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Abstract
Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if
the line segment between x and y is contained in P. The Point Guard Art Gallery problem
asks for a minimum set S such that every point in P is visible from a point in S. The Vertex
Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in
the set S is referred to as a guard. For both variants, we rule out any f(k)no(k/ log k) algorithm,
where k := |S| is the number of guards, for any computable function f , unless the Exponential
Time Hypothesis fails. These lower bounds almost match the nO(k) algorithms that exist for
both problems.
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1 Introduction

Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each
other if the line segment between x and y is contained in P. The Point Guard Art
Gallery problem asks for a minimum set S such that every point in P is visible from a
point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the
vertices of P. The set S is referred to as guards. In what follows, n refers to the number of
vertices of P and k to the size of an optimal set of guards.

The art gallery problem is arguably one of the most well-known problems in discrete and
computational geometry. Since its introduction by Viktor Klee in 1976, three books [12,
28, 30] and two extensive surveys appeared [5, 29]. O’Rourke’s book from 1987 has over a
thousand citations, and each year, top conferences publish new results on the topic. Many
variants of the art gallery problem, based on different definitions of visibility, restricted
classes of polygons, different shapes of guards, have been defined and analyzed. One of the
first results is the elegant proof of Fisk that bn/3c guards are always sufficient and sometimes
necessary for a polygon with n vertices [10].

The paper of Eidenbenz et al. showed NP-hardness and APX-hardness for most relevant
variants [9]. See also [2, 19, 22] for more recent reductions. Due to those negative results,
most papers concentrated on finding approximation algorithms and variants that are poly-
nomially tractable [13, 20–22, 25]. However, considering the recent lack of progress in this
direction, the study of other approaches becomes interesting. One such approach is to find
heuristics to solve large instances of the art gallery problem [5]. The fundamental drawback
of this approach is the lack of performance guarantees.

In the last twenty-five years, another fruitful approach gained popularity: parameterized
complexity. The underlying idea is to study algorithmic problems with dependence on a
natural parameter. If the dependence on the parameter is practical and the parameter is
small for real-life instances, we attain algorithms that give optimal solutions with reasonable
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running times and performance guarantees. For a gentle introduction to parameterized
complexity, we recommend Niedermeier’s book [26]. For a thorough reading highlighting
complexity classes, we suggest the book by Downey and Fellows [7]. For a recent book on
the topic with an emphasize on algorithms, we advise to read the book by Cygan et al. [4].
An approach based on logic is given by Flum and Grohe [11]. Despite the recent successes
of parameterized complexity, only very few results on the art gallery problem are known.

The first such result is the trivial algorithm for the vertex guard variant to check if a
solution of size k exists in a polygon with n vertices. The algorithm runs in O(nk+2) time,
by checking all possible subsets of size k of the vertices. The second not so well-known
result is the fact that one can find in time nO(k) a set of k guards for the point guard
variant, if it exists [8], using tools from real algebraic geometry [1]. This was first observed
by Sharir [8, Acknowledgment]. Despite the fact that the first algorithm is extremely basic
and the second algorithm, even with remarkably sophisticated tools, uses almost no problem
specific insights, no better exact parameterized algorithms are known.

We want to mention another very natural variant of the art gallery problem, where we
do not require to guard the whole polygon, but only k distinct points. This variant is fixed
parameter tractable, which was pointed out to us by Bart M. P. Jansen. The algorithm is
to compute the visibility region of each picture and compute the arrangement formed by
these visibility regions. This naturally induces a set-cover instance with a ground set of size
k. The instance can be solved in O(2k) time after elimination of dublicate sets. Nilsson and
Zylinski have a similar result for the watchman route problem [27].

The Exponential Time Hypothesis (ETH) asserts that there is no 2o(N) time algorithm
for Sat on N variables. The ETH is used to attain more precise conditional lower bounds
than the mere NP-hardness. A simple reduction from Set Cover by Eidenbenz et al.
shows that there is no no(k) algorithm for these problems, when we consider polygons with
holes [9, Sec.4], unless the ETH fails. However, polygons with holes are very different from
simple polygons. For instance, they have unbounded VC-dimension while simple polygons
have bounded VC-dimension [14, 15, 18, 31].

We present the first lower bounds for the parameterized art gallery problems restricted
to simple polygons. Here, the parameter is the optimal number k of guards to cover the
polygon.

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

These results imply that the previous noted algorithms are essentially tight, and suggest
that there are no better parameterized algorithms. Our reductions are from Subgraph
Isomorphism and therefore an f(k)no(k)-algorithm for the art gallery problem would also
imply improved algorithms for Subgraph Isomorphism and for CSP parameterized by
treewidth, which would be considered a major breakthrough [23]. Let us also mention that
our results imply that both variants are W [1]-hard parameterized by the number of guards.

Proof ideas. In order to achieve these results, we slightly extend some known hardness
results of geometric set cover/hitting set problems and combine them with problem-specific
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insights of the art gallery problem. One of the first problem-specific insights is the ability to
encode Hitting Set on interval graphs. The reader can refer to Figure 1 for the following
description. Assume that we have some fixed points p1, . . . , pn with increasing y-coordinates
in the plane. We can build a pocket “far enough to the right” that can be seen only from
{pi, . . . , pj} for any 1 ≤ i < j ≤ n.

a1 a2 a3 a4 a5 a6

p1

p2

p3

p4
p5
p6

Figure 1 Reduction from Hitting Set on interval graphs to a restricted version of the art
gallery problem.

Let I1, . . . , In be n intervals with endpoints a1, . . . , a2n. Then, we construct 2n points
p1, . . . , p2n representing a1, . . . , a2n. Further, we construct one pocket “far enough to the
right” for each interval as described above. This way, we reduce Hitting Set on interval
graphs to a restricted version of the art gallery problem. This observation is not so useful
in itself since hitting set on interval graphs can be solved in polynomial time.

Figure 2 Two instances of Hitting Set “magically” linked.

The situation changes rapidly if we consider Hitting Set on 2-track interval graphs, as
described in Section 2. Unfortunately, we are not able to just “magically” link some specific
pairs of points in the polygon of the art gallery instance. Therefore, we construct linker
gadgets, which basically work as follows. We are given two set of points P and Q and a
bijection σ between P and Q. The linker gadget is built in a way that it can be covered by
two points (p, q) of P × Q, if and only if q = σ(p). The Structured 2-Track Hitting
Set problem will be specifically designed so that the linker gadget is the main remaining
ingredient to show hardness.

Organization of the paper. In Section 2, we introduce some notations, discuss the
encoding of the polygon, give some useful ETH-based lower bounds, and prove a technical
lemma. Due to the space limitation, we cannot include all the proofs in the main body. In
Section A of the appendix, we prove the lower bound for Structured 2-Track Hitting
Set (Theorem 5). Lemma 9 shows the same hardness result for Set Cover restricted to
sets formed as the union of two intervals, and contains the key arguments. In Section C of
the appendix, we give an alternative and direct proof of Theorem 5. Should the reader be
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interested on how Theorem 5 can be proven, he or she can read Section C for a short and
simple exposition of the ideas and/or read Section A for more technical and detailed proofs,
together with pointers towards similar pre-existing results. From this point onwards, we can
reduce from the particularly convenient Structured 2-Track Hitting Set. In Section 3,
we show the lower bound for the Point Guard Art Gallery problem (Theorem 1). We
design a linker gadget, show its correctness, and show how several linker gadgets can be
combined consistently. In Section B of the appendix, we tackle the Vertex Guard Art
Gallery problem (Theorem 2). We have to design a very different linker gadget, that has
to be combined with other gadgets and ideas.

2 Preliminaries

For any two integers x 6 y, we set [x, y] := {x, x + 1, . . . , y − 1, y}, and for any positive
integer x, [x] := [1, x]. Given two points a, b in the plane, we define seg(a, b) as the line
segment with endpoints a, b. Given n points v1, . . . , vn ∈ R2, we define a polygonal closed
curve c by seg(v1, v2), . . . , seg(vn−1, vn), seg(vn, v1). If c is not self intersecting, it partitions
the plane into a closed bounded area and an unbounded area. The closed bounded area is
a simple polygon on the vertices v1, . . . , vn. Note that we do not consider the boundary as
the polygon but rather all the points bounded by the curve c as described above. Given two
points a, b in a simple polygon P, we say that a sees b or a is visible from b if seg(a, b) is
contained in P. By this definition, it is possible to “see through” vertices of the polygon.
We say that S is a set of point guards of P, if every point p ∈ P is visible from a point of S.
We say that S is a set of vertex guards of P, if additionally S is a subset of the vertices of
P. The Point Guard Art Gallery problem and the Vertex Guard Art Gallery
problem are formally defined as follows.

Point Guard Art Gallery
Input: The vertices of a simple polygon P in the plane and a natural number k.
Question: Does there exist a set of k point guards for P?

Vertex Guard Art Gallery
Input: A simple polygon P on n vertices in the plane and a natural number k.
Question: Does there exist a set of k vertex guards for P?

For any two distinct points v and w in the plane we denote by ray(v, w) the ray starting
at v and passing through w, and by `(v, w) the supporting line passing through v and w.
For any point x in a polygon P, VP(x), or simply V (x), denotes the visibility region of x
within P, that is the set of all the points y ∈ P seen by x. We say that two vertices v and
w of a polygon P are neighbors or consecutive if vw is an edge of P. A sub-polygon P ′ of a
simple polygon P is defined by any l distinct consecutive vertices v1, v2, . . . , vl of P (that is,
for every i ∈ [l − 1], vi and vi+1 are neighbors in P) such that v1vl does not cross any edge
of P. In particular, P ′ is a simple polygon.

We assume that the vertices of the polygon are either given by integers or by rational
numbers. We also assume that the output is given either by integers or by rational numbers.
The instances we generate as a result of Theorem 1 and Theorem 2 have rational coordinates.
We can represent them by specifying the nominator and denominator. The number of bits
is bounded by O(logn) in both cases. We can transform the coordinates to integers by
multiplying every coordinate with the least common multiple of all denominators. However,
this leads to integers using O(n logn) bits.
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ETH-based lower bounds. The Exponential Time Hypothesis (ETH) is a conjecture
by Impagliazzo et al. [16] asserting that there is no 2o(n)-time algorithm for 3-SAT on
instances with n variables. The k-Multicolored-Clique problem has as input a graph
G = (V,E), where the set of vertices is partitioned into V1, . . . , Vk. It asks if there exists a
set of k vertices v1 ∈ V1, . . . , vk ∈ Vk such that these vertices form a clique of size k. We
will use the following lower bound proved by Chen et al. [3].

I Theorem 3 ([3]). There is no f(k)no(k) algorithm for k-Multicolored-Clique, for
any computable function f , unless the ETH fails.

Marx showed that Subgraph Isomorphism cannot be solved in time no(k/ log k) where k
is the number of edges of the pattern graph, under the ETH [23]. Usually, this result enables
to improve a lower bound obtained by a reduction from Multicolored k-Clique with a
quadratic blow-up on the parameter, from exponent o(

√
k) to exponent o(k/ log k), by doing

more or less the same reduction but from Multicolored Subgraph Isomorphism. The
Multicolored Subgraph Isomorphism problem can be defined in the following way.
One is given a graph with n vertices partitioned into l color classes V1, . . . , Vl such that only
k of the

(
l
2
)
sets Eij = E(Vi, Vj) are non empty. The goal is to pick one vertex in each color

class so that the selected vertices induce k edges. Observe that l corresponds to the number
of vertices of the pattern graph. The technique of color coding and the result of Marx imply
that:

I Theorem 4 ([23]). Multicolored Subgraph Isomorphism cannot be solved in time
f(k)no(k/ log k) where k is the number of edges of the solution and f any computable function,
unless the ETH fails.

Naturally, this result still holds when restricted to connected input graphs. In that case,
k > l − 1.

In the 2-Track Hitting Set problem, the input consists of an integer k, two totally
ordered ground sets A and B of the same cardinality, and two sets SA of A-intervals, and
SB of B-intervals. In addition, the elements of A and B are in one-to-one correspondence
φ : A→ B and each pair (a, φ(a)) is called a 2-element. The goal is to find, if possible, a set
S of k 2-elements such that the first projection of S is a hitting set of SA, and the second
projection of S is a hitting set of SB .

Structured 2-Track Hitting Set is the same problem with color classes over the
2-elements, and a restriction on the one-to-one mapping φ. Given two integers k and t, A is
partitioned into (C1, C2, . . . , Ck) where Cj = {aj1, a

j
2, . . . , a

j
t} for each j ∈ [k]. A is ordered:

a1
1, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t . We define C ′j := φ(Cj) and bji := φ(aji ) for

all i ∈ [t] and j ∈ [k]. We now impose that φ is such that, for each j ∈ [k], the set
C ′j is a B-interval. That is, B is ordered: C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for some permutation on

[k], σ ∈ Sk. For each j ∈ [k], the order of the elements within C ′j can be described by
a permutation σj ∈ St such that the ordering of C ′j is: bjσj(1), b

j
σj(2), . . . , b

j
σj(t). In what

follows, it will be convenient to see an instance of Structured 2-Track Hitting Set as
a tuple I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where we recall that SA is
a set of A-intervals and SB is a set of B-intervals. We denote by [aji , a

j′

i′ ] (resp. [bji , b
j′

i′ ]) all
the elements a ∈ A (resp. b ∈ B) such that aji ≤A a ≤A a

j′

i′ (resp. b
j
i ≤B b ≤B bj

′

i′ ).
Taking inspiration from previous results, we show hardness of Structured 2-Track

Hitting Set by a reduction from Multicolored Subgraph Isomorphism (see Sec-
tions A and C of the appendix).
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I Theorem 5. Structured 2-Track Hitting Set is W [1]-hard, and not solvable in
time f(k) |I|o(k/ log k) for any computable function f , unless the ETH fails.

a1
1 a1

2 a1
3 a1

4 a1
5 a1

6

C1

a2
1 a2

2 a2
3 a2

4 a2
5 a2

6

C2

a3
1 a3

2 a3
3 a3

4 a3
5 a3

6

C3

a4
1 a4

2 a4
3 a4

4 a4
5 a4

6

C4
A

b3
4 b3

2 b3
3 b3

6 b3
1 b3

5

C ′3

b1
2 b1

4 b1
1 b1

5 b1
6 b1

3

C ′1

b4
3 b4

6 b4
5 b4

2 b4
1 b1

4

C ′4

b2
1 b2

5 b2
2 b2

4 b2
6 b2

3

C ′2
B

σσ1

≤A:

≤B :

Figure 3 An illustration of the k+ 1 permutations σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St of an instance
of Structured 2-Track Hitting Set, with k = 4 and t = 6.

Bounding the coordinates. We say a point p = (px, py) ∈ Z2 has coordinates bounded
by L if |px|, |py| ≤ L. Given two vectors v, w, we denote their scalar product as v · w. This
technical lemma will prove useful to ensure that the polygon built in Section 3 can be
described with integer coordinates.

I Lemma 6. Let p1, q1, p2, q2 be four points with integer coordinates bounded by L. Then
the intersection point d = (dx, dy) of the supporting lines `1 = `(p1, q1) and `2 = `(p2, q2) is
a rational point. The nominator and denominator of the coordinates are bounded by O(L2).

Proof. The fact that d lies on `i can be expressed as vi · d = bi, with some appropriate
vector vi and number bi, for i = 1, 2. To be precise vi = (−pix + qix, p

i
y − qiy) and bi = vi · pi,

for i = 1, 2. We define the matrix A = (v1, v2) and the vector b = (b1, b2). Then both
conditions can be expressed as A ·d = b. We denote by Ai the matrix i with the i-th column
replaced by b. And by det(M) the determinant of the matrix M . By Cramer’s rule, it holds
that dx = det(A1)

det(A) and dy = det(A2)
det(A) . J

3 Parameterized hardness of the point guard variant

As exposed in the introduction, we give a reduction from the Structured 2-Track Hit-
ting Set problem. The main challenge is to design a linker gadget that groups together
specific pairs of points in the polygon. The following introductory lemma inspires the linker
gadgets for both Point Guard Art Gallery and Vertex Guard Art Gallery.

I Lemma 7. The only minimum hitting sets of the set-system S = {Si = {1, 2, . . . , i,
i+ 1, i+ 2, . . . , n} | i ∈ [n]} ∪ {Si = {1, 2, . . . , i, i + 1, i + 2, . . . , n} | i ∈ [n]} are {i, i}, for
each i ∈ [n].

Proof. First, for each i ∈ [n], one may easily observe that {i, i} is a hitting set of S. Now,
because of the sets Sn and Sn one should pick one element i and one element j for some
i, j ∈ [n]. If i < j, then set Si is not hit, and if i > j, then Sj is not hit. Therefore, i should
be equal to j. J

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
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on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. Given an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) of
Structured 2-Track Hitting Set, we build a simple polygon P with O(kt+|SA|+|SB |)
vertices, such that I is a YES-instance iff P can be guarded by 3k points.

Outline. We recall that A’s order is: a1
1, . . . , a

1
t , . . . , a

k
1 , . . . , a

k
t and B’s order is determ-

ined by σ and the σj ’s (see Figure 3). Let us focus on one color class j ∈ [k] together with a
permutation σj : A→ B. The global strategy of the reduction is to allocate, 2t special points
for this polygon. The points aj1, . . . , a

j
t on track A are represented by αj1, . . . , α

j
t points in P.

and the points σj(aj1), . . . , σj(ajt ) on track B are represented by βj1, . . . , β
j
t in the polygon.

Placing a guard in αji and βji shall correspond to picking the 2-element (aji , σj(b
j
i )). The

points αji ’s and βji ’s ordered by increasing y-coordinates will match the order of the aji ’s
along the order ≤A and then of the bji ’s along ≤B . Then, far in the horizontal direction, we
will place pockets to encode each A-interval of SA, and each B-interval of SB (see Figure 4).

The first critical issue will be to link point αji to point βji . Indeed, in the Structured
2-Track Hitting Set problem, one selects 2-elements (one per color class), so we should
prevent one from placing two guards in αji and βji′ with i 6= i′. The so-called point linker
gadget will realize the intervals as described in Lemma 7.

The second critical issue is to enforce these positions. For this purpose, we will need to
introduce a copy αji of each α

j
i . In each part of the gallery encoding a color class j ∈ [k], the

only way of guarding all the pockets with only three guards will be to place them in αji , α
j
i ,

and βji for some i ∈ [t] (see Figure 7). Hence, 3k guards will be necessary and sufficient to
guard the whole P iff there is a solution to the instance of Structured 2-Track Hitting
Set.

a1 a2 a3 a4

α1

α2

α3

α4

β1

β2

β3

β4b1 b2 b3 b4

σj

track A

track A

track B

track B

I1 I2
zA,1

zA,2

zB,1

zB,2

I1 I2

Figure 4 The elements in one color class are represented by points α1, . . . , αt and β1, . . . , βt.
Here, we suppressed the super index j.

We now get into the details of the reduction. We will introduce several characteristic
lengths and compare them; when l1 � l2 means that l1 should be thought as really small
compared to l2, and l1 ≈ l2 means that l1 and l2 are roughly of the same order. The
motivation is to guide the intuition of the reader without bothering her/him too much
about the details. At the end of the construction, we will specify more concretely how those
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lengths are chosen.
Construction. We start with an explicit specification of the coordinates. The descrip-

tion will be dependent on some parameters x, y, L,D, F that we will specify later. The value
x represents the offset between elements with respect to the x-coordinate and likewise the
value y represents the offset between elements with respect to the y-coordinate. D represents
the vertical distance between different color classes and L represents the horizontal distance
between all the α′s and the β′s, see also Figure 8. The value F will become relevant later
and describes the distance of the points to the pockets to the far right. The crucial point
of the construction is that the order of the α’s corresponds exactly to the order of the a’s
along track A and the same relation holds between the β’s and b’s.

We recall that we want the points αji ’s and β
j
i ’s ordered by increasing y-coordinates, to

match the order of the aji ’s and b
j
i ’s along ≤A and ≤B , with first all the elements of A and

then all the elements of B. Starting from some y-coordinate y1 (which is the one given to
point α1

1), the y-coordinates of the α
j
i ’s are regularly spaced out by an offset y; that is, the

y-coordinate of αji is y1 + (i + (j − 1)t)y. Between the y-coordinate of the last element in
A (i.e., akt whose y-coordinate is y1 + (kt− 1)y) and the first element in B, there is a large
offset L, such that the y-coordinate of βji is y1 + (kt − 1)y + L + (ord(bji ) − 1)y (for any
j ∈ [k] and i ∈ [t]) where ord(bji ) is the rank of bji along the order ≤B .

For each color class j ∈ [k], let xj := x1 + (j − 1)D for some x-coordinate x1 and
value D, and yj := y1 + (j − 1)ty. The allocated points αj1, α

j
2, α

j
3, . . . , α

j
t are on a line at

coordinates: (xj , yj), (xj + x, yj + y), (xj + 2x, yj + 2y), . . . , (xj + (t − 1)x, yj + (t − 1)y),
for some value x. We place, to the left of those points, a rectangular pocket Pj,r of width,
say, y and length, say1, tx such that the uppermost longer side of the rectangular pocket
lies on the line `(αj1, α

j
t ) (see Figure 6). The y-coordinates of βj1, β

j
2, β

j
3, . . . , β

j
t have already

been defined. We set, for each i ∈ [t], the x-coordinate of βji to xj + (i − 1)x, so that βji
and αji share the same x-coordinate. One can check that it is consistent with the previous
paragraph. We also observe that, by the choice of the y-coordinate for the βji ’s, we have
both encoded the permutations σj ’s and permutation σ (see Figure 8 or Figure 6). This
finishes the description of the coordinates.

Now, we will give a description how, we can encode intervals by on track A and B by
small pockets and, we describe, where to place them. From hereon, for a vertex v and two

p
w

v
w′

p′

Figure 5 A triangular pocket.

points p and p′, we informally call triangular pocket rooted at vertex v and supported by
ray(v, p) and ray(v, p′) a sub-polygon w, v, w′ (a triangle) such that ray(v, w) passes through
p, ray(v, w′) passes through p′, while w and w′ are close to v (sufficiently close not to interfere
with the rest of the construction), see Figure 5. We say that v is the root of the triangular
pocket, that we often denote by P(v). We also say that the pocket P(v) points towards p

1 the exact width and length of this pocket are not relevant; the reader may just think of Pj,r as a thin
pocket which forces to place a guard on a thin strip whose uppermost boundary is `(αj1, α

j
t )
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and p′. It is easy to see that each point that sees v also sees the entire triangular pocket
P (v).

For each A-interval Iq = [aji , a
j′

i′ ] ∈ SA we construct one triangular pocket P(zA,q) rooted
at vertex zA,q and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ). The placement of this
triangular pocket is very far to the right. The x-coordinate of zA,q equals xk + (t− 1)x+F ,
for some large value F to be specified later. The y-coordinate shall be between y1 and
yk + (kt− 1)y. We place those |SA| pockets along the y-axis, and space them out by some
small distance s. To guarantee that we have enough room to place all those pockets, s will
be chosen sufficiently small (s� y).

We will show later, for appropriate values y � x� D � F , the only αj
′′

i′′ seeing vertex
zA,q should be the points such that aji ≤A a

j′′

i′′ ≤A a
j′

i′ (see Figure 8 and Figure 4).
Similarly, we represent each interval Iq ∈ SB by a triangular pocket rooted at zB,q. These

pockets are placed at the x-coordinate xk + (t− 1)x+F and spaced out by distance s along
the y-axis between y-coordinates y1 + (kt− 1)y+L and y1 + 2(kt− 1)y+L. The B-interval
Iq = [bji , b

j′

i′ ] is represented by the triangular pocket P(zB,q) rooted at vertex zB,q supported
by ray(zB,q, σj(aji )) and ray(zB,q, σj(aj

′

i′ )). Note that σj(aji ) is the point on track B that
corresponds to βji . The different values (s, x, y, D, L, and F ) introduced so far compare in
the following way: s� y � x� D � F , and x� L� F , see Figure 8.

Now, we describe how we link each point αji to its associate βji . For each j ∈ [k], let us
mentally draw ray(αjt , β

j
1) and consider points slightly to the left of this ray at a distance,

say, L′ from point αjt . Let us call Rjleft that informal region of points. Any point in Rjleft
sees, from right to left, in the order αj1, α

j
2 up to αjt , and then, βj1, β

j
2 up to βjt . This

observation relies on the fact that y � x� L. So, from the distance, the points βj1, . . . , β
j
t

look almost flat. It makes the following construction possible. In Rjleft, for each i ∈ [t− 1],
we place a triangular pocket P(cji ) rooted at vertex cji and supported by ray(cji , α

j
i+1) and

ray(cji , β
j
i ). We place also a triangular pocket P(cjt ) rooted at cjt supported by ray(cji , β

j
1)

and ray(cji , β
j
t ). We place vertices cji and cji+1 at the same y-coordinate and spaced out by

distance x along the x-axis (see Figure 6). Similarly, let us informally refer to the region
slightly to the right of ray(αj1, β

j
t ) at a distance L′ from point αj1, as R

j
right. Any point

Rjright sees, from right to left, in this order βj1, β
j
2 up to βjt , and then, αj1, α

j
2 up to αjt .

Therefore, one can place in Rjleft, for each i ∈ [t− 1], a triangular pocket P(dji ) rooted at dji
supported by ray(dji , β

j
i+1) and ray(cji , α

j
i ). We place also a triangular pocket P(djt ) rooted

at djt supported by ray(dji , α
j
1) and ray(cji , α

j
t ). Again, those t pockets are placed at the same

y-coordinate and spaced out horizontally by x (see Figure 6). We denote by Pj,α,β the set
of pockets {P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and informally call it the weak point linker
(or simply, weak linker) of αj1, . . . , α

j
t and β

j
1, . . . , β

j
t . We may call the pockets of Rjleft (resp.

Rjright) left pockets (resp. right pockets).
As we will show later, if one wants to guard with only two points all the pockets of

Pj,α,β = {P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and one first decides to put a guard on point
αji (for some i ∈ [t]), then one is not forced to put the other guard on point βji but only
on an area whose uppermost point is βji (see the shaded areas below the bji ’s in Figure 6).
Now, if the points βj1, . . . , β

j
t would all lie on a common line `, we could shrink the shaded

area of each βji (Figure 6) down to the single point βji by adding a thin rectangular pocket
on ` (similarly to what we have for αj1, . . . , α

j
t ). Naturally, we need that βj1, . . . , β

j
t are

not on a common line to be able to encode the permutation σj . The remedy we pursue
is the following. For each j ∈ [k], we allocate t points αj1, α

j
2, . . . , α

j
t on a horizontal line,

spaced out by distance x, say, ≈ D
2 to the right and ≈ L above of βjt . We place a thin



XX:10 Parameterized Hardness of Art Gallery Problems
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d1c1 d2c2 d3c3 d4c4 d5c5 d6c6

Figure 6 Weak point linker gadget.

horizontal rectangular pocket Pj,r of the same dimension as Pj,r such that the lowermost
longer side of Pj,r is on the line `(αj1, α

j
t ). We add the 2t pockets corresponding to a weak

linker Pj,α,α between αj1, . . . , α
j
t and αj1, . . . , α

j
t as well as the 2t pockets of a weak linker

Pj,α,β between αj1, . . . , α
j
t and β

j
1, . . . , β

j
t as pictured in Figure 7. We denote by Pj the union

Pj,r ∪Pj,r ∪Pj,α,β ∪Pj,α,α ∪Pj,α,β of all the pockets involved in the encoding of color class
j. Now, say, one wants to guard all the pockets of Pj with only three points, and chooses
to put a guard on αji (for some i ∈ [t]). Because of the pockets of Pj,α,α ∪Pj,r, one is forced
to place a second guard precisely on αji . Now, because of the weak linker Pj,α,β the third
guard should be on a region whose uppermost point is βji , while, because of Pj,α,β the third
guard should be on a region whose lowermost point is βji . The conclusion is that the third
guard should be put precisely on βji . This triangle of weak linkers is called the linker of
color class j. The k linkers are placed accordingly to Figure 8. This ends the construction.

Specification of the distances. We can specify the coordinates of positions of all the
vertices by fractions of integers. These integers are polynomially bounded in n. If we want
to get integer coordinates, we can transform the rational coordinates to integer coordinates
by multiplying all of them with the least common multiple of all the denominators, which is
not polynomially bounded anymore. The length of the integers in binary is still polynomially
bounded.

We can safely set s to one, as it is the smallest length, we specified. We will put |Sa|
pockets on track A and |Sb| pockets on track B. It is sufficient to have an opening space
of one between them. Thus, the space on the right side of P, for all pockets of track A is
bounded by 2|Sa|. Thus setting y to |Sa| + |Sb| secures us that we have plenty of space to
place all the pockets. We specify F = (|Sa| + |Sb|)Dk = yDk. We have to show that this
is large enough to guarantee that the pockets on track A distinguish the picked points only
by the y-coordinate. Let p and q be two points among the αji . Their vertical distance is
upper bounded by Dk and their horizontal distance is lower bounded by y. Thus the slope
of ` = `(p, q) is at least y

Dk . At the right side of P the line ` will be at least F y
Dk above the

pockets of track A. Note F y
Dk = yDk y

Dk > y2 > |Sa|2 > 2|Sa|. The same argument shows
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Figure 7 Point linker gadget: a triangle of (three) weak point linkers.

that F is sufficiently large for track B.
The remaining lengths x, L, L′, and D can be specified in a similar fashion. For the

construction of the pockets, let s ∈ Sa be an A-interval with endpoints a and b, represented
by some points p and q and assume the opening vertices v and w of the triangular pocket
are already specified. Then the two lines `(p, v) and `(q, w) will meet at some point x to
the right of v and w. By Lemma 6, x has rational coordinates and the integers to represent
them can be expressed by the coordinates of p, q, v, and w. This way, all the pockets can be
explicitly constructed using rational coordinates as claimed above.

F. . .

F. . .

D

P1,α,β P2,α,β P3,α,β

P1,α,α P2,α,α P3,α,α

P1,α,β

P2,α,β

P3,α,β

L

P1,r

P2,r

P3,r

P1,r

P2,r

P3,r

track A

track B

α

α

β

Figure 8 The overall picture of the reduction with k = 3.

Soundness. We now show that the reduction is correct. The following lemma is the
main argument for the easier implication: if I is a YES-instance, then the gallery that we
build can be guarded with 3k points.

I Lemma 8. ∀j ∈ [k], ∀i ∈ [t], the three associate points αji , α
j
i , β

j
i guard entirely Pj.
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Proof. The rectangular pockets Pj,r and Pj,r are entirely seen by respectively αji and αji .
The pockets P(cj1),P(cj2), . . .P(cji−1) and P(dji ),P(dji+1), . . .P(djt ) are all entirely seen by
αji , while the pockets P(cji ),P(cji+1), . . .P(cjt ) and P(dj1),P(dj2), . . .P(dji−1) are all entirely
seen by βji . This means that αji and β

j
i jointly see all the pockets of Pj,α,β . Similarly, αji and

αji jointly see all the pockets of Pj,α,α, and αji and βji jointly see all the pockets of Pj,α,β .
Therefore, αji , α

j
i , β

j
i jointly see all the pockets of Pj . J

Assume that I is a YES-instance and let {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We
claim that G = {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
} guard the whole polygon P. By Lemma 8,

∀j ∈ [k], Pj is guarded. For each A-interval (resp. B-interval) in SA (resp. SB) there is at
least one 2-element (ajsj

, bjsj
) such that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding

pocket is guarded by αjsj
(resp. βjsj

). The rest of the polygon P (which is not part of pockets)
is guarded by, for instance, {α1

s1
, . . . , αksk

}. So, G is indeed a solution and it contains 3k
points.

Assume now that there is no solution to the instance I of Structured 2-Track
Hitting Set. We show that there is no set of 3k points guarding P. We observe that no
point of P sees inside two triangular pockets one being in Pj,α,γ and the other in Pj′,α,γ′
with j 6= j′ and γ, γ′ ∈ {β, α}. Further, V (r(Pj,α,β ∪ Pj,α,α)) ∩ V (r(Pj′,α,β ∪ Pj′,α,α)) = ∅
when j 6= j′, where r maps a set of triangular pockets to the set of their root. Also, for
each j ∈ [k], seeing entirely Pj,α,β and Pj,α,α requires at least 3 points. This means that for
each j ∈ [k], one should place three guards in V (r(Pj,α,β ∪ Pj,α,α)). Furthermore, one can
observe among those three points one should guard a triangular pocket Pj′,r and another
should guard Pj′′,r. Let us try to guard entirely P1 and two rectangular pockets Pj′,r and
Pj′′,r, with only three guards. Let call `1 (resp. `′1) the line corresponding to the extension
of the uppermost (resp. lowermost) longer side of P1,r (resp. P1,r). The only points of
P that can see a rectangular pocket Pj′,r and at least t pockets of P1,α,α are on `1: more
specifically, they are the points α1

1, . . . , α
1
t . The only points that can see a rectangular pocket

Pj′′,r and at least t pockets of P1,α,α are on `′1: they are the points α1
1, . . . , α

1
t . As P1,α,α

has 2t pockets, one has to take a point α1
i and α1

i′ . By the same argument argument as in
Lemma 7, i should be equal to i′ (otherwise, i < i′ and the left pocket pointing towards
α1
i′−1 and α1

i′ is not seen, or i > i′ and the right pocket pointing towards α1
i+1 and α1

i is not
seen). We now denote by s1 this shared value. Now, to see the left pocket P(c1

s1
) and the

right pocket P(d1
s1−1) (that should still be seen), the third guard should be to the left of

`(c1
s1
, β1
s1

) and to the right of `(d1
s1−1, β

1
s1

) (see shaded area of Figure 6). That is, the third
guard should be on a region in which β1

s1
is the uppermost point. The same argument with

the pockets of P1,α,β implies that the third guard should also be on a region in which β1
s1

is
the lowermost point. Thus, the position of the third guard has to be point β1

s1
. Therefore,

one should put guards on points α1
s1
, α1

s1
, and β1

s1
, for some α1 ∈ [t].

As none of those three points see any pocket Pj,α,β with j > 1 (we already mentioned
that no pocket of Pj,α,β and Pj,α,α with j > 1 can be seen by those points), we can repeat
the argument for the second color class; and so forth up to color class k. Thus, a potential
solution with 3k guards should be of the form {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
}. As there is

no solution to I, there should be a set in SA∪SB that is not hit by {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)}.
By construction, the pocket associated to this set is not entirely seen. J
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A Parameterized hardness of Structured 2-Track Hitting Set

The purpose of this section is to show Theorem 5. As we will see at the end of the sec-
tion, there already exist quite a few parameterized hardness results for set cover/hitting
set problems restricted to instances with some geometric flavor. The crux of the proof of
Theorem 5 lies in Lemma 9. We introduce a few notation and vocabulary to state and prove
this lemma.

Given a finite totally ordered set Y = {y1, . . . , y|Y |} (that is, for any i, j ∈ [|Y |], yi ≤ yj
iff i 6 j), a subset S ⊆ Y is a Y -interval if S = {y | yi ≤ y ≤ yj} for some i and j. We
denote by ≤Y the order of Y . A set-system (X,S) is said two-block if X can be partitioned
into two totally ordered sets A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|} such that each set
S ∈ S is the union of an A-interval with a B-interval.

I Lemma 9. k-Set Cover restricted to two-block instances with N elements and M sets
is W [1]-hard and not solvable in time f(k) (N +M)o(k/ log k) for any computable function f ,
unless the ETH fails.

Proof. We present the reduction from the more common problem Multicolored k-Clique.
Though, in the end, we will see that we can do the same reduction from Multicolored
Subgraph Isomorphism to obtain the claimed lower bound. Let G = (V = V1∪. . .∪Vk, E)
be an instance of Multicolored k-Clique such that ∀i ∈ [k], Vi = {vi1, . . . , vit}, m = |E|,
and n = |V | = tk. We can indeed assume that each Vi has the same cardinality t by poten-
tially adding dummy isolated vertices to the instance. For each pair i < j ∈ [k], Eij denotes
the set of edges E(Vi, Vj) between Vi and Vj . For each Eij we give an arbitrary order to
the edges: eij1 , . . . , e

ij
|Eij |. We build an equivalent instance (X,S) of k-Set Cover with

4
(
k
2
)

+ 4m+ tk(k + 1) + 4k elements and 4m+ 2kt sets, and such that (X,S) is two-block.
We call A and B the two sets of the partition of X that realizes that (X,S) is two-block.

For each of the color class Vi, we add tk + 2 elements to A with the following order:
xb(i), x(i, 1, 1), . . . , x(i, 1, t), x(i, 2, 1), . . . , x(i, 2, t), . . . , x(i, i− 1, 1), . . . , x(i, i− 1, t), x(i, i+
1, 1), . . . , x(i, i + 1, t), . . . , x(i, k + 1, 1), . . . , x(i, k + 1, t), xe(i), and call X(i) the set con-
taining those elements. We also denote by X(i, j) the set {x(i, j, 1), x(i, j, 2), . . . , x(i, j, t)}
(hence, X(i) =

⋃
j 6=iX(i, j) ∪ {xb(i), xe(i)}). For each Eij , we add 3|Eij | + 2 elements to

B with the order: yb(i, j), y(i, j, 1), . . . , y(i, j, 3|Eij |), ye(i, j), and denote by Y (i, j) the set
containing them. For each pair i < j ∈ [k] and for each edge eijc = viav

j
b in Eij (with

a, b ∈ [t] and c ∈ [|Eij |]), we add to S the two sets S(eijc , via) = {x(i, j, a), x(i, j, a +
1), . . . , x(i, j, t), x(i, j + 1, 1), . . . , x(i, j + 1, a− 1)} ∪ {y(i, j, c), . . . , y(i, j, c+ |Eij | − 1)} and
S(eijc , v

j
b) = {x(j, i, b), x(j, i, b+1), . . . , x(j, i, t), x(j, i+1, 1), . . . x(j, i+1, b−1)}∪{y(i, j, c+

|Eij |), . . . , y(i, j, c+ 2|Eij | − 1)}. Observe that in case j = i+ 1, then all the elements of the
form x(j, i + 1, ·) in set S(eijc , v

j
b) are in fact of the form x(j, i + 2, ·). We may also notice

that in case a = 1 (resp. b = 1), then there is no element of the form x(i, j + 1, ·) (resp.
x(j, i+ 1, ·)) in set S(eijc , via) (resp. in set S(eijc , v

j
b)). For each pair i < j ∈ [k], we also add

to A the |Eij |+2 elements of a set Z(i, j) ordered: zb(i, j), z(i, j, 1), . . . , z(i, j, |Eij |), ze(i, j),
and for each edge eijc in Eij (with c ∈ [|Eij |]), we add to S the two sets S(eijc ,`) =
{zb(i, j), z(i, j, 1), . . . , z(i, j, |Eij | − c} ∪ {yb(i, j), y(i, j, 1) . . . y(i, j, c − 1)} and S(eijc ,a) =
{z(i, j, |Eij |−c+1), . . . , z(i, j, |Eij |, ze(i, j)}∪{y(i, j, c+2|Eij |) . . . y(i, j, 3|Eij |), ye(i, j)}. Fi-
nally, for each i ∈ [k], we add to B the t+2 elements of a setW (i) ordered: wb(i), w(i, 1), . . . ,
w(i, t), we(i), and for all a ∈ [t], we add the sets S(i, a,`) = {xb(i), x(i, 1, 1), . . . , x(i, 1, a−1)}
∪{wb(i), w(i, 1), . . . , w(i, t− a+ 1)} and S(i, a,a) = {x(i, k+ 1, a), . . . , x(i, k+ 1, t), xe(i)} ∪
{w(i, t− a+ 2), . . . , w(i, t), we(i)}.
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Figure 9 A simple instance of Multicolored k-Clique. The elements in bold: vertices v1
2 and

v2
2 , edge v1

2v
2
2 , and half of the edges v1

2v
3
1 and v2

2v
3
1 correspond to the selection of sets depicted in

Figure 10.

No matter the order in which we put the X(i)’s and Z(i, j)’s in A (respectively the
Y (i, j)’s and W (i)’s in B), the sets we defined are all unions of an A-interval with a B-
interval, provided we keep the elements within eachX(i), Z(i, j), Y (i, j), andW (i) consecut-
ive (and naturally, in the order we specified). Though, to clarify the construction, we fix the
following order: X(1), X(2), . . . , X(k), Z(1, 2), Z(1, 3), . . . , Z(1, k), Z(2, 3), . . . , Z(2, k), . . . ,
Z(k − 2, k − 1), Z(k − 2, k), Z(k − 1, k) for A and Y (1, 2), Y (1, 3), . . . , Y (1, k), Y (2, 3), . . . ,
Y (2, k), . . . , Y (k − 2, k − 1), Y (k − 2, k), Y (k − 1, k),W (1),W (2), . . . ,W (k) for B. We ask
for a set cover with 2k2 sets. This ends the construction (see Figure 10 for an illustration
of the construction for the instance graph of Figure 9).

For each i ∈ [k], let us denote by Sb(i) respectively Se(i), all the sets in S that contains
element xb(i), respectively xe(i). For each pair i 6= j ∈ [k], we denote by S(i, j) all the sets
in S that contains element x(i, j, t). Finally, for each pair i < j ∈ [k], we denote by S(i, j,`),
respectively S(i, j,a), all the sets in S that contains element yb(i, j), respectively ye(i, j).
One can observe that the Sb(i)’s, Se(i)’s, S(i, j)’s, S(i, j,`)’s, and S(i, j,a)’s partition S
into k+ k+ k(k− 1) + 2

(
k
2
)

= 2k2 partite sets2. Thus, as each of the 2k2 partite sets S ′ has
a private element which is only contained in sets of S ′, a solution has to contain one set in
each partite set.

Assume there is a multicolored clique C = {v1
a1
, . . . , vkak

} in G. We show that T =
{S(viai

vjaj
, viai

) | i < j ∈ [k]}∪{S(viai
vjaj

, vjaj
) | i < j ∈ [k]}∪{S(i, ai,`) | i ∈ [k]}∪{S(i, ai,a)

| i ∈ [k]}∪{S(viai
vjaj

,`) | i < j ∈ [k]}∪{S(viai
vjaj

,a) | i < j ∈ [k]} is a set cover of (S, X) of
size 2k2. As C is a clique, T is well defined and it contains 2

(
k
2
)

+ 2k+ 2
(
k
2
)

= 2k2 sets. For
each i ∈ [k], the elements x(i, 1, ai), . . . , x(i, 1, t), . . . , x(i, k + 1, 1), . . . , x(i, k + 1, ai − 1) are
covered by the sets S(v1

a1
viai
, viai

), S(v2
a2
viai
, viai

), . . . , S(viai
vkak

, viai
). Indeed, S(vjaj

viai
, viai

) (or
S(viai

vjaj
, viai

) if j > i) covers all the elements x(i, j, ai), . . . , x(i, j, t), x(i, j+1, 1), . . . , x(i, j+
1, ai − 1) (again, in case i + 1 = j, replace j+1 by i+1). For each i ∈ [k], the elements
xb(i), x(i, 1, 1), . . . , x(i, 1, ai−1), x(i, k+1, ai), . . . , x(i, k+1, t), xe(i) and ofW (i) are covered
by S(i, ai,`) and S(i, ai,a). For all i < j ∈ [k], say viai

vjaj
is the c-th edge eijc in the arbitrary

order of Eij . Then, the elements y(i, j, c), y(i, j, c+ 1), . . . , y(i, j, c+ 2|Eij | − 1) are covered
by S(viai

vjaj
, viai

) and S(viai
vjaj

, vjaj
). Finally, the elements yb(i, j), y(i, j, 1), . . . , y(i, j, c −

1), y(i, j, c+ 2|Eij |), . . . , y(i, j, 3|Eij |), ye(i, j) and of Z(i, j) are covered by S(viai
vjaj

,`) and
S(viai

vjaj
,a).

Assume now that the set-system (X,S) admits a set cover T of size 2k2. As mentioned
above, this solution T should contain exactly one set in each partite set (of the partition
of S). For each i ∈ [k], to cover all the elements of W (i), one should take S(i, ai,`) and

2 We do not call them color classes to avoid the confusion with the color classes of the instance of
Multicolored k-Clique.
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Figure 10 The sets of Sb(1), Sb(2), Se(1), Se(2), S(1, 2,`), S(1, 2,a), S(1, 2), S(2, 1) for the
graph of Figure 9. The sets of S(1, 3) and S(2, 3) are also represented but only their part in A.

S(i, a′i,a) with ai 6 a′i. Now, each set of S(i, j) has their A-intervals containing exactly t
elements. This means that the only way of covering the tk + 2 elements of X(i) is to take
S(i, ai,`) and S(i, a′i,a) with ai > a′i (therefore ai = a′i), and to take all the k − 1 sets of
S(i, j) (for j ∈ [k] \ {i}) of the form S(viai

vjsj
, viai

), for some sj ∈ [t]. So far, we showed that
a potential solution of k-Set Cover should stick to the same vertex viai

in each color class.
We now show that if one selects S(viai

vjsj
, viai

), one should be consistent with this choice and
also selects S(viai

vjsj
, vjsj

). In particular, it implies that, for each i ∈ [k], si should be equal
to ai. For each i 6= j ∈ [k], to cover all the elements of Z(i, j), one should take S(eijcij

,`) and
S(eijc′

ij
,a) with cij > c′ij . Now, each set of S(i, j) and each set of S(j, i) has their B-intervals

containing exactly |Eij | elements. This means that the only way of covering the 3|Eij |+ 2
elements of Y (i, j) is to take S(eijcij

,`) and S(eijc′
ij
,a) with cij 6 c′ij (therefore, cij = c′ij),

and to take the sets S(viai
vjaj

, viai
) and S(viai

vjaj
, vjaj

). Therefore, if there is a solution to the
k-Set Cover instance, then there is a multicolored clique {v1

a1
, . . . , vkak

} in G.
In this reduction, there is a quadratic blow-up of the parameter. Under the ETH, it would

only forbid, by Theorem 3, an algorithm solving k-Set Cover on two-block instances in
time (N + M)o(

√
k). We can do the previous reduction from Multicolored Subgraph

Isomorphism and suppress X(i, j), X(j, i), Z(i, j), and Y (i, j), and the sets defined over
these elements, whenever Eij is empty. One can check that the produced set cover instance
is still two-block and that the way of proving correctness does not change. Therefore, by
Theorem 4, for any computable function f , k-Set Cover restricted to two-block instances
cannot be solved in time f(k) (N +M)o(k/ log k) unless the ETH fails. J

For the size |I| of an instance I of Structured 2-Track Hitting Set, one can take
kt+ |SA|+ |SB |.
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I Theorem 5. Structured 2-Track Hitting Set is W [1]-hard, and not solvable in
time f(k) |I|o(k/ log k) for any computable function f , unless the ETH fails.

Proof. This result is a consequence of Lemma 9. Let (A ]B,S) be a two-block instance of
k-Set Cover. We recall that each set S of S is the union of an A-interval with a B-interval:
S = SA ] SB . We transform each set S into a 2-element (xS,A, xS,B), and each element u
of the k-Set Cover instance into a set Tu of the Structured 2-Track Hitting Set
instance. We put element xS,A (resp. xS,B) into set Tu whenever u ∈ S ∩ A = IA (resp.
u ∈ S ∩ B = IB). We call A′ (resp. B′) the set of all the elements of the form xS,A (resp.
xS,B). We shall now specify an order of A′ and B′ so that the instance is structured. Keep
in mind that elements in the Structured 2-Track Hitting Set instance corresponds
to sets in the k-Set Cover instance. We order the elements of A′ accordingly to the
following ordering of the sets of the k-Set Cover instance: Sb(1), S(1, 2), . . ., S(1, k),
Se(1), Sb(2), S(2, 1), . . ., S(2, k), Se(2), . . ., Sb(k), S(k, 1), . . ., S(k, k− 1), Se(k), S(1, 2,`),
S(1, 2,a), S(1, 3,`), S(1, 3,a), . . ., S(k−1, k,`), S(k−1, k,a). We order the elements of B′
accordingly to the following ordering of the sets of the k-Set Cover instance: S(1, 2,`),
S(1, 2), S(2, 1), S(1, 2,a), S(1, 3,`), S(1, 3), S(3, 1), S(1, 3,a), . . ., S(k−1, k,`), S(k−1, k),
S(k, k − 1), S(k − 1, k,a), Sb(1), Se(1), . . ., Sb(k), Se(k). Within all those sets of sets, we
order by increasing left endpoint (and then, in case of a tie, by increasing right endpoint).
One can now check that with those two orders ≤A′ and ≤B′ , all the sets Tu’s are A′-interval
or B′-interval. Also, one can check that the 2-Track Hitting Set instance is structured
by taking as color classes the partite sets Sb(i)’s, Se(i)’s, S(i, j)’s, S(i, j,`)’s, and S(i, j,a)’s.
Now, taking one 2-element in each color class to hit all the sets Tu corresponds to taking one
set in each partite set of S to dominate all the elements of the k-Set Cover instance. J

Domination problems on 2-track (unit) interval graphs. 2-track (unit) interval
graphs are the intersection graphs of (unit) 2-track intervals, where a (unit) 2-track interval
is the union of two (unit) intervals in two disjoint copies of the real line, called the first track
and the second track. Two 2-track intervals intersect if they intersect in either the first or
the second track. In this context, we can refer to a 2-track interval as an object and we say
that an object dominates another object if they intersect. We recall that the intersection
graph has the objects as vertices and admits an edge between two vertices iff they represent
intersecting objects. Here, we also say that an object (an interval) dominates an interval (an
object) if they intersect. We observe that many dominating problems with some geometric
flavor can be restated with the terminology of 2-track (unit) interval graphs.

In particular, a result very close to Theorem 5 was obtained recently:

I Theorem 10 ([24]). Given the representation of a 2-track unit interval graph, the problem
of selecting k objects to dominate all the intervals is W [1]-hard, and not solvable in time
no(k/ log k), unless the ETH fails.

We still had to give an alternative proof of this result because we will need the additional
property that the instance can be further assumed to have the structure depicted in Figure 3.
This will be crucial for showing the hardness result for Vertex Guard Art Gallery.

Other results on dominating problems in 2-track unit interval graphs include:

I Theorem 11 ([17]). Given the representation of a 2-track unit interval graph, the problem
of selecting k objects to dominate all the objects is W [1]-hard.

I Theorem 12 ([6]). Given the representation of a 2-track unit interval graph, the problem
of selecting k intervals to dominate all the objects is W [1]-hard.
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The result of Dom et al. is formalized differently in their paper [6], where the problem
is defined as stabbing axis-parallel rectangles with axis-parallel lines.

B Parameterized hardness of the vertex guard variant

We now turn to the vertex guard variant and show the same hardness result. Again, we
reduce from Structured 2-Track Hitting Set and our main task is to design a linker
gadget. Though, linking pairs of vertices turns out to be very different from linking pairs
of points. Therefore, we have to come up with fresh ideas to carry out the reduction. In
a nutshell, the principal ingredient is to link pairs of convex vertices by introducing reflex
vertices at strategic places. As placing guards on those reflex vertices is not supposed to
happen in the Structured 2-Track Hitting Set instance, we design a so-called filter
gadget to prevent any solution from doing so.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. From an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), we
build a simple polygon P with O(kt+ |SA|+ |SB |) vertices, such that I is a YES-instance
iff P can be guarded by 3k vertices.

Linker gadget. For each j ∈ [k], permutation σj will be encoded by a sub-polygon Pj
that we call vertex linker, or simply linker (see Figure 11). We regularly set t consecutive
vertices αj1, α

j
2, . . . , α

j
t in this order, along the x-axis. Opposite to this segment, we place t

vertices βjσj(1), β
j
σj(2), . . . , β

j
σj(t) in this order, along the x-axis, too. The βjσj(1), . . . , β

j
σj(t),

contrary to αj1, . . . , α
j
t , are not consecutive; we will later add some reflex vertices between

them. At mid-distance between αj1 and βjσj(1), to the left, we put a reflex vertex rj↓. Behind
this reflex vertex, we place a vertical wall djej (rj↓, dj , and ej are three consecutive vertices
of P), so that ray(αj1, r

j
↓) and ray(αjt , r

j
↓) both intersect seg(dj , ej). That implies that for

each i ∈ [t], ray(αji , r
j
↓) intersects seg(dj , ej). We denote by pji this intersection. The greater

i, the closer pji is to dj . Similarly, at mid-distance between αjt and βjσj(t), to the right, we
put a reflex vertex rj↑ and place a vertical wall xjyj (rj↑, xj , and yj are consecutive), so that
ray(αj1, r

j
↑) and ray(αjt , r

j
↑) both intersect seg(xj , yj). For each i ∈ [t], we denote by qji the

intersection between ray(αji , r
j
↑) and seg(xj , yj). The smaller i, the closer qji is to xj .

For each i ∈ [t], we put around βji two reflex vertices, one in ray(βji , p
j
i ) and one in

ray(βji , q
j
i ). In Figure 11, we merged some reflex vertices but the essential part is that

V (βji )∩ seg(dj , ej) = seg(dj , pji ) and V (βji )∩ seg(xj , yj) = seg(xj , qji ). Finally, we add a
triangular pocket rooted at gj and supported by ray(gj , αj1) and ray(gj , αjt ), as well as a
triangular pocket rooted at bj and supported by ray(gj , βjσj(1)) and ray(gj , βjσj(t)). This ends
the description of the vertex linker (see Figure 11).

The following lemma formalizes how exactly the vertices αji and βji are linked: say, one
chooses to put a guard on a vertex αji , then the only way to see entirely Pj by putting a
second guard on a vertex of {βj1, . . . , β

j
t } is to place it on the vertex βji .

I Lemma 13. For any j ∈ [k], the sub-polygon Pj is seen entirely by {αjv, βjw} iff v = w.

Proof. The regions of Pj not seen by αjv (i.e., Pj \ V (αjv)) consist of the triangles djrj↓pjv,
xjrj↑q

j
v and partially the triangle ajbjcj . The triangle ajbjcj is anyway entirely seen by the
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Figure 11 Vertex linker gadget. We omitted the superscript j in all the labels. Here, σj(1) =
4, σj(2) = 2, σj(3) = 5, σj(4) = 3, σj(5) = 6, σj(6) = 1.

vertex βji , for any i ∈ [t]. It remains to prove that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjw) iff v = w.

It holds that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjv) since, by construction, the two reflex vertices

neighboring βjv are such that βjv sees seg(dj , pjα) (hence, the whole triangle djrj↓pjv) and
seg(xj , qjα) (hence, the whole triangle xjrj↑qjv). Now, let us assume that v 6= w. If v < w,
the interior of the segment seg(pv, pw) is not seen by {αjv, βjw}, and if v > w, the interior of
the segment seg(qv, qw) is not seen by {αjv, βjw}. J

The issue we now have is that one could decide to place a guard on a vertex αji and a
second guard on a reflex vertex between βjσj(w) and βjσj(w+1) (for some w ∈ [t− 1]). This is
indeed another way to guard the whole Pj . We will now describe a sub-polygon Fj (for each
j ∈ [k]) called filter gadget (see Figure 12) satisfying the property that all its (triangular)
pockets can be guarded by adding only one guard on a vertex of Fj iff there is already a
guard on a vertex βji of Pj . Therefore, the filter gadget will prevent one from placing a
guard on a reflex vertex of Pj . The functioning of the gadget is again based on Lemma 7.

Filter gadget. Let dj1, . . . , d
j
t be t consecutive vertices of a regular, say, 20t-gon, so

that the angle made by ray(dj1, d
j
2) and the x-axis is a bit below 45◦, while the angle made

by ray(djt−1, d
j
t ) and the x-axis is a bit above 45◦. The vertices dj1, . . . , d

j
t can therefore be

seen as the discretization of an arc C. We now mentally draw two lines `h and `v; `h is a
horizontal line a bit below dj1, while `v is a vertical line a bit to the right of djt . We put,
for each i ∈ [t], a vertex xji at the intersection of `h and the tangent to C passing through
dji . Then, for each i ∈ [t− 1], we set a triangular pocket P(xji ) rooted at xji and supported
by ray(xji , d

j
1) and ray(xji , β

j
σj(i+1)). For convenience, each point βjσj(i) is denoted by cji on

Figure 12. We also set a triangular pocket P(xjt ) rooted at xjt and supported by ray(xjt , d
j
1)

and ray(xjt , d
j
t ). Similarly, we place, for each i ∈ [t− 1], a vertex yji at the intersection of `v

and the tangent to C passing through dji+1. Finally, we set a triangular pocket P(yji ) rooted
at yji and supported by ray(yji , β

j
σj(i)) and ray(yji , d

j
t ), for each i ∈ [t − 1] (see Figure 12).

We denote by P(Fj) the 2t− 1 triangular pockets of Fj .
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Figure 12 The filter gadget Fj . Again, we omit the superscript j on the labels. Vertices
c1, c2, . . . , ct are not part of Fj and are in fact the vertices βj

σj (1), β
j
σj (2), . . . , β

j
σj (t) and the vertices

in between the ci’s are the reflex vertices that we have to filter out.
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I Lemma 14. For each j ∈ [k], the only ways to see entirely P(Fj) and the triangle ajbjcj
with only two guards on vertices of Pj ∪ Fj is to place them on vertices cji and dji (for any
i ∈ [t]).

Proof. Proving this lemma will, in particular, entail that it is not possible to see entirely
P(Fj) with only two vertices if one of them is a reflex vertex between cji and cji+1. Let us
call such a vertex an intermediate reflex vertex (in color class j). Because of the pocket
ajbjcj , one should put a guard on a cji (for some i ∈ [t]) or on an intermediate reflex vertex
in class j. As vertices aj , bj , and cj do not see anything of P(Fj), placing the first guard at
one of those three vertices cannot work as a consequence of what follows.

Say, the first guard is placed at cji (= βjσ(i)). The pockets P(xj1),P(xj2), . . . ,P(xji−1)
and P(yji ),P(yji+1), . . . ,P(xjt−1) are entirely seen, while the vertices xji , x

j
i+1, . . . , x

j
t and

yj1, y
j
2, . . . , y

j
i−1 are not. The only vertex that sees simultaneously all those vertices is dji .

The vertex dji even sees the whole pockets P(xji ),P(xji+1), . . . ,P(xjt ) and P(yj1),P(yj2), . . . ,
P(yji−1). Therefore, all the pockets P(Fj) are fully seen.

Now, say, the first guard is put on an intermediate reflex vertex r between cji and cji+1
(for some i ∈ [t − 1]). Both vertices xji and yji , as well as x

j
t , are not seen by r and should

therefore be seen by the second guard. However, no vertex simultaneously sees those three
vertices. J

Putting the pieces together. The permutation σ is encoded the following way. We
position the vertex linkers P1,P2, . . . ,Pk such that Pi+1 is below and slightly to the left of
Pi. Far below and to the right of the Pi’s, we place the Fi’s such that the uppermost vertex
of Fσ(i) is close and connected to the leftmost vertex of Fσ(i+1), for all i ∈ [t− 1]. We add
a constant number of vertices in the vicinity of each Pj , so that the only filter gadget that
vertices βj1, . . . , β

j
t can see is Fσ(j) (see Figure 13). Similarly to the point guard version, we

place vertically and far from the αji ’s, one triangular pocket P(zA,q) rooted at vertex zA,q
and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ), for each A-interval Iq = [aji , a
j′

i′ ] ∈ SA
(Track A). Finally, we place vertically and far from the dji ’s, one triangular pocket P(zB,q)
rooted at vertex zB,q and supported by ray(zB,q, dji ) and ray(zB,q, dj

′

i′ ), for each B-interval
Iq = [bjσj(i), b

j′

σj′ (i′)
] ∈ SB (Track B). This ends the construction (see Figure 13).

Soundness. We now prove the correctness of the reduction. Assume that I is a
YES-instance and let {(a1

s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We claim that the set of
vertices G = {α1

s1
, β1
s1
, d1
σ−1

1 (s1), . . . , α
k
sk
, βksk

, dk
σ−1

k
(sk)} guards the whole polygon P. Let

zj := dj
σ−1

j
(sj) for notational convenience. By Lemma 13, for each j ∈ [k], the sub-polygon

Pj is entirely seen, since there are guards on αjsj
and βjsj

. By Lemma 14, for each j ∈ [k], all
the pockets of Fj are entirely seen, since there are guards on βjsj

= cj
σ−1

j
(sj) and d

j

σ−1
j

(sj) = zj .

For eachA-interval (resp.B-interval) in SA (resp. SB) there is at least one 2-element (ajsj
, bjsj

)
such that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding pocket is guarded by αjsj

(resp. βjsj
). The rest of the polygon is seen by, for instance, zσ(1) and zσ(k).

Assume now that there is no solution to the instance I of Structured 2-Track
Hitting Set, and, for the sake of contradiction, that there is a set G of 3k vertices guarding
P. For each j ∈ [k], vertices bj , gj , and xjt are seen by three disjoint set of vertices. The first
two sets are contained in the vertices of sub-polygon Pj and the third one is contained in the
vertices of Fj . Therefore, to see entirely Pj ∪P(Fj), three vertices are necessary. Summing
that over the k color classes, this corresponds already to 3k vertices which is the size of the
supposed set G. Thus, there should exactly 3 guards placed among the vertices of Pj ∪ Fj .
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Figure 13 Overall picture of the reduction with k = 5.

Therefore, by Lemma 14, there should be an sj ∈ [t] such that both djsj
and cjsj

= βjσj(sj)

are in G. Then, by Lemma 13, a guard should be placed at vertex αjσj(sj). Indeed, the only
vertices seeing gj are f j , gj , hj and aj1, . . . , a

j
t ; but, if the third guard is placed at vertex

f j , gj , or hj , then vertices βjw (with w 6= σj(i)) are not seen. So far, we showed that G
should be of the form {α1

σ1(s1), β
1
σ1(s1), d

1
s1
, . . . , αjσj(sj), β

j
σj(sj), d

j
sj
, . . . , αkσk(sk), β

k
σk(sk), d

k
sk
, }.

Though, as there is no solution to I, there should be a set in SA ∪ SB that is not hit by
{(a1

σ1(s1), b
1
σ1(s1)), . . . , (akσk(sk), b

k
σk(sk))}. By construction, the pocket associated to this set

is not entirely seen; a contradiction.
Let us bound the number of vertices of P. Each sub-polygon Pj or Fj contains O(t)

vertices. Track A contains 3|SA| vertices and Track B contains 3|SB | vertices. Linking
everything together requires O(k) additional vertices. So, in total, there are O(kt+ |SA|+
|SB |) vertices. Thus, this reduction together with Theorem 5 implies that Vertex Guard
Art Gallery is W[1]-hard and cannot be solved in time f(k)no(k/ log k) for any computable
function f , where n is the number of vertices of the polygon and k the number of guards,
unless the ETH fails. J

C Direct Proof of Structured 2-Track Hitting Set Parameterized
Hardness

I Theorem 5. Structured 2-Track Hitting Set is W [1]-hard, and not solvable in
time f(k) |I|o(k/ log k) for any computable function f , unless the ETH fails.
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We reduce from Multicolored Subgraph Isomorphism. Recall that, in the Multi-
colored Subgraph Isomorphism problem, one is given a host graph G with n vertices
and a pattern graph P with l vertices and k edges. Our reduction is linear in k. The
vertices of G are partitioned into l color classes V1, . . . , Vl such that only k of the

(
l
2
)
sets

Eij = E(Vi, Vj) are non empty. The goal is to pick one vertex in each color class so that
the selected vertices induce the pattern graph P . Note that each color class Vi corresponds
to a specific vertex vi in the pattern graph. The set Eij in the host graph is empty if and
only if there is no edge between vi and vj in P .

The hardness reduction uses repeatedly certain gadgets in order to enforce consistent
choices. We describe the functionality of these gadgets and show later how we combine
them. Given d color classes C1, . . . , Cd each of size t, which are adjacent on track A. We
say a choice over color class C1, . . . , Cd on track A is consistent if in each color class the l-th
element on track A was chosen for some l ∈ [t]. Note that we do not care (for the moment)
about the elements on track B of the color classes C1, . . . , Cd.

track A

track B

C1 C2
D

D E

E

Figure 14 A gadget to make choices consistent.

I Lemma 15. Given d color-classes C1, . . . , Cd each of size t, which are adjacent on track
A, we can build a gadget that enforces a consistent choice on track A.

Proof. We use the same notations as above. We add two more color classes D and E

surrounding C1, . . . , Cd on track A and being adjacent anywhere on track B disjoint from
all other color classes, as in Figure 14. To be precise, we give an explicit description, of the
gadget in Figure 14. D and E have both t 2-elements. D is to the left of C1, . . . , Cd on track
A and E is to the right of C1, . . . , Cd on track A. On track B, D is to the left of E and they
are adjacent. The permutation between the elements of track A and B of D and E is the
inversion (which, for each i ∈ [t], maps the i-th element to the t− i+ 1-th element). We add
all intervals of length t that are completely contained in the color classes D,C1, . . . , Cd, E

on track A, and we add all intervals of length t that are completely contained in the color
classes D and E on track B.

We claim that the only way to hit all those intervals with d+ 2 2-elements is to make a
consistent choice over all the color classes on track A. Let us sssume that we choose on track
A the l0-th element of color class D, the l1-th element of color class C1, the l2-th element of
color class C2 and so on, up to the ld+1-th element of color class E. for all i ∈ [0, d], li > li+1,
since otherwise the interval of length t starting at the li+1-th element of color class Ci (with
C0 = D) and ending at the li+1-th element on color class Ci+1 (with Cd+1 = E) would not
be hit. In particular, it must hold that l0 > ld+1.
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Now we switch to track B. Choosing the l0-th element of D on track A implies that the
t − l0 + 1-th element of D on track B is chosen. Similary, choosing the ld+1-th element of
E on track A implies that the t− ld+1 + 1-th element of E on track B is chosen. To hit all
the intervals on track B we have to satisfy the condition t− l0 + 1 > t− ld+1 + 1. Together
with l0 > ld+1 we can conclude that l0 = ld+1, which implies l0 = li, for all i ∈ [d+ 1]. J

We apply this lemma by representing the vertex set by consecutive elements on track A.
We make several copies of these elements and place them consecutively on track A. Then,
we can link each copy to a distinct element. With the help of Lemma 15, we ensure that
all choices are consistent and correspond to the same vertex. The same procedure can be
applied to the edge sets Eij = E(Vi, Vj).

track A

track B

Figure 15 Splitting an element into several elements; here, two elements got duplicated.

Let us consider a color class with a different number of elements on track A and B. And,
let us assume that we have given a surjective mapping σ instead of a bijection. Then we can
transform σ easily into a bijection σ by duplicating each element by the size of its preimage
under σ. Further, we say every new interval contains all duplicates of x, if and only if it
contained x before. It follows an easy observation.
I Observation 1. Let (x, σ(x)) be a pair of elements and (x, σ(x)) be the corresponding pair
after the transformation. Then, an interval is hit by (x, σ(x)) if and only if it is hit by
(x, σ(x)) after the transformation.

To summarize, we can simulate surjective mappings by this duplicating trick.

V1 V2

v11

v12

v21

v22

v13 v23

v11 v12 v13
V1

e1 e2 e3 e4 e5

e1
e2
e3

e4
e5 E12

Figure 16 The linking between a vertex and an edge set is displayed.

We use Observation 1 as follows. We define a surjective mapping σiji from Eij to Vi, by
σiji (e) = v if and only if e is incident to v (a vertex v cannot be in a solution if it is not
incident to at least one edge in Eij).

Assume that we have given |Eij | elements on track B representing the edges of Eij and
|Vi| elements on track A representing the vertices of Vi. Then, we simulate the surjective
function σiji by the duplicating trick as explained above. This enforces that it is only possible
to pick vertex-edge (v, e) pairs, where the vertex v is incident to edge e.

We are know ready to describe the full reduction from Multicolored Subgraph Iso-
morphism. We denote by di the degree of vi in the pattern graph P . For each color class
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v1 v2

v3 v4

V1 V2

V3 V4

pattern graph

v11

v12

v41

v42

v31
v32

v21

v22

V1 V1 V2 V2 V3 V3 V4V3

E12 E12 E13 E13 E23 E23 E34 E34

Figure 17 At the top is an instance of subgraph isomorphism with a pattern and a host graph.
Below is a schematic drawing of an equivalent instance of Structured 2-Track Hitting Set.

Vi of size ni, we place nidi consecutive elements on track A. They represent di copies of
Vi. For each edge set Eij of size mij , we place 2mij consecutive elements on track B. They
represent two copies of the edge set Eij . One copy of Eij will be linked to Vi and the other
to Vj .

With the help of Lemma 15, we make sure that each copy of elements representing
vertices and edges is consistent. Now, we pair up one copy of a vertex set Vi with one copy
of the edge set Eij in an arbitrary fashion using σiji , see Figure 17. We have just created
enough copies of each Vi. By Observation 1, the σiji can be represented by duplicating
elements.

The new parameter is linear in the number of edges of the pattern graph. In fact, the
number of color classes of the Structured 2-Track Hitting Set instance is bounded by
6k + 2l 6 8k + 2. Recall that k denotes the number of edges in the pattern graph and l its
number of vertices. Since we assume the pattern graph to be connected we know l 6 k + 1.
To see correctness, assume that we are given a YES-instance of Multicolored Subgraph
Isomorphism. Thus, there are l vertices, one in each color classes of G, which induce k
edges. We can pick the elements corresponding to these k edges and l vertices.

For the reverse direction, assume we can pick one 2-element in each color class of the
Structured 2-Track Hitting Set problem and hit all the sets. Then, we can read off
the corresponding vertices, because of the consistency gadget. Let wi be this choice in Vi,
for each i ∈ [k]. We have to show that, for all i 6= j ∈ [k], wi and wj are adjacent in the
case that Eij is non-empty. In the linking between Vi and Eij , a 2-element corresponds to a
vertex-edge pair (wi, e) with wi ∈ Vi, e ∈ Eij and e incident to wi. The same holds for the
linking between Vj and Eij : any 2-element corresponds to a vertex edge pair (wj , e′) with
wj ∈ Vj , e′ ∈ Eij and e′ incident to w. Due to the consistency gadget, it must hold e = e′.
This implies wi ∈ Vi and wj ∈ Vj must be touched by the same edge e ∈ Eij and thus the
two vertices are adjacent in the original graph G.
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