Date: $05 / 10 / 2020$, to send us by $19 / 10 / 2020$
Total Marks: 20

- The 2 exercises are independent from each other. You may tackle them in any order.
- For each question, you may consider the statements of the previous questions as true even if you could not prove them.

1 Maximum Independent Set in restricted graph classes (10 marks)

We recall that an independent set in a graph is a set of pairwise non-adjacent vertices. We study the following classical problem:

Maximum Independent Set
 Parameter: k

Input: A graph G and a positive integer k.
Question: Is there an independent set $S \subseteq V(G)$ such that $|S| \geqslant k$?
For a given (fixed) graph H, we say that a graph G is H-free if G does not contain H as an induced subgraph.
Q.1) A triangle is a clique of size 3. Prove that a triangle-free graph G on n vertices always contains an independent set of size at least $\lfloor\sqrt{n}\rfloor$, and such an independent set can be constructed in polynomial time. To do this, consider the two following cases: either G admits a vertex of degree at least $\lfloor\sqrt{n}\rfloor$, or every vertex has degree smaller than $\lfloor\sqrt{n}\rfloor$.
Q.2) Deduce from the previous question that Maximum Independent Set admits a kernel with $O\left(k^{2}\right)$ vertices if its input graph is triangle-free.
Q.3) By induction, generalize the result of Question $\mathbf{Q} .1$ to the case of K_{t}-free graphs, for every (constant) integer $t \geqslant 3$, that is graphs with no clique on t vertices. Deduce that in that case, Maximum Independent Set admits a kernel with $O\left(k^{t-1}\right)$ vertices.

We now consider the case of diamond-free graphs. A diamond is a graph on four vertices having all possible edges but one. The goal is to obtain a kernel with $O\left(k^{3}\right)$ vertices for Maximum Independent Set in diamond-free graphs.

Figure 1: A diamond
Q.4) Prove that a diamond-free graph G on n vertices always contains either a clique or an independent set of size at least $\left\lfloor n^{1 / 3}\right\rfloor$, and this set can be constructed in polynomial time.
To do so, consider the two following cases: either G admits a vertex of degree at least $\left\lfloor n^{2 / 3}\right\rfloor$, or every vertex has degree smaller than $\left\lfloor n^{2 / 3}\right\rfloor$. For the first case, observe that the neighborhood of any vertex in a diamond-free graph induces a P_{3}-free graphs, where P_{3} is the path on three vertices (how does a P_{3}-free graph look like?).

In the following, we assume that (G, k) is an instance of Maximum Independent Set, and that G is diamond-free.
Q.5) Prove that if the algorithm of question Q. 4 applied to G returns an independent set, there is a direct kernel of the desired size.
We now assume that the algorithm of question Q. 4 returns a clique C of G (of size at least $\left\lfloor n^{1 / 3}\right\rfloor$). We furthermore assume that C is maximal, that is, for every $v \in V(G) \backslash C, C \cup\{v\}$ is not a clique. Let N be the set of vertices of $V(G) \backslash C$ having at least one neighbor in C.
Q.6) Prove that every vertex in N has exactly one neighbor in C.

1 mark
Consider the following reduction rule:
Reduction Rule: if $|C| \geqslant k+1$, remove any vertex from C.
Q.7) Prove that this reduction rule is safe. To do so, prove that if the instance is positive and $|C| \geqslant k+1$, then for every $c \in C$, there is a solution avoiding c.
Q.8) Prove that the previous reduction rule yields a kernel of the desired size.
Q.9) Open question: find a kernel with $O\left(k^{3-\varepsilon}\right)$ vertices for some $\varepsilon>0$:-)

2 FPT and exacts algorithms for Activation Level (10 marks)

A k-level assignment of a simple (no parallel edges, no self-loops) undirected graph is a surjective mapping $L: V(G) \rightarrow\{1,2, \ldots, k\}$ such that for every vertex $v \in V(G)$, the neighborhood of v, $N_{G}(v)$, contains for every $i \in\{1,2, \ldots, L(v)-1\}$ at least one vertex w such that $L(w)=i$. The integer $L(v)$ is called the level of vertex v. We see 1 as the lowest level, and k as the highest one. Informally, in a k-level assignment, every vertex is adjacent to at least one vertex of each lower level.

Activation Level
Parameter: k
Input: A graph G and a positive integer k.
Question: Does G admit a k-level assignment?
Q.1) Give a graph on k vertices admitting a k-level assignment, and argue that this is (up to isomorphism) the only such graph on at most k vertices.
A partial k-level assignment is the same as a k-level assignment except not all the vertices are given a level. Formally it is a surjective mapping $L: S \rightarrow\{1,2, \ldots, k\}$, with $S \subseteq V(G)$, such that for every vertex $v \in S$ and for every $i \in\{1,2, \ldots, L(v)-1\}$, there is a vertex $w \in N_{G}(v) \cap S$ such that $L(w)=i$. We say that the vertices of S are given a level, but not the vertices of $V(G) \backslash S$.
Q.2) Show that if a graph admits a partial k-level assignment, then it admits a k-level assignment. 1 mark
Q.3) Show that if a graph admits a k-level assignment, then it admits a partial k-level assignment where at most 2^{k-1} vertices are given a level.
Q.4) Detail a randomized Monte-Carlo algorithm with one-sided error, solving Activation Level on n-vertex graphs in time $k^{2^{k}} n^{O(1)}$. Justify the running time and the correctness of your algorithm. 3 marks
Q.5) Using dynamic programming, show how to solve Activation Level on n-vertex graphs in time $3^{n} n^{O(1)}$. You may first observe that Activation Level has an equivalent formulation in terms of vertex-partitioning and dominating sets.

