Homework 2

We work with simple (no loops, no parallel edges) undirected graphs. Given a graph G and two vertices $u, v \in V(G)$, the shortest-path distance between u and v, denoted by $d_{G}(u, v)$, is the number of edges in a shortest path between u and v, or ∞ if u and v are in distinct connected components.

Given a graph G and a set $S=\left\{v_{1}, v_{2}, \ldots, v_{h}\right\} \subseteq V(G)$, the distance vector $d_{S}(v)$ of $v \in V(G)$ is the vector of $(\mathbb{N} \cup \infty)^{h}$ whose i-th entry is $d_{G}\left(v, v_{i}\right)$. A resolving set of G is a subset $S \subseteq V(G)$ such that every vertex v of G has a distinct distance vector $d_{S}(v)$. Note that distance vectors are vectors not multisets, assuming an arbritary but fixed ordering of S. So, for instance, $(1,3,1,4)$ and $(1,4,3,1)$ are distinct, since the distance to the second vertex of S is 3 in the former case, and 4 in the latter. The metric dimension $\operatorname{md}(G)$ of a graph G is the size of a smallest resolving set of G.

We may say that a vertex v of G is resolved by $S \subseteq V(G)$ (or that S resolves v) if for every $w \in V(G) \backslash\{v\}, d_{S}(v) \neq d_{S}(w)$. A resolving set is then a set resolving every vertex. Observe that $S=\left\{v_{1}, v_{2}, \ldots\right\}$ resolves every vertex in S, since the distance vector of no other vertex than $v_{i} \in S$ has a 0 entry at position i.

- Exercise 1 - Give a family of connected graphs with bounded treewidth and unbounded metric dimension. Briefly justify.
- Exercise 2-Give a family of graphs with unbounded treewidth and bounded metric dimension. Briefly justify.
- Exercise 3-Characterize the graphs with metric dimension equal to 1.
- Exercise 4 - Deduce that having metric dimension 1 is MSO_{1}-definable among graphs, and FO-definable among connected graphs.

A pair of twins in a graph G is a pair of vertices $u, v \in V(G)$ (adjacent or not) whose neighborhoods outside $\{u, v\}$ are equal.

- Exercise 5- Show that for every resolving set $S \subseteq V(G)$ of a graph G, and pair of twins $u, v \in V(G), S \cap\{u, v\} \neq \emptyset$.
- Exercise 6- Let G be the cycle on $2 n$ vertices, for some integer $n \geqslant 2$. Characterize the pair of vertices of G forming a resolving set.
- Exercise 7 - Use the two previous questions to show that having metric dimension 2 is not MSO_{1}-definable.

