CR 13: Graph Decompositions
 Homework 1

Date: $28 / 09 / 2021$, to hand in by $26 / 10 / 2021$
Total Marks: 20

- You can handwrite or type your composition.
- The 3 exercises are independent. You may tackle them in any order.
- For each question, you may of course consider the statements of the previous questions as true even if you could not prove them.
- We encourage you to draw figures whenever you feel that they will be useful for your reader.

1 Treewidth of a particular family of planar graphs (3 marks)

Let us consider the planar graph G_{n} on $3 \cdot 2^{n}-2$ vertices obtained from two full binary trees with height n, hence 2^{n} leaves, by identifying pairs of homologous leaves and adding a path linking the identified leaves, in a planar way. See figure 1 for an illustration of G_{3}.

Figure 1: The planar graph G_{3}.
Q.1) Show that for every integer $n \geqslant 2$, the treewidth of G_{n} is at least 3 and at most 4 . Bonus point, if you show that for every integer $n \geqslant 4$, the treewidth of G_{n} is precisely 4 .

2 Maximum k-Coverage in planar graphs (9 marks)

Maximum k-Coverage generalizes the k-Vertex Cover problem by asking whether k vertices touching at least p edges exist. Note that if one sets p to $|E(G)|$, Maximum k-Coverage is indeed equivalent to k-Vertex Cover. In particular, Maximum k-Coverage is NP-complete.

Maximum k-Coverage
Parameter: k
Input: A graph G and two positive integers k and p.
Question: Is there a set $S \subseteq V(G)$ such that $|S| \leqslant k$ and at least p edges of G have at least one endpoint in S ?

Importantly we consider k as the parameter, and not p, nor a combination of p and k. Contrary to k-Vertex Cover, Maximum k-Coverage does not admit a fixed-parameter tractable (FPT) algorithm in general graphs, i.e., one with running time $f(k)|V(G)|^{O(1)}$ for some computable function f. The goal of this exercise is to design FPT algorithms for Maximum k-Coverage when restricted to planar graphs.
Q.2) Present an algorithm solving Maximum k-Coverage in time $2^{t}|V(G)|^{O(1)}$ when the (nonnecessarily planar) input (G, k, p) comes with a nice tree decomposition of G of width t. Detail the correctness only in the case of the introduce node.
2.5 marks
Q.3) Using the previous question show that Maximum k-Coverage admits a $2^{O(k)}|V(G)|^{O(1)}$ time algorithm in planar graphs.
We will now find a faster algorithm with running time $2^{O(\sqrt{k})}|V(G)|^{O(1)}$.
Q.4) Explain why the bidimensionality technique (small treewidth or large grid as minor or as edge contraction) does not work as is for the Maximum k-Coverage problem.

We recall that $X \subseteq V(G)$ is a dominating set of G whenever $N[X]=V(G)$, that is, X and its neighborhood spans the entire vertex set of G.
Q.5) Given any graph G, find a polytime-computable ordering of its vertices, say, $v_{1}, v_{2}, \ldots, v_{|V(G)|}$, such that if the input (G, k, p) of Maximum k-Coverage has a solution, then it has one solution, S, such that there is an integer r satisfying both $S \subseteq\left\{v_{1}, \ldots, v_{r}\right\}$ and S is a dominating set of the graph $G\left[\left\{v_{1}, \ldots, v_{r}\right\}\right]$, i.e., the subgraph of G induced by $\left\{v_{1}, \ldots, v_{r}\right\}$.
Hint: the adequate ordering is not proper to planar graphs, and can break ties arbitrarily.
For the next question, you can use without a proof that, there is a polytime algorithm that, given any planar graph G and positive integer k, outputs a nice tree decomposition of G of width $20 k$ or an edge contraction of G isomorphic to the k-by- k triangulated grid.
Q.6) Deduce an algorithm solving Maximum k-Coverage in planar graphs in $2^{O(\sqrt{k})}|V(G)|^{O(1)}$. 2 marks

3 Breakable permutations (8 marks)

Let σ be a permutation of the set $[n]:=\{1, \ldots, n\}$, that is a bijection of $[n]$ into itself. If S is a subset of $[n]$, we denote by $\sigma(S)$ the set of images of elements of S. Let $n \leqslant m$ be two positive integers. A permutation τ of $[n]$ is a subpermutation of σ of $[\mathrm{m}]$ if there is an increasing injective function f from $[n]$ into $[m]$ such that for all pairs of distinct i, j in $[n]$ we have $\tau(i)<\tau(j)$ if and only if $\sigma(f(i))<\sigma(f(j))$. If such an f exists then we write $\tau<_{s} \sigma$.
Q.7) Show that $<_{s}$ is a partial order.

We say that σ of $[n]$ is breakable if $n=1$ or if there exists $i \in[n-1]$ such that $\sigma([i])=[i]$ or $\sigma([i])=[n] \backslash[n-i]$, and if this property also holds for all subpermutations of σ.
Q.8) Find all permutations of [4] which are not breakable.
1.5 marks

2 marks
4 marks

