Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs

Thomas Colcombet, Amina Doumane, Denis Kuperberg

CNRS & IRIF, Paris & LIP, ENS Lyon

ICALP 2025

Transition systems

Transition systems

Properties:

- ▶ \exists transition $a \rightarrow b$
- ▶ $\exists \infty$ path

MSO (Monadic Second-Order logic):

$$\varphi, \psi := \mathsf{a}(x) \mid \mathsf{E}(x, y) \mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \psi \mid \neg \varphi$$

Example: $\varphi(r)$ for " $\exists \infty$ path from r": $\exists X$. $r \in X \land$ $\forall x.x \in X \Rightarrow \exists y. E(x, y) \land y \in X$

MSO (Monadic Second-Order logic):

$$\varphi, \psi := \mathbf{a}(x) \mid \mathbf{E}(x, y) \mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \psi \mid \neg \varphi$$

Example: $\varphi(r)$ for " $\exists \infty$ path from r": $\exists X$. $r \in X \land$ $\forall x.x \in X \Rightarrow \exists y. E(x, y) \land y \in X$

 μ -calculus:

$$\varphi, \psi := \mathbf{a} \mid \diamond \varphi \mid \Box \varphi \mid \mu \mathbf{X}. \varphi \mid \nu \mathbf{X}. \varphi \mid \varphi \lor \psi \mid \neg \varphi$$

Example: ψ for " $\exists \infty$ path from the current vertex": $\nu X \diamond X$

MSO (Monadic Second-Order logic):

$$\varphi, \psi := \mathsf{a}(\mathsf{x}) \mid \mathsf{E}(\mathsf{x}, \mathsf{y}) \mid \exists \mathsf{x}. \varphi \mid \exists \mathsf{X}. \varphi \mid \mathsf{x} \in \mathsf{X} \mid \varphi \lor \psi \mid \neg \varphi$$

Example: $\varphi(r)$ for " $\exists \infty$ path from r": $\exists X$. $r \in X \land$ $\forall x.x \in X \Rightarrow \exists y. E(x, y) \land y \in X$

μ -calculus:

$$\varphi, \psi := \mathbf{a} \mid \diamond \varphi \mid \Box \varphi \mid \mu \mathbf{X}. \varphi \mid \nu \mathbf{X}. \varphi \mid \varphi \lor \psi \mid \neg \varphi$$

Example: ψ for " $\exists \infty$ path from the current vertex": $\nu X . \diamond X$

Fact: μ -calculus \subsetneq MSO (e.g. \exists self-loop)

MSO (Monadic Second-Order logic):

$$\varphi, \psi := \mathbf{a}(x) \mid \mathbf{E}(x, y) \mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \psi \mid \neg \varphi$$

Example: $\varphi(r)$ for " $\exists \infty$ path from r": $\exists X$. $r \in X \land$ $\forall x.x \in X \Rightarrow \exists y. E(x, y) \land y \in X$

μ -calculus:

$$\varphi, \psi := \mathbf{a} \mid \diamond \varphi \mid \Box \varphi \mid \mu \mathbf{X}. \varphi \mid \nu \mathbf{X}. \varphi \mid \varphi \lor \psi \mid \neg \varphi$$

Example: ψ for " $\exists \infty$ path from the current vertex": $\nu X . \diamond X$

Fact: μ -calculus \subsetneq MSO (e.g. \exists self-loop) μ -calculus is bisimulation-invariant.

Bisimulation

Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being μ -calculus-definable.

Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being μ -calculus-definable.

```
\mu-calculus \rightarrow bisim-inv MSO : Easy
```

```
Bisim-inv MSO \rightarrow \mu-calculus : Hard
```

Let $\varphi \in \text{bisim-inv MSO}$:

• φ is in particular a formula on **infinite trees**.

Let $\varphi \in \text{bisim-inv MSO}$:

- φ is in particular a formula on **infinite trees**.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on **infinite trees**. [Rabin 1968]

Let $\varphi \in \text{bisim-inv MSO}$:

- φ is in particular a formula on **infinite trees**.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on **infinite trees**. [Rabin 1968]
- ▶ $\mathcal{A} \rightsquigarrow \mu$ -calculus formula ψ . [Janin-Walukiewicz 1996]

Let $\varphi \in \text{bisim-inv MSO}$:

- φ is in particular a formula on **infinite trees**.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on **infinite trees**. [Rabin 1968]
- ▶ $\mathcal{A} \rightsquigarrow \mu$ -calculus formula ψ . [Janin-Walukiewicz 1996]

Correctness:

Infinite trees suffice to define bisim-inv properties of systems.

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Can we restrict the theorem to finite systems ?

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of **finite** systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being μ -calculus-definable.

Example of the difference

MSO formula φ for " \exists cycle":

 $\blacktriangleright \varphi$ is not bisim-invariant on all systems.

 $\blacktriangleright \varphi$ is bisim-invariant on **finite** systems.

• Equivalent to $\psi = \nu X \cdot \diamond X$ on finite systems.

а

Example of the difference

MSO formula φ for " \exists cycle":

 $\blacktriangleright \varphi$ is not bisim-invariant on all systems.

• φ is bisim-invariant on **finite** systems.

• Equivalent to $\psi = \nu X \cdot \diamond X$ on finite systems.

 \implies using Janin-Walukiewicz does not work for finite systems.

Ranked systems

"Bisimulation = unfold + children duplication"

Ranked systems

"Bisimulation = unfold + children duplication"

Ranked systems

"Bisimulation = unfold + children duplication"

The free algebra of systems

Systems have open ports and arities:

The free algebra of systems

Systems have open ports and arities:

Operation: Plug into context.

Idea: Remember only relevant information about a system.

Idea: Remember only relevant information about a system.

Arity stratification \rightsquigarrow Algebra $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$.

Idea: Remember only relevant information about a system.

Arity stratification \rightsquigarrow Algebra $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$.

Example: $L = \{$ Systems with an $a\}$. $A_n = \{a_n, b_n\}$

Idea: Remember only relevant information about a system.

Arity stratification \rightsquigarrow Algebra $\mathcal{A} = (\mathcal{A}_n)_{n \in \mathbb{N}}$.

Example: $L = \{$ Systems with an $a\}$. $A_n = \{a_n, b_n\}$

 $h: \mathsf{Systems}(\mathcal{A}) \to \mathcal{A}.$

Then $L = \{$ Systems evaluating to $a_0 \}$.

Another example of algebra

Language $L = \{\exists \text{ cycle containing } a\}.$

Then $A_n = \{\top_n\} \cup \mathcal{P}(\{1, \ldots, n\})$

Another example of algebra

Language $L = \{\exists \text{ cycle containing } a\}.$

Then $A_n = \{\top_n\} \cup \mathcal{P}(\{1, \ldots, n\})$

 $L = h^{-1}(\top_0)$

Another example of algebra

Language $L = \{\exists \text{ cycle containing } a\}.$

Then $A_n = \{\top_n\} \cup \mathcal{P}(\{1, \ldots, n\})$

 $L = h^{-1}(\top_0)$

 ${\cal A}$ is rankwise-finite and unfold-invariant. Intuition: Captures "finite-memory computation".

Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Add operators such as intersection \square to the algebra.

Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Add operators such as intersection \square to the algebra.

Key Lemma

In any context:

Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Add operators such as intersection \square to the algebra.

Key Lemma

In any context:

Consequences

- A_1 actually contains all the information about A_n .
- Algebras can be turned into automata.

Key Lemma Example

Algebra: $A_n = \{a_n, b_n\}$, for " $\exists a$ ".

Key Lemma Example

Algebra: $A_n = \{a_n, b_n\}$, for " $\exists a$ ".

 μ -calculus \rightarrow bisim-inv MSO is easy, same as before.

 μ -calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$ -calculus:

 MSO → algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].

 μ -calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ► MSO ~→ algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- ► Algebra ~→ automaton by the key lemma.

 μ -calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ► MSO ~→ algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- ► Algebra ~→ automaton by the key lemma.
- ▶ Bisim-invariant automaton → μ-calculus as in [Janin-Walukiewicz 1996].

 μ -calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ► MSO ~→ algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- Algebra ~> automaton by the key lemma.
- ► Bisim-invariant automaton → μ-calculus as in [Janin-Walukiewicz 1996].

Thanks for your attention!

This work was developed and shared without air travel.