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Abstract

We give essentially tight bounds for, v(d, k), the maximum number of distinct neighbourhoods
on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus-Tardos
theorem, two independent works [Bonnet et al., Algorithmica '22; Przybyszewski ’22] have shown the
upper bound v(d, k) < exp(exp(O(d)))k, with a double-exponential dependence in the twin-width.

We give a short self-contained proof that for every d and k,

v(d, k) < (d+ 2)2%F f = 2d+0Uesd)p

and build a bipartite graph implying v(d, k) > 2¢*'°8 +OM L in the regime when k is large enough
compared to d.

1 Introduction

The aim of this paper is to refine our understanding of how complex the neighbourhoods of graphs of
bounded twin-width can be. We provide an improved bound on the neighbourhood complexity of such
graphs, complemented by a construction showing that our bound is essentially tight. The improvements in
the bounds for neighbourhood complexities translate directly to better structural bounds and algorithms,
in some contexts which are explained below.

Twin-width. Twin-width is a recently introduced graph invariant [10]; see Section [2| for a definition.
It can be naturally extended to matrices over finite alphabets and binary structures [10, [7, 12]. Although
classes of bounded twin-width are broad and diverse, they allow (most of the time, provided a witness
is given as an input) improved algorithms, compared to what is possible on general graphs or binary
structures.

Most prominently, it was shown [10] that, on n-vertex graphs given with a d-sequence (a witness that
their twin-width is at most d), deciding if a first-order sentence ¢ holds can be solved in time f(d, ¢)n, for
some computable function f. In some special cases, such as for k-INDEPENDENT SET or k-DOMINATING
SE single-exponential parameterised algorithms running in time 29¢()p, are possible [B]. In the same
setting, the triangles of an n-vertex m-edge graph can be counted in time O(d?n+m) [19]. See [, 18, 25]
for more applications of twin-width with an algorithmic flavour.

Classes of binary structures with bounded twin-width include bounded treewidth, and more gener-
ally, bounded clique-width classes, proper minor-closed classes, posets of bounded width (that is, whose
antichains are of bounded size), hereditary subclasses of permutations, as well as Q(log n)-subdivisions of
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IThat is, the problems of deciding whether in an input graph, there are k vertices that are pairwise non-adjacent or
whose closed neighbourhood is the entire vertex set, respectively.



n-vertex graphs [10], and particular classes of (bounded-degree) expanders [6]. A rich range of geometric
graph classes have bounded twin-width such as map graphs, bounded-degree string graphs [10], classes
with bounded queue number or bounded stack number [0], segment graphs with no K, subgraph, and
visibility graphs of simple polygons without large independent sets [4], to give a few examples.

If efficiently approximating the twin-width is a challenging open question in general, this is known
to be possible for the above-mentioned classes (albeit a representation may be needed for the geometric
classes) and for ordered graphs [7]. By that, we mean that there are two computable functions f, g and
an algorithm that, for an input n-vertex graph G from the class and an integer &, and in time g(k)no(l),
either outputs an f(k)-sequence (again, witnessing that the twin-width is at most f(k)) or correctly
reports that the twin-width of G is larger than k.

Structural properties of graph classes of bounded twin-width include y-boundedness [5], even with
a quasipolynomial binding function [24], smallness (i.e., containing up to isomorphism 20(n) n-vertex
graphs) [0 12], and Vapnik-Chervonenkis (VC) density at most 1 [9, 26]. The latter property is the topic
of the current article.

VC density and neighbourhood complexity. VC density is related to the celebrated VC dimen-
sion [29]. Given a set-system (or hypergraph) S on a domain X, the shatter function ns : N — N is
defined as
ms(n) = max {Y CA|3Se€S,Y=ANS}.
Ae(3)

The Perles-Sauer-Shelah lemma states that 7s(n) = O(n?) if the VC dimension of S (i.e., the supremum of
{n | rs(n) = 2"}) is a finite integer d. Then the VC density of S is defined as inf{c € R | ms(n) = O(n°)},
and as +oo if the VC dimension is unbounded.

We define the VC' density of an infinite class C of finite graphs as the VC density of the infinite
set-system formed by the neighbourhood hypergraph of the disjoint union of the graphs of C, that is,
{Ng(v) | v € V(JgecG)}, where Ng(v) denotes the set of neighbours of v in G. The VC density
is an important measure in finite model theory, often more tractable than the VC dimension (see for
instance [Il 2]). Tight bounds have been obtained for the VC density of (logically) definable hypergraphs
from graph classes of bounded clique-width [23] (with monadic second-order logic), and more recently, of
bounded twin-width [I8] (with first-order logic).

In structural graph theory and kernelisation [16] (a subarea of parameterised complexity [14]) the
function my(), where N'(G) is the neighbourhood hypergraph of G, is ofterﬂ called neighbourhood com-
plezity. (See [3] for an algorithmic study of the computation of this notion.) In these contexts, obtaining
the best possible upper bound for mxs () (and not just the exponent matching the VC density) translates
to qualitatively better structural bounds and algorithms; see for instance [9] [T} [I5] 28].

The r-neighbourhood complexity of G is the neighbourhood complexity of G", with same vertex set
as G, and an edge between two vertices at distance at most r in G. Reidl et al. [28] showed that among
subgraph-closed classes, bounded expansionﬂ is equivalent to linear r-neighbourhood complexity. Indeed,
the more general nowhere dense classes [21I] (another invention of the Sparsity program [22]) have almost
linear r-neighbourhood complexity [15]: there is a function f : N x N — N such that for every ¢ > 0,
T ary(n) < f(r, g)n'™e for all n. On hereditary classes, i.e., closed under taking induced subgraphs,
there is no known characterisation of linear neighbourhood complexity.

As we already mentioned in a different language, bounded twin-width classes have been proven to have
linear neighbourhood complexity. See [9, Lemma 3] or [26], Section 3] for two independent proofs, both
using the Marcus-Tardos theorem [20]. However, the dependence in the twin-width is doubly exponential
in both papers. Setting v(d, k) as the maximum number of distinct neighbourhoods on a set of size k
within a graph of twin-width at most d, i.e., max{m(g)(k) | G has twin-width at most d}, they show
that v(d, k) < exp(exp(O(d)))k.

Our results. In this note, we give in Section [3| a self-contained proof (not using the Marcus-Tardos
theorem) that v(d, k) < 2¢790ced)f In Section |4} we complement that proof with a construction of a

1Some authors define the neighbourhood complexity as n — m

n
2A notion from the Sparsity theory of Negetfil and Ossona de Mendez [22] extending bounded degree and proper minor-
free classes.



bipartite graph witnessing that v(d, k) > 2¢+l¢ d+OM) L which makes our single-exponential upper bound
in twin-width essentially tight.

2 Preliminaries

We use the standard graph-theoretic notations: V(G), E(G), G[S], G — S respectively denote the vertex
set, edge set, subgraph of G induced by S, and subgraph of G induced by V(G)\ S. If v € V(G), then
Ng(v) (or N(v) if G is clear from the context) denotes the set of neighbours of v in G. If X C V(G),
then an X -neighbourhood is a set N(v) N X for some v € V(G).

We now define the twin-width of a graph, following the definition of [I0].

A trigraph is a triple G = (V(G), E(G), R(G)) where E(G) and R(G) are two disjoint sets of edges
on V(G): the usual edges (also called black edges) and the red edges. Informally, a red edge between two
vertices v and v means that some errors have been made between u and v. The red degree of a trigraph
is the maximum degree of the graph (V(G), R(G)). Any graph G can be interepreted as a trigraph
G = (V(G),E(G),0). Given a trigraph and two vertices u,v € V(G) (not necessarily adjacent), the
trigraph G/u,v = G’ is obtained by contracting u and v in a new vertex w such that:

o V(G') = {w}UV(G)\{u,v};
e the edges between vertices of V(G) \ {u,v} are the same in G';
e the following edges are incident to w:

— wz € BE(G") if zu € E(G) and a2v € E(G);
—wz ¢ E(G'")UR(G) if zu ¢ E(G) U R(G) and 2v ¢ E(G)U R(G);
— wz € R(G’) otherwise.

In other words, the common black neighbours of v and v are black neighbours of w. All the other
neighbours of u or v are red neighbours of w. Red edges stay red, black edges stay black, red and black
edges become red. We say that G/u,v is a contraction of G. A d-sequence of an n-vertex graph G is
a sequence of n trigraphs G,, = G,G,,_1, ...., G1 such that each trigraph G; is obtained from G;;; by a
contraction and has red degree at most d. The twin-width of G, denoted by tww(G), is the minimum
integer d such that G admits a d-sequence. Note that an induced subgraph of G has a twin-width smaller
or equal to the twin-width of G [10].

If uw € G;, then u(G) denotes the set of vertices of G eventually contracted to u in G;. Instead of
considering the trigraphs G;, we might prefer to deal with the partitions induced by the sets u(G) for u
in Gi: P; = {u(G) | u e V(G;)}. We say that there is a red edge between two parts u(G) and v(G) of P;
if uv is red in G;.

3 Upper bound on the number of distinct neighbourhoods

We state and prove our upper bound on the maximum number of distinct X-neighbourhoods in bounded
twin-width graphs.

Theorem 1. Let G be an n-vertex graph of twin-width d, and X C V(G). Then the number of distinct
X -neighbourhoods in G is at most (d + 2)2%+1|X| = 24+0Uogd)| x|,

Proof. Fix X C V(G). First of all, for all vertices of V(G) \ X with the same X-neighbourhood, we keep
only one representative. Note that the new graph G” is an induced subgraph of G, thus its twin-width
is at most d. We further modify graph G” by adding for each v € X a new vertex u to G” so that
N(u) = N(v) if such vertex does not exist in V(G”)\ X. The new graph is called G’ and it has the same
twin-width as G”'.

Let M = (d + 2)29*1 + 1. We prove by induction on n that an n-vertex graph of twin-width at
most d with a set X of k vertices, where all vertices outside X have a distinct X-neighbourhood, satisfies
n < kM. This will prove that G’ has at most kM vertices, and thus that in G, there are at most (M —1)k
distinct X-neighbourhoods.

The statement is trivially true for n < 5 since M > 5, for all d > 0.



Thus, assume n > 6. In particular, we have k > 1. Let z € X. Let X' = X \ {z} and let T, be the
set of pairs of vertices outside X that are twins with respect to X', i.e.

T, = {{m} e (V(Gg \X> | N(w)n X' = N(v) ﬂX’}.

Since every vertex of V(G’) \ X has a distinct neighbourhood in X, there are at most two vertices of
V(G')\ X with the same (possibly empty) neighbourhood N in X’; namely the vertices u,v € V(G')\ X
with N(u)NX = N and N(v)NX = NU{z} (if they exist). Hence, T, consists of pairwise-disjoint pairs
of vertices.

We prove the following claim.

Claim A. There exists a verter x of X such that T, comprises at most M — 1 pairs, in G'.

Proof of claim. By contradiction, assume this is not the case: for every x in X, T, has size at least M.
Consider a d-sequence of contractions G, ..., G} of G'. Consider the last step G’ of the sequence where
all the parts of P; contain at most one vertex of X (that is, contrary to P;, some part of P;_; contains
two vertices of X).

Let P be a part of P;. Let  be the unique (if there exists one) element of PN X. Then we claim that
|P\ X| <291 Indeed, any two vertices of P\ X have some vertex in the symmetric difference of their
X-neighbourhoods, either it is z, or some vertex z’ of X outside P. If that distinguishing vertex is some
2’ that is not in P, then there has to be a red edge between P and the part that contains z’. There are
at most d red edges with P as an extremity. Since all the elements of X are in distinct parts in G, it
means that d + 1 vertices of X are enough to distinguish all the X-neighbourhoods of vertices of P\ X,
and thus [P\ X| < 241

We now consider the next contraction in the sequence, which leads to G;_;. By definition of G, it
must contract two vertices corresponding to two parts of P; that both contain an element of X. Let
z1 and xo be these two elements of X. Let @ be the part of P;,_; that contains both z; and x,. By
our assumption, T, has size at least M. Let {u,v} be a pair of T,,. Since u and v have the same
neighbourhood in X \ {z1}, it means that they are either both adjacent or both non-adjacent to x2, and
exactly one of them is adjacent to x1. Thus, necessarily, one vertex among the pair {u,v} is adjacent
to exactly one vertex among {z1,22}. In particular, if this vertex is not in @, then there has to be a
red edge between the part containing this vertex and the part @ in G}_,. Since T, contains at least M
pairs (which are disjoint) and @ has at most 29+2 vertices not in X, there are at least M — 292 vertices

not in X whose part in G;_; has a red edge to Q. Since each other part has at most 2¢+! vertices not
d+ [—od+2

in X, it makes at least MQdiQH? red edges incident to (). Thus, we must have AZT < d, leading to
M < 2d+1(d + 2), a contradiction that proves the claim. )

By Claim [A] there exists a vertex € X such that |T,| < M — 1. Let Y be a set of |T,| vertices that
intersects each pair of T, exactly once. Let Gy = G’ — (Y U{z}). Then, X’ = X \ {z} is a vertex set
of size k — 1 such that all X’-neighbourhoods of vertices outside X’ are distinct. The graph Gy has at
least n — M vertices, and twin-width at most d. By induction, we have n — M < |V(Gy)| < (k — 1)M
and thus, n < kM. Hence, once we recall that no vertex in X has unique X-neighbourhood, there are at
most (M — 1)k distinct X-neighbourhoods, which completes the proof. O

4 Lower bound on the number of distinct neighbourhoods

Notice that when |X| and tww(G) are roughly the same, the bound from Theorem |1| cannot be sharp,
since G’ has at most 2/¥! + | X| vertices. However, when |X| is large enough compared to tww(G), we
next show that the bound is sharp up to a constant factor.

Proposition 2. There is a positive constant ¢, such that for any integer d, there is a bipartite graph G of
twin-width at most d, and a large enough set X C V(Q), with at least c-d2?| X | distinct X -neighbourhoods
mn G.

Proof. Observe that the claim is clearly true for any small d. Thus, we do not need to consider separately
graphs with small twin-width upper bounded by a constant. Hence, we assume from now on that d > d’
where d’ is some positive constant.



We construct the graph G as follows. Let A, B, C' € Z be three constants that will be given later
(A and B will be roughly equal to v/d and C will be roughly equal to d). Let X = {x1,...,x;} be an
independent set of k vertices. Our goal is that each vertex in V(G) \ X has a unique X-neighbourhood.
For any integers 4,5, t with 1 < i< j<i+A—-1,j+2<t<j+1+Bandt < k—C, we create
a set V; ;. of vertices as follows. Consider the set Xy = {z441, ..., x11c}. For every subset ¥ of X, let
Y' ={z;,...,zj,2,} UY and add a vertex vy, to V; ;, making it adjacent to the vertices of Y’. Each set
V; ;. has size 2¢ and there are ©(kAB) (for fixed A and B and growing k) such sets. Thus there are
O(kAB2) vertices in the graph.

Any two vertices not in X have distinct X-neighbourhoods. Indeed, by considering the natural
ordering of X induced by the indices, any vertex not in X is first adjacent to a consecutive interval
of vertices from x; to x;, then is not adjacent to vertices from ;11 to z4—1 (which is not empty since
t > j+2), and then adjacent to z;. Thus, if two vertices have the same X-neighbourhood, they must be
in the same set V; ;;. But then, they have a distinct neighbourhood in {Z441, s Tepo

We now prove that the twin-width of G is at most M = max{AB, C'}+2. For that, we give a sequence
of contractions with red degree at most M.

The contraction sequence is split into k — C' steps, for each vertex of X. Let 0 < i < k—C —1. Step 0
corresponds to the starting point, where each vertex is alone. Let i > 1. After Step ¢, there will be the
following parts in the corresponding partition (vertices not in any part have not yet been contracted):

e For each j,t such that i < j<i+A—1and j+2<¢t<j+ 1+ B, there is a part B;;. The parts
B, (parts with j = 4), contain all the vertices of the sets Vjs j, such that j' <. The parts B;
with j > i contain all the vertices of the sets Vi j»; such that ' < i and j* = j. Note that there
are AB non-empty Bj; . parts in total.

e There is a part X that contains vertices from x; to x; of X.
o There is a part T (for “trash”) that contains all the vertices of the sets Vi/ ;¢ with ¢ < i+ 1.

All the other vertices are not yet contracted. This corresponds to the vertices from ;1 to xp of X
and to the vertices of the sets Vi/ ;, with i’ > 4. Indeed, if i < ¢ and ¢ < i+ 1, then the vertices of Vi ;;
are in T'. If £ > ¢ + 2 but j < 7, then they are in the part B, ;. If j > 4, then they are in the part B; ;.

We first prove that the red degree after Step i is at most M. Then, we explain how to get from Step
1 to Step i + 1 by keeping the red degree at most M.

Consider the part B;; at the end of Step 7. A vertex in this part belongs to some set V;: j:+ with
i <iand j/ = jif j > i or j/ <iotherwise. In particular, two vertices of B, are adjacent to all the
vertices between x;11 and x;, to no vertex between x4, and x;_1, to x¢, and to no vertex after x4 c.
Thus, there is a red edge between the parts B;; and X, and C red edges between the part B;; and the
vertices {Z¢11, ..., 2+4c}. Therefore, the number of red edges incident with B, ; is at most C' + 1.

Consider now the part T'. Vertices in T" are adjacent only to vertices of X up to z;1¢41. Since vertices
1 to x; are all in the part X, the red degree of T is at most C' + 2.

Single vertices not in X have no incident red edges: indeed, they are all in some sets V;s ;; for i’ > ¢
and thus are not adjacent to any vertex of X,. For the same reason, there are red edges incident to X
only to 1" and to the parts B; ;. Hence, the red degree of Xy is at most AB + 1. Similarly, the red degree
of xy, 9 > i+ 11is at most AB + 1. Moreover, the red degree of x; 1 is at most one. Indeed, the only
red edge is between x;4; and 7.

Finally, the red degree after step i is at most max{AB + 1,C + 2} < M.

Let ¢ > 0. We now explain how we perform the contractions to go from step i to step ¢ + 1.

1. (only if 4 > 1) For any ¢+ 3 < t < %+ 2+ B, merge the part B;; with the part B;;1 . The only
new red edge this merging may lead to, when B, ; is non-empty, is between B;11+ and x;41. Thus,
we add only one red edge between x;11 and B;11,+. Thus, the red degree of B; 1 is at most C + 2
and the red degree of x; 1 is at most 2.

2. Add all the vertices of Vi;1 ;; for some j,t to the part (that might be empty at this point) Bj ;.
The red degree of Bj; is at most C' + 2 since we might have a red edge between B;; and z;11. The
number of nonempty parts B, at this point is AB + 1 (there is still the part B, ;12). Adding T,
this gives AB + 2 red edges incident to a vertex in X (or from part Xj).



3. Add z;41 to Xo. The part Xy has red edges only to parts B;11,, to B;y2 and to T, but no edges
to the single vertices. Thus, it has red degree at most AB + 2.

4. Put the part B; ;42 into T'. This part is only adjacent to vertices up to z;y21c, and thus has C' +2
red edges.

Thus, at each point, the red degree is always at most M = max{AB,C} + 2.

The process ends at step i = k — C — 1. Then, all the vertices not in X are in some parts, and there
are at most AB + 1 such parts. On the other side of bipartition, we have part Xy and C + 1 single
vertices. Thus, the graph is bipartite with both sides of size at most M. One can contract each part
independently to finish the contraction sequence.

To conclude, taking C = d —2 and A = B = [/d — 2], we have M < d and kAB2¢ = O(kd2?).
Notice that we may assume that A, B and C are positive since d > d’ where d’ was some well chosen
positive constant. This concludes the proof. O

5 Conclusion

We have given an improved and tight upper bound for the neighbourhood complexity of graphs of bounded
twin-width. Unlike the previously known (weaker) bounds, our method is simple and avoids the use of
the Marcus-Tardos theorem. We hope that it can inspire future works in the area.

It is known that the twin-width of G" can be upper-bounded by a function of the twin-width of G
and r [10]. Thus, graphs of twin-width at most d have linear r-neighbourhood complexity. We leave as an
interesting open problem to obtain an essentially tight twin-width dependence for the r-neighbourhood
complexity.

We remark that the neighbourhood complexity is also related to identification problems on graphs
such as identifying codes or locating-dominating sets, where one seeks a (small) set A of vertices of a graph
such that all other vertices have a distinct neighbourhood in A [I7]. Some works in this area about specific
graph classes, are equivalent to the study of the neighbourhood complexity of these graph classes: see for
example [I3] [I7, 27]. Moreover, we note that for graph classes with VC density 1, since any solution has
linear size, the natural minimisation versions of the above identification problems have a polynomial-time
constant-factor approximation algorithm (trivially select the whole vertex set), while such an algorithm
is unlikely to exist in the general case [I3]. Thus, our work implies a better approximation ratio for these
problems, when restricted to input graph classes of bounded twin-width.
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