢ is not bisim-invariant on all systems.
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» ¢ is bisim-invariant on finite systems.

» Equivalent to ¥ = v X. ¢ X on finite systems.
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Example of the difference

MSO formula ¢ for “J cycle”:

» ¢ is not bisim-invariant on all systems.
N\

» ¢ is bisim-invariant on finite systems.
» Equivalent to ¥ = v X. ¢ X on finite systems.

= using Janin-Walukiewicz does not work for finite systems.
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Ranked systems

“Bisimulation = unfold -+ children duplication”
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“Bisimulation = unfold -+ children duplication”
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The free algebra of systems
X1

Systems have open ports and arities: ‘ X
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The free algebra of systems

(b ) x
Systems have open ports and arities: l X

Operation: Plug into context.
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Algebra: compressing information

Idea: Remember only relevant information about a system.
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Algebra: compressing information

Idea: Remember only relevant information about a system.

Arity stratification ~~ Algebra A = (Ap)nen.

Example: L = {Systems with an a}. A, = {ap, by}

h :Systems(A) — A.

Then L = {Systems evaluating to ap}.
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Another example of algebra
Language L = {3 cycle containing a}. -

Then A, ={T,} UP({1,...,n}) -

12/15



Another example of algebra
Language L = {3 cycle containing a}. -

Then A, = {Tn} UP({1,...,n}) -

=

1=

L=h"*(To)
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Another example of algebra

Language L = {3 cycle containing a}. -
LA
Then Ay = {T2} UP({1,...,n}) -

- GG

L=h"*(To)

A is rankwise-finite and unfold-invariant.
Intuition: Captures “finite-memory computation”.
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Recognizability

Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra,
then L is recognized by some automaton model.
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Recognizability
Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra,
then L is recognized by some automaton model.

Add operators such as intersection L] to the algebra.

Key Lemma
In any context:

Consequences

» A; actually contains all the information about A,,.

» Algebras can be turned into automata.
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Key Lemma Example

Algebra: A, = {a,, by}, for “3a".
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Algebra: A, = {ap, b,}, for “Ja".
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Proof of Main Theorem

p-calculus — bisim-inv MSQO is easy, same as before.
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» MSO ~~ algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

» Algebra ~~ automaton by the key lemma.

P Bisim-invariant automaton ~~ p-calculus as in
[Janin-Walukiewicz 1996].
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