
Approximating Highly Inapproximable Problems
on Graphs of Bounded Twin-Width
Pierre Bergé �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Édouard Bonnet � Â

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Hugues Déprés � Â

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Rémi Watrigant �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
For any ε > 0, we give a polynomial-time nε-approximation algorithm for Max Independent
Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from
the following time-approximation trade-off: We establish an O(1)2q−1-approximation algorithm
running in time exp(Oq(n2−q)), for every integer q ⩾ 0. Guided by the same framework, we obtain
similar approximation algorithms for Min Coloring and Max Induced Matching. In general
graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time
n1−ε-approximation for any of them would imply that P=NP [Håstad, FOCS ’96; Zuckerman, ToC
’07; Chalermsook et al., SODA ’13]. We generalize the algorithms for Max Independent Set and
Max Induced Matching to the independent (induced) packing of any fixed connected graph H.

In contrast, we show that such approximation guarantees on graphs of bounded twin-width given
with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat
unlikely for Longest Path and Longest Induced Path. Regarding the existence of better
approximation algorithms, there is a (very) light evidence that the obtained approximation factor
of nε for Max Independent Set may be best possible. This is the first in-depth study of the
approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the
only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set
[Bonnet et al., ICALP ’21].

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Approximation algorithms, bounded twin-width

Acknowledgements We thank Colin Geniet, Eunjung Kim, and Stéphan Thomassé for useful
discussions.

1 Introduction

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [10].
Its definition involves the notions of trigraphs and of contraction sequences. A trigraph is
a graph with two types of edges: black (regular) edges and red (error) edges. A (vertex)
contraction consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w,
and keeping every edge wz black if and only if uz and vz were previously black edges. The
other edges incident to w become red (if not already), and the rest of the trigraph remains
the same. A contraction sequence of an n-vertex1 graph G is a sequence of trigraphs

1 In this introduction, we might implicitly use n to denote the number of vertices, and m, the number of
edges of the graph at hand.

mailto:pierre.berge@ens-lyon.fr
mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:hugues.depres@ens-lyon.fr
http://perso.ens-lyon.fr/hugues.depres/
mailto:remi.watrigant@ens-lyon.fr

2 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

G = Gn, . . . , G1 = K1 such that Gi is obtained from Gi+1 by performing one contraction.
A d-sequence is a contraction sequence in which every vertex of every trigraph has at most
d red edges incident to it. The twin-width of G, denoted by tww(G), is then the minimum
integer d such that G admits a d-sequence. Figure 1 gives an example of a graph with a
2-sequence, i.e., of twin-width at most 2. Twin-width can be naturally extended to matrices
(with unordered [10] or ordered [8] row and column sets) over a finite alphabet, and thus to
binary structures.

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

An equivalent viewpoint that will be somewhat more convenient is to consider a d-sequence
as a sequence of partitions Pn := {{v} : v ∈ V (G)}, Pn−1, . . . , P1 := {V (G)} of V (G),
such that for every integer 1 ⩽ i ⩽ n − 1, Pi has i parts and is obtained by merging two
parts of Pi+1 into one. Now the red degree of a part P ∈ Pi is the number of other parts
Q ∈ Pi such that there is in G at least one edge and at least one non-edge between P and Q.
A d-sequence is such that no part of no partition of the sequence has red degree more than d.
In that case the maximum red degree of each partition is at most d. And we similarly get
the twin-width of G as the minimum integer d such that G admits a (partition) d-sequence.
The quotient trigraph G/Pi is the trigraph Gi, if the (contraction) d-sequence Gn, . . . , G1
and the (partition) d-sequence Pn, . . . , P1 correspond.

Classes of binary structures with bounded twin-width include graph classes with bounded
treewidth, and more generally bounded clique-width, proper minor-closed classes, posets
with antichains of bounded size, strict subclasses of permutation graphs, as well as Ω(log n)-
subdivisions of n-vertex graphs [10], and some classes of (bounded-degree) expanders [5].
A notable variety of geometrically defined graph classes have bounded twin-width such as map
graphs, bounded-degree string graphs [10], classes with bounded queue number or bounded
stack number [5], segment graphs with no Kt,t subgraph, visibility graphs of 1.5D terrains
without large half-graphs, visibility graphs of simple polygons without large independent
sets [4].

For every class C mentioned so far, O(1)-sequences can be computed in polynomial time2

on members of C. For classes of binary structures including a binary relation interpreted as
a linear order on the domain (called ordered binary structures), there is a fixed-parameter
approximation algorithm for twin-width [8]. More precisely, given a graph G and an integer k,
there are computable functions f and g such that one can output an f(k)-sequence of G

or correctly report that tww(G) > k in time g(k)nO(1). Such an approximation algorithm
is currently missing for classes of general (not necessarily ordered) binary structures, and
in particular for the class of all graphs. We also observe that deciding if the twin-width of
a graph is at most 4 is an NP-complete task [3].

We will therefore assume that the input graph is given with a d-sequence, and treat d

as a constant (or that the input comes from any of the above-mentioned classes). Thus
far, this is the adopted setting when designing faster algorithms on bounded twin-width

2 Admittedly, for the geometric classes, a representation is (at least partially) needed.

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 3

graphs [10, 7, 33, 30, 19]. From the inception of twin-width [10] –actually already from the
seminal work of Guillemot and Marx [21]– it was clear that structures wherein this invariant
is bounded may often allow the design of parameterized algorithms. More concretely, it was
shown [10] that, on graphs G given with a d-sequence, model checking a first-order sentence
φ is fixed-parameter tractable –it can be solved in time f(d, φ) · n–, the special cases of,
say, k-Independent Set or k-Dominating Set admit single-exponential parameterized
algorithms [7], an effective data structure almost linear in n can support constant-time edge
queries [33], the triangles of G can be counted in time O(d2n + m) [30].

So far, however, the connection between having bounded twin-width and enjoying enhanced
approximation factors was tenuous. The only such result concerned Min Dominating Set,
known to be inapproximable in polynomial-time within factor (1−o(1)) ln n unless P=NP [16],
but yet admits a constant-approximation on graphs of bounded twin-width given with an
O(1)-sequence [7]. We start filling this gap by designing approximation algorithms on graphs
of bounded twin-width given with an O(1)-sequence for notably Max Independent Set
(MIS, for short), Max Induced Matching, and Coloring. Getting better approximation
algorithms for MIS and Coloring in that particular scenario was raised as an open
problem [7]. Before we describe our results and elaborate on the developed techniques, let us
briefly present the notorious inapproximability of these problems in general graphs.

MIS and Coloring are NP-hard [20], and very inapproximable: for every ε > 0, it is
NP-hard to approximate these problems within ratio n1−ε [23, 34]. The same was shown to
hold for Max Induced Matching [13]. Besides, there is only little room to improve over
the brute-force algorithm in 2O(n): Unless the Exponential Time Hypothesis3 [25] (ETH)
fails, no algorithm can solve MIS in time 2o(n) [26] (nor the other two problems). For any r

(possibly a function of n) WMIS can be r-approximated in time 2O(n/r) [15, 12]. Bansal
et al. [2] essentially shaved a log2 r factor to the latter exponent. It is known though that
polynomial shavings are unlikely. Chalermsook et al. [14] showed that, for any ε > 0 and
sufficiently large r (again r can be function of n), an r-approximation for MIS and Max
Induced Matching cannot take time 2O(n1−ε/r1+ε), unless the ETH fails. For instance,
investing time 2O(

√
n), one cannot hope for significantly better than a

√
n-approximation.

Contributions and techniques

Our starting point is a constant-approximation algorithm for MIS running in time 2O(
√

n)

when presented with an O(1)-sequence, which is very unlikely to hold in general graphs by
the result of Chalermsook et al. [14].

▶ Theorem 1. On n-vertex graphs given with a d-sequence Max Independent Set can be
Od(1)-approximated in time 2Od(

√
n).

Our algorithm builds upon the functional equivalence between twin-width and the so-called
versatile twin-width [5]. We defer the reader to Section 2 for a formal definition of versatile
twin-width. For our purpose, one only needs to know the following useful consequence of that
equivalence. From a d′-sequence of G, we can compute in polynomial time another partition
sequence Pn, . . . , P1 of G of width d := f(d′), for some computable function f , such that for
every integer 1 ⩽ i ⩽ n, all the i parts of Pi have size at most d · n

i . Even if some parts of Pi

can be very small, this partition is balanced in the sense that no part can be larger than d

times the part size in a perfectly balanced partition. Of importance to us is P⌊
√

n⌋ when the

3 That is, the assumption that there is a δ > 0 such that n-variable 3-SAT cannot be solved in time δn.

4 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

number of parts (⌊
√

n⌋) and the size of a larger part in the partition (at most d n
⌊
√

n⌋ ≈ d
√

n)
are somewhat level.

We can then properly color the red graph (made by the red edges on the vertex set P⌊
√

n⌋)
with d + 1 colors. Any color class X is a subset of parts of P⌊

√
n⌋ such that between two

parts there are either all edges (black edge) or no edge at all (non-edge). In graph-theoretic
terms, the subgraph GX of G induced by all the vertices of all the parts of X have a simple
modular decomposition: a partition of at most

√
n modules each of size at most d

√
n. It is

thus routine to compute a largest independent set of GX essentially in time exponential in
the maximum between the number of modules and the maximum size of a module, that is,
in at most d

√
n. As one color class X∗ contains more than a 1

d+1 fraction of the optimum,
we get our d + 1-approximation when computing a largest independent set of GX∗ . Figure 2
serves as a visual summary of what we described so far.

The next step is to substitute recursive calls of our approximation algorithm to exact
exponential algorithms on induced subgraphs of size Od(

√
n). Following this inductive process

at depth q = 2, 3, 4, . . ., we degrade the approximation ratio to (d + 1)3, (d + 1)7, (d + 1)15,
etc. but meanwhile we boost the running time to 2Od(n1/4), 2Od(n1/8), 2Od(n1/16), etc. In effect
we show by induction that:

▶ Theorem 2. On n-vertex graphs given with a d-sequence Max Independent Set has an
Od(1)2q−1-approximation algorithm running in time 2Od,q(n2−q

), for every integer q ⩾ 0.

The following polynomial-time algorithm is a corollary of Theorem 2 choosing q =
Od,ε(log log n).

▶ Theorem 3. For every ε > 0, Max Independent Set can be nε-approximated in
polynomial-time Od,ε(1) · logOd(1) n · nO(1) on n-vertex graphs given with a d-sequence.

Note that the exponent of the polynomial factor is an absolute constant (not depending on d

nor on ε).

We then apply our framework to Coloring and Max Induced Matching.

▶ Theorem 4. For every ε > 0, Coloring and Max Induced Matching admit polynomial-
time nε-approximation algorithms on n-vertex graphs of bounded twin-width given with an
O(1)-sequence.

The main additional difficulty for Coloring is that one cannot satisfactorily solve/ap-
proximate that problem on a modular decomposition by simply coloring its modules and
its quotient graph. One needs to tackle a more general problem called Set Coloring.
Fortunately this generalization is the fixed point we are looking for: approximating Set
Coloring can be done in our framework by mere recursive calls (to itself).

For Max Induced Matching, we face a new kind of obstacle. It can be the case that
no decent solution is contained in any color class X –in the chosen d + 1-coloring of the
red graph G/P⌊

√
n⌋. For instance, it is possible that any such color class X induces in G

an edgeless graph, while very large induced matchings exist with endpoints in two distinct
color classes. We thus need to also find large induced matchings within the black edges
and within the red edges of G/P⌊

√
n⌋. This leads to a more intricate strategy intertwining

the coloring of bounded-degree graphs (specifically the red graph and the square of its line
graph) and recursive calls to induced subgraphs of G, and to special induced subgraphs of
the total graph (i.e., made by both the red and black edges) of G/P⌊

√
n⌋. Although this is

not necessary, one can observe that the latter graphs are also induced subgraphs of G itself.

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 5

We then explore the limits of our results and framework in terms of amenable problems.
We give the following technical generalization to the approximation algorithms for MIS and
Max Induced Matching.

▶ Theorem 5. For every connected graph H and ε > 0, Mutually Induced H-packing
admits a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-
width given with an O(1)-sequence.

In this problem, one seeks for a largest induced subgraph that consists of a disjoint
union of copies of H. All the previous technical issues are here combined. We try all the
possibilities of batching the vertices of H into at most |V (H)| parts of G/P⌊

√
n⌋, based on

the trigraph that these parts define. For instance with H = K2 (an edge), i.e., the case
of Max Induced Matching, the three possible trigraphs are the 1-vertex trigraph, two
vertices linked by a red edge, and two vertices linked by a black edge. In the general case,
the problem generalization is quite delicate to find. We have to keep some partitions of
V (G) and V (H) to enforce that the copies of H in G follow a pattern that the algorithm
committed to higher up in the recursion tree, and a weight function on |V (H)|-tuples of
vertices of G, not to forget how many mutually induced copies of H can be packed within
these vertices. The other novelty is that some recursive calls are on induced subgraphs of
the total graph of G/P⌊

√
n⌋ that are not induced subgraphs of G. Fortunately, these graphs

keep the same bound of versatile twin-width, and thus our framework allows it.
Defining, for a family of graphs H, Mutually Induced H-packing as the same

problem where the connected components of the induced subgraph should all be in H,
we get a similar approximation factor when H is a finite set of connected graphs. (Note
that Mutually Induced H-packing is sometimes called Independent Induced H-
Packing.) In particular, we can similarly approximate Independent H-Packing, which is
the same problem but the copies of H need not be induced. (Our approximation algorithms
could extend to other H-packing variants without the independence requirement, but these
problems can straightforwardly be O(1)-approximated in general graphs.)

We can handle some cases when H is infinite, too. For instance, by slightly adapting the
case of MIS, we can get an nε-approximation when H is the set of all cliques. We show this
more involved example, also expressible as Mutually Induced H-packing for H the set
of all trees or the set all stars.

▶ Theorem 6. For every ε > 0, finding the induced (star) forest with the most edges admits
a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-width
given with an O(1)-sequence.

As we already mentioned, our framework is exclusively useful for problems that are very
inapproximable in general graphs; at least for which an nε-approximation algorithm is not
known for every ε > 0. Are there natural such problems that cannot be approximated better
in graphs of bounded twin-width? We answer this question positively with the example of
Min Independent Dominating Set.

▶ Theorem 7. For every ε > 0, Min Independent Dominating Set does not admit an
n1−ε-approximation algorithm in n-vertex graphs given with an O(1)-sequence, unless P=NP.

The reduction is the same as the one for general graphs [22], but performed from a planar
variant of 3-SAT. The obtained instances are not planar but can be contracted to planar
trigraphs, hence overall have bounded twin-width.

Finally the case of Longest Path and Longest Induced Path is interesting. The
best approximation factor for the former [18] is worse than n0.99, while the latter is known

6 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

to have the same inapproximability as MIS [31]. However an nε-approximation algorithm
(for every ε > 0) is not excluded for Longest Path. We show that the property of bounded
twin-width is unlikely to help for these two problems, as it would lead to better approximation
algorithms for Longest Path in general graphs. This is mainly because subdividing at least
2 log n times every edge of any n-vertex graph gives a graph with twin-width at most 4 [3].

▶ Theorem 8. For any r = ω(1), an r-approximation for Longest Induced Path
or Longest Path on graphs given with an O(1)-sequence would imply a (1 + o(1))r-
approximation for Longest Path in general graphs.

In turn, this can be used to exhibit a family H with an infinite antichain for the induced
subgraph relation such that Mutually Induced H-packing is hard to nε-approximate on
graphs of bounded twin-width. The family H is simply the set of all paths terminated by
triangles at both ends.

▶ Theorem 9. There is an infinite family H of connected graphs such that if for every ε > 0,
Mutually Induced H-packing admits an nε-approximation algorithm on n-vertex graphs
given with an O(1)-sequence, then so does Longest Path on general graphs.

Table 1 summarizes our results and hints at future work.

Problem name lower bound upper bound lower bound
general graphs bounded tww bounded tww

Max Independent Set n1−ε nε ?, self-improvement
Coloring n1−ε nε 4/3 − ε

Max Induced Matching n1−ε nε ?
Mut. Ind. H-Packing n1−ε nε (H connected) ?
Mut. Ind. H-Packing n1−ε nε for some H Longest Path-hard
Min Ind. Dom. Set n1−ε n/polylog(n) n1−ε

Longest Path 2log1−ε n n/ exp(Ω(
√

log n)) Longest Path-hard
Longest Induced Path n1−ε n/polylog(n) Longest Path-hard
Min Dominating Set (1 − ε) ln n O(1) ?
Table 1 Approximability status of graph problems in general graphs and in graphs of bounded

twin-width given with an O(1)-sequence. Everywhere “ε” should be read as “∀ε > 0”. Our results
are enclosed by boxes. “Longest Path-hard” means that getting an r-approximation would yield
essentially the same ratio for Longest Path in general graphs. The other lower bounds are under
standard complexity-theoretic assumptions, mostly P ̸=NP. Not to clutter the table, we do not put
the references, which can all be found in the paper.

For the main highly inapproximable graph problems, we either obtain an nε-approximation
algorithm on graphs of bounded twin-width given with an O(1)-sequence, or a conditional
obstruction to such an algorithm. In the former case, can we improve further the approxima-
tion factor? The next theorem was observed using the self-improvement reduction of Feige
et al. [17], which preserves the twin-width bound. This reduction consists of going from a
graph G to the lexicographic product G[G], where every vertex of G is replaced by a module
inducing a copy of G (and iterating this trick).

▶ Theorem 10 ([7]). Let r : N → R be any non-decreasing function such that for every
ε > 0, r(n) = o(nε). If Max Independent Set admits an r(n)-approximation algorithm

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 7

on n-vertex graphs of bounded twin-width given with an O(1)-sequence, then it further admits
an r(n)ε-approximation.

To our knowledge, the application of the self-improvement trick is always to strengthen
a lower bound, and never to effortlessly obtain a better approximation factor. Therefore, we
may take Theorem 10 as a weak indication that our approximation ratio is best possible.
Still, not even a polynomial-time approximation scheme (PTAS) is ruled out for MIS (nor
for Max Induced Matching, Min Dominating Set, etc.) and we would like to see better
approximation algorithms. For Coloring, as was previously observed [7], a PTAS is ruled
out by the NP-hardness of deciding if a planar graph is 3-colorable or 4-chromatic, since
planar graphs have twin-width at most 9 and a 9-sequence can be found in linear time [24].

2 Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at
most j. For every integer i, [i] is a shorthand for [1, i].

2.1 Handled graph problems
We will consider several problems throughout the paper. We recall here the definition of the
most central ones. Some technical problem generalizations will be defined along the way.

Weighted Max Independent Set (WMIS, for short)
Input: A graph G and a weight function V (G) → Q.
Output: A set S ⊆ V (G) such that ∀u, v ∈ S, uv /∈ E(G) maximizing w(S) :=

∑
v∈S

w(v).

A feasible solution to WMIS is called an independent set. The Max Independent Set
(MIS, for short) problem is the particular case with w(v) = 1, ∀v ∈ V (G). We may denote
by α(G), the independence number, that is the optimum value of WMIS on graph G.

Coloring
Input: A graph G.
Output: A partition P of V (G) into independent sets minimizing the cardinality of P.

Equivalently, Coloring can be expressed as finding an integer k and a map c : V (G) → [k]
such that for every uv ∈ E(G), c(u) ̸= c(v), while minimizing k.

Max Induced Matching
Input: A graph G, possibly together with a weight function w : E(G) → Q.
Output: A set S ⊆ E(G) such that ∀uv ≠ u′v′ ∈ S, {u, v} ∩ {u′, v′} = ∅ and
G[{u, v, u′, v′}] has exactly two edges, maximizing w(S) :=

∑
e∈S

w(e).

An induced matching is a pairwise disjoint set of edges (i.e., a matching) with no edge
bridging them. We now give a common generalization of WMIS and Max Induced
Matching.

Mutually Induced H-packing
Input: A graph G, possibly together with a weight function w : V (G) → Q.
Output: A set S ⊆ V (G) such that G[S] is a disjoint union of graphs each isomorphic
to a graph in H, maximizing w(S) :=

∑
v∈S

w(v).

When H consists of a single graph, say H, we simply denote the former problem Mutually
Induced H-packing. WMIS and Max Induced Matching are the special cases when H

is a vertex and an edge, respectively.

8 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

2.2 The contraction and partition viewpoints of twin-width
A trigraph G has vertex set V (G), black edge set E(G), red edge set R(G) such that
E(G) ∩ R(G) = ∅ (and E(G), R(G) ⊆

(
V (G)

2
)
). A contraction in a trigraph G replaces a

pair of (non-necessarily adjacent) vertices u, v ∈ V (G) by one vertex w that is linked to
G − {u, v} in the following way to form a new trigraph G′. For every z ∈ V (G) \ {u, v},
wz ∈ E(G′) whenever uz, vz ∈ E(G), wz /∈ E(G′) ∪ R(G′) whenever uz, vz /∈ E(G) ∪ R(G),
and wz ∈ R(G′), otherwise. The red graph (V (G), R(G)) will be denoted by R(G). We
denote by T (G) the total graph of G defined as (V (G), E(G)∪R(G)). An induced subtrigraph
of a trigraph G is obtained by removing vertices (but no edges) to G, analogously to induced
subgraphs. A partial contraction sequence of an n-vertex (tri)graph G (to a trigraph H) is a
sequence of trigraphs G = Gn, · · · , Gt = H for some t ∈ [n] such that Gi is obtained from
Gi+1 by performing one contraction. A (complete) contraction sequence is such that t = 1,
that is, H is the 1-vertex trigraph. A d-sequence S of G is a contraction sequence of G in
which the red graph of every trigraph of S has maximum degree at most d.

Assume that there is a partial contraction sequence from a (tri)graph G to a trigraph H.
If u is a vertex of H, then u(G) ⊆ V (G) denotes the set of vertices eventually contracted into
u in H. We denote by P(H) the partition {u(G) : u ∈ V (H)} of V (G). If G is clear from
the context, we may refer to a part of H as any set in {u(G) : u ∈ V (H)}. We will mostly
see d-sequences as sequences of partitions, that is, Pn, . . . , Pt with Pi := {u(G) : u ∈ V (Gi)}
when Gn, . . . , Gt is a partial (contraction) d-sequence.

Given a graph G and a partition P of V (G), the quotient graph of G with respect to P is
the graph with vertex set P, where PP ′ is an edge if there is u ∈ P and v ∈ P ′ such that
uv ∈ E(G). Given a (tri)graph G and a partition P of V (G), the quotient trigraph G/P
is the trigraph with vertex set P, where PP ′ is a black edge if for every u ∈ P and every
v ∈ P ′, uv ∈ E(G), and a red edge if either there is u ∈ P and v ∈ P ′ such that uv ∈ R(G),
or there is u1, u2 ∈ P and v1, v2 ∈ P ′ such that u1v1 ∈ E(G) and u2v2 /∈ E(G).

A trigraph H is a cleanup of another trigraph G if V (H) = V (G), R(H) ⊆ R(G), and
E(G) ⊆ E(H) ⊆ E(G) ∪ R(G). That is, H is obtained from G by turning some of its red
edges into black edges or non-edges. We further say that H is full cleanup of G if H has no
red edge, and thus, is considered as a graph. Note that the total graph T (G) and the black
graph (V (G), E(G)) of a trigraph G are extreme examples of full cleanups of G.

2.3 Balanced partition sequences
The notion of versatile twin-width is a crucial opening step to our algorithms; see [5]. Let us
call d-contraction a contraction between two trigraphs of maximum red degree at most d.
A tree of d-contractions of a trigraph G (of maximum red degree at most d) is a rooted tree,
whose root is labeled by G, whose leaves are all labeled by 1-vertex trigraphs K1, and such
that one can go from any parent to any of its children by performing a single d-contraction.
Observe that d-sequences coincide with trees of d-contractions that are paths. A trigraph G

has versatile twin-width d if G admits a tree of d-contractions in which every internal node,
labeled by, say, F , has at least |V (F)|/d children each obtained by contracting one of a list
of |V (F)|/d pairwise disjoint pairs of vertices of F .

It was shown that twin-width and versatile twin-width are functionally equivalent [5].
The relevant consequence for our purposes is that every graph G with a d′-sequence admits
a balanced d-sequence, where d = h(d′) depends only on d′, i.e., one for which the partitions
Pn, . . . , P1 are such that for every i ∈ [n] and P ∈ Pi, |P | ⩽ d · n

i . As we will resort to
recursion on induced subtrigraphs and quotient trigraphs, we need to keep more information

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 9

on those subinstances that the mere fact that they have twin-width at most d (otherwise the
twin-width bound could quickly diverge).

This will be done by opening up the proof in [5], and handling divided 0, 1, r-matrices
with some specific properties. Thus we need to recall the relevant definitions.

Given two partitions P, P ′ of the same set, we say that P ′ is a coarsening of P if every
part of P is contained in a part of P ′, and P, P ′ are distinct. Given a matrix M , we call row
division (resp. column division) a partition of the rows (resp. columns) of M into parts of
consecutive rows (resp. columns). A (k, ℓ)-division, or simply division, of a matrix M is a pair
(R = {R1, . . . , Rk}, C = {C1, . . . , Cℓ}) where R is a row division and C is a column division.
In a matrix division (R, C), each part R ∈ R is called a row part, and each part C ∈ C is
called a column part. Given a subset R of rows and a subset C of columns in a matrix M , the
zone M [R, C] denotes the submatrix of all entries of M at the intersection between a row of R

and a column of C. A zone of a matrix partitioned by (R, C) = ({R1, . . . , Rk}, {C1, . . . , Cℓ})
is any M [Ri, Cj] for i ∈ [k] and j ∈ [ℓ]. A zone is constant if all its entries are identical,
horizontal if all its columns are equal, and vertical if all its rows are equal. A 0,1-corner is a
2 × 2 0, 1-matrix which is not horizontal nor vertical.

Unsurprisingly, 0, 1, r-matrices are such that each entry is in {0, 1, r} where r is an error
symbol that should be understood as a red edge. A neat division of a 0, 1, r-matrix is a
division for which every zone either contains only r entries or contains no r entry and is
horizontal or vertical (or both, i.e., constant). Zones filled with r entries are called mixed.
A neatly divided matrix is a pair (M, (R, C)) where M is a 0, 1, r-matrix and (R, C) is a neat
division of M . A t-mixed minor in a neatly divided matrix is a (t, t)-division which coarsens
the neat subdivision, and contains in each of its t2 zones at least one mixed zone (i.e., filled
with r entries) or a 0,1-corner. A neatly divided matrix is said t-mixed free if it does not
admit a t-mixed minor.

A mixed cut of a row part R ∈ R of a neatly divided matrix (M, (R, C = {C1, C2, . . .})) is
an index i such that both M [R, Ci] and M [R, Ci+1] are not mixed, and there is a 0, 1-corner
in the 2-by-|R| zone defined by the last column of Ci, the first column of Ci+1, and R. The
mixed value of a row part R ∈ R of a neatly divided matrix (M, (R, C = {C1, C2, . . .})) is
the number of mixed zones M [R, Cj] plus the number of mixed cuts between two (adjacent
non-mixed) zones M [R, Cj] and M [R, Cj+1]. We similarly define the mixed value of a column
part C ∈ C. The mixed value of a neat division of a 0, 1, r-matrix is the maximum of
the mixed values taken over every part. The part size of a division (R, C) is defined as
max(maxR∈R |R|, maxC∈C |C|). A division is symmetric if the largest row index of each row
part and the largest column index of each column part define the same set of integers. We
call symmetric fusion of a symmetric division the fusion of two consecutive parts in C and
of the two corresponding parts in R. A symmetric fusion on a symmetric division yields
another symmetric division. A matrix A := (ai,j)i,j is said symmetric in the usual sense,
namely, for every entry ai,j of A, ai,j = aj,i.

In what follows, we set cd := 8/3(t + 1)224t. The following definition is key.

▶ Definition 11. Let Mn,d be the class of the neatly divided n × n symmetric 0, 1, r-matrices
(M, (R, C)), such that (R, C) is symmetric and has:

mixed value at most 4cd,
part size at most 24cd+2, and
no d-mixed minor.

The red number of a matrix is the maximum number of r entries in a single column or
row of the matrix.

10 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

▶ Lemma 12. Let (M, (R, C)) ∈ Mn,d. The red number of M is at most cd · 24cd+4. Thus,
the trigraph whose adjacency matrix is M has maximum red degree at most cd · 24cd+4.

Proof. Any row or column intersects at most 4cd mixed zones (filled with r entries). Each
mixed zone has width and length bounded by the part size 24cd+2. Hence the maximum
total number of r entries on a single row or column is at most 4cd · 24cd+2 = cd · 24cd+4. ◀

A coarsening of a neatly divided matrix (M, (R, C)) is a neatly divided matrix (M ′, (R′, C′))
such that (R′, C′) is a coarsening of (R, C), and M ′ is obtained from M by setting to r all
entries that lie, in M divided by (R′, C′), in a zone with at least one r entry or a 0,1-corner.
We also refer to the process of going from (M, (R, C)) to (M ′, (R′, C′)) as coarsening operation.
A coarsening operation from (M, (R, C)) ∈ Mn,d to (M ′, (R′, C′)) is said invariant-preserving
if (M ′, (R′, C′)) ∈ Mn,d.

The following lemma is the crucial building block of the current section.

▶ Lemma 13 ([6, Lemma 18]). We set s := 24cd+4. Every neatly divided matrix (M, (R, C)) ∈
Mn,d has an invariant-preserving coarsening (M ′, (R′, C′)) ∈ Mn,d with ⌊n/s⌋ disjoint pairs
of identical columns. Given (M, (R, C)), both (M ′, (R′, C′)) and the pairs of columns can be
computed in nO(1) time.

In [6], it is not explicitly stated that the invariant-preserving coarsening (hence the pairs
of identical columns) can be found in polynomial time. However it is easy to check that
the proof is effective, since it greedily symmetrically fuses two consecutive parts, provided
the resulting divided matrix remains in Mn,d. A special case of the following observation is
shown in [6, Lemma 19].

▶ Lemma 14. Let (M, (R, C)) ∈ Mn,d be a neatly divided matrix. Removing a set of
h columns and the h corresponding rows, and possibly removing from the division the parts
that are now empty, results in a neatly divided matrix in Mn−h,d.

Proof. By construction, the new matrix and division are symmetric. The new neatly divided
matrix remains d-mixed free. The part size and the mixed value can only decrease. ◀

▶ Lemma 15 ([6, Beginning of Lemma 20]). Given any graph G with a d-sequence, one
can find in polynomial-time an adjacency matrix M of G, such that (M, (R, C)) is a neatly
divided matrix of Mn,2d+2 with (R, C) the finest division of M (i.e., the one where all parts
are of size 1).

The adjacency matrix of a trigraph extends the one of a graph by putting r symbols
when the vertices of the corresponding row and column are linked by a red edge. A neatly
divided matrix (M, (R, C)) is said conform to a trigraph G if M is the adjacency matrix of
a trigraph G′ such that G is a cleanup of G′. Furthermore, we assume (and keep implicit)
that we know the one-to-one correspondence between each row (and corresponding column)
of M and vertex of G.

▶ Lemma 16. Let d be a natural, s := 24cd+4, and d′ := cd · 24cd+4. Let G be an n-vertex
trigraph given with a neatly divided matrix (M, (R, C)) ∈ Mn,d conform to G. A partial
d′-sequence S from G to a trigraph H satisfying

|V (H)| = ⌊
√

n⌋, and
∀u ∈ V (H), |u(G)| ⩽ s

√
n,

and a neatly divided matrix (M ′, (R′, C′)) ∈ M⌊
√

n⌋,d conform to H can be computed in time
nO(1).

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 11

Proof. This is a consequence of Lemmas 13 and 14; see the proof of the more general
Lemma 18. ◀

Combining Lemmas 15 and 16, one obtains the following.

▶ Lemma 17. Let d be a natural, s := 24cd+4, and d′ := cd · 24cd+4. Given an n-vertex graph
G with a d-sequence, one can compute in time nO(1) a partition P = {P1, P2, . . . , P⌊

√
n⌋} of

V (G) satisfying
for every integer 1 ⩽ i ⩽ ⌊

√
n⌋, |Pi| ⩽ s

√
n ⩽ d′√n, and

the red graph of G/P has maximum degree at most d′.

We will need a stronger inductive form of Lemma 17, also a consequence of Lemmas 15
and 16.

▶ Lemma 18. Let d̂ be a natural, d = 2d̂ + 2, and set s := 24cd+4, and d′ := cd · 24cd+4.
Given an n-vertex graph G given with a d̂-sequence, or an n-vertex trigraph G with a neatly
divided matrix (M, (R, C)) ∈ Mn,d such that M is conform to G, one can compute in time
nO(1) a partition P = {P1, P2, . . . , P⌊

√
n⌋} of V (G) with maximum red degree at most d′

satisfying that, for every integer 1 ⩽ i ⩽ ⌊
√

n⌋, |Pi| ⩽ s
√

n ⩽ d′√n, and for any trigraph H

that is
a cleanup of an induced subtrigraph of G/P, or
an induced subtrigraph G[

⋃
i∈J⊆[⌊

√
n⌋] Pi],

a neatly divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d conform to H can be computed in time
nO(1).

Proof. If we are given a graph G with a d̂-sequence, we immediately compute a neatly
divided matrix (M, (R, C)) ∈ Mn,d conform to G, by Lemma 15. We then proceed as if we
received the second kind of input.

We will build iteratively the partition P = {P1, P2, . . . , P⌊
√

n⌋} starting from the finest
partition. At each step we merge two parts, until the number of parts is ⌊

√
n⌋. At this point,

we have the desired partition P.
We iteratively maintain a trigraph Gz and a neatly divided matrix (Mz, (Rz, Cz)) ∈

Mn−z+1,d conform to it. The maintained partition is just the one corresponding to the
parts of Gz. Initially, G1 is G, and (M1, (R1, C1)) = (M, (R, C)) ∈ Mn,d. At step z

we do the following. We apply Lemma 13 on (Mz, (Rz, Cz)) ∈ Mn−z+1,d and obtain, in
polynomial-time, an invariant-preserving coarsening (M ′z, (R′z, C′z)) ∈ Mn−z+1,d, and h :=
⌊(n − z + 1)/s⌋ disjoint pairs of equal columns {c1, c′

1}, . . . , {ch, c′
h} in (M ′z, (R′z, C′z)). Let

{r1, r′
1}, . . . , {rh, r′

h} be the corresponding rows, and {v1, v′
1}, . . . , {vh, v′

h} the corresponding
vertices. Observe that a coarsening of a neatly divided matrix conform to a trigraph is still
conform to that trigraph, since the new matrix may only have some r entries in place of
some previously 0 or 1 entries. In particular, (M ′z, (R′z, C′z)) is conform to Gz.

There is at least one pair {vi, v′
i} whose contraction forms a part of size at most n/h.

Indeed, otherwise the union of the parts corresponding to v1, v′
1 . . . , vh, v′

h is larger than n.
We remove c′

i and r′
i from (M ′z, (R′z, C′z)). By Lemma 14, we obtain a neatly divided matrix

of Mn−z,d that we denote by (Mz+1, (Rz+1, Cz+1)). As we stop when n − z + 1 = ⌊
√

n⌋, it
means that the maximum size of a part of our partition is at most n/h ⩽ sn/

√
n = s

√
n.

The bound on the maximum red degree of the obtained partition (actually of all maintained
partitions) is given by Lemma 12.

We now show to find, for any cleanup H of an induced subtrigraph of G/P, a neatly
divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d conform to H. We first observe, as a consequence
of Lemmas 13 and 14, that (M⌊

√
n⌋, (R⌊

√
n⌋, C⌊

√
n⌋)) ∈ M⌊

√
n⌋,d is conform to G/P . Taking

12 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

an induced subgraph H ′ of G/P (i.e., removing vertices from it), we get, by removing
the corresponding rows and columns in (M⌊

√
n⌋, (R⌊

√
n⌋, C⌊

√
n⌋)) a neatly divided matrix

(M ′, (R′, C′)) ∈ M|V (H′)|,d conform to H ′, by Lemma 14. Note finally that taking a cleanup
H of H ′, we can simply keep (M ′, (R′, C′)) as a neatly divided matrix of M|V (H)|,d conform
to G. The second item, concerning induced subtrigraphs G[

⋃
i∈J⊆[⌊

√
n⌋] Pi] is a simple

application of Lemma 14, and works more generally for any induced subtrigraph of G. ◀

In effect, we will only apply Lemma 18 for graphs G and H, i.e., when H is an induced
subgraph of G or a full cleanup of an induced subtrigraph of G/P. Indeed, the structures
H will correspond to subinstances. We want those to be graphs, so that the tackled graph
problem is well-defined on them.

3 Approximation algorithms for Max Independent Set

We naturally start our study with Max Independent Set, a central problem that is very
inapproximable [23, 34], and yet constitutes the textbook example of our approach.

3.1 Subexponential-time constant-approximation algorithm
We present a subexponential-time Od(1)-approximation for WMIS on graphs given with
a d-sequence, which we recall, is unlikely to exist in general graphs [14].

▶ Lemma 19. Let d′ be a natural, s := 24cd′ +4, and d := cd′ ·24cd′ +4. Assume n-vertex inputs
G, vertex-weighted by w, are given with a d′-sequence. Weighted Max Independent Set
can be (d + 1)-approximated in time 2Od(

√
n) on these inputs.

Proof. By Lemma 17, we compute in polynomial time a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most s

√
n and such that R(G/P) has maximum degree at

most d.
For every integer 1 ⩽ i ⩽ ⌊

√
n⌋, we compute a heaviest independent set in G[Pi], say Si.

Even with an exhaustive algorithm, this takes time
√

n · s2√
n · 2s

√
n = 2Od(

√
n). We then

(d + 1)-color (in linear time) R(G/P), which is possible since this graph has maximum degree
at most d. This defines a coarsening of P in d + 1 parts Q = {C1, . . . , Cd+1}. Thus, Q is
a partition of V (G) such that Cj consists of all the parts Pi ∈ P receiving color j in the
(d + 1)-coloring of R(G/P).

For every j ∈ [d+1], let Hj be the graph (G/P)[Cj]4 vertex-weighted by Pi ⊆ Cj 7→ w(Si).
Note that (G/P)[Cj] can indeed be assimilated to a graph, since it has, by design, no red edge.
We compute a heaviest independent set in Hj , say Rj . This takes time (d+1)·n·2

√
n = 2Od(

√
n).

We output
⋃

Pi⊆Rj
Si for the index j ∈ [d + 1] maximizing

∑
Pi⊆Rj

w(Si).

This finishes the description of the algorithm. We already argued that its running time is
2Od(

√
n). We shall justify that it does output an independent set of weight at least a 1

d+1
fraction of the optimum α(G).

I is indeed an independent set. For any j ∈ [d + 1], consider two vertices x, y ∈⋃
Pi⊆Rj

Si. If {x, y} ∈ Si for some i, then x and y are non-adjacent since Si is an independent
set of G[Pi]. Else x ∈ Si and y ∈ Si′ for some i ̸= i′. Pi and Pi′ are not linked by a black
edge in (G/P)[Cj] since Rj is an independent set in Hj , nor they can be linked by a red
edge (there are none in (G/P)[Cj]). Thus again, x and y are non-adjacent in G.

4 We use this notation as a slight abuse of notation for (G/P)[{Pi : Pi ⊆ Cj}].

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 13

w(S4)

w(S2)

w(S7)w(S13)

w(S10) w(S9)

⩽ s
√

n
vertices

. . .

C1 C2 C3

Figure 2 The trigraph G/P with its ⌊
√

n⌋ vertices, each corresponding to a subset of at most s
√

n

vertices of G. The weights w(Si) of heaviest independent sets Si of G[Pi] for each part Pi of the color
class C2 of the d + 1-coloring of R(G/P). A heaviest independent set in the so-weighted (G/P)[C2]
(shaded) corresponds to an optimum solution in G[

⋃
Pi⊆C2

Pi]. One of these d + 1 independent sets
is a d + 1-approximation.

I has weight at least α(G)
d+1 . We claim that

⋃
Pi⊆Rj

Si is a heaviest independent set of
G[Cj]. Note that the Pis that are included in Cj (and partition it) form a module partition of
G[Cj]. In particular, any heaviest independent set intersecting some Pi ⊆ Cj has to contain
a heaviest independent of G[Pi]. This is precisely what the algorithm computes. Then a
heaviest independent set in G[Cj] packs such subsolutions to maximize the total weight,
which is what is computed in Hj .

We conclude by the pigeonhole principle, since a heaviest independent set X of G is such
that w(X ∩ Cj) ⩾ α(G)

d+1 for some j ∈ [d + 1]. ◀

3.2 Improving the approximation factor
We notice in this short section that the approximation factor of Lemma 19 can be improved
using the notion of clustered coloring. The clustered chromatic number of a class of graphs is
the smallest integer k such that there is a constant c for which all the graphs of the class can
be k-colored such that every color class induces a subgraph whose connected components
have size at most c. A proper coloring is a particular case of clustered coloring when c = 1.

Instead of properly coloring the red graph, as we did in the proof of Lemma 19, we could
use less colors and allow for small monochromatic components (in place of monochromatic
components of size 1). We use for that the following bound due to Alon et al.

▶ Theorem 20 ([1]). The class of graphs of maximum degree at most d has clustered chromatic
number at most ⌈ d+2

3 ⌉.

We can use this lemma to improve our approximation algorithms.

▶ Theorem 21. On inputs as in Lemma 19 with s := 24cd′ +4, and d := cd′ · 24cd′ +4,
Weighted Max Independent Set further admits an ⌈ d+2

3 ⌉-approximation algorithm in
time 2Od(

√
n).

Proof. Again, we compute in polynomial time a partition P = {P1, . . . , P⌊
√

n⌋} of V (G)
whose parts have size at most s

√
n and such that R(G/P) has maximum degree at most d,

14 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

using Lemma 17. Let c be the constant such that R(G/P) admits a clustered coloring using
⌈ d+2

3 ⌉ colors such that each color class Cj (with j ∈ [⌈ d+2
3 ⌉]) is such that the connected

components C1
j , C2

j , . . . , C
hj

j ⊆ Cj of R(G/P)[Cj] have size at most c each. This coloring
is guaranteed to exist by Theorem 20. Due to the overall running time, we might as well
compute it by exhaustive search, in time 2Od(

√
n).

For every j ∈ ⌈ d+2
3 ⌉ and h ∈ [hj], we denote by P1(Ch

j), . . . , Pc(j,h)(Ch
j) the c(j, h) ⩽ c

parts Pi ∈ P that are included in Ch
j . For every j ∈ ⌈ d+2

3 ⌉, every h ∈ [hj], and every
J ⊆ [c(j, h)], we compute a heaviest independent set in G[

⋃
z∈J Pz(Ch

j)], which we denote
by Sj,h,J . This takes time O(

√
n · 2c · 2sc

√
n) = 2Od(

√
n) since |

⋃
z∈J Pz(Ch

j)| ⩽ c · s
√

n.
For each Cj , in time (2c)

√
n = 2c

√
n, we exhaustively try all subsets X ⊆

⋃
Pi∈Cj

Pi that
are unions of Sj,h,J filtering them out when G[X] is not edgeless, and keep a heaviest of
them, say Rj . Since there can only be black edges or non-edges between some Pi ∈ Ch

j and
Pi′ ∈ Ch′

j with h ̸= h′, it is clear that a heaviest independent set of G[
⋃

Pi∈Cj
Pi] is indeed a

union of Sj,h,J (with fixed j). We output a heaviest set among the Rjs, which is the desired
⌈ d+2

3 ⌉-approximation. The running time is as claimed. ◀

3.3 Time-approximation trade-offs
Lemma 19 and Theorem 21 run exhaustive algorithms on induced subgraphs of size Od(

√
n).

As such, the latter inputs keep the same twin-width upper bound. To speed up the algorithm
(admittedly while worsening the approximation factor) it is tempting to recursively call our
very algorithm. We show that this leads to a time-approximation trade-off parameterized
by an integer q = 0, . . . , Od(log log n). At one end of this discrete curve, one finds the exact
exponential algorithm (q = 0), and more interestingly the d + 1-approximation in time
2Od(

√
n) (q = 1), while at the other end lies a polynomial-time algorithm with approximation

factor nε, where ε > 0 can be made as small as desired.
As we will deal with the same kind of recursions for several problems, we show the

following generic abstraction.

▶ Lemma 22. Let d̂ be a natural, d′ = 2d̂+2, and d := cd′ ·24cd′ +4. Let Π be an optimization
graph problem where inputs come with a d̂-sequence of their n-vertex graph G, or with a neatly
divided matrix (M, (R, C)) ∈ Mn,d′ conform to G. Let P be the partition of V (G) given
by Lemma 18. Assume that
1. Π can be exactly solved in time 2O(n), and there are constants c1, c2, c3, and a function

f ⩾ 1 such that
2. a dc3r2-approximation of Π on G can be built in time nc2 by using at most nc1 calls

to an r-approximation of Π –or another optimization problem Π ′ already satisfying the
conclusion of the lemma– on an induced subgraph of G with at most f(d)

√
n vertices or

a full cleanup of an induced subtrigraph of G/P (on at most
√

n vertices).
Then Π can be dc3(2q−1)-approximated in time

(f(d)qn)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)n2−q

,

for any non-negative integer q.

Proof. The proof is by induction on q. The case q = 0 is implied by Item 1. The case q = 1,
and the induction step in general, is nothing more than an abstraction of Lemma 19, where
exhaustive algorithms are replaced by recursive calls.

For any q ⩾ 0, we assume that Π can dc3(2q−1)-approximated in the claimed running time,
and show the same statement for the value q + 1. Following Item 2, we run this algorithm –or

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 15

one for another optimization problem Π ′ satisfying the conclusion of the lemma– at most nc1

times on f(d)
√

n-vertex induced subgraphs of the input graph G or on full cleanups of induced
subtrigraphs of G/P . The latter graphs have at most

√
n ⩽ f(d)

√
n vertices. By Lemma 18,

we can compute in polynomial time a neatly divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d′

conform to H, for each graph H of a recursive call; hence the induction applies.
Overall this takes time at most

nc1 + nc2 ·
(

(f(d)q · f(d)
√

n)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)(f(d)
√

n)2−q
)

⩽ (f(d)q+1n)c1+c2+ 1
2 (2−2−q)(c1+c2) · 2f(d)2(1−2−q)+2−q

n
2−q

2

= (f(d)q+1n)(2− 2−q

2)(c1+c2) · 2f(d)2−2−q+1+2−q
n2−(q+1)

= (f(d)q+1n)(2−2−(q+1))(c1+c2) · 2f(d)2(1−2−(q+1))n2−(q+1)

.

For the first inequality, we assume that the two summands are larger than 2, so their
sum can be bounded by their product.

Besides we get an approximation of factor at most (dc3(2q−1))2dc3 = dc3(2q+1−1). ◀

In more legible terms we have proved that:

▶ Lemma 23. Problems Π satisfying the assumptions of Lemma 22 can be dO(1)(2q−1)-
approximated in time 2Od,q(2q√

n), for any non-negative integer q.

If most graph problems admit single-exponential algorithms, we will deal with such
a problem that is only known to be solvable in time 2O(n log n). Therefore we prove a variant
of Lemma 22 with a slightly worse running time.

▶ Lemma 24. Let Π be solvable in time 2O(n log n) and satisfy the second item of Lemma 22.
Then Π can be dc3(2q−1)-approximated in time

2
(

(c1+c2)(2−2−q) log f(d)+f(d)2(1−2−q)n2−q)
log n

,

for any non-negative integer q.

Proof. We follow the proof of Lemma 22 when the induction now gives a running time of

nc2 + nc1 · 2
(

(c1+c2)(2−2−q) log f(d)+(f(d)
√

n)2−q)
log(f(d)

√
n)

⩽ 2

(
(c1+c2)(2−2−(q+1)) log f(d)+f(d)2(1−2−(q+1))n2−(q+1)

)
log n

.

◀

Again the previous lemma can be rewritten as:

▶ Lemma 25. Problems Π satisfying the assumptions of Lemma 24 can be dO(1)(2q−1))-
approximated in time 2Od,q(2q√

n log n), for any non-negative integer q.

We derive from Lemma 24 the following notable regimes.

▶ Theorem 26. Problems Π satisfying the assumptions of Lemma 24 admit polynomial-time
nε-approximation algorithms, for any ε > 0.

16 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Proof. This is the particular case q = ⌈log ε log n
2c3 log d ⌉.

Indeed the approximation factor is then at most dc3(2q−1) ⩽ d2c3
ε log n

2c3 log d = 2ε log n = nε,
while the running time is at most

2
(

(c1+c2)(2−2−q) log f(d)+f(d)2(1−2−q)n2−q)
log n ⩽ 2

(
2(c1+c2) log f(d)+f(d)2n

2c3 log d
ε log n

)
log n

= n2(c1+c2) log f(d)+f(d)2d
2c3

ε .

If further Π can be solved exactly in time 2O(n) (hence satisfies the assumptions
of Lemma 22), one obtains a better running time, where the exponent of n does not
depend on ε. Indeed,

(f(d)qn)(2−2−q)(c1+c2)2f(d)2(1−2−q)n2−q

⩽

(
ε log n

c3 log d

)2(c1+c2) log f(d)
2f(d)2d

2c3
ε n2(c1+c2). ◀

▶ Theorem 27. Problems Π satisfying the assumptions of Lemma 22, resp. Lemma 24,
admit a log n-approximation algorithm running in time 2Od(n

1
log log n), resp. 2Od(n

1
log log n log n).

Proof. This is the particular case q = ⌊log
(

log log n
c3 log d + 1

)
⌋.

This value is computed such that the approximation factor dc3(2q−1) is at most log n. It
can be easily checked that the running times are as announced. ◀

We derive the following for Weighted Max Independent Set.

▶ Theorem 28. Weighted Max Independent Set on n-vertex graphs G (vertex-weighted
by w) given with a d′-sequence satisfies the assumptions of Lemma 22. In particular, this
problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
), for every integer q ⩾ 0,

an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and
a log n-approximation in time 2Od(n

1
log log n),

with d := c2d′+2 · 24c2d′+2+4.

Proof. Even the exhaustive algorithm exactly solves WMIS in time 2O(n). We thus focus on
showing that WMIS satisfies the second item of Lemma 22. We set c1 ⩾ 1 as the required
exponent to turn a d′-sequence into a neatly divided matrix of Mn,2d′+2 conform to G,
c2 = 1

2 + η for any fixed η > 0, the appropriate 1 < c3 ⩽ 2, and f(d) = d ⩾ 1.
The algorithm witnessing the second item is simply the proof of Lemma 19. We first

check that this algorithm makes ⌊
√

n⌋ + d + 1 recursive calls on induced subgraphs of the
input G: each of the ⌊

√
n⌋ graphs G[Pi] where Pi has indeed size at most Od(

√
n), and each

of the d + 1 graphs (G/P)[Cj] (indeed an induced subgraph of G by definition of the black
graph of a trigraph) on at most

√
n vertices.

We finally assume that each recursive call outputs an r-approximation of WMIS. Let
j ∈ [d + 1] be such that w(Cj ∩ I) ⩾ 1

d+1 w(I) for I a heaviest independent set of G vertex-
weighted by w. Let J ⊆ [⌊

√
n⌋] be the indices of the Pis that are intersected by Cj ∩ I, that

is, J = {i : Pi ∩ (Cj ∩ I) ̸= ∅}. For every i ∈ J , set wi = w(Pi ∩ I). Each recursive call on
some Pi with i ∈ J , yields an independent set of weight at least wi

r , by assumption. Thus
the weights that our algorithm puts on (G/P)[Cj] are such that it has an independent set of
weight at least Σi∈J

wi

r = w(Cj∩I)
r . As we run an r-approximation on this graph, we get an

independent set of weight at least w(Cj∩I)
r2 ⩾ w(I)

(d+1)r2 . Thus WMIS satisfies the assumptions
of Lemma 22, and we conclude. ◀

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 17

4 Finding the suitable generalization: the case of Coloring

In this section, we deal with the Coloring problem. Unlike for WMIS, we cannot solely
resort to recursively calling our Coloring algorithm on smaller graphs. The right problem
generalization needs to be found for the inductive calls to work through, and it happens to
be Set Coloring.

In the Set Coloring problem, the input is a couple (G, b) where G is a graph, and
b is a function assigning a positive integer to each vertex of G. The goal is to find, for
each v ∈ V (G), a set Sv of at least b(v) colors such that Su ∩ Sv = ∅ whenever uv ∈ E(G),
and minimizing | ∪v∈V (G) Sv|. Let χb(G) be the optimal value of Set Coloring for (G, b).
Observe that Coloring corresponds to the case where b(v) = 1 for every v ∈ V (G).

▶ Theorem 29. Set Coloring (and hence Coloring) on n-vertex graphs G given with a
d′-sequence satisfies the assumptions of Lemma 24. In particular, this problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
log n), for every integer q ⩾ 0, and

an nε-approximation in polynomial-time for any ε > 0.
with d := c2d′+2 · 24c2d′+2+4.

Proof. It is known [32] that Set Coloring can be solved using the inclusion-exclusion
principle in time O∗(maxv∈V (G) b(v)n) = 2O(n log n). We now prove that it satisfies the second
item of Lemma 22. We denote by A the r-approximation algorithm of the statement, which
we will use on instances of Set Coloring. In particular, we will call it at most

√
n + 1

times, and will obtain at the end a (d + 1)r2-approximation on our input (G, b) in polynomial
time.

We first apply Lemma 18 to get, in polynomial-time, a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most d

√
n and such that R(G/P) has maximum degree

at most d. For every i ∈ [⌊
√

n⌋], we use A to compute an r-approximated solution cPi
of

(G[Pi], b|Pi
). We denote by b′ the function which assigns, to each Pi, the number of colors

of cPi
. We now compute, in polynomial-time, a proper (d + 1)-coloring of R(G/P), which

defines the sets C1, . . . , Cd+1. For each j ∈ [d + 1], we construct another Set Coloring
instance consisting of the graph Hj = (G/P)[Cj] (recall that this trigraph has no red edge,
and can thus be seen as a graph), together with the function b′

|Cj
. Again we use A to compute

an r-approximated solution on (Hj , b′
|Cj

). We denote by cH this solution. Let Gj be the
subgraph of G induced by ∪Pi∈Cj

Pi, and bj the restriction of b to V (Gj). We now show how
to construct a solution cj of Set Coloring to (Gj , bj) from cH and all cPi

. Recall that
for every Pi ∈ Cj , every v ∈ Pi, we have that cPi

(v) is a subset of {1, . . . , b′(Pi)} of size at
least b(v), and that cH(Pi) is a subset of size at least b′(Pi). Hence, for each Pi ∈ Cj , one
can choose an arbitrary bijection τ from {1, . . . , b′(Pi)} to cH(Pi), and define to each vertex
v ∈ Pi the set cj(v) as {τ(x) : x ∈ cPi

(v)}.
By construction, this solution is a feasible one for the instance (Gj , bj). Let us prove

that it is an r2-approximation of χbj
(Gj). First, by definition of cH , our solution uses at

most r · χb′
|Cj

(Hj) colors. Then, by definition of cPi for every Pi ∈ Cj , we have b′
Cj

(Pi) ⩽

r · χb|Pi
(G[Pi]). Now, denote by Γ the function which assigns to each Pi ∈ Cj the number

χb|Pi
(G[Pi]). We now use the following claim, whose proof is left to the reader.

▷ Claim 30. Let (G, b) be an instance of Set Coloring, and r ∈ R+. It holds that
χr·b(G) ⩽ r · χb(G), where r · b is the function which assigns r · b(v) to each v ∈ V (G).

This implies χb′
|Cj

(Hj) ⩽ r ·χΓ (Hj), and thus our solution uses at most r2 ·χΓ (Hj) colors.
We now prove the following claim.

18 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

▷ Claim 31. χΓ (Hj) ⩽ χbj
(Gj).

Proof of the claim. Let c be an optimal solution for (Gj , bj). For every distinct Pi, Pi′ ∈ Cj

such that PiPi′ is an edge of Hj , it holds that there are all possible edges between Pi and
Pi′ in Gj (by definition of the coloring C1, · · · , Cd+1), hence it holds that

⋃
v∈Pi

c(v) and⋃
v∈Pi′ c(v) have empty intersection. Moreover, by definition of Γ , we have that

⋃
v∈Pi

c(v)
is of size at least Γ (Pi), hence the function which assigns

⋃
v∈Pi

c(v) to each Pi is a feasible
solution for (Hj , Γ) using at most χbj

(Gj) colors. ◀

We now have in hand an r2-approximated solution of (Gj , bj) for every j ∈ [d + 1], which
can be turned into a (d + 1)r2-approximated solution of (G, b), as desired. ◀

5 Edge-based problems: the case of Max Induced Matching

So far, we only considered problems where approximated solutions in each part Pi of a partition
P of V (G) of small width, and in some selected induced subgraphs of (V (G/P), E(G/P)),
were enough to build an approximated solution for G.5 We now handle problems for which
a number of edges is to be optimized. Now all competitive solutions can integrally lie in
between pairs of parts Pi, Pj linked by a black or a red edge in G/P. This complicates
matters, and forces us to be competitive there as well, naturally splitting the algorithm into
three subroutines.

We present the algorithms for Max Subset Induced Matching where one is given, in
addition to the input graph G (possibly with edge weights), a subset Y ⊆ E(G), and the
goal is to find a heaviest induced matching S of G such that S ⊆ Y . Then Max Induced
Matching is the particular case when Y = E(G). Of course, we could solely use the edge
weights to emulate Y (by giving negative weights to all the edges in E(G) \ Y). We believe
this formalism is slightly more convenient for the reader to quickly and explicitly identify
where our algorithm is seeking mutually induced edges.

Since the case of Max Induced Matching is more involved than were the treatment of
MIS and Coloring, we again split the arguments into the design of a subexponential-time
constant-approximation algorithm (Lemma 34) followed by how this algorithm meets the
requirements of Lemma 22 (Theorem 33).

▶ Lemma 32. Assume every input (G, Y) is given with a d′-sequence of the n-vertex, edge-
weighted by w, graph G. We set d := cd′ · 24cd′ +4, and s := 24cd′ +4. Max Subset Induced
Matching can be O(d2)-approximated in time 2Od(

√
n) on these inputs.

Proof. Again, by Lemma 17, we start by computing in polynomial time a partition of V (G),
P = {P1, . . . , P⌊

√
n⌋}, of parts with size at most s

√
n and such that R(G/P) has maximum

degree at most d.
We (d + 1)-color R(G/P), which defines a coarsening {C1, . . . , Cd+1} of P. We also

distance-2-edge-color R(G/P) with z = 2(d − 1)d + 1 colors, that is, properly (vertex-)color
the square of its line graph. Observe that z − 1 upperbounds the maximum degree of the
square of the line graph of R(G/P). This partitions the edges of R(G/P) into {E1, . . . , Ez}.
For each red edge e = PiPj ∈ R(G/P), we denote by p(e) the set Pi ∪ Pj . We also set
Xh = p(Eh) =

⋃
e∈Eh

p(e) for each h ∈ [z].
Let M ⊆ Y be a fixed (unknown) heaviest induced matching of G contained in Y .

Let Mv, Mr, Mb partition M , where Mv (as vertex) consists of the edges of M with both

5 The improvement based on clustered coloring slightly departed from that simple scheme.

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 19

Ij

Cj

(a) Computing Rj consists first
of determining the heaviest in-
duced matching in each part Pi

and then, for color Cj , to com-
pute the maximum independent
set Ij (in green) weighted by the
size of the matchings.

I ′
h

Eh

(b) Color Eh reveals a set of red
edges from trigraph G/P. Set R′

h
corresponds to the heaviest match-
ing among these edges which is mu-
tually induced regarding the black
edges. The weight of the red edges e
is w(S′

e).

T1

T2

e

mG(e)

(c) An example of set S of size
3 with two colors T1 and T2.
The induced matching R′′

i for
color Ti is obtained by consid-
ering the maximum-weighted
edge mG(e) between the two
parts of e.

Figure 3 Illustration of how to determine the induced matching Nv, Nr, and Nb (in that order,
from left to right).

endpoints in a same Pi, Mr (as red) corresponds to edges of M between some Pi and Pj

with PiPj ∈ R(G/P), and Mb (as black), the edges of M between some Pi and Pj with
PiPj ∈ E(G/P). We compute three induced matchings Nv, Nr, Ne ⊆ Y of G, capturing
a positive fraction of Mv, Mr, Me, respectively. Figure 3 gives the intuition of the procedures
which determine each of these approximated solutions.

Computing Nv. For every integer 1 ⩽ i ⩽ ⌈
√

n⌉, we compute a heaviest induced
matching in G[Pi] contained in Y , say Si, in time 2Od(

√
n). For each j ∈ [d + 1], let Hj be

the graph (G/P)[Cj] with every vertex Pi ∈ Cj weighted by w(Si). We compute a heaviest
independent set Ij in Hj , also in time 2Od(

√
n).

Let Rj be the induced matching {e ∈ Si : Pi ∈ Ij}. It is indeed an induced matching
in G contained in Y , since each Si is so, there is no red edge in (G/P)[Cj], and Ij is an
independent set of Hj . The solution Nv is then a heaviest among the Rjs.

Computing Nr. For each e = PiPj ∈ R(G/P), we compute a heaviest induced match-
ing S′

e in G[p(e)] = G[Pi∪Pj] among those that are included in Y and have only edges with one
endpoint in Pi and the other endpoint in Pj . This takes times at most

√
nd
2 ·2Od(

√
n) = 2Od(

√
n)

by trying out all vertex subsets, since |Pi ∪ Pj | ⩽ 2s
√

n. For each h ∈ [z], let H ′
h be the

graph (G/P)[{Pi : Pi is incident to an edge e ∈ Eh}] and the red edges e ∈ Eh are turned
black and get weight w(S′

e). We compute a heaviest induced matching I ′
h in H ′

h among those
included in Eh, in time 2Od(

√
n). Note here that we changed the prescribed set of edges Y to

Eh.
Let R′

h be the induced matching {f ∈ S′
e : e ∈ I ′

h} ⊆ Y of G. Indeed, each S′
e ⊆ Y is an

induced matching, and there is no red edge between an endpoint of e ∈ I ′
h and an endpoint

of e′ ̸= e ∈ I ′
h (since Eh is a color class in a distance-2-edge-coloring of R(G/P)), nor a black

edge (by virtue of I ′
h being an induced matching of H ′

h). The solution Nr is then a heaviest
among the R′

hs.

20 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Computing Nb. Observe first that an induced matching of G can only contain at most
one edge between Pi and Pj when PiPj ∈ E(G/P). Thus in the graph (V (G/P), E(G/P)),
we give weight max{w(f) : f = uv ∈ Y, u ∈ Pi, v ∈ Pj}, with the convention that max ∅ = −1,
to each edge e = PiPj ∈ E(G/P), call G′ the resulting edge-weighted graph, and denote by
mG(e) an edge f ∈ Y realizing this maximum. We compute a heaviest induced matching S

of G′ included in E(G′), in time 2Od(
√

n). Let HS be the graph with vertex set S, and an
edge between e and e′ whenever there is a red edge in G/P between an endpoint of e and an
endpoint of e′. As HS has degree at most 2d, it can be 2d + 1-colored; let T1, . . . , T2d+1 the
corresponding color classes.

For each i ∈ [2d + 1], let R′′
i be the induced matching {mG(e) : e ∈ Ti} ⊆ Y of G. Indeed,

S is an induced matching in the black graph of G/P , and the underlying vertices of Ti do not
induce any red edge in G/P, by design. The solution Nr is then a heaviest among the R′′

i s.

We finally output a heaviest set among Nv, Nr, Nb. The overall running time is 2Od(
√

n)

as we make a polynomial number of calls to (exhaustive) subroutines on graphs with Od(
√

n)
vertices, and color in linear time O(n)-vertex graphs of maximum degree ∆ with ∆ + 1
colors. We already argued that Nv, Nr, Nb ⊆ Y are all induced matchings in G, thus so is
our output.

We shall just show that we meet the claimed approximation factor. First, one can observe
w(Nv) ⩾ w(Mv)

d+1 . Second, at least a 1
z fraction of the weight of Mr intersects some fixed Ei

(with i ∈ [z]). Let J be the parts of P intersected by Mr ∩ Xi. As there cannot be a black
edge between two parts of J (otherwise Mr is not an induced matching as defined), our
algorithm indeed computes an induced matching of G[Xi] included in Y of weight at least
w(Mr ∩ Xi). Hence w(Nr) ⩾ w(Mr)

z .
Third, we already argued that an induced matching in G′ corresponds to an induced

matching in the black graph of G/P . Thus at least one of the R′′
i (with i ∈ [2d + 1]) contains

at least a 1
2d+1 fraction of the weight of Mb. Therefore w(Nb) ⩾ w(Mb)

2d+1 .
Finally the output induced matching has at least weight

w(M)
3 · max(d + 1, z, 2d + 1) = w(M)

3z
= w(M)

3(2(d − 1)d + 1) . ◀

▶ Theorem 33. Max Subset Induced Matching on an n-vertex graph G, edge-weighted
by w, with prescribed set Y ⊆ E(G), and given with a d′-sequence, satisfies the assumptions
of Lemma 22. In particular, this problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
), for every integer q ⩾ 0,

an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and
a log n-approximation in time 2Od(n

1
log log n),

with d := c2d′+2 · 24c2d′+2+4.

Proof. The exhaustive algorithm (trying out all vertex subsets and checking whether they
induce a matching included in Y) solves Max Subset Induced Matching in time 2O(n).
Thus we show Max Subset Induced Matching satisfies the second item of Lemma 22,
as witnessed by Lemma 34 where subcalls are dealt with recursively. We set c2 ⩾ 1 as
the required exponent to turn a d′-sequence into a neatly divided matrix of Mn,2d′+2, and
compute the various needed colorings, the appropriate 1

2 < c1 < 1, and 2 < c3 < 3, and
f(d) = 2d ⩾ 1 with s := 24cd′ +4.

In computing Nv, the algorithm makes ⌊
√

n⌋ recursive calls and d + 1 calls to Weighted
Max Independent Set on induced subgraphs of G. All of these induced subgraphs are
on less than f(d)

√
n vertices. Computing Nr makes at most

√
nd
2 recursive calls on induced

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 21

subgraphs of G with at most f(d)
√

n vertices, followed by at most 2(d − 1)d + 1 recursive
calls on full cleanups of induced subtrigraphs of G/P with at most

√
n vertices (in fact, one

can observe that the latter recursive calls happen to also be on induced subgraphs of G).
Finally, computing Nb makes one recursive call to a full cleanup of G/P on ⌊

√
n⌋ vertices.

In summary, we make Od(
√

n) recursive calls or calls to another problem WMIS (which
already satisfies Lemma 22 with better constants) on induced subgraphs of G or full cleanups
of (the whole) G/P, each on Od(

√
n) vertices. Hence, by Lemma 18, the induction applies.

We check that getting r-approximations on every subcall allows to output a global
3(2(d − 1)d + 1)r2-approximation. For that we argue that Nv (resp., Nr, Nb) is a (2(d − 1)d +
1)r2-approximation of Mv (resp., Mr, Mb). The fact that Nv is a (d + 1)r2-approximation
(hence a (2(d − 1)d + 1)r2-approximation, since we assume that d ⩾ 1) of Mv directly
follows Theorem 28.

We now show that Nr is a (2(d − 1)d + 1)r2-approximation of Mr. Let h ∈ [z] = [2(d −
1)d + 1] be an index maximizing w(Mr ∩ E(G[Xh])). Thus w(Mr ∩ E(G[Xh])) ⩾ w(Mr)

2(d−1)d+1 .
Let Fh ⊆ Eh be the edges e = PiPj of R(G/P) that are inhabited by Mr (i.e., Mr contains
at least one edge between Pi and Pj). Note that our algorithm makes an r-approximation
of the optimum such solutions on p(e) (selecting only edges between Pi and Pj). Thus the
r-approximation on H ′

h yields the desired (2(d − 1)d + 1)r2-approximation Nr.
Finally, one can easily see that Nb is a (2d + 1)r-approximation of Mb (note, here, the

absence of a 2 in the exponent of r). ◀

6 Technical generalizations

6.1 Mutually Induced H-packing
In this section we present a far-reaching generalization of the approximation algorithms
for Max Independent Set and Max Induced Matching. For any fixed graph H, let
Mutually Induced H-packing be the problem where one seeks a largest collection of
mutually induced copies of H in the input graph G, that is, a largest set S such that
G[S] is a disjoint union of (copies of) graphs H. We get similar approximation guarantees
for Mutually Induced H-packing, for any connected graph H. Observe that Max
Independent Set and Max Induced Matching are the special cases when H is a single
vertex and a single edge, respectively.

We in fact approximate a technical generalization that we call Annotated Mutu-
ally Induced H-packing. The input is a tuple (G, w, z, γ, γ′) where G is a graph,
w : V (G)|V (H)| → Q is a weight function over the tuples without repetition of V (G) of
size |V (H)| (that we will use to keep track of the number of mutually induced copies within
a given tuple of vertices of G), z is an integer between 1 and |V (H)|, γ : V (G) → [z] is
a labeled partition of V (G) into z classes, and γ′ : V (H) → [z] is a labeled partition of
V (H) into z classes. Note that the Mutually Induced H-packing is obtained when
w(Z) = [G[Z] is isomorphic to H] (where [.] is the Iverson bracket, i.e., taking value 1 if the
property it surrounds is true, and 0 otherwise) and z = 1 (which forces the value of γ and
γ′). The goal is to find a subset S such that

G[S] is a disjoint union of copies of H,
there is an isomorphism between each copy C of H (in S) and H which preserves γ, γ′,
i.e., every vertex v of C is mapped to a vertex v′ ∈ V (H) with γ(v) = γ′(v′), and∑
C copy of H in S

w(V (C)) is maximized.

We will need the notion of compatible trigraphs of a (labeled) graph. Given a graph H,

22 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

we call compatible trigraph of H any trigraph on at most |V (H)| vertices obtained by turning
some (possibly none) black edges or non-edges of trigraph H/Q (for any fixed choice of a
partition Q of V (H)) into red edges. In other words, a compatible trigraph H ′ of H is such
that there is a cleanup H ′′ of H ′ that is also a quotient trigraph of H. Note that the number
of compatible trigraphs of an h-vertex graph H is upperbounded by Bh · 2(h

2) = 2O(h2), where
Bh is the h-th Bell number, which counts the number of partitions of a set of size h.

Given a graph G vertex-partitioned by P and a trigraph H, a subset S ⊆ V (G) is said cut
by P along H if G[S]/P is isomorphic to H. By extension, the copy of G[S] in G (induced
by S) is also said cut by P along H.

▶ Lemma 34. For any connected graph H, Annotated Mutually Induced H-packing,
when every input (G, w, z, γ, γ′) is given with a d′-sequence of the n-vertex graph G, satisfies
the assumptions of Lemma 22. In particular, this problem admits

a dOh(2q)-approximation in time 2Od,h,q(n2−q
), for every integer q ⩾ 0,

an nε-approximation in polynomial-time Oε(1) · nOd,h(1), for any ε > 0,
with h = |V (H)|, and d := c2d′+2 · 24c2d′+2+4.

Proof. As the first item of Lemma 22 is satisfied, we describe an algorithm that fulfills the
requirement of its second item. We proceed by induction on the number of vertices of H.
Thus we can assume that Annotated Mutually Induced J-packing, with J a connected
graph on less vertices than H, satisfies Lemma 22. We already did the base case of the
induction, which was Weighted Max Independent Set.

Algorithm. Again, by Lemma 18, we start by computing in polynomial time a partition
of V (G), P = {P1, . . . , P⌊

√
n⌋}, of parts with size at most d

√
n and such that R(G/P) has

maximum degree at most d. Let S be a fixed (unknown) heaviest (with respect to w) mutually
induced H-Packing of G preserving γ, γ′.

For every compatible trigraph H ′ of H, we look for mutually induced copies of H in G

cut by P along H ′, and preserving γ, γ′. As the number of compatible trigraphs of H is
2O(h2), a 1/2O(h2) fraction of the weight of S is made of mutually induced copies of H which
are cut by P along a fixed compatible trigraph H ′. We now focus on this particular “run.”

We distinguish two cases:
(A) H ′ has at least one black edge, or
(B) H ′ has no black edge.

As H is connected, the total graph of H ′ is also connected. Indeed, switching some edges
or non-edge to red edges in the quotient trigraph of H cannot disconnect the total graph,
which can only gain edges. Thus in case (A), every red component of H ′ has at least one
incident black edge, and in case (B), H ′ has a single red component (and no black edge).

In general, we want to individually pack red components of H ′ (first type of recursive
calls in smaller induced subgraphs of G), then combine those red components by connecting
them with the right pattern of black edges (second type of recursive calls in the total graph
of G/P). Handling both cases (A) and (B) in an unified way runs into the technical issue
that the weight function may destroy our combined solutions in an uncontrollable manner.
The case distinction works as a win-win argument. In case (A), due to the presence of a
black edge in H ′, we can pack at most one mutually induced copy of H within any fixed
subtrigraph of G/P matching H ′. We thus exempt ourselves from the first type of recursive
calls. In case (B), we do need the two types of recursive calls (as in WMIS), but the first
type is done on the whole H. Thus the current weight function (on h-tuples) is informative
enough.

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 23

Case (A). The essential element here is to build a new weight function w′ on the h′-tuples
of the total graph T (G/P), with h′ := |V (H ′)|. For every injective map ι : V (H ′) → P
inducing a trigraph isomorphism and preserving γ, γ′, for every ordering of ι(V (H ′)) into an
h′-tuple (P1, . . . , Ph′), we set

w′(P1, . . . , Ph′) := max{w(v1
1 , v2

1 , . . . , va1
1 , . . . , v1

h′ , v2
h′ , . . . , v

ah′
h′) : v1

1 , v2
1 , . . . , va1

1 ∈ P1, . . .

v1
h′ , v2

h′ , . . . , v
ah′
h′ ∈ Ph′ , and G[{v1

1 , v2
1 , . . . , va1

1 , . . . , v1
h′ , v2

h′ , . . . , v
ah′
h′ }] is isomorphic to H}.

Indeed as we previously observed, in case (A), at most one mutually induced copy of H

respecting the cut along H ′ can be packed in the subgraph of G induced by the vertices of
ι(V (H ′)). (In the definition of w′, we can further impose that ai matches the number of
vertices of H in the corresponding part of H ′ but this is not necessary.)

All the h′-tuples not getting an image by w′ in the previous loop (realized in time nO(h))
are assigned the value 0. We then make a recursive call to Annotated Mutually Induced
T (H ′)-packing on input (T (G/P), w′, 1, γ0, γ′

0) where we recall that T (.) is the total graph,
and γ0, γ′

0 are the constant 1 functions.
Case (B). For every injective map ι : V (H ′) → P inducing a trigraph isomorphism and

preserving γ, γ′, we make a recursive call to Annotated Mutually Induced H-packing
with input (Gι = G[

⋃
P ∈ι(V (H′)) P], w, h, γι, γ′

ι) where two vertices get the same label by γι

if and only if they have the same label by γ and lie in the same P ∈ ι(V (H ′)), and γ′
ι gives

to a vertex v′ ∈ X ∈ V (H ′) of H the same label given to the vertices v ∈ ι(X) such that
γ′(v′) = γ(v). Informally γι, γ′

ι forces the recursive call to commit to the map ι and the
former functions γ, γ′.

Each such recursive call yields a mutually induced packing of H. Since the red graph
of G/P has degree at most d, we can color the (ordered) tuples of P of length up to h and
inducing a connected subgraph of R(G/P) with at most p(h, d) = hd2h · d2h · h! + 1 colors
such that every color class consists of disjoint tuples pairwise not linked by a red edge in
G/P. Indeed the claimed number of colors minus 1 upperbounds, in R(G/P), the number
of connected tuples of length up to h that can touch (i.e., intersect or be adjacent to) a
fixed connected tuple of length up to h. One color class contains a fraction 1/p(h, d) of the
weight of the optimal solution S (subject to the same constraints). Running through all
color classes j (and focusing on one containing a largest fraction of the optimum), we define
a weight function w′ on the h′-tuples of T (GP), with h′ = |V (H ′)|, by giving to a tuple the
weight returned by the corresponding recursive call whenever it is part of color class j, and
weight 0 otherwise. We then make a recursive call to Annotated Mutually Induced
T (H ′)-packing on input (T (G/P), w′, 1, γ0, γ′

0) where we recall that T (.) is the total graph,
and γ0, γ′

0 are the constant 1 functions.
We output a heaviest solution among all runs. We now check that the algorithm is as

prescribed by Lemma 22.

Number of recursive calls. We make at most 2O(h2) ·h · |V (G/P)|h = nOh(1) recursive
calls to Annotated Mutually Induced H-packing, and at most p(h, d) + 1 = Od,h(1)
recursive calls to Annotated Mutually Induced T (H ′)-packing. Hence there is a
constant c1 (function of d and h) such that the number of calls is bounded by nc1 .

Nature and size of the inputs of the recursive calls. Both H and T (H ′) have
strictly less vertices than H or are equal to H. Thus the induction on h applies. Besides,
G[

⋃
P ∈ι(V ′(H)) P] is an induced subgraph of G of size at most h · d

√
n = Od,h(1) ·

√
n, and

T (G/P) is a full cleanup of G/P of size at most ⌊
√

n⌋.

24 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Running time. Outside of the recursive calls, one can observe that our algorithm takes
times Od,h(1) · nOh(1). Hence there is a constant c2 (function of d and h) such that the
running time of that part is bounded by nc2 .

Correctness and approximation guarantee. As all the recursive calls are on induced
subgraphs of G or of the total graph T (G/P), we return a mutually induced collection of
graphs of the size of H. All these graphs are indeed induced copies of H since the weight
function prevents the false positives of copies of H in the total graph T (G/P) but not in G

(these tuples are given weight 0). Finally it can be checked that the returned solution has
weight a fraction (2O(h2) · max(r, p(h, d)r2))−1 of the optimum, which can also be seen as
a dc3r2-approximation for some constant c3 depending on d and h. ◀

6.2 Independent induced packing of stars and forests
The techniques employed to design approximations algorithms for Max Subset Induced
Matching can be extended in order to tackle more general problems. In particular, we
show in this section a generalization of Theorem 33 for Max Edge Induced Star Forest
and Max Edge Induced Forest. These two problems stand as the version of Mutually
Induced H-packing where H is respectively either the infinite family of stars or trees.

On the one hand, Max Edge Induced Star Forest asks, given a graph G and a subset
Y ⊆ E(G), for a collection of induced stars on G, made up of edges of Y only, maximizing
the number of edges (or leaves).

Max Edge Induced Star Forest
Input: Graph G, subset Y ⊆ E(G)
Output: Collection (Ai)i∈[k] of induced stars on G, made up of edges in Y only, such
that there is no edge between Ai and Aj , for any i ̸= j ∈ [k], which maximizes the
number of edges.

On the other hand, given the same input, Max Edge Induced Forest asks for an
induced forest F on G with the largest set of edges.

We would like to emphasize the fact that the objective function of both problems counts
the number of edges in the solution, instead of vertices, as it is often the case in the literature
when looking for a collection of stars or trees in a graph. The reason for this is because
an approximated solution for these vertex versions can be obtained from an approximated
solution of Weighted Max Independent Set (since any independent set is a star forest,
and any forest is a bipartite graph).

Observe moreover that a solution of Max Edge Induced Forest can be 3-approximated
with a solution of Max Edge Induced Star Forest. Indeed, the edge set of any tree
can be partitioned into three distance-2-edge colors, which consist of a collection of stars.
Therefore, the induced forest F can be partitioned into three collections of induced stars. In
the remainder, we design approximation algorithms for Max Edge Induced Star Forest,
and directly deduce results for Max Edge Induced Forest.

In the remainder, we propose approximation algorithms for Max Edge Induced Star
Forest. We provide in particular a nε-approximation algorithm for Max Edge Induced
Star Forest, running in polynomial time.

We need to find the suitable generalization of Max Edge Induced Star Forest, as it
was done for Coloring in Section 4. We call this problem Max Leaves Induced Star
Forest. Now, a weight function on vertices is added to the input, and we seek a collection
of mutually induced stars with maximum weight, the weight of a star being the sum of the
weights of its leaves (that is, the weight of the root is omitted).

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 25

Max Leaves Induced Star Forest
Input: Graph G, weights wV : V → N, subset Y ⊆ E(G)
Output: Collection (Ai)i∈[k] of induced stars on G with root ri, Ai = {ri, s1

i , . . . , sLi
i },

made up of edges in Y only, with no edge between Ai and Aj , for any i ̸= j ∈ [k],
maximizing

k∑
i=1

wV (Ai) =
k∑

i=1

Li∑
ℓ=1

w(sℓ
i)

We prove that Max Leaves Induced Star Forest follows the framework proposed
in Lemma 22. We begin with the design of a subexponential-time algorithm approximating
a solution of Max Leaves Induced Star Forest with a ratio function of twin-width.

▶ Lemma 35. Assume every input of Max Leaves Induced Star Forest is given with
a d′-sequence of the n-vertex G, and d := c2d′+2 · 24c2d′+2+4. Max Leaves Induced Star
Forest can be O(d2)-approximated in time 2Od(

√
n) on these inputs.

Proof. We compute in polynomial time a partition of V (G), P = {P1, . . . , P⌊
√

n⌋}, of parts
with size at most d

√
n and such that R(G/P) has maximum degree at most d, by Lemma 17.

As in Lemma 19, we (d + 1)-color R(G/P), which defines a coarsening {C1, . . . , Cd+1}
of P. Moreover, we distance-2-edge-color R(G/P) with z = 2(d − 1)d + 1 colors. This
partitions the edges of R(G/P) into {E1, . . . , Ez}. For each red edge e = PiPj ∈ R(G/P),
we denote by p(e) the set Pi ∪ Pj .

Let A =
⋃k

i=1 Ai be the union of all stars present in an optimum solution of Max Leaves
Induced Star Forest in G. We have A ⊆ Y . Let Av, Ar, Ab partition A, where Av

contains the edges of A with both endpoints in a same Pi, Ar corresponds to edges of A

between some Pi and Pj with PiPj ∈ R(G/P), and Ab, the edges of A between some Pi

and Pj with PiPj ∈ E(G/P). The set of edges Av (resp. Ar, Ab) still form a collection
of mutually induced stars. At least one over the three solutions produced by the partition
Av, Ar, Ab gives us a 3-approximation for this problem. Our algorithm consists of computing
three solutions for Max Leaves Induced Star Forest of G, capturing a positive fraction
of Av, Ar, Ab, respectively.

Computing a d + 1-approx for Av. Construction. For every integer 1 ⩽ i ⩽ ⌈
√

n⌉, we
compute an optimum solution for Max Leaves Induced Star Forest in G[Pi] contained
in Y , say Si, in time 2Od(

√
n). This can be achieved with guesses of the vertices in Pi, as

|Pi| ⩽ d
√

n.
Then, we focus on each color Cj of R(G/P), for j ∈ [d + 1]. There is no red edge in

Hj = (G/P) [Cj]. We compute a heaviest independent set Ij in Hj where the parts Pi are
weighted by the edge weight of Si. Let Rj be the union of all optimum solutions for Max
Leaves Induced Star Forest on all Pi belonging to Ij . The solution returned is the
maximum over all Rjs.

Approximation ratio. Let Aj
v be the subset of Av made up of edges belonging to parts of

Cj . There is no red edge between two parts of Cj , therefore their neighborhood consists of
either full adjacency or full non-adjacency. As a consequence, a maximum-weighted collection
of stars in Cj with edges inside parts intersects parts which are pairwise non-adjacent in
(G/P)[Cj], otherwise the stars are not mutually induced. Consequently, this justifies that
the set Rj returned for each Cj is a maximum-weighted collection of stars in Cj made up of
edges inside parts. In summary, the weight of each collection Rj is greater than the weight
of Aj

v. As j ∈ [d + 1], a heaviest collection among all Rjs is a d + 1-approximation of Av.
Computing a O(d2)-approx for Ar. Construction. For each e = PiPj ∈ R(G/P), we

26 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

compute an optimal solution for Max Leaves Induced Star Forest in G[p(e)] = G[Pi∪Pj]
among those that are included in Y and have only edges with one endpoint in Pi and the
other endpoint in Pj . Said differently, we determine a maximum-weighted collection of
induced stars in G[p(e)] over Y with a root on one side (for example, Pi) and all leaves
on the other side (Pj). This costs at most 2Od(

√
n) by trying out all vertex subsets, since

|Pi ∪ Pi| ⩽ 2d
√

n. The set of vertices of the solution returned on G[p(e)] is denoted by
Be ⊆ p(e).

For each h ∈ [z], let H ′
h be the trigraph (G/P)[{Pi : Pi is incident to an edge e ∈ Eh}].

The red edges of H ′
h form an induced matching on the red graph of H ′

h as they are at distance
2 in G/P. We associate with any edge e ∈ Eh the edge weight of Be. Then, we turn the
red edges of H ′

h in black: let H ′′
h be the graph obtained. We solve Max Subset Induced

Matching on H ′′
h by restricting it to edges of Eh (which plays the role of Y): this is achieved

in 2O(
√

n) as |V (H ′′
h)| ⩽

√
n. Let I ′′

h be a maximum-weighted induced matching obtained.
For each h ∈ [z], we obtain the union Rh of all Be, e ∈ I ′′

h : Rh =
⋃

e∈I′′
h

Be. We return an
Rh which maximizes the total edge weight, among all h ∈ [z].

Approximation ratio. Let Ah
r be the subset of Ar made up of edges being part of red

edges Eh in G/P, for h ∈ [z]. As the edges of Eh form an induced matching in R(G/P),
the union of solutions of Max Leaves Induced Star Forest over graphs G[p(e)] with
e ∈ Eh can only be connected through black edges of G/P. Furthermore, two collections of
stars over G[p(e)] and G[p(f)] are necessarily not mutually induced if there is a black edge
between an endpoint of e and an endpoint of f . Consequently, Rh gives a maximum-weighted
collection of mutually induced stars over Eh and its weight is at least the weight of Ah

r . The
maximum-weighted collection over all Rh gives a z-approximation, as h ∈ [z].

Computing a 2d + 1-approx for Ab. Construction. For each part Pi, we solve
Weighted Max Independent Set on G[Pi] with weight function wV . Let I(Pi) be the inde-
pendent set returned and w(Pi) its weight. We focus now on graph G′ = (V (G/P), E(G/P)),
made up of the black edges of G/P, and solve Max Leaves Induced Star Forest on it
with weights w(Pi). As |V (G′)| ⩽

√
n, this is achieved in 2O(

√
n).

Let (Bh)h∈[k] be the collection of stars returned, Bh = {Rh, S1
h, . . . , SLh

h } and B ∈ E(G′)
be the set of edges belonging to this collection. Based on the bounded maximum red degree
of G/P, we determine a O(d)-partition of the edges of B, in order to produce collections of
mutually induced stars. Let H∗ be the graph where each edge e in the collection (Bh)h∈[k] is
represented with a vertex and two of them e, f are adjacent if and only if there is a red edge
in G/P connecting an endpoint of e with an endpoint of f . This graph has degree at most
2d, so it can be 2d + 1-colored: let T1, . . . , T2d+1 be the corresponding color classes. Any set
of edges Tj gives us a collection of mutually induced stars on trigraph G/P , in the sense that
there is neither a black nor a red edge between two stars.

We fix some color class: say T1 w.l.o.g. Let (B∗
h) be the collection of stars produced

by T1, where B∗
h = {R∗

h, S1,∗
h , . . . , S

L∗
h,∗

h }. For the root R∗
h = Pi of each star B∗

h, we select
an arbitrary vertex rh ∈ Pi. Let (B∗

h∗)h∈[k] be the following collection of stars (which are
mutually induced) on G: B∗∗

h = {rh} ∪
⋃L∗

h

ℓ=1 I(Sℓ,∗
h). In brief, the collection (B∗∗

h)h∈[k] is
made up of an arbitrary vertex of each root of stars B∗

h and a maximum-weighted independent
set of each leaf of B∗

h. Remember that we computed this collection of stars for T1: we return
a maximum-weighted collection (B∗∗

h)h∈[k] among all the ones determined for Tj , j ∈ [2d + 1].
Approximation ratio. Any collection Bb with stars belonging only to black edges of G/P

reveals a collection of stars on the quotient graph. Concretely, two black edges of G/P
containing each a branch of Bb must be either non-adjacent or form an induced 3-vertex path
on G′ = (V (G/P), E(G/P)). Conversely, considering a collection B∗ of mutually induced

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 27

stars of G′ and, for each e ∈ B∗, a collection B∗
e of mutually induced stars on G[p(e)]

produces a global collection of stars of G: then, we can partition its edges into 2d + 1 parts
(as with T1, . . . , T2d+1) such that each part contains mutually induced stars. As the collection
B computed above provides us with a heaviest collection of G′, a maximum-weighted B∗∗

h

over all Tj is a 2d + 1-approximation for B, whose weight is at least the weight of Ab.
Conclusion of the proof. We finally output a heaviest collection of mutually induced

stars among the three approximating respectively Av, Ar, and Ab. The overall running time is
in 2Od(

√
n). An upper bound for the approximation ratio of this algorithm is 3z = O(d2). ◀

As for the other problems treated in this article, we apply to Max Leaves Induced
Star Forest the time-approximation trade-off proposed in Lemma 22.

▶ Theorem 36. Max Leaves Induced Star Forest on an n-vertex graph G, weight
function wV , with prescribed set Y ⊆ E(G), and given with a d′-sequence, satisfies the
assumptions of Lemma 22. In particular, this problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
), for every integer q ⩾ 0,

an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and
a log n-approximation in time 2Od(n

1
log log n),

with d := c2d′+2 · 24c2d′+2+4.

Proof. The exhaustive algorithm (trying out all vertex subsets and checking whether they
induce a collection of mutually induced stars in Y) solves Max Leaves Induced Star
Forest in time 2O(n). Thus we show Max Leaves Induced Star Forest satisfies the
second item of Lemma 22. We set c2 ⩾ 1 as the required exponent to turn a d′-sequence
into a neatly divided matrix of Mn,2d′+2 conform to G, and compute the various needed
colorings, the appropriate 1

2 < c1 < 1, and 2 < c3 < 3, and f(d) = 2d ⩾ 1.
Approximating Av. The algorithm makes ⌊

√
n⌋ recursive calls to solve Max Leaves

Induced Star Forest on parts Pi. Furthermore, d + 1 calls to WMIS are needed on
induced subgraphs of G/P. All of these induced subgraphs are on at most d

√
n vertices.

Approximating Ar. The algorithm makes at most
√

nd
2 recursive calls (one call per

red edge of G/P) on induced subgraphs of G with at most 2d
√

n vertices, followed by at
most 2(d − 1)d + 1 calls of Max Subset Induced Matching on full cleanups of induced
subtrigraphs of G/P with at most

√
n vertices.

Approximating Ab. The algorithm makes ⌊
√

n⌋ calls to solve WMIS on parts Pi and
one recursive call on a full cleanup of G/P on ⌊

√
n⌋ vertices.

In summary, we make Od(
√

n) recursive calls or calls to problems WMIS and Max
Subset Induced Matching (which already satisfy Lemma 22 with better constants) on
induced subgraphs of G or full cleanups of (the whole) G/P , each on Od(

√
n) vertices. Hence,

by Lemma 18, the induction applies.
Getting r-approximations on every subcall allows us to output a global 3(2(d − 1)d + 1)r2-

approximation for Max Leaves Induced Star Forest:
collection Av is approximated with ratio (d + 1)r2

collection Ar is approximated with ratio (2(d − 1)d + 1)r2

collection Ab is approximated with ratio (2d + 1)r2.
The extra factor 3 comes from the fact that we output the heaviest of these three solutions. ◀

Max Edge Induced Star Forest is a particular case of Max Leaves Induced Star
Forest with wV (u) = 1 for every vertex u ∈ V (G). Furthermore, a solution of Max Edge
Induced Star Forest is a 3-approximation of a solution of Max Edge Induced Forest.
These observations together with Theorem 36 allow us to state the following result.

28 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

▶ Corollary 37. Max Edge Induced Star Forest and Max Edge Induced Forest
on an n-vertex graph G, with prescribed set Y ⊆ E(G), and given with a d′-sequence, admit

an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and
a log n-approximation in time 2Od(n

1
log log n),

with d := c2d′+2 · 24c2d′+2+4.

7 Limits

We now discuss the limits of our framework. We give some examples of problems that are
unlikely to have an nε-approximation algorithm on graphs of bounded twin-width. The
first such problem is Min Independent Dominating Set, where one seeks a minimum-
cardinality set which is both an independent set and a dominating set. In general n-vertex
graphs, this problem cannot be n1−ε-approximated in polynomial time unless P=NP [22],
and cannot be r-approximated in time 2o(n/r) for any r = r(n), unless the ETH fails [11].

We show that Min Independent Dominating Set has the same polytime inapproxim-
ability in graphs of bounded twin-width.

▶ Theorem 38. For every ε > 0, Min Independent Dominating Set cannot be n1−ε-
approximated in polynomial time on n-vertex graphs of twin-width at most 9 given with a
9-sequence, unless P=NP.

Proof. We perform the classic reduction of Halldórsson from SAT [22], but from Planar
3-SAT where each literal has at most two occurrences, which remains NP-complete [29]. More
precisely we add a triangle di, ti, fi for each variable xi (with i ∈ [N]), and an independent
set Ij of size r for each 3-clause Cj (with j ∈ [M]). We link ti to all the vertices of Ij

whenever xi appears positively in Cj , and we link fi to all the vertices of Ij whenever xi

appears negatively in Cj . This defines a graph G with n = 3N + rM vertices.
It can be observed that if the Planar 3-SAT instance is satisfiable, then there is an

independent dominating set of size N , whereas if the formula is unsatisfiable then any
independent dominating set has size at least r. Setting r := N

2−ε
ε , the gap between

positive and negative instances is Θε(1)n1−ε, while preserving the fact that the reduction is
polynomial.

Let us now argue that G has twin-width at most 9, and that a 9-sequence of it can be
computed in polynomial time. We can first contract each Ij into a single vertex without
creating a red edge. Next we can contract every triangle di, ti, fi into a single vertex of red
degree at most 4. At this point, the current trigraph is a planar graph of maximum degree at
most 4. It was observed in [9] that planar trigraphs with maximum (total) degree at most 9
have twin-width at most 9. This is because any planar graph has a pair of vertices on the
same face with at most 9 neighbors (outside of themselves) combined [28]. Hence we get a
9-sequence for G that can be computed in polynomial time. Incidentally the twin-width of
planar graphs (that is, planar trigraphs without red edge) but no restriction on the maximum
degree is also at most 9 [24]. ◀

Another very inapproximable is Longest Induced Path, which also does not admit
a polytime n1−ε-approximation algorithm unless P=NP [31], and cannot be r-approximated
in time 2o(n/r) for any r = o(n), unless the ETH fails [11]. The non-induced version, the
Longest Path problem, has a notoriously big gap between the best known approximation
algorithm whose factor is n/ exp(Ω(

√
log n)) [18], and the sharpest conditional lower bound

which states that, for any ε > 0, a 2log1−ε n-approximation would imply that NP ⊆ QP [27].

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 29

Despite being an open question for decades the existence or conditional impossibility of
an approximation algorithm for Longest Path with approximation factor, say,

√
n has not

been settled. Nor do we know whether an nε-approximation for any ε > 0 is possible. We
now show that using our framework to obtain an nε-approximation for Longest Induced
Path of Longest Path in graphs of bounded twin-width is unlikely to work, in the sense
that it would immediately yield such an approximation factor for Longest Path in general
graphs.

▶ Theorem 39. For any r = ω(1), an r-approximation for Longest Induced Path or
Longest Path on graphs of twin-width at most 4 given with a 4-sequence would imply
a (1 + o(1))r-approximation for Longest Path in general graphs.

Proof. It was shown in [3] that any graph obtained by subdividing every edge of an n-vertex
graph at least 2 log n has twin-width at most 4. Besides, a 4-sequence can then be computed
in polynomial time.

Let G be any graph with minimum degree at least 2 (note that this restriction does not
make Longest Path easier to approximate), and G′ be obtained from G by subdividing
each of its edges 2⌈log n⌉ times, and let s := 2⌈log n⌉ + 1. Let us observe that G has a path
of length ℓ if and only if G′ has a path of length (ℓ + 2)s − 2 if and only if G′ has an induced
path of length (ℓ + 2)s − 4. Hence a polytime r-approximation for Longest Induced Path
or Longest Path in graphs of bounded twin-width given a 4-sequence would translate into
a (1 + o(1))r-approximation for Longest Path in general graphs. ◀

We can use Theorem 39 to get a similar weak obstruction to an nε-approximation for
Mutually Induced H-packing in graphs of bounded twin-width, for some infinite family
of connected graphs H. Recall that by Lemma 34 such an approximation algorithm does
exist when H is a finite collection of connected graphs.

Setting H to be the set of all paths does not serve that purpose, since one can then
use the approximation algorithm for Max Induced Matching. Nevertheless this almost
works. We just need to decorate the endpoints of the paths. For every positive integer n,
let Dn be the decorated path of length n, obtained from the n-vertex path Pn by adding for
each endpoint u two adjacent vertices u′, u′′ both adjacent to u. Informally, Dn is a path
terminated by a triangle at each end.

▶ Theorem 40. Let H := {Dn : n ∈ N+} be the family of all decorated paths. If for
every ε > 0, Mutually Induced H-packing admits an nε on n-vertex graphs of bounded
twin-width given with a 4-sequence, then so does Longest Path on general graphs.

Proof. Let G be any graph. For every pair u ̸= v ∈ V (G), define Guv as the graph obtained
from G by subdividing all its edges 2⌈log(n + 2)⌉ times, and adding two adjacent vertices
u′, u′′ both adjacent to u, and two adjacent vertices v′, v′′ both adjacent to v. Since there
are only two triangles in Guv, only one graph of H can be present in a (mutually induced)
packing. Thus Mutually Induced H-packing is now equivalent to finding a longest path
between u and v. An nε-approximation algorithm for this problem would, by Theorem 39,
give a similar approximation algorithm for Longest Path in general graphs.

Despite u′, u′′, v′, v′′, Guv still admits a 4-sequence. For instance, first contract u′ and u′′,
and contract v′ and v′′; this does not create red edges, and has the same effect as deleting
u′′ and v′′. The obtained graph is an induced subgraph of a 2⌈log(n + 2)⌉-subdivision (of a
graph on at most n + 2 vertices). Hence it admits a polytime computable 4-sequence [3]. ◀

30 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

References
1 Noga Alon, Guoli Ding, Bogdan Oporowski, and Dirk Vertigan. Partitioning into graphs

with only small components. J. Comb. Theory, Ser. B, 87(2):231–243, 2003. doi:10.1016/
S0095-8956(02)00006-0.

2 Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper
Nederlof. New tools and connections for exponential-time approximation. Algorithmica,
81(10):3993–4009, 2019. doi:10.1007/s00453-018-0512-8.

3 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.18.

4 Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width VIII: delineation and win-wins. CoRR, abs/2204.00722, 2022.
arXiv:2204.00722, doi:10.48550/arXiv.2204.00722.

5 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996, 2021. doi:10.1137/1.9781611976465.118.

6 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. CoRR, abs/2006.09877, 2020. URL: http://arxiv.org/abs/
2006.09877, arXiv:2006.09877.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1977–1996, 2021. doi:10.1137/1.9781611976465.118.

7 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

8 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022. doi:10.1145/
3519935.3520037.

9 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1036–1056. SIAM, 2022.

10 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

11 Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs
for inapproximable problems. J. Comput. Syst. Sci., 92:171–180, 2018. doi:10.1016/j.jcss.
2017.09.009.

12 Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max inde-
pendent set, min vertex cover and related problems by moderately exponential algorithms.
Discret. Appl. Math., 159(17):1954–1970, 2011. doi:10.1016/j.dam.2011.07.009.

13 Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Graph products revisited:
Tight approximation hardness of induced matching, poset dimension and more. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1557–1576.
SIAM, 2013. doi:10.1137/1.9781611973105.112.

14 Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Independent set, induced
matching, and pricing: Connections and tight (subexponential time) approximation hardnesses.

https://doi.org/10.1016/S0095-8956(02)00006-0
https://doi.org/10.1016/S0095-8956(02)00006-0
https://doi.org/10.1007/s00453-018-0512-8
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
http://arxiv.org/abs/2204.00722
https://doi.org/10.48550/arXiv.2204.00722
https://doi.org/10.1137/1.9781611976465.118
http://arxiv.org/abs/2006.09877
http://arxiv.org/abs/2006.09877
http://arxiv.org/abs/2006.09877
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3486655
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1137/1.9781611973105.112

P. Bergé, É. Bonnet, H. Déprés, R. Watrigant 31

In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 370–379, 2013. doi:10.1109/FOCS.2013.47.

15 Marek Cygan, Lukasz Kowalik, Marcin Pilipczuk, and Mateusz Wykurz. Exponential-time
approximation of hard problems. CoRR, abs/0810.4934, 2008. URL: http://arxiv.org/abs/
0810.4934, arXiv:0810.4934.

16 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 624–633. ACM, 2014. doi:10.1145/2591796.2591884.

17 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approximating
clique is almost NP-complete (preliminary version). In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 2–12. IEEE Computer
Society, 1991. doi:10.1109/SFCS.1991.185341.

18 Harold N. Gabow and Shuxin Nie. Finding a long directed cycle. ACM Trans. Algorithms,
4(1):7:1–7:21, 2008. doi:10.1145/1328911.1328918.

19 Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk. Twin-
width and types. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.123.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

21 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82–101, 2014. doi:10.1137/1.
9781611973402.7.

22 Magnús M. Halldórsson. Approximating the minimum maximal independence number. Inf.
Process. Lett., 46(4):169–172, 1993. doi:10.1016/0020-0190(93)90022-2.

23 Johan Håstad. Clique is hard to approximate within n1−ϵ. In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 627–636, 1996. doi:10.1109/SFCS.1996.548522.

24 Petr Hliněný. Twin-width of planar graphs is at most 9, 2022. URL: https://arxiv.org/
abs/2205.05378, doi:10.48550/ARXIV.2205.05378.

25 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

27 David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997. doi:10.1007/BF02523689.

28 Anton Kotzig. Contribution to the theory of eulerian polyhedra. Mat. Cas. SAV (Math.
Slovaca), 5:111–113, 1955.

29 László Kozma. Minimum average distance triangulations. In Leah Epstein and Paolo Ferragina,
editors, Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia,
September 10-12, 2012. Proceedings, volume 7501 of Lecture Notes in Computer Science, pages
695–706. Springer, 2012. doi:10.1007/978-3-642-33090-2_60.

30 Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized
by twin-width. CoRR, abs/2202.06708, 2022. URL: https://arxiv.org/abs/2202.06708,
arXiv:2202.06708.

31 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems.
In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, Automata, Languages
and Programming, 20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993,

https://doi.org/10.1109/FOCS.2013.47
http://arxiv.org/abs/0810.4934
http://arxiv.org/abs/0810.4934
http://arxiv.org/abs/0810.4934
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1145/1328911.1328918
https://doi.org/10.4230/LIPIcs.ICALP.2022.123
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1109/SFCS.1996.548522
https://arxiv.org/abs/2205.05378
https://arxiv.org/abs/2205.05378
https://doi.org/10.48550/ARXIV.2205.05378
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/BF02523689
https://doi.org/10.1007/978-3-642-33090-2_60
https://arxiv.org/abs/2202.06708
http://arxiv.org/abs/2202.06708

32 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Proceedings, volume 700 of Lecture Notes in Computer Science, pages 40–51. Springer, 1993.
doi:10.1007/3-540-56939-1_60.

32 Jesper Nederlof. Inclusion exclusion for hard problems, 2008.
33 Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact representation for

matrices of bounded twin-width. In Petra Berenbrink and Benjamin Monmege, editors, 39th
International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March
15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 52:1–52:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.
52.

34 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.4230/LIPIcs.STACS.2022.52
https://doi.org/10.4230/LIPIcs.STACS.2022.52

	1 Introduction
	2 Preliminaries
	2.1 Handled graph problems
	2.2 The contraction and partition viewpoints of twin-width
	2.3 Balanced partition sequences

	3 Approximation algorithms for Max Independent Set
	3.1 Subexponential-time constant-approximation algorithm
	3.2 Improving the approximation factor
	3.3 Time-approximation trade-offs

	4 Finding the suitable generalization: the case of Coloring
	5 Edge-based problems: the case of Max Induced Matching
	6 Technical generalizations
	6.1 Mutually Induced H-packing
	6.2 Independent induced packing of stars and forests

	7 Limits

