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Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in H-free graphs
(that is, graphs which do not admit H as an induced subgraph). As one motivation we investigate
the following conjecture: for every fixed graph H, there exists a constant δ > 0 such that MIS can
be n1−δ-approximated in H-free graphs, where n denotes the number of vertices of the input graph.
We first prove that a constructive version of the celebrated Erdős-Hajnal conjecture implies ours.
We then prove that the set of graphs H satisfying our conjecture is closed under the so-called graph
substitution. This, together with the known polynomial-time algorithms for MIS in H-free graphs
(e.g. P6-free and fork-free graphs), implies that our conjecture holds for many graphs H for which
the Erdős-Hajnal conjecture is still open. We then focus on improving the constant δ for some graph
classes: we prove that the classical Local Search algorithm provides an OPT 1− 1

t -approximation
in Kt,t-free graphs (hence a

√
OPT -approximation in C4-free graphs), and, while there is a simple√

n-approximation in triangle-free graphs, it cannot be improved to n 1
4 −ε for any ε > 0 unless

NP ⊆ BPP . More generally, we show that there is a constant c such that MIS in graphs of girth γ
cannot be n

c
γ -approximated. Up to a constant factor in the exponent, this matches the ratio of a

known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our
knowledge, this is the first strong (i.e., Ω(nδ) for some δ > 0) inapproximability result for Maximum
Independent Set in a proper hereditary class.
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computation → Approximation algorithms analysis
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1 Introduction

An independent set of a (simple, undirected) graph is a set of pairwise non-adjacent vertices.
Independent sets have been central in various research topics, both in algorithmic and
structural graph theory. In structural graph theory, independent sets (and their complements,
cliques) are at the core of several celebrated results, such as Kőnig’s theorem, Ramsey’s
theorem, or Turan’s theorem [8], to name only a few. Finding an independent set of
maximum cardinality (called the Maximum Independent Set problem, or MIS for short)
is a fundamental intractable optimization problem. Indeed, it is NP-hard to solve [21], but
also to approximate within ratio n1−ε for any ε > 0 [27, 35], where n denotes the number of
vertices of the input graph. On the positive side, MIS becomes tractable when restricted
to some specific graph classes: It is polynomial-time solvable in bipartite graphs and more
generally in perfect graphs [22], admits a PTAS in planar graphs [6] and in more general
geometric graph classes such as pseudo-disk graphs [10], bounded genus or H-minor-free
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graphs [14]. Notice that all the aforementioned graph classes are closed under taking induced
subgraphs. We call hereditary such a class, and add the qualificative proper if it is not the
class of all graphs. A hereditary class can be defined by a (possibly infinite) set of forbidden
induced subgraphs. A potentially unifying framework is to consider the complexity of MIS
in H-free graphs (i.e., graphs without induced copy of H) and H-free graphs (i.e., graphs
without induced copy of any H ∈ H). However, a classical reduction [2, 3] consisting of
subdividing every edge of a given graph G a fixed even number of times 2c leads to a graph
G′ such that α(G′) = α(G)+c|E(G)| (where α(.) denotes the size of a maximum independent
set of a graph). This reduction, together with the fact that MIS remains APX-hard in
graphs of maximum degree at most 3 [5] (which means in particular that we may assume
that α(G) = Ω(|E(G)|) in the reduction) implies the following:

I Theorem 1 ([2, 3] and [5]). For any fixed connected graph H which is neither a path nor
a subdivision of the claw K1,3, MIS is APX-hard in H-free graphs.

On the positive side, polynomial algorithms are known for P6-free graphs [24] and fork-free
graphs [4]. For paths on at least seven vertices and subdivided claws not contained in the
fork, the computational complexity of MIS remains unsettled.

In this work, we start a systematic investigation of the approximability of MIS in H-free
graphs. The intuition is that forbidding a fixed graph H as an induced subgraph should
imply a drastic change in the structure of independent sets and cliques. This idea is at
the core of the Erdős-Hajnal conjecture: while in random graphs of G(n, 1/2) the expected
maximum of the clique number and the independence number is O(logn) [19], this value
should be significantly larger for an H-free graph. More formally:

I Definition 2. A graph H satisfies the Erdős-Hajnal property if there exists a constant δ > 0
such that every H-free graph G with n vertices contains either a clique or an independent set
of size nδ.

I Conjecture 3 ([18]). Every graph H satisfies the Erdős-Hajnal property.

So far, the Erdős-Hajnal conjecture has been verified for only a small number of graphs,
namely: all graphs on at most four vertices, the bull1, the cliques, and every graph that
can be constructed from them using the so-called substitution operation [12] (we describe
this operation in Section 2). Interestingly, for many graphs H satisfying the Erdős-Hajnal
property, MIS is known to be either polynomial or at least to admit an n1−ε-approximation
algorithm for some ε > 0. A typical example of this situation is when H is the clique of
size t > 1. In that case, Ramsey’s theorem can be invoked to get a n

t−2
t−1 -approximation

algorithm. Indeed a Kt-free graph always contains an independent set of size at least n
1
t−1 ,

and the classical proof readily yields a polytime algorithm finding such an independent set.
This leads us to define an approximation weaker version of the Erdős-Hajnal property and
its companion conjecture:

I Definition 4. A graph H satisfies the improved approximation property if there exists
a constant ε > 0 such that MIS admits a (randomized) n1−ε-approximation polynomial
algorithm on every H-free n-vertex graph G.

Here, a randomized ρ-approximation algorithm is an algorithm which, given an input
graph on n vertices, outputs a ρ-approximation of the problem with high probability (w.h.p.

1 The bull is the graph obtained by adding a pending vertex to two different vertices of a triangle.
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for short), that is with probability at least a function of n tending to 1 when n goes to
infinity.

I Conjecture 5. Every graph H satisfies the improved approximation property.

We refer to Conjecture 5 as the improved approximation conjecture. Informally, it states
that the inapproximability of MIS in general graphs can be beaten in any proper hereditary
class.

Results and organization of the paper.

On the one hand, there exist graphs H satisfying the improved approximation property
for which the Erdős-Hajnal conjecture is still open. Indeed, as mentioned previously, MIS
is polynomial-time solvable in P6-free graphs, whereas it is still open whether P5 satisfies
the Erdős-Hajnal property. On the other hand, one may wonder if the satisfiability of the
Erdős-Hajnal property for a graph H can help designing an approximation algorithm in
H-free graphs, and more concretely if Conjecture 3 implies Conjecture 5. In Section 2, we
prove that this is almost the case. More precisely, we prove that every graph H satisfying a
constructive version of the Erdős-Hajnal property also satisfies the improved approximation
property. We also show that the improved approximation property is preserved through the
substitution operation, which is the one graph operation known to preserve the Erdős-Hajnal
property.

We then try and obtain better approximation ratios for the improved approximation
property: for a given H, what is the largest ε > 0 such that MIS admits an O(n1−ε)-
approximation algorithm in H-free graphs? We investigate this question in Sections 3 and 4.
More precisely, in Section 3 we describe some particular properties of graphs H as well as
graph operations preserving the improved approximation property in a better way than
the substitution. We also prove that the classical local search algorithm provides a

√
OPT

approximation ratio in C4-free graphs and, more generally, an O(OPT 1−1/t)-approximation
algorithm inKt,t-free graphs. Finally, we present in Section 4 some negative results concerning
the improved approximation property: while MIS can be easily n1/2-approximated in triangle-
free graphs, we show that this ratio cannot be improved to n1/4−ε for any ε > 0, unless
NP ⊆ BPP . We also provide a generalization of this result when we forbid all cycles of
length 3, . . . , t for a fixed t > 3.

Notations and definitions.

For two positive integers i < j, we denote the set of integers at least i and at most j by
[i, j], while [i] is a short-hand for [1, i]. All the graphs we consider are simple; they have no
multiple edges nor loops. For a vertex v in a simple graph G, NG(v), or simply N(v) if the
graph is unambiguous, denotes the set of neighbors of v. The closed neighborhood of v is
defined as N [v] := N(v) ∪ {v}. A universal vertex is a vertex whose closed neighborhood
is the entire set of vertices. The size of a maximum independent set of G is denoted by
α(G). The girth (resp. odd girth) of a graph is the smallest size of an induced cycle (resp.
odd cycle) in the graph. Ks, Ps, Cs respectively denotes the clique, the path, and the cycle
on s vertices, and Ks,t is the biclique with s vertices on one side and t on the other side.
The graph K3 = C3 is also called the triangle. The claw is the biclique K1,3. The fork is
the 5-vertex graph obtained by subdividing one edge of the claw. For a triple of integers
0 6 i 6 j 6 k, the graph Si,j,k is obtained by subdividing one edge of a claw i− 1 times, a
second edge, j − 1 times, and a third edge k− 1 times (with the convention that subdividing
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−1 times means removing the edge and its degree-one endpoint). Observe that with that
definition, the family {Si,j,k}06i6j6k contains the paths.

2 Constructive Erdős-Hajnal and the substitution operation

A graph H is said to satisfy the constructive Erdős-Hajnal property if there is a constant
δ > 0 and a polynomial-time algorithm which takes as input an H-free graph G, and outputs
a clique or an independent set of size at least |V (G)|δ. We prove that the constructive
Erdős-Hajnal conjecture implies Conjecture 5. To our knowledge, all the graphs H shown to
satisfy the Erdős-Hajnal property so far, also satisfy its constructive version.

I Theorem 6. Let H be a graph which satisfies the constructive Erdős-Hajnal property with
constant2 0 < δ 6 1/2. Then H satisfies the improved approximation property with constant
δ − δ2 − ε for any fixed ε > 0.

Proof. Let G be an H-free graph with n := |V (G)|. We assume n > 2
1

1−(δ−δ2) , since
otherwise the problem can be solved optimally in constant time. We prove that the algorithm
described in Figure 1 provides a n1−(δ−δ2)-approximation. In this algorithm, Constructive-
Erdős-Hajnal(J) represents the polynomial-time algorithm which takes a graph J and
outputs a set of at least |V (J)|δ vertices of J which is either an independent set or a clique.

Input: a graph G
Output: an independent set of G
1: V ′ ← V (G)
2: while |V ′| > n1−δ do
3: X ← Constructive-Erdős-Hajnal(G[V ′])
4: if X is an independent set of G then
5: return X

6: else
7: V ′ ← V ′ \X
8: return {v}, for an arbitrary chosen v ∈ V (G)

Figure 1 Approximation algorithm for MIS in H-free graphs satisfying the constructive Erdős-
Hajnal property.

Let X be the independent set returned by the algorithm. If X is returned through line 5,
then by the definition of the Constructive-Erdős-Hajnal algorithm, we have |X| > n(1−δ)δ

which is obviously an n1−(δ−δ2)-approximate solution, since any optimal solution has size at
most n.

Otherwise, X is returned through line 8 and is thus of size 1. However, in this case,
observe that V (G) is partitioned into cliques C1, . . . , Cq, and the last set V ′. Observe that
|V ′| < n1−δ, and that |Ci| > nδ−δ

2 for every i ∈ {1, . . . , q}. We thus have q 6 n1−(δ−δ2).

2 Notice that MIS in H-free graphs is trivial if H has at most 2 vertices, whereas any graph with at least
three vertices cannot satisfy the Erdős-Hajnal property with a constant δ > 1/2. This is the reason why
we assume 0 < δ 6 1/2.
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But also observe that in that case:

α(G) 6 q + |V ′|
6 n1−(δ−δ2) + n1−δ

6 2n1−(δ−δ2) since n > 2
1

1−(δ−δ2)

6 n1−(δ−δ2)+ε as we may assume n > 21/ε for any fixed ε > 0.

J

It is natural to ask which kind of graph operations preserves the satisfiability of the
improved approximation property. Given the previous result, natural candidates are graph
operations preserving the Erdős-Hajnal property. In the following we prove that this is
indeed the case concerning the substitution operation.

I Definition 7. Let H1, H2 be two vertex-disjoint graphs and v0 ∈ V (H1). We say that a
graph H is obtained from H1 by substituting H2 at v0 if:

V (H) = (V (H1) \ {v0}) ∪ V (H2)
For v, v′ ∈ V (H1) \ {v0}, vv′ is an edge in H if and only if it is an edge in H1.
For v, v′ ∈ V (H2), vv′ is an edge in H if and only if it is an edge in H2.
For v ∈ V (H1) \ {v0}, v′ ∈ V (H2), vv′ is an edge in H if and only if vv0 is an edge in
H1.

More generally, we say that a graph H is obtained from H1 and H2 by substitution if there
exists v0 ∈ V (H1) such that H is obtained from H1 by substituting H2 at v0.

I Theorem 8. Let H1, H2 be two fixed graphs satisfying the improved approximation
property. Then every graph H obtained from H1 and H2 by substitution satisfies the improved
approximation property.

Let us start by sketching the idea of our algorithm. We first check whether the number of
copies of H1 in G is small. If so, then a randomly chosen subset of vertices of appropriate size
will be H1-free w.h.p., and we will be able to run our approximation algorithm for H1-free
graphs. If the number of copies of H1 is large, then we claim that we can find a large subset of
vertices inducing an H2-free graph, and we thus run our approximation algorithm for H2-free
graphs. Each time we run one of our approximation algorithms in an induced subgraph G[X]
which is either H1-free or H2-free, either it outputs a solution of size at least nδ for some
constant δ, in which case we are done, or it means that α(G[X]) is small, in which case we
keep X apart and continue the algorithm on G[V \X] as long as enough vertices survive.
If too many vertices were kept apart along the process, it means that α(G) was very small
at the beginning, so that any singleton {v} is actually an approximated solution. We now
prove formally the result.

Proof. Let approxH1(G) (resp. approxH2(G)) be a polynomial-time algorithm which takes
as input an H1-free graph (resp. H2-free graph) G on n vertices and outputs an n1−ε1 (resp.
n1−ε2)-approximated solution for the MIS problem in G, for some ε1 > 0 (resp. ε2 > 0).
For the sake of readability, we set ε = min{ε1, ε2, 0.99}, so that approxH1 and approxH2 are
n1−ε-approximation algorithms in H1-free graphs and H2-free graphs, respectively3.

3 Our result also holds if approxH1 and approxH2 are exact algorithms (hence with ε1 = ε2 = 1), but, for
technical reasons, we view them as n0.01-approximation algorithms.
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Let H be the graph obtained by substituting H2 at some vertex v0 ∈ V (H1), and let
us consider an H-free graph G. We denote by n, n1 and n2 the number of vertices of G,
H1 and H2, respectively. We say that X ⊆ V (G) is a set of H1-candidates if there exists a
set K ⊆ V (G) of n1 − 1 vertices such that G[K] is isomorphic to H1 − {v0} and, for every
x ∈ X, G[K ∪ {x}] is isomorphic to H1. Since G is H-free, G[X] is H2-free.

Let γ = ε
2n1

, η = min(1− ε, γ), and δ = εη
2+εη . We prove that the algorithm described in

Figure 2 is an O(n1−δ)-approximation algorithm for MIS in H-free graphs.

Input: an H-free graph G with n vertices
Output: an independent set of G
1: i = 1, V1 ← V (G)
2: while |Vi| > n1−δ do
3: if G[Vi] contains less than |Vi|n1−ε copies of H1 then
4: pick a set Xi ⊆ Vi of size d|Vi|γe uniformly at random
5: if G[Xi] is H1-free then . This condition is true w.h.p.
6: Wi ← approxH1(G[Xi])
7: if |Wi| > nδ then return Wi

8: else return FAIL
9: else
10: find a set of H1-candidates Xi ⊆ Vi with |Xi| > |Vi|1−ε
11: Wi ← approxH2(G[Xi]) . G[Xi] is H2-free
12: if |Wi| > nδ then return Wi

13: Vi+1 ← Vi \Xi

14: i← i+ 1
15: return {v} for an arbitrary vertex v ∈ V

Figure 2 Approximation algorithm for MIS in H-free graphs, where H is the substitution of H1

and H2.

I Lemma 9. Algorithm 2 runs in polynomial time.

Proof. An important remark is that at every step i, the graph G[Vi] is an induced subgraph
of G, hence is H-free. In line 3 (resp. 5), the algorithm runs through all subsets of n1 vertices
of Vi (resp. Xi), which can be done in O(nn1) time.

Finally, the existence of a set of H1-candidates in line 10 is ensured by the fact that in
that case, G[Vi] contains at least |Vi|n1−ε copies of H1. Hence, by the pigeonhole principle,
there must exist n1 − 1 vertices VH ⊆ Vi such that G[VH ] induces H1 \ v0 together with a
set Xi ⊆ Vi \ VH of size at least |Vi|1−ε such that for every x ∈ Xi, G[VH ∪ {x}] induces H1.
Finding the set VH can be done in O(|Vi|n1−1) time, while finding the set Xi can be done in
O(|Vi|) time, since it is sufficient to find the vertices in Vi \ VH with the right neighborhood
with respect to VH . By the definition of H1-candidates, G[Xi] is H2-free, which allows to
run approxH2 on G[X] in the next line of the algorithm. J

We now prove that, w.h.p., the solution S returned by our algorithm is an O(n1−δ)-
approximation. To this end, we first prove that w.h.p. it does not return FAIL.

I Lemma 10. If the number of copies of H1 in a graph G on n vertices is less than nn1−ε,
then any subset of vertices of size dnγe picked uniformly at random induces an H1-free graph,
with high probability.
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Proof. Let n be the number of vertices of G, and P be a subset of dnγe vertices picked
uniformly at random. For any set VH ⊆ V inducing H1, the probability that VH is contained
in P is ( n−n1

|P |−n1)
( n
|P |)

<
(
|P |
n

)n1
. Hence the probability that P is H1-free is at least

(
1−

(
|P |
n

)n1)nn1−ε

=
(

1− 1
nn1− ε2

)nn1−ε

which tends to 1 when n→ +∞. J

Next, if it returns a solution through lines 7 or 12, then this solution is an independent set
of size at least nδ, by definition. We now deal with the case in which it returns a singleton,
through line 15. The aim is to prove that α(G) is at most O(n1−δ). Let q + 1 be the largest
value of i in the execution of the algorithm (i.e., |Vq+1| < n1−δ). The vertex-set V is thus
partitioned into X1, . . . , Xq, and Vq+1. Hence we have α(G) 6 |Vq+1| +

∑q
i=1 α(G[Xi]).

Since |Vq+1| < n1−δ, we only need to upper bound the second part.

I Lemma 11. With the above definitions,
∑q
i=1 α(G[Xi]) 6 n1−δ.

Proof. Recall that we have Xi ⊆ Vi, where Vi = V \
⋃i−1
j=1 Xi, and, for each i ∈ [q], we have

constructed an independent set Wi ⊆ Xi. All these sets have the following properties:

1. |Vq+1| < n1−δ, by definition of q.
2. |Xi| > |Vi|η > nη(1−δ). Indeed, if Xi is defined in line 4, then it is of size at least |Vi|γ ,

whereas if it is defined in line 10, it is of size at least |Vi|1−ε, and η = min(1− ε, γ).
3. |Wi| < nδ, otherwise we would have returned it.
4. α(G[Xi]) 6 |Wi| · |Xi|1−ε, since Wi is returned by approxH1 or approxH2 , which are

approximation algorithms applied to G[Xi].

Now, we have the following:

q∑
i=1

α(G[Xi]) 6
q∑
i=1
|Wi| · |Xi|1−ε

6 nδ
q∑
i=1
|Xi|1−ε

We then need the following technical lemma.

I Lemma 12. Let (ai)i=1...q be some positive numbers (with q ∈ N) such that
∑q
i=1 ai = N

and ai > k > 0 for all i ∈ {1, . . . , q}. Then
∑q
i=1 a

ζ
i 6 Nkζ−1 for any 0 < ζ < 1.

Proof. We have:
q∑
i=1

aζi 6

(
N

q

)ζ
· q = N ·

(
N

q

)ζ−1
6 Nkζ−1.

J

Using the above lemma together with item 2 of the previous properties in order to lower
bound each |Xi|, we obtain:
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q∑
i=1

α(G[Xi]) 6 nδ

(
q∑
i=1
|Xi|

)
nη(1−δ)(1−ε−1)

6 n1−εη(1−δ)+δ since
q∑
i=1
|Xi| 6 n

6 n1−δ because δ = εη

2 + εη
, hence εη(1− δ) = 2δ

J

Hence, any solution of size 1 is an O(n1−δ)-approximation in this case, which concludes the
proof. J

3 Better approximation ratios

In this section we improve over the ratio given by Theorem 8 for some graphs H that can
be built by a sequence of substitutions from graphs H ′ such that MIS is polynomial-time
solvable in H ′-free graphs. Furthermore, we present deterministic algorithms.

3.1 Adding a universal vertex
Let H+u be the graph H augmented by a universal vertex, i.e., we add one vertex adjacent
to all the vertices of H.

I Lemma 13. Let 0 6 γ < 1 be a real number and H be a graph such that MIS admits an
OPTγ-approximation A in H-free graphs. Then it also admits an OPT

1
2−γ -approximation

A+u in H+u-free graphs.

Proof. Let G be the input graph, thus OPT := α(G). The base case of the algorithm is
when G does not contain any vertex, and we correctly report the empty set as optimum
solution. Otherwise G has at least one vertex, say v1. We run the approximation A on
G[N(v1)]. G being H+u-free, the subgraph induced by the open neighborhood of any vertex
is indeed H-free. Let S1 be the returned solution. By assumption, |S1| > α(G[N(v1)])1−γ .
For what follows, the knowledge of the value OPT would help. Unfortunately we will
make some recursive calls to A+u, so exhaustively guessing this value would result in an
exponential running time. Instead we will branch but the branching tree will only have at
most n := |V (G)| leaves. More precisely the tree will be a so-called comb, i.e., a path where
all the vertices except one end has an additional private neighbor. We eventually output the
best solution found among all the leaves.

We inductively run A+u on G − N [v1], which produces a tree T with at most n − 1
leaves. And we output the best solution among S and all the solutions at the leaves of
T augmented by the vertex v1. This algorithm returns an independent set since v1 is by
definition non-adjacent to any vertex of G − N [v1]. The running time of our algorithm
satisfies fA+u(n) = fA(n1− 1) + fA+u(n−n1) +O(1) (with n1 = |N(v1)|). Hence fA+u(n) =
O(max{fA(n), n}), and in the likely event that A is not sublinear, A+u has the same running
time as A up to a multiplicative constant factor.

We shall now show that A+u is indeed a OPT
1

2−γ -approximation. We denote by v1, . . . , vp
with p 6 n, the vertices added along the path to the deepest leaf of T . We denote by S1, . . . , Sp
the sets returned by A such that Si is computed in the graph G′i := G[N(vi) \

⋃
j<iN [vj ]].
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. . .

Figure 3 The three maximal locally easy graphs H constructed from P6, the fork, and tK1,3,
respectively.

We also define Gi := G[N [vi] \
⋃
j<iN [vj ]], and Ri := G −

⋃
j<iN [vj ]. Observe that

{V (G1), . . . , V (Gp)} is a partition of V (G), as well as, {V (G1), . . . , V (Gi), V (Ri+1)} for
every i ∈ [p− 1].

Let, if it exists, Sh be the first solution returned by A when called on G′h such that |Sh| >
α(Rh)1− 1

2−γ . We claim that the solution output at this leaf, namely S′h := Sh∪{v1, . . . , vh−1}
is an OPT

1
2−γ -approximation. If such an Sh does not exist, we show the same statement

where Sh = ∅ and h− 1 = p.
We upperbound α(Gi) for every i ∈ [h − 1]. By definition of Sh, it holds that |Si| <

α(Ri)1− 1
2−γ for any i ∈ [h− 1]. Due to the approximation ratio of A, it holds that:

α(Gi)1−γ 6 |Si| < α(Ri)1− 1
2−γ = α(Ri)

1−γ
2−γ ,

hence α(Gi) < α(Ri)
1

2−γ 6 α(G)
1

2−γ . Thus,

OPT = α(G) 6 α(Rh) +
∑

i∈[h−1]

α(Gi) 6 |Sh|α(Rh)
1

2−γ +
∑

i∈[h−1]

α(G)
1

2−γ

6 |Sh|α(G)
1

2−γ + (h− 1)α(G)
1

2−γ = (|Sh|+ h− 1)α(G)
1

2−γ = |S′h|α(G)
1

2−γ = |S′h|OPT
1

2−γ .

Therefore A+u is an OPT
1

2−γ -approximation for MIS in H+u-free graphs. J

3.2 Locally easy graphs
We say that a graph H is locally easy if it has a universal vertex v such that there is a
polynomial-time algorithm for MIS in H − {v}-free graphs. Up to now, the three maximal
graphs H for which we know that MIS is polynomial-time solvable on H-free graphs are P6
[23], the fork [4, 30], and tK1,3 (or tclaw) [9] (see Figure 3 for the corresponding maximal
locally easy graphs).

The following is an immediate consequence of Lemma 13. Therein we recall that the
constant γ may take value 0.

I Theorem 14. For any locally easy H, MIS can be
√
OPT-approximated on H-free graphs.

And in particular, there is a
√
n-approximation for triangle-free graphs. Lemma 13 also

yields the following approximation ratio in Kt+1-free graphs.

I Theorem 15. For any t > 1, MIS can be OPT1− 1
t -approximated on Kt+1-free graphs.

Proof. We show this statement by induction. The base case says that we can exactly solve
in polynomial time MIS in edgeless graphs, which is obviously true. We assume that the
statement is true for a fixed t. As Kt+2 = (Kt+1)+u, Lemma 13 implies that MIS can be
OPT

1
2−(1− 1

t
) -approximated on Kt+2-free graphs. Furthermore, 1

2−(1− 1
t ) = 1

1+ 1
t

= t
t+1 =

1− 1
t+1 . Therefore we do obtain an OPT1− 1

t+1 -approximation on Kt+2-free graphs. J
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We say that a graph H is t-locally easy if it has a set U of t universal vertices such that
a polynomial algorithm is known for MIS in H −U -free graphs. Informally, these graphs are
obtained by replacing universal vertices of Figure 3 by a k-clique. The previous result readily
generalizes from Kt+1-free to H-free graphs with H (t+ 1)-locally easy, with the same proof.

I Corollary 16. Let t be a non-negative integer. For any t-locally easy H, MIS can be
OPT1− 1

t+1 -approximated on H-free graphs.

As we will see in Section 4.3 for forbidden graphs H containing a triangle, it is unlikely to
improve the approximation ratio below n1/4. However if H is a star, constant-approximations
are achievable. It is known that MIS is polynomial-time solvable on claw-free graphs [31]
(i.e., K1,3-free graphs) while it is APX-hard on K1,4-free graphs (see for instance [3]). The
greedy algorithm (or actually any sensible algorithm) gives an s-approximation in K1,s-free
graphs. The ratio was improved to arbitrarily close to s−1

2 by Halldórsson.

I Theorem 17 ([25]). For every s > 4 and ε > 0, MIS is s−1
2 + ε-approximable on K1,s-free

graphs.

3.3 Local Search for Kt,t-free graphs
Here we analyze the performance of the t-Local Search algorithm in Kt,t-free graphs.
Usually for the particular case of the biclique, “Kt,t-free” is intended as “no Kt,t as a
subgraph”. Here we still mean “no Kt,t as an induced subgraph”, since our algorithm works
even in this more general setting. For a fixed integer t > 2, t-Local Search takes as input a
graph G, and construct an independent set S from a single vertex. Then, it tries to improve
S in the following way: whenever there exist two sets X ⊆ S (note that X can possibly
be empty) and Y ⊆ V \ S such that 0 6 |X| < |Y | 6 t and (S \X) ∪ Y is an independent
set, it replaces S by (S \X) ∪ Y (if there are several choices, it chooses an arbitrary one).
When S can no longer be improved, it outputs it. Each improvement takes O(n2t) time,
and the number of such improvements is at most n, since the size of S increases by at least
one at each step. Hence, the algorithm takes polynomial time. In the following theorem,
we prove that this simple algorithm provides an O(OPT 1−1/t)-approximation whenever the
input graph is Kt,t-free. In particular, 2-Local Search is an O(

√
OPT )-approximation in

C4-free graphs. It came to our knowledge that the same result was obtained independently
by Dvořák, Feldmann, Rai, and Rzążewski [15].

I Theorem 18. For any fixed t > 2, t-Local Search is an O(OPT 1−1/t)-approximation
in Kt,t-free graphs.

Proof. Let S be the solution returned by the algorithm, and O be a fixed optimal solution.
The objective is to bound |O′| in terms of |S′|, where O′ := O \ S and S′ := S \O. To this
end, let us consider B := G[S′ ∪ O′] the bipartite graph induced by S′ ∪ O′. Let k := |S′|.
We partition O′ into D− and D+, where D− are the vertices of O′ whose degree within S′ is
at most t− 1, and thus D+ are the vertices of O′ whose degree within S′ is at least t. We
now bound the sizes of D− and D+ separately.

Let us partition D− into classes D−1 , . . . , D−q with respect to the equivalence relation
u ∼ v if and only if NS′(u) = NS′(v). By definition of D− we have q 6

∑t−1
i=1
(
k
i

)
.

Then, we claim that for every i ∈ {1, . . . , q}, we have |D−i | 6 t − 1. Indeed, we
must have |D−i | 6 |NS′(D

−
i )|, since otherwise the algorithm would have replaced S by

(S \NS′(D−i )) ∪D−i . This proves |D−| 6 (t− 1)
∑t−1
i=1
(
k
i

)
.
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For a set X ⊆ S′, let IX :=
⋂
x∈X NO′(x). Observe that if |X| = t, then necessarily

IX ⊆ D+, and moreover |IX | 6 t− 1, since otherwise the graph would have an induced
Kt,t. Finally, we have D+ =

⋃
X⊆S′,|X|=t IX , which proves that |D+| 6

(
k
t

)
(t− 1).

Hence we have |O′| 6 |D−|+ |D+| 6 (t− 1)
∑t−1
i=1
(
k
i

)
+
(
k
t

)
(t− 1) = O(kt). J

4 Graphs without short cycles

In this section we show that the strong inapproximability of MIS in general graphs survives,
albeit in a less severe form, on graphs without small cycles. More quantitatively, we show
that for any positive integer γ, there is a constant β = Θ(1/γ) depending only on γ, such
that an nβ-approximation of MIS in graphs with girth γ is unlikely.

4.1 Triangle-free graphs
While Lemma 13 implies an n1/2-approximation of MIS in triangle-free graphs, a natural
question is how much the ratio’s exponent can be decreased. In this section we provide a
lower bound for it.

The following result will be made obsolete twice. Indeed we will then generalize its
statement from triangle-free, that is girth 4, to graphs with any constant girth. Then in
Section 4.3 we will present a stronger inapproximability result of Ω(n1/4−ε). Nevertheless we
choose to keep its proof as it is simpler, easier to follow, and self-contained. Furthermore, it
contains all the ideas necessary to achieve the subsequent results.

I Theorem 19. For any ε > 0, it is NP-hard to distinguish between triangle-free graphs G
on n vertices satisfying

α(G) 6 n5/6−ε, and
α(G) > n1−ε.

So for any ε > 0, MIS cannot be approximated within ratio n1/6−ε in triangle-free graphs
unless NP ⊆ BPP.

Proof. Let ε > 0 be an arbitrarily small real value, and ε := 3ε. We perform a randomized
reduction from an infinite set of graphs H admitting the following gap: Positive instances
have stable sets of size at least |V (H)|1−ε whereas negative instances have no stable set
of size |V (H)|ε. It is known that distinguishing between these two cases is NP-hard for
randomized reductions [27], and even for deterministic ones [35].

Reduction. Given an N -vertex graph H, we construct a triangle-free graph G in the
following way. We transform every vertex v of H into an independent set I(v) of size s := N5.
For every edge uv ∈ E(H), we put a random bipartite graph between I(u) and I(v): for each
pair of vertices x ∈ I(u), y ∈ I(v), we independently add an edge xy to E(G) with probability
p := N−4−η with η := 2ε/3. We denote by G4 the graph thus obtained. A key property is
that G4 contains only few triangles. For each triangle in G4, we remove all three vertices of
it. We call that phase the triangle removal, and we denote by G the triangle-free graph that
arises when that phase comes to an end. We further assume that N is larger than the smallest
integral constant N0 for which for every N > N0, N3η > N2.5η + 10N2η lnN , N−ε > 6N−2η,
217/6Nη/3 < Nε, and N−η < 10−100. In particular the second and third inequalities hold
for sufficiently large N since η < ε = 3ε < 2η. The hardness of approximation [27, 35] still
holds since instances with less than a constant number of vertices can be solved optimally in
constant time.
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I Lemma 20. For every edge uv ∈ E(H), the probability that there exist two sets A ⊂
I(u), B ⊂ I(v) both of size N4+2η without any edge between A and B is at most e−N4+2.5η .
Thus, with high probability, this event does not happen.

Proof. The probability that there is no edge between two fixed sets A and B of size N4+2η

is:
(1− p)|A|·|B| = (1− 1

N4+η )N
2(4+2η)

6 e−N
4+3η

.

By the union bound, the probability that there is at least one such pair of sets is at most:(
N5

N4+2η

)2

e−N
4+3η

6 N10N4+2η
e−N

4+3η
= e−N

4+3η+10N4+2η lnN 6 e−N
4+2.5η

.

J

I Lemma 21. The expected number of triangles in G4 is at most N6−3η. Furthermore
|V (G4)| − |V (G)| is at most 3N6−2η with probability at least 1−N−η.

Proof. The expected number of triangles in G4 is:

E(#(4, G4)) 6 (sN)3p3 = (N6)3N−12−3η = N6−3η.

By Markov’s inequality, P(#(4, G4) > N6−2η) 6 N6−3η/N6−2η = N−η. J

Let n be the number of vertices of G (after the triangle removal). By the previous lemma
n := |V (G)| > N6/2, with high probability.

If H is a YES-instance, there is a stable set of size n1−ε in G. We assume that
H is a YES-instance, so there is a stable set S in H such that |S| > N1−ε. By construction,
SG4 :=

⋃
u∈S I(u) is a stable set in G4 of size s|S| > N6−ε. By Lemma 21, SG4 ∩ V (G) is

an independent set in G of size, w.h.p., at least N6−ε − 3N6−2η > N6−ε/2 > n1−ε/6/2 =
n1−ε/2/2 > n1−ε.

If H is a NO-instance, there is no stable set of size n5/6+ε in G. Let SG be an
independent set of G and let S := {v ∈ V (H) such that |I(v) ∩ SG| > N4+2η}. If H is a
NO-instance, then there is no stable set in H of size more than Nε. By a union bound
of applications of Lemma 20 to all pairs of vertices of S, w.h.p S is an independent set of
H, which implies that |S| < Nε. Thus |SG| < sNε + N4+2η(N −Nε) < N5+ε + N5+2η <

2N5+2η = 2N5(1+2η/5) < 211/6n5/6+η/3 < n5/6+ε. J

4.2 Graphs with higher girth
Monien, Speckenmeyer and Murphy independently found improved approximations when
the girth, actually even the odd girth, is any constant γ.

I Theorem 22 ([32, 33]). MIS admits a polynomial-time n
2

γ−1 -approximation on graphs
with odd girth γ.

In particular, the result implies an n1/2-approximation for triangle-free graphs, an n1/3-
approximation for {C3, C5}-free graphs, an n1/4-approximation for {C3, C5, C7}-free graphs,
etc. On the complexity side, the construction of Theorem 19 where the probability p of
having an edge between I(u) and I(v) with uv ∈ E(H) is now set to N−2(γ−1)−η and the
size s of each I(u) is set to N2γ−1 yields a polynomial gap on Cγ-free graphs, and even on
graphs with girth γ + 1.
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I Theorem 23. For any ε > 0, it is NP-hard to distinguish between graphs G with n vertices
and girth γ + 1 satisfying

α(G) 6 n
2γ−1

2γ −ε, and
α(G) > n1−ε.

Hence, for any ε > 0, MIS cannot be approximated within ratio n
1

2γ−ε in graphs with girth
γ + 1 unless NP ⊆ BPP.

Proof. We do the same reduction as in Theorem 19 with the following modifications. We
now set ε := γε, s := N2γ−1, p := N2(γ−1)−η, and η := γ−1

γ ε. We denote by G◦ the graph
obtained before the removal step. For every cycle of length at most γ, we remove all the
vertices of the cycle from the graph. When this short cycle removal ends, the graph has girth
at least γ + 1. We call G the obtained graph.

I Lemma 24. For every edge uv ∈ E(H), the probability that there exist two sets A ⊂
I(u), B ⊂ I(v) both of size N2(γ−1)+2η without any edge between A and B is at most
e−N

2(γ−1)+2.5η . Thus, with high probability, this event does not happen.

Proof. The probability that there is no edge between two fixed sets A and B of size
N2(γ−1)+2η is:

(1− p)|A|·|B| = (1− 1
N2(γ−1)+η )N

2(2(γ−1)+2η)
6 e−N

2(γ−1)+3η
.

By the union bound, the probability that there is at least one such pair of sets is at most:(
N2γ−1

N2(γ−1)+2η

)2

e−N
2(γ−1)+3η

6 N10N2(γ−1)+2η
e−N

2(γ−1)+3η

= e−N
2(γ−1)+3η+10N2(γ−1)+2η lnN 6 e−N

2(γ−1)+2.5η
.

J

I Lemma 25. The expected number of cycles of length at most γ in G◦ is at most N (2−η)γ .
Furthermore |V (G◦)| − |V (G)| is at most γN2γ−η(γ−1) with probability at least 1−N−η.

Proof. The expected number of cycles of length at most γ in G◦ is:

E(#(C3→γ , G◦)) 6 γ(sN)γpγ = γN2γ2
N (−2(γ−1)−η)γ = γN (2−η)γ .

By Markov’s inequality, P(#(C3→γ , G◦) > γN2γ−η(γ−1)) 6 N (2−η)γ/N2γ−η(γ−1) = N−η.
J

Let n be the number of vertices of G (after the short cycle removal). By the previous
lemma n := |V (G)| > N2γ/2, with high probability.

If H is a YES-instance, there is a stable set of size n1−ε in G. We assume that
H is a YES-instance, so there is a stable set S in H such that |S| > N1−ε. By construction,
SG◦ :=

⋃
u∈S I(u) is a stable set in G◦ of size s|S| > N2γ−ε. By Lemma 25, SG◦ ∩ V (G)

is an independent set in G of size, w.h.p., at least N2γ−ε − γN2γ−η(γ−1) > N2γ−ε/2 >

n1−ε/2γ)/2 = n1−ε/2/2 > n1−ε.

If H is a NO-instance, there is no stable set of size n(2γ−1)/(2γ)+ε in G. Let SG be
an independent set of G and let S := {v ∈ V (H) such that |I(v) ∩ SG| > N2(γ−1)+2η}. If H
is a NO-instance, then there is no stable set in H of size more than Nε. By a union bound of
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applications of Lemma 24 to all pairs of vertices of S, w.h.p S is an independent set ofH, which
implies that |S| < Nε. Thus |SG| < sNε +N2(γ−1)+2η(N −Nε) < N2γ−1+ε +N2γ−1+2η <

2N2γ−1+2η = 2N (2γ−1)(1+2η/(2γ−1)) < 2(4γ−1)/(2γ)n(2γ−1)/(2γ)+η/γ < n(2γ−1)/(2γ)+ε. J

Let us note that there is still a 4-fold multiplicative factor in the exponent between the
approximation ratios of Theorem 22, namely n2/γ , and the hardness ratios of n1/(2γ)−o(1) in
Theorem 23. It is an interesting open question to bridge this gap.

An even hole is an induced cycle of even length at least 4. Even-hole-free graphs are
{C4, C6, C8, . . .}-free graphs. The computational complexity of MIS on even-hole-free graphs
is still unknown. An FPT algorithm was established recently [26]. We observe that Local
Search readily gives a PTAS for that problem. We leave the existence of an EPTAS as an
open problem.

I Observation 26. MIS can be (1+ε)-approximated in time nO(1/ε) on even-hole-free graphs.

Proof. The graph induced by the symmetric difference between any two feasible solutions
is bipartite and even-hole-free, hence it is a forest. Let S be a solution obtained by local
search on an input graph G, O be a fixed optimum solution, S′ := S \O, and O′ := O \ S.
It is known that when G[S′ ∪O′] is planar, there is an absolute constant C such that the
C/ε2-Local Search 1 + ε-approximates the problem [34, 11], that is for a maximization
problem, |S′| > (1− ε)|O′|, implying |S| > (1− ε)|O|. This gives a PTAS with running time
nO(1/ε2). When G[S′ ∪O′] is even a forest, then it can be shown, and it is somewhat folklore,
that a C/ε-Local Search is sufficient. J

4.3 Strengthening the inapproximability

There are two directions to improve the hardness-of-approximation results of Sections 4.1
and 4.2. As already mentioned, one can try to match upper and lower bounds in the
approximation ratio, or at least to increase the exponent δ such that an nδ-approximation
would contradict a standard complexity-theoretic assumption. For triangle-free graphs,
for instance, we do not expect a matching n1/6-approximation. And a likely outcome is
that, ignoring logarithmic factors, the

√
n-approximation is best possible. We will actually

show that an n1/4−ε-approximation is unlikely. The other direction is to derandomize our
reductions. That way the inapproximability would be subject to the more (arguably the
most) standard complexity assumption that P is not equal to NP. Derandomizing without
degrading the quality of the gap seems challenging. We now encapsulate the reductions of
Sections 4.1 and 4.2 so that both improving tasks boil down to exhibiting a randomized or
deterministic family of graphs.

We say that an infinite family of graphs C is non-disappearing if there is a constant
K ∈ (0, 1] such that for every positive integer n, there is a graph G ∈ C with at least
Kn and at most n/K vertices. A non-disappearing family is called efficient if there is a
polynomial-time algorithm which given an integer n (encoded in unary), outputs such a
graph G. For example, a family containing at least one graph for every number of vertices is
non-disappearing. We denote by Gγ the set of all graphs with girth at least γ.

I Theorem 27. Let γ > 3 be an integer, δ ∈ (0, 1) be a real (allowed to depend on γ), and C
be an efficient non-disappearing family included in Gγ, such that for every G ∈ C there is
no disjoint pair of sets A,B ⊆ V (G) satisfying both |A| = |B| > |V (G)|δ and E(A,B) = ∅.
Then MIS in Gγ cannot be n 1−δ

2 −ε-approximated, unless P = NP.
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Proof. We assume all the preconditions hold and follow the construction of Theorems 19
and 23. We again draw a graph F from graphs of size N and gap N1−ε. We substitute every
vertex v by an independent set I(v) of size between KN

1+δ
1−δ and 1

KN
1+δ
1−δ such that there

is a G ∈ C of the same size as the obtained graph G′, and the sets I(v) are balanced (their
size differs by at most 1). Both graphs have Θ(N

1+δ
1−δ+1) = Θ(N

2
1−δ ) vertices, say cN

2
1−δ .

We arbitrary identify the vertices of G and G′ in a one-to-one mapping. We keep an edge
between two vertices u and v if uv is both an edge in G and G′. Thus we do the “intersection”
of G and G′. We call J the final result.

Since G has girth at least γ, J has also girth at least γ. By assumption on C, if there is
an edge between u and v in F , then for every A ⊂ I(u) and B ⊂ I(v) both of size cδN

2δ
1−δ ,

there is at least one edge in EJ(A,B). We observe that N
2δ

1−δ = N
1+δ
1−δ−1 which is, up to

constant multiplicative factors, the size of an I(w) divided by N . Therefore we have the
same important property as in Theorems 19 and 23. Thus we can finish the proof similarly,
and conclude that distinguishing between instances with independence number at most
N

1+δ
1−δ+ε or at least N

2
1−δ−ε is NP-hard, for an arbitrary small ε > 0. The gap is N1−ε and

n := |V (J)| = Θ(N
2

1−δ ), hence a gap of n 1−δ
2 −ε. J

We now give a randomized counterpart of the previous theorem. For any integer γ > 3
and real δ ∈ (0, 1), we say that a distribution of graphs D is (γ, δ)-appropriate if there is a
constant K ∈ (0, 1] and a polynomial-time algorithm, that given an integer n (encoded in
unary), draws a graph G of size at least Kn and at most n/K out of this distribution such
that with high probability, G has girth at least γ and no disjoint pair of sets A,B ⊆ V (G)
satisfies both |A| = |B| > |V (G)|δ and E(A,B) = ∅.

I Theorem 28. Let γ > 3 be an integer, δ ∈ (0, 1) be a real (allowed to depend on γ), and D
be a (γ, δ)-appropriate distribution. Then MIS in Gγ cannot be n 1−δ

2 −ε-approximated, unless
NP ⊆ BPP.

Proof. The proof is the same as Theorem 27, using a graph drawn from the distribution D
instead of a deterministic one from C. Therefore we need the stronger assumption that NP is
not contained in BPP. J

There are many constructions, all randomized, of triangle-free graphs with smallest
possible independence number Õ(

√
n) [16, 29, 17, 28, 7]. These constructions all follow a

simple scheme of starting from the empty graph, ordering the edges of the clique Kn, and
then inserting an edge if it does not create a triangle, either among the inserted edges or
among all the previous edges. The real difficulty is in the analysis of this probabilistic
experiment. The logarithmic or constant factors were improved and the proofs simplified
until Kim obtained a matching bound of O(

√
n logn) [28]. This can be seen as the lower

bound of Ω(n2/ logn) for the off-diagonal Ramsey number R(3, n), matching the upper
bound O(n2/ logn) of Ajtai et al. [1].

To apply Theorem 28, we would need to check that the triangle-free graphs built in the
aforementioned papers do not contain the complement of a large biclique Knδ,nδ . As, for
our purposes, we do not need the optimal bound of Kim, we follow the original proof of
Erdős [16] giving the bound of O(

√
n logn). Going through all the lemmas and replacing

occurrences of Kx, where x = O(
√
n logn), by Kx,x, the desired result can be obtained. In

our language, the process described in the previous paragraph yields a (4, 1/2)-appropriate
distribution. This together with Theorem 28 improves the inapproximability of Theorem 19.

I Corollary 29. MIS in G4 (i.e., triangle-free graphs) cannot be n 1
4−ε-approximated, unless

NP ⊆ BPP.
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We are not aware of any explicit deterministic construction of triangle-free graphs whose
complements do not containKn2/3,n2/3 as a subgraph (which would derandomize Theorem 19),
let alone, K√n,√n. Deterministic constructions of graphs with large girth and large chromatic
number, such as Ramanujan graphs with non-constant degree, might give some lower bound
via Theorem 27, but not as good as Corollary 29. Actually, being based on a tight construction,
the inapproximability of Corollary 29 can only be improved via a totally different route.
One should also not completely rule out that there is an n1/4-approximation for MIS on
triangle-free graphs.

5 Concluding remarks

The Erdős-Hajnal conjecture has proven particularly difficult. For example, the cases of
P5-free or C5-free graphs are both wide open. For the few graphs H for which a proof that
the Erdős-Hajnal property holds, it appears that the proof comes with an efficient algorithm
reporting a sufficiently large independent set or clique. This is what we called the constructive
Erdős-Hajnal property. We proposed a first and more humble step (see Theorem 6) in proving
that a graph H has the constructive Erdős-Hajnal property: show that MIS in H-free graphs
can be approximated within ratio n1−ε for an ε > 0, an unachievable ratio in general graphs.
As mentioned in the introduction, this is strictly simpler than Erdős-Hajnal considering the
case of P5. Yet it does not seem to us that this weaker conjecture is that much simpler
now considering the graph C5. We believe that efforts to settle the improved approximation
conjecture might turn out useful to make progress on the Erdős-Hajnal conjecture. In general,
a cross-fertilization between Approximability Theory and the study of favorable Ramsey
properties may prove fruitful. In particular, obtaining an n0.99-approximation algorithm for
MIS in C5-free seems like a challenging open question.

Of course, classifying the approximability of Maximum Independent Set in H-free
graphs is also an interesting task by its own means. On the one hand, already known
reductions rule out PTASes in most H-free graphs classes, namely for any connected H

different from a path or a subdivision of a claw. On the other hand, a constant-approximation
algorithm can be turned into a PTAS in many H-free classes, by running the approximation
on the input graph elevated to some appropriate power (using for instance the lexicographic
product). This trick, originally used to rule out approximation algorithms for Max Clique
in general graphs [20], works in the setting of H-free classes when H satisfies some properties,
such as being a prime graph (i.e., having no non-trivial module). Hence, although MIS admits
a constant-factor approximation in K1,t-free graphs for any t ∈ N (as mentioned in Section 3),
it is not in APX when the forbidden graph is a simple tree, such as the 1-subdivision of
K1,4. Finally, another interesting consequence of the previous observation concerns Pt-free
graphs: any constant-factor approximation for MIS in Pt-free graphs implies a PTAS (notice
that the current “best” approximation algorithm in Pt-free graphs is a quasi-polynomial
approximation scheme [13]).

Acknowledgment. We would like to thank Colin Geniet for pointing out to us the
remark on graph products mentioned in the conclusion.
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