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Abstract
It has long been known that Feedback Vertex Set can be solved in time 2O(w logw)nO(1)

on graphs of treewidth w, but it was only recently that this running time was improved to
2O(w)nO(1), that is, to single-exponential parameterized by treewidth. We investigate which
generalizations of Feedback Vertex Set can be solved in a similar running time. Formally,
for a class of graphs P, the Bounded P-Block Vertex Deletion problem asks, given a
graph G on n vertices and positive integers k and d, whether there is a set S of at most k vertices
of G such that each block of G − S has at most d vertices and is in P. Assuming that P is
recognizable in polynomial time and satisfies a certain natural hereditary condition, we give a
sharp characterization of when single-exponential parameterized algorithms are possible for fixed
values of d:

if P consists only of chordal graphs, then the problem can be solved in time 2O(wd2)nO(1),
if P contains a graph with an induced cycle of length ` > 4, then the problem is not solvable
in time 2o(w logw)nO(1) even for fixed d = `, unless the ETH fails.

As a warm up, we consider the analogous Bounded P-Component Vertex Deletion problem
requiring each connected component to be a member of P, and show that chordality is also the
key to single-exponential parameterized algorithms for this problem.
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1 Introduction

Treewidth is a measure of how well a graph accommodates a decomposition into a tree-like
structure. In the field of parameterized complexity, many NP-hard problems have been
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shown to have FPT algorithms when parameterized by treewidth; for example, Coloring,
Vertex Cover, Feedback Vertex Set, and Steiner Tree (see [5, Section 7] for
further examples). In fact, Courcelle [4] established a meta-theorem that every problem
definable in MSO2 logic can be solved in linear time on graphs of bounded treewidth. While
Courcelle’s Theorem is a very general tool for obtaining algorithmic results, for specific
problems dynamic programming techniques usually give algorithms where the running time
f(w)nO(1) has better dependence on treewidth w. There is some evidence that careful
implementation of dynamic programming (plus maybe some additional ideas) gives optimal
dependence for some problems (see, e.g., [11]).

For Feedback Vertex Set, standard dynamic programming techniques give 2O(w logw)

nO(1)-time algorithms and it was considered plausible that this is the best possible form
of running time. Hence it was a remarkable surprise when it turned out that 2O(w)nO(1)

algorithms are also possible for this problem by various techniques: Cygan et al. [6] obtained
a 3wnO(1)-time randomized algorithm by using the so-called Cut & Count technique, and
Bodlaender et al. [1] showed there is a deterministic 2O(w)nO(1)-time algorithm by using a
rank-based approach and the concept of representative sets. This was also later shown in
the more general setting of representative sets in matroids by Fomin et al. [10].

Generalized feedback vertex set problems. In this paper, we explore the extent to
which these results apply for generalizations of Feedback Vertex Set. The Feedback
Vertex Set problem asks for a minimum set S of vertices such that G − S is acyclic,
or in other words, G − S has only trivial blocks, that is, edges or vertices. We consider
generalizations where we allow the blocks to be some other type of small graph, such as
triangles, small cycles, or small cliques; these generalizations were first formally studied in
[3]. The main result of this paper is that the existence of single-exponential algorithms is
closely linked to whether the small graphs we are allowing are all chordal or not. Formally,
we consider the following problem:

Bounded P-Block Vertex Deletion Parameter: d, w

Input: A graph G of treewidth at most w, and positive integers d and k.
Question: Is there a set S ⊆ V (G) with |S| 6 k such that each block of G − S has at most d

vertices and is in P?

The result of Bodlaender et al. [1] implies that when d = 2, Bounded P-Block Vertex
Deletion can be solved in time 2O(w)nO(1). Our main question is for which graph classes P
can these two problems be solved in time 2O(w)nO(1), when we regard d as a fixed constant.
It turns out that chordal graphs have an important role in answering this question. A graph
is chordal if it has no induced cycles of length at least 4. We show that if P consists of only
chordal graphs, then we can solve this problem in single-exponential time for fixed d.

I Theorem 1. Let P be a class of graphs that is block-hereditary, recognizable in polynomial
time, and consists of only chordal graphs. Then Bounded P-Block Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

The condition that P is block-hereditary ensures that the class of graphs containing blocks
in P is hereditary. A formal definition is given in Section 2. Theorem 1 implies that, for any
fixed d > 1, the problem admits a 2O(w)nO(1)-time algorithm if P satisfies the conditions.
We complement this result by showing that if P contains a graph that is not chordal, then
single-exponential algorithms are not possible (assuming ETH), even for fixed values of d.

I Theorem 2. For any fixed integer d > 4, if P contains the cycle graph on ` > 4 vertices,
then Bounded P-Block Vertex Deletion is not solvable in time 2o(w logw)nO(1) on
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graphs of treewidth at most w even for fixed d = `, unless the ETH fails.

In particular, if P is block-hereditary and contains a graph that is not chordal, then this
graph contains a chordless cycle on ` > 4 vertices and consequently the cycle graph on `

vertices is also in P.
Bounded-size components. To better understand how chordality helps single-expo-

nential time algorithms, we first consider a related but somewhat simpler problem, where
we want to delete the minimum number of vertices such that each connected component has
size at most d and belongs to P.

Bounded P-Component Vertex Deletion Parameter: d, w

Input: A graph G of treewidth at most w, and positive integers d and k.
Question: Is there a set S ⊆ V (G) with |S| 6 k such that each connected component of G− S

has at most d vertices and is in P?

If we have only the size constraint (i.e., P contains every graph), then this problem is
known as Component Order Connectivity. Drange, Dregi, and van ’t Hof [7] studied
the parameterized complexity of a weighted variant of the Component Order Connec-
tivity problem; their results imply, in particular, that Component Order Connectiv-
ity can be solved in time 2O(k log d)n, but is W [1]-hard parameterized by only k or d. The
corresponding edge-deletion problem, parameterized by treewidth, was studied by Enright
and Meeks [8].

For general classes P, we prove results that are analogous to what we obtained for
Bounded P-Block Vertex Deletion.

I Theorem 3. Let P be a class of graphs that is hereditary, recognizable in polynomial time,
and consists of only chordal graphs. Then Bounded P-Component Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

I Theorem 4. For any fixed integer d > 4, if P contains the cycle graph on ` > 4 vertices,
then Bounded P-Component Vertex Deletion is not solvable in time 2o(w logw)nO(1)

on graphs of treewidth at most w even for fixed d = `, unless the ETH fails.

When d is not fixed, one might ask whether Bounded P-Component Vertex Dele-
tion admits an f(w)nO(1)-time algorithm; that is, an FPT algorithm parameterized only
by treewidth. We provide a negative answer, showing that the problem is W [1]-hard when
P contains all chordal graphs, even parameterized by both treewidth and k. Note that this
includes the Component Order Connectivity problem. We also prove two stronger
lower bound results assuming the ETH holds.

I Theorem 5. Let P be a hereditary class containing all chordal graphs. Then Bounded
P-Component Vertex Deletion is W [1]-hard parameterized by the combined parameter
(w, k). Moreover, unless the ETH fails, this problem

1. has no f(w)no(w)-time algorithm; and
2. has no f(k′)no(k′/ log k′)-time algorithm, where k′ = w + k.

Techniques. A natural approach to tackle Theorem 3 is to consider target graphs as
d-labeled graphs, where any two vertices in the same connected component have distinct
labels in {1, . . . , d}. This allows us to store possible attachments of d-labeled graphs at each
bag of a tree decomposition. However, if we simply store all possibilities, then each table
assigned to a bag may have size 2O(w logw). See Fig. 1 for an example. We show that when
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P consists of only chordal graphs, it is sufficient to keep some local information about the
vertices in a bag and their neighbors, which can be used to determine whether they can be
completed to a target chordal graph. Using this idea, we reduce the size of each table to
2O(w). It is essential for P to consist of only chordal graphs for this approach to work, as
shown by Theorem 2.

Two particular problems appear when we extend this approach to Bounded P-Block
Vertex Deletion. One problem is that a connected component in the target graph can
be arbitrarily large. We still use a similar idea, but instead of treating each connected
component as a d-labeled graph, we treat each block as a d-labeled graph. The other
problem is that an unbounded number of blocks may intersect a vertex in a bag. We side-
step this issue by focusing on blocks that induce some connected component with at least
two vertices in a bag.

The approach for Bounded P-Block Vertex Deletion consists of two parts. For
each block of size at least two in a bag, we store some local information, as for Bounded
P-Component Vertex Deletion. This will be used to determine whether the blocks of
the resulting graph that induce a connected component with at least two vertices in the bag
are in P and have at most d vertices. But this is not sufficient to determine whether the
whole graph has this property, since there is a possibility of linking two controlled blocks
by a sequence of uncontrolled blocks in both sides, and thus creating a chordless cycle. The
remaining difficulty is handling partitions of the set of connected components induced by
the bag; we do this using representative sets, in a similar manner to the single-exponential
time algorithm for Feedback Vertex Set.

The paper is organized as follows. Section 2 introduces the necessary notions including
labelings, treewidth, and boundaried graphs. In Section 3, we prove a structural lemma
of labeled chordal graphs that is a key lemma for solving both problems. In Sections 4
and 5, we prove Theorems 3 and 1, respectively. Section 6 shows that if P contains the
cycle graph on d vertices, then both problems are not solvable in time 2o(w logw)nO(1) on
graphs of treewidth at most w, unless the ETH fails. In Section 7, we further show that if
d is not fixed and P contains all chordal graphs, then Bounded P-Component Vertex
Deletion is W [1]-hard parameterized both k and w.

2 Preliminaries

Let G be a graph. We denote the vertex set and edge set of G by V (G) and E(G), respec-
tively. We refer to the size of a subgraph H of G as the number of vertices in H. For a vertex
v in G, the deletion of v in G is the graph obtained by removing v and its incident edges,
and is denoted G−v. For X ⊆ V (G), we denote by G−X the deletion of every x ∈ X. For a
vertex v in G, we denote by NG(v) the set of neighbors of v in G, and NG[v] := NG(v)∪{v}.
For X ⊆ V (G), we let NG(X) :=

⋃
v∈X NG(v) \X. For two graphs G1 and G2, G1 ∪G2 is

the graph with the vertex set V (G1)∪V (G2) and the edge set E(G1)∪E(G2), and G1 ∩G2
is the graph with the vertex set V (G1) ∩ V (G2) and the edge set E(G1) ∩ E(G2).

A vertex v of G is a cut vertex if the deletion of v from G increases the number of
connected components. We say G is biconnected if it is connected and has no cut vertices.
Note that every connected graph on at most two vertices is biconnected. A block of G is
a maximal biconnected subgraph of G. We say G is 2-connected if it is biconnected and
|V (G)| > 3.

An induced cycle of length at least four is called a chordless cycle. A graph is chordal if
it has no chordless cycles. For a class of graphs P, a graph is called a P-component graph
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if each of its connected components is in P, and a graph is called a P-block graph if each
of its blocks is in P. A class of graphs C is hereditary if for every G ∈ C and every induced
subgraph H of G, H ∈ C. A class C of graphs is block-hereditary if for every G ∈ C and
every biconnected induced subgraph H of G, H ∈ C. Note that a block-hereditary class is
not necessarily hereditary. For instance, if C consists of K1, K2, and all induced cycles, then
C is block-hereditary but not hereditary, and C-block graphs are the class of graphs known
as cactus graphs.

For a positive integer d, we denote the set {1, . . . , d} by [d], and for two integers d1, d2
with d1 6 d2, we let [d1, d2] denote {d1, d1 + 1, . . . , d2}. For a function f : X → Y and
X ′ ⊆ X, the function f ′ : X ′ → Y where f ′(x) = f(x) for all x ∈ X ′ is called the restriction
of f on X ′, and is denoted f |X′ . For such a pair of functions f and f ′, we also say that f
extends f ′ to the set X.

2.1 A d-labeling and a block d-labeling of a graph
A d-labeling of a graph G is a function LG from V (G) to [d] such that for each connected
component C of G, LG|V (C) is an injection. If G is equipped with a d-labeling LG, then G
is called a d-labeled graph. We call LG(v) the label of v. A block d-labeling of a graph G is
a function LG from V (G) to [d] such that for each block B of G, LG|V (B) is an injection.
Similarly, we say that such a connected graph G is a block d-labeled graph with labeling LG,
and we call LG(v) the label of v. For convenience, we say a graph is labeled if it is a d-labeled
graph or a block d-labeled graph for some d.

We frequently obtain an induced subgraph of a labeled graph by retaining the vertices
with a given set of labels. For a d-labeled graph or a block d-labeled graph G and I ⊆ [d],
we denote by G|I the subgraph of G induced by the set of vertices having a label in I. Two
d-labeled graphs G and H are label-isomorphic if there is a graph isomorphism from G to
H that is label preserving. For two connected d-labeled graphs G and H with labelings LG
and LH , we say H is partially label-isomorphic to G if H is label-isomorphic to G|LH (V (H)).
We use analogous notation and terminology for block d-labeled graphs.

2.2 Treewidth
A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and a family
B = {Bt}t∈V (T ) of sets Bt ⊆ V (G), called bags, satisfying the following three conditions:

1. V (G) =
⋃
t∈V (T ) Bt.

2. For every edge uv of G, there exists a node t of T such that u, v ∈ Bt.
3. For t1, t2, t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from t1 to t3 in T .

The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The treewidth of
G is the minimum width over all tree decompositions of G. A path decomposition is a tree
decomposition (P,B) where P is a path. The pathwidth of G is the minimum width over all
path decompositions of G. We denote a path decomposition (P,B) as (Bv1 , . . . , Bvt

), where
P is a path v1v2 · · · vt.

To design a dynamic programming algorithm, we use a convenient form of a tree de-
composition known as a nice tree decomposition. A tree T is said to be rooted if it has a
specified node called the root. Let T be a rooted tree with root node r. A node t of T is
called a leaf node if it has degree one and it is not the root. For two nodes t1 and t2 of T , t1
is a descendant of t2 if the unique path from t1 to r contains t2. If a node t1 is a descendant
of a node t2 and t1t2 ∈ E(T ), then t1 is called a child of t2.
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A tree decomposition (T,B = {Bt}t∈V (T )) is a nice tree decomposition with root node
r ∈ V (T ) if T is a rooted tree with root node r, and every node t of T is one of the following:

1. leaf node: t is a leaf of T and Bt = ∅.
2. introduce node: t has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ .
3. forget node: t has exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ .
4. join node: t has exactly two children t1 and t2, and Bt = Bt1 = Bt2 .

I Theorem 6 (Bodlaender et al. [2]). Given an n-vertex graph G and a positive integer k,
one can either output a tree decomposition of G with width at most 5k + 4, or correctly
answer that the treewidth of G is larger than k, in time 2O(k)n.

I Lemma 7 (folklore; see Lemma 7.4 in [5]). Given a tree decomposition of an n-vertex
graph G of width w, one can construct a nice tree decomposition (T,B) of width w with
|V (T )| = O(wn) in time O(k2 ·max(|V (T )|, |V (G)|)).

2.3 Boundaried graphs

For a graph G and S ⊆ V (G), the pair (G,S) is called a boundaried graph. If G is a d-labeled
graph or a block d-labeled graph, then we simply say that (G,S) is a d-labeled graph or a
block d-labeled graph respectively, as S indicates that (G,S) is a boundaried graph. Two
labeled graphs (G,S) and (H,S) are said to be compatible if V (G − S) ∩ V (H − S) = ∅,
G[S] = H[S], and G and H have the same labels on S. For two compatible labeled graphs
(G,S) and (H,S), the sum of two graphs is the graph obtained from the disjoint union of G
and H by identifying each vertex in S and removing an edge if multiple edges appear, and
is denoted by (G,S)⊕ (H,S). We also denote by LG ⊕LH the function from the vertex set
of (G,S) ⊕ (H,S) to [d] where for v ∈ V (G) ∪ V (H), (LG ⊕ LH)(v) = LG(v) if v ∈ V (G)
and (LG ⊕ LH)(v) = LH(v) otherwise. Notice that LG ⊕ LH is not necessary a d-labeling
or a block d-labeling of G⊕H.

When we study Bounded P-Block Vertex Deletion, we will deal with special types
of blocks in boundaried graphs. A block of a graph is called non-trivial if it has at least two
vertices. For a boundaried graph (G,S), a block B of G is called an S-block if G[V (B)∩ S]
contains a non-trivial block of G[S]. Note that every non-trivial block of G[S] is contained
in a unique S-block of G because two distinct blocks share at most one vertex. For a
boundaried graph (G,S), let Pair(G,S) be the set of all pairs (v,B) where B is a non-trivial
block of G[S] and v ∈ V (B), and let Part(G,S) be the partition of the set of connected
components of G[S] such that for two connected components C1 and C2 of G[S], C1 and C2
are contained in the same part of Part(G,S) if and only if they are contained in the same
connected component of G. We use the following observation:

I Lemma 8. For a boundaried graph (G,S), |Pair(G,S)| 6 2|S|.

Proof. Let A be the set of all cut vertices of G[S]. For a vertex v in S \A, v is contained in a
unique block of G[S], and thus the number of pairs (v,B) ∈ Pair(G,S) where v ∈ S \A is at
most |S \A|. Consider a tree T on the union of A and the set B of blocks of G[S] where for
v ∈ A and B ∈ B, vB ∈ E(T ) if and only if v ∈ V (B). This tree T is sometimes called the
block-cut tree of G[S]. Note that |B| 6 |S| and thus |E(T )| = |A|+ |B| − 1 6 |A|+ |S|. As
there is a bijection between E(T ) and the pairs (v,B) ∈ Pair(G,S) with v ∈ A, we conclude
that |Pair(G,S)| 6 |S \A|+ |A|+ |S| 6 2|S|. J
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2.4 Partitions of a set
For a set S and a set X of subsets of S, let Inc(S,X ) be the bipartite graph on the bipartition
(S,X ) where for v ∈ S and X ∈ X , v and X are adjacent in Inc(S,X ) if and only if v ∈ X.
This is sometimes called the incidence graph of a hypergraph, and ‘Inc’ stands for the
incidence graph.

For partitions X1, and X2 of a set S, X1 is a coarsening of X2 if every two elements in the
same part of X2 are in the same part of X1, and we denote by X1]X2 the common coarsening
of X1 and X2 with the maximum number of parts. For instance, if X1 = {{1}, {2, 3}, {4}} and
X2 = {{1, 2}, {3}, {4}}, then both {{1, 2, 3}, {4}} and {{1, 2, 3, 4}} are common coarsenings
of X1 and X2, and {{1, 2, 3}, {4}} = X1 ] X2.

3 Sums of two boundaried chordal graphs

In this section, we present two propositions which describe sufficient conditions for when,
given a chordal labeled graph Q, the sum of two given labeled graphs, each partially label-
isomorphic to Q, is also partially label-isomorphic to Q.

I Lemma 9. Let F be a connected graph and let Q be a connected d-labeled chordal graph
with a d-labeling LQ. Let LF : V (F ) → [d] be a function with LF (V (F )) ⊆ LQ(V (Q))
and let µ be the function from V (F ) to V (Q) mapping v ∈ V (F ) to the vertex w ∈ V (Q)
with LF (v) = LQ(w) such that for every induced path p1 · · · pm in P of length one or two,
L(p1), . . . , L(pm) are pairwise distinct and µ(p1) · · ·µ(pm) is an induced path of Q. Then
LF is a d-labeling of F and F is partially label-isomorphic to Q.

Proof. We claim that LF is an injection; that is, it is a d-labeling.

Claim 1. F has no two vertices v and w with LF (v) = LF (w).

Proof. Suppose that F has two distinct vertices v and w with LF (v) = LF (w). Since F
is connected, there is a path from v to w in F . Let us choose such vertices v and w with
minimum distance in F , and let P = p1p2 · · · px be a shortest path from v = p1 to w = px
in F . Note that P is an induced path, and by the assumption, x > 4 and µ(p1)µ(p2)µ(p3)
is an induced path in Q. This further implies that p4 cannot have the same label as one of
p1, p2, p3. Thus, we have that x > 5.

Let y ∈ {4, . . . , x − 1} be the smallest integer such that µ(py) is adjacent to one of
µ(p1), . . . , µ(py−3). Such an integer exists as µ(p1) = µ(px), so µ(px−1) is adjacent to µ(p1),
and µ(pi)µ(pi+1)µ(pi+2) is an induced path for each 1 6 i 6 x − 2. Let µ(pz) be such a
neighbor of µ(py) with maximum z. Therefore, µ(pz)µ(pz+1) · · ·µ(py)µ(pz) is an induced
cycle of length at least 4, which contradicts the assumption that Q is chordal. J

Now, we show that µ preserves the adjacency relation.

Claim 2. For each v, w ∈ V (F ), vw ∈ E(F ) if and only if µ(v)µ(w) ∈ E(Q).

Proof. Suppose there are two vertices v and w in F such that the adjacency between v and
w in F is different from the adjacency between µ(v) and µ(w) in Q. When vw ∈ E(F ),
µ(v) is adjacent to µ(w) in Q by the assumption. We may assume that vw /∈ E(F ) and
µ(v)µ(w) ∈ E(Q). We choose such vertices v and w with minimum distance between v and
w in F . Let P = p1p2 · · · px be a shortest path from v = p1 to w = px in F .

Note that p1p2 · · · px is an induced path, and thus x > 4 by the assumption. By the mini-
mality of the distance between v and w, each of µ(p1)µ(p2) · · ·µ(px−1) and µ(p2)µ(p3) · · ·µ(px)
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is an induced path in Q. Therefore, µ(p1)µ(p2) · · ·µ(px)µ(p1) is an induced cycle of length
at least four in Q, contradicting the assumption that Q is chordal. J

We conclude that F is partially label-isomorphic to Q. J

Notice that if we remove the condition that Q is chordal, then Lemma 9 does not hold.
To see this, assume that H is an induced cycle of length six where labels 1, 2, 3, 4, 5, 6 are
given in cyclic order, and G is the graph obtained from H by adding an edge between vertices
with labels 3 and 6. Then the function µ from V (H) to V (G) preserving the labels satisfies
the conditions of Lemma 9, but H is not partially label-isomorphic to G.

For a connected d-labeled graph Q, a d-labeled graph (G,S) with a labeling LG is
component-wise partially label-isomorphic to Q if every connected component C of G inter-
secting S is partially label-isomorphic to Q. For two compatible d-labeled graphs (G,S) and
(H,S) with labelings LG and LH respectively, we say (G,S) and (H,S) are component-wise
Q-compatible if

1. (G,S) and (H,S) are component-wise partially label-isomorphic to Q; and
2. for every vertex v in S, LG(NG(v)\S)∩LH(NH(v)\S) = ∅, and for `1 ∈ LG(NG(v)\S)

and `2 ∈ LH(NH(v) \ S), the vertices in Q with labels `1 and `2 are not adjacent.

I Proposition 10. Let Q be a connected d-labeled chordal graph. Let (G,S) and (H,S) be
d-labeled graphs, with d-labelings LG and LH respectively, such that they are component-wise
Q-compatible and (G,S)⊕(H,S) is connected. Then LG⊕LH is a d-labeling of (G,S)⊕(H,S)
and (G,S)⊕ (H,S) is partially label-isomorphic to Q.

Proof. Let F := (G,S)⊕(H,S) and L := LG⊕LH . Since (G,S) and (H,S) are component-
wise partially label-isomorphic to Q, we have L(V (F )) ⊆ LQ(V (Q)). Let µ be the function
from V (F ) to V (Q) where for each v ∈ V (F ), L(v) = LQ(µ(v)). The function µ is uniquely
determined, because for each label ` ∈ LQ(V (Q)), Q has a unique vertex with the label `.
Since every edge uv of F is contained in one of G or H, L(u) 6= L(v) and µ(u)µ(v) ∈ E(Q).

To apply Lemma 9, it is sufficient to prove the following:

Claim. Let p1p2p3 be an induced path of length two in F . Then, L(p1), L(p2), and L(p3)
are pairwise distinct, and µ(p1)µ(p2)µ(p3) is an induced path.

Proof. Since (G,S) and (H,S) are component-wise partially label-isomorphic to Q, if all
of p1, p2, p3 are contained in G or H, then they have distinct labels and F [{p1, p2, p3}] is
label-isomorphic to Q|L({p1,p2,p3}). We may assume that {p1, p2, p3} ∩ V (G − S) 6= ∅ and
{p1, p2, p3}∩V (H−S) 6= ∅. Without loss of generality, we may assume that p1 ∈ V (G−S),
p2 ∈ S, and p3 ∈ V (H − S). Since (G,S) and (H,S) are Q-compatible, L(p1) 6= L(p3) and
µ(p1)µ(p3) /∈ E(Q). Therefore, µ(p1)µ(p2)µ(p3) is an induced path, as required. J

By Lemma 9, we conclude that F is partially label-isomorphic to Q. J

We prove a similar proposition related to the Bounded P-Block Vertex Deletion
problem. For the block version, it turns out that we need additional conditions. The S-blocks
of G or H will have the same role as the connected components of G or H in Proposition 10.
For a biconnected d-labeled graph Q, we say a block d-labeled graph (G,S) with a labeling
LG is block-wise partially label-isomorphic to Q if every S-block B of G is partially label-
isomorphic to Q. For two compatible block d-labeled graph (G,S) and (H,S) with labelings
LG and LH respectively, we say (G,S) and (H,S) are block-wise Q-compatible if

1. (G,S) and (H,S) are block-wise partially label-isomorphic to Q; and
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2. for every (v,B) ∈ Pair(G,S) and S-blocksB1 andB2 ofG andH respectively, LG(NB1(v)\
S) ∩ LH(NB2(v) \ S) = ∅, and for `1 ∈ LG(NB1(v) \ S) and `2 ∈ LH(NB2(v) \ S), the
vertices in Q with labels `1 and `2 are not adjacent.

I Proposition 11. Let Q be a 2-connected d-labeled chordal graph. Let (G,S) and (H,S) be
block d-labeled graphs with labelings LG and LH respectively, and the set C of all connected
components of G[S] such that

1. (G,S)⊕ (H,S) contains a non-trivial block of G[S];
2. every S-block B of (G,S) or (H,S) is partially label-isomorphic to Q;
3. for every pair (v,B) ∈ Pair(G,S), and the S-blocks B1 and B2 of G and H containing

B respectively, LG(NB1(v) \ S)∩LH(NB2(v) \ S) = ∅, and for `1 ∈ LG(NB1(v) \ S) and
`2 ∈ LH(NB2(v) \ S), the vertices in Q with labels `1 and `2 are not adjacent; and

4. Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles.

Then LG ⊕LH is a block d-labeling of (G,S)⊕ (H,S) and (G,S)⊕ (H,S) is partially label-
isomorphic to Q.

In contrast to Proposition 10, there is a special case for the block version which does not
directly force the condition that for every induced path p1p2p3 of F , L(p1), L(p2), L(p3) are
pairwise distinct. Suppose that p1p2p3 is an induced path in G where p2 is a cut vertex of
(G,S) contained in S. Observe that p1 and p3 do not necessarily have distinct labels since
they are not contained in the same S-block of (G,S). In this case, we need to find another
path from p1 to p3 in (G,S)⊕ (H,S) that can be used to verify that L(p1) 6= L(p3).

Proof of Proposition 11. Let F := (G,S)⊕ (H,S) and L := LG⊕LH . If F is contained in
G or H, then it is clear because (G,S) and (H,S) are block-wise partially label-isomorphic
to Q. We may assume that V (F −H) and V (F − G) are non-empty. This implies that F
is 2-connected. We check that every edge of F is contained in some S-block of G or H.

Claim 1. For every edge uv of F , u and v are contained in some S-block of G or H.

Proof. Let uv ∈ E(F ). If u, v ∈ S, then it is clear. We may assume that one of u and v is
contained in F − S. By symmetry, we may assume that {u, v} ∩ V (G − S) 6= ∅. Without
loss of generality, let us assume that v ∈ V (G− S).

Let Cv be the connected component of G containing v. As V (H − S) 6= ∅, there is
a vertex w ∈ V (H − S). Let Cw be the connected component of H containing w. Since
Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles and is connected, there is a unique path from
Cv to Cw. Let D be the connected component of F [S] that is on the path from Cv to Cw
and is adjacent to Cv in Inc(C,Part(G,S) ∪ Part(H,S)).

Since F is 2-connected, there are two internally vertex-disjoint paths from {u, v} to w.
In these paths, we choose vertices p1, p2 that first meet D, and let P1, P2 be the subpaths
from u, v to p1, p2, respectively. Let Q be a path from p1 to p2 in D. Observe that G[V (P1)∪
V (P2) ∪ V (Q)] is a cycle of length at least 3, and it contains a non-trivial block of F [S].
Thus, u, v are contained in some S-block of G. J

Claim 1 implies that for every edge uv of F , L(u) 6= L(v) and µ(u)µ(v) is an edge of Q.
Moreover, since (G,S)⊕(H,S) is 2-connected and (G,S) and (H,S) are block-wise partially
label-isomorphic to Q, we have L(V (F )) ⊆ LQ(V (Q)). Let µ be the function from V (F ) to
V (Q) where for each v ∈ V (F ), L(v) = LQ(µ(v)). It is sufficient to prove the following:

Claim 2. Let p1p2p3 be an induced path of length two in F . Then, L(p1), L(p2), and
L(p3) are pairwise distinct, and µ(p1)µ(p2)µ(p3) is an induced path.
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Proof. Since (G,S) and (H,S) are block-wise partially label-isomorphic to Q, if all of
p1, p2, p3 are contained in some S-block of G or H, then they have distinct labels, and
F [{p1, p2, p3}] is label-isomorphic to Q|L({p1,p2,p3}). We may assume that they are not con-
tained in the same S-block of G or H. By Claim 1, for each i ∈ {1, 2}, there is an S-block
of G or H containing pi and pi+1. Let B be the S-block of G or H containing p1 and p2,
and let B′ be the S-block of G or H containing p2 and p3. When both pi and pi+1 are
contained in S for some i ∈ {1, 2}, we can freely choose an S-block from G or H containing
pi and pi+1. By the assumption, B 6= B′. We can observe that p2 ∈ S, otherwise, G is not
2-connected because Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles. Let C be the connected
component of F [S] containing p2. Let U1, . . . , Up be the set of all induced subgraphs of C
consisting of p2 and one of the connected components of C − p2.

Since B and B′ are S-blocks, each of B and B′ intersects at least two vertices of some
subgraphs in {U1, . . . , Up}. LetW1−W2−· · ·−Wm be the shortest sequence of {U1, . . . , Up}
such that

B intersects at least two vertices of W1, and B′ intersects at least two vertices of Wm,
and
for each i ∈ {1, . . . ,m− 1}, there is a path from Wi − p2 to Wi+1 − p2 in G or H.

Such a sequence always exists as F is 2-connected, and thus F − p2 is connected. Let P0
be a shortest path from p1 to W1, let Pm be a shortest path from p3 to Wm, and for each
i ∈ {1, . . . ,m − 1}, let Pi be the shortest path from Wi − p2 to Wi+1 − p2 in G or H. Let
w0 be the end vertex of P0 on W1, let vm be the end vertex of Pm on Wm, and for each
i ∈ {1, . . . ,m − 1}, let vi and wi be the end vertices of Pi where vi ∈ V (Pi ∩ Wi) and
wi ∈ V (Pi ∩Wi+1). Since (G,S) and (H,S) are block-wise partially label-isomorphic to Q,
every S-block of G or H is chordal. From this, we may assume that for each i ∈ {1, . . . ,m},
wi−1 and vi are contained in the unique block of F [S] containing p2 in Wi. For each
i ∈ {1, . . . ,m}, let Qi be the path from wi−1 to vi in Wi− p2. Finally, let Q = q1q2 · · · q` be
a shortest path from p1 to p3 on P0 ∪Q1 ∪ P1 ∪ · · · ∪Qm ∪ Pm.

Observe that for each i ∈ {1, . . . , `−2}, qi, qi+1, qi+2 are contained in the same S-block of
G or H, or there is a non-trivial block of F [S] where qi and qi+2 are contained in the S-blocks
of G and H containing the block. Since (G,S) and (H,S) are block-wise Q-compatible, we
can deduce that for each i ∈ {1, . . . , `− 2}, L(qi), L(qi+1), L(qi+2) are pairwise distinct, and
µ(qi)µ(qi+1)µ(qi+2) is an induced path of Q. Using the same argument in Lemma 9, we can
show that L(q1), . . . , L(q`) are pairwise distinct and µ(q1)µ(q2) · · ·µ(q`) is an induced path
of Q. In particular, L(p1) and L(p3) are distinct and µ(p1) and µ(p3) are not adjacent in
Q, as required. J

By Lemma 9, we conclude that F is partially label-isomorphic to Q. J

4 Bounded P-Component Vertex Deletion when P is
chordal and hereditary

In this section, we prove Theorem 3, which is restated below.

I Theorem 12. Let P be a class of graphs that is chordal, hereditary, and recognizable in
polynomial time. Then Bounded P-Component Vertex Deletion can be solved in time
2O(wd2)k2n on graphs with n vertices and treewidth w.

As discussed earlier, we consider the target graphs as d-labeled graphs. We depict a
simple example in Fig. 1 showing that the number of possible attachments of d-labeled graphs
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Figure 1 An example showing that there are 2c·w log w possible 4-labeled graphs intersecting a
vertex set S of size w, for some constant c. In the worst case, it may have all distinct connections
from X to Y corresponding to permutations on a set of size w/2.

on a vertex set of size w can be 2c·w logw, which is not good for obtaining a single-exponential
algorithm. To use Proposition 10 properly, we introduce the notion of a characteristic of a
d-labeled graph (G,S). The main combinatorial argument in this section is that every two
d-labeled P-component graphs with the same characteristic have “equivalent mergeability”,
which is proved in Theorem 13.

Let P be a chordal and hereditary class of graphs and d be a positive integer. Let Ud
be the set of all connected d-labeled P-component graphs, where each H in Ud is equipped
with a labeling LH . For a d-labeled graph (G,S) with labeling L, a characteristic of (G,S)
is a pair (g, h) of functions g : S → Ud and h : S → 2[d] satisfying the following:

1. for v1, v2 ∈ S in the same connected component of G, g(v1) = g(v2),
2. for v ∈ S, h(v) = L(NG(v) \ S),
3. for v ∈ S in the connected component H of G, H is partially label-isomorphic to g(v),

and
4. for v ∈ S in the connected component H of G and w ∈ V (H) \ S, G[NG[w]] is label-

isomorphic to g(v)[Ng(v)[z]] where z is the vertex in g(v) with the label L(w).

We say g satisfies the coincidence condition if g satisfies 1, and g satisfies the complete
condition if g satisfies 4. We also say h satisfies the neighborhood condition if h satisfies
2. Let (G,S) be a d-labeled graph with a characteristic (g, h). For a d-labeled graph
(H,S) compatible with (G,S), we say (G,S) ⊕ (H,S) respects (g, h) if, for every v ∈ S,
the connected component of (G,S)⊕ (H,S) containing v is label-isomorphic to g(v). Using
Proposition 10, we show two boundaried graphs with the same characteristic have equivalent
mergeability.

I Theorem 13. Let P be a chordal and hereditary class of graphs, and let d be a positive
integer. Let (G1, S), (G2, S), and (H,S) be d-labeled graphs with labelings LG1 , LG2 , LH
respectively, such that

for each i ∈ {1, 2}, (Gi, S) is compatible with (H,S), and
(G1, S) and (G2, S) have the same characteristic (g, h).

If (G1, S)⊕ (H,S) respects (g, h), then (G2, S)⊕ (H,S) also respects (g, h).

Proof. Suppose (G1, S) ⊕ (H,S) respects (g, h). Let v ∈ S, let Q be the graph g(v) with
labeling LQ, and let F be the connected component of (G2, S)⊕ (H,S) containing v. As a
shortcut, we set SF := V (F ) ∩ S. Note that each vertex of F inherits a label from at least
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Figure 2 Two d-labeled graphs (G1, S) and (G2, S) with the same characteristic (g, h) where for
every v ∈ S, g(v) is the graph H, and h(v) = {3} or {5}.

one of G2 and H. Let LF be the function from V (F ) to [d] that sends each vertex to this
label; this is well-defined as (G2, S) and (H,S) are compatible.

We claim that LF is indeed a d-labeling of F , and F is label-isomorphic to Q. Since
v was chosen arbitrarily, this implies that (G2, S) ⊕ (H,S) respects (g, h). We verify the
conditions of Proposition 10 where F is considered as a sum of (F ∩G2, FS) and (F ∩H,FS),
and prove that LF is a d-labeling of F and F is label-isomorphic to Q|LF (V (F )). To complete
the proof, we additionally show that LQ(V (Q)) ⊆ LF (V (F )). Clearly F is connected.

Claim 1. For every v′ ∈ SF , g(v′) = g(v) = Q.

Proof. Let v1, v2 ∈ SF . By the definition of characteristics, if v1, v2 are contained in the
same connected component of G2, then g(v1) = g(v2). If v1, v2 are contained in the same
connected component of H, then g(v1) = g(v2) because (G1, S) ⊕ (H,S) respects (g, h).
Therefore, g(v′) = g(v) = Q for every v′ ∈ SF , as F is connected. J

Claim 2. F ∩G2 and F ∩H are component-wise partially label-isomorphic to Q.

Proof. By Claim 1 and the fact that (g, h) is a characteristic of (G2, S), F ∩ G2 is
component-wise partially label-isomorphic to Q. By Claim 1 and the fact that (G1, S) ⊕
(H,S) respects (g, h), F ∩H is component-wise partially label-isomorphic to Q. J

Claim 3. F ∩G2 and F ∩H are component-wise Q-compatible.

Proof. Since (G1, S)⊕ (H,S) respects (g, h), NG1(v) ∩ V (G1 − S) and NH(v) ∩ V (H − S)
have disjoint sets of labels. As (G1, S) and (G2, S) have the same characteristic, NG1(v) ∩
V (G1−S) and NG2(v)∩V (G2−S) have the same set of labels, and thus NG2(v)∩V (G2−S)
and NH(v) ∩ V (H − S) have disjoint sets of labels. For `1 ∈ LF (NG2(v) ∩ V (G2 − S)) and
`2 ∈ LF (NH(v)∩V (H−S)), the vertices in Q with labels `1 and `2 are not adjacent because
there are no edges between NG1(v)∩V (G1−S) and NH(v)∩V (H −S) in (G1, S)⊕ (H,S),
and (G1, S)⊕ (H,S) respects (g, h). J

Therefore, by Proposition 10, LF is a d-labeling of F and F is partially label-isomorphic
to Q. Lastly, we show that F and Q have the same set of labels, which implies that F is
label-isomorphic to Q.

Claim 4. LQ(V (Q)) ⊆ LF (V (F )).
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Proof. Suppose that there is a vertex v in Q such that F has no vertex with label LQ(v).
We choose such a vertex v so that there exists w ∈ V (Q) that is adjacent to v in Q where
the label of w appears in F . We can choose such vertices v and w because Q is connected,
V (F ) 6= ∅, and LF (V (F )) ⊆ LQ(V (Q)). Let w′ be the vertex in F with label LQ(w). If w′ ∈
V (G2−S), then by the definition of the characteristic, F [NF [w′]] should be label-isomorphic
to Q[NQ[w]]. So, there is a neighbor of w′ in F having the label LQ(v); a contradiction. If
w′ ∈ V (H − S), then since the connected component of (G1, S) ⊕ (H,S) containing w′ is
label-isomorphic to Q and all neighbors of w′ in (G1, S)⊕ (H,S) are contained in H, this is
also contradictory. So we may assume that w′ is contained in S.

Again, we observe that the connected component of (G1, S) ⊕ (H,S) containing w′ is
label-isomorphic to Q. We can also observe that every label appearing in the neighborhood
of w′ in (G1, S) ⊕ (H,S) appears in the neighborhood of w′ in (G2, S) ⊕ (H,S) as well,
because (G1, S) and (G2, S) have the same characteristic. This concludes the proof of the
claim. J

We conclude that F is label-isomorphic to Q. J

Proof of Theorem 3. Using Theorem 6 and Lemma 7, we obtain a nice tree decomposition
of width at most 5w + 4 in time O(cw · n) for some constant c. Let (T,B = {Bt}t∈V (T )) be
this nice tree decomposition with root node r. For each node t of T , let Gt be the subgraph
of G induced by the union of all bags Bt′ where t′ is a descendant of t. Let Ud be the class of
all connected d-labeled P-component graphs, where each H in Ud has a labeling LH . Note
that |Ud| 6 2(d

2).
For each node t of T , X ⊆ Bt, and a function L : Bt \X → [d], let F(t,X, L) be the set

of all pairs (g, h) of functions g : Bt \ X → Ud and h : Bt \ X → 2[d], and for each i with
0 6 i 6 k, let c[t,X, L, i] be the family of all pairs (g, h) satisfying the following property:
there exists S ⊆ V (Gt) \Bt with |S| = i, and a d-labeling L′ of Gt − (S ∪X) such that

L is a restriction of L′ on Bt \X, and
(g, h) is a characteristic of (Gt − (S ∪X), Bt \X).

Such a pair (S,L′) is called a partial solution with respect to c[t,X, L, i] and (g, h). We
will recursively compute the family c[t,X, L, i] for every tuple of t, X, L, and i. For a
pair (g, h) ∈ c[t,X, L, i], (g, h) may correspond to two distinct partial solutions (S1, L1)
and (S2, L2) where |S1| = |S2| = i. We observe in Theorem 13 that they have equivalent
mergeability; that is, for every graph (H,Bt \X) compatible with (Gt − (S1 ∪X), Bt \X),
the boundaried graph (Gt − (S1 ∪ X), Bt \ X) ⊕ (H,Bt \ X) respects (g, h) if and only if
(Gt − (S2 ∪ X), Bt \ X) ⊕ (H,Bt \ X) respects (g, h). So, it is enough to store only one
of these equivalent graphs, which the characteristic represents. At the final step, we will
output the minimum integer |X|+i such that c[r,X,L, i] 6= ∅ for some L. Clearly, Bounded
P-Component Vertex Deletion is a Yes-instance if and only if there is such a tuple
with |X|+ i 6 k.

Since |Ud| 6 2(d
2), we have

|F(t,X, L)| 6 2(w+1)(d
2) · 2(w+1)d = 2O(wd2), and

|c[t,X, L, i]| 6 2(w+1)(d
2) · 2(w+1)d = 2O(wd2).

We describe how to update families c[t,X, L, i] depending on the type of t, and prove
the correctness of each procedure. We fix such a tuple. For each leaf node t, we assign
c[t, ∅, L, i] := ∅ where L is an empty function. We assume that t is not a leaf node.
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1) t is an introduce node with child t′:

Let v be the vertex in Bt \Bt′ . If v ∈ X, then Gt −X = Gt′ − (X \ {v}) and Bt \X =
Bt′ \ (X \ {v}). Thus, for every (g, h) ∈ F(t,X, L), (g, h) ∈ c[t,X, L, i] if and only if
(g, h) ∈ c[t′, X \ {v}, L, i]. We set c[t,X, L, i] := c[t′, X \ {v}, L, i]. In what follows, we
assume that v /∈ X. Let Lres := L|Bt′\X .

A pair (g, h) ∈ F(t,X, L) is called valid if it satisfies that

for every v1, v2 in the same connected component of G[Bt \X], g(v1) = g(v2),
for every connected component C of G[Bt \ X] and w ∈ V (C), C is partially label-
isomorphic to g(w),
h(v) = ∅, and
for every neighbor w of v and ` ∈ h(w), L(v) /∈ h(w) and the vertices with labels L(v)
and ` in g(v) are not adjacent.

For each (g, h) ∈ F(t,X, L), a pair (g′, h′) ∈ F(t′, X, Lres) is called a restriction of (g, h) if
g′(w) = g(w) and h′(w) = h(w) for all w ∈ Bt′ \X. We show the following relation between
c[t,X, L, i] and c[t′, X, Lres, i]:

Claim 1. For every valid pair (g, h) ∈ F(t,X, L), (g, h) ∈ c[t,X, L, i] if and only if there
exists a restriction (g′, h′) of (g, h) in c[t′, X, Lres, i].

Proof. The forward direction is straightforward since we can just ignore v. Suppose there
exists a restriction (g′, h′) of (g, h) in c[t′, X, Lres, i]. Let (S,Lt′) be a partial solution with
respect to c[t′, X, Lres, i] and (g′, h′). Let Lt be the function from V (Gt − (X ∪ S)) to [d]
such that Lt(v) = L(v) and Lt(w) = Lt′(w) for every w ∈ V (Gt − (X ∪ S)) \ {v}.

We first check that Lt is a d-labeling of (Gt − (X ∪ S), Bt \X). Let F be a connected
component of (Gt−(X∪S), Bt\X). Since (g′, h′) is a characteristic of (Gt′−(X∪S), Bt′ \X)
and (g, h) is valid, we can observe that F ∩(Gt′−(X∪S)) and F ∩G[Bt] are component-wise
Q-compatible. Thus, by Proposition 10, Lt is a d-labeling of (Gt − (X ∪ S), Bt \X), and in
particular, F is partially label-isomorphic to Q.

We show that (g, h) is a characterisctic of (Gt− (X ∪S), Bt \X). From the assumptions
that (g′, h′) is a characteristic of (Gt′ − (X ∪ S), Bt′ \X) and (g, h) is valid, we can directly
check g satisfies the coincidence and complete conditions, and h satisfies the neighborhood
condition. Since g satisfies the coincidence condition, from the previous paragraph, we can
observe that for every connected component H of Gt− (X ∪S) containing a vertex in v1, H
is partially label-isomorphic to g(v1). We conclude that (Gt− (X ∪S), Bt \X) is a d-labeled
graph with the characteristic (g, h). J

When v /∈ X, we update c[t,X, L, i] as follows. We choose (g, h) ∈ F(t,X, L). We can
check whether (g, h) is valid or not in time O(wd2). If it is not valid, then we skip it. We
assume that (g, h) is valid. For every (g′, h′) ∈ c[t′, X, Lres, i], we test whether (g′, h′) is
a restriction of (g, h). It takes time 2O(wd2) as |c[t′, X, Lres, i]| 6 2O(wd2). If there is at
least one restriction of (g, h) in c[t′, X, Lres, i], then we add (g, h) to c[t,X, L, i]; otherwise,
we do not. The correctness of this procedure follows from Claim 1, and we can complete
c[t,X, L, i] in time 2O(wd2).

2) t is a forget node with child t′:

Let v be the vertex in Bt′ \ Bt. For an extension L′ of L on Bt′ \ X, a pair (g′, h′) ∈
F(t′, X, L′) is called an extension of (g, h) with respect to L′ if
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1. for every w ∈ Bt \X, g′(w) = g(w),
2. for every neighbor w of v in Bt \X, h′(w) ∪ {L′(v)} = h(w), and
3. for every non-neighbor w of v in Bt \X, h′(w) = h(w).

We show the following:

Claim 2. For every (g, h) ∈ F(t,X, L), (g, h) ∈ c[t,X, L, i] if and only if one of the following
holds:

1. (g, h) ∈ c[t′, X ∪ {v}, L, i− 1].
2. There exists an extension Lext of L on Bt′ \ X and an extension (g′, h′) of (g, h) in

c[t′, X, Lext, i] with respect to Lext.

Proof. We first show the backwards direction. If (g, h) ∈ c[t′, X ∪{v}, L, i− 1], then clearly
(g, h) ∈ c[t,X, L, i], as we can put the vertex v into the deletion set. Suppose there exist
an extension Lext of L on Bt′ \X and an extension (g′, h′) in c[t′, X, Lext, i] with respect to
Lext. Let (S,L′) be a partial solution with respect to c[t′, X, Lext, i] and (g′, h′). As (g′, h′)
is an extension of (g, h), (g, h) is a characteristic of (Gt − (X ∪ S), Bt \X).

Now, suppose (g, h) ∈ c[t,X, L, i]. So there exists a partial solution (S,Lt) with respect
to c[t,X, L, i] and (g, h). If v ∈ S, then (g, h) should exist in c[t′, X ∪ {v}, L, i− 1], and this
corresponds to the first case. We may assume v /∈ S. Let Lext := Lt|Bt′\X . We create a
proper extension (g′, h′) of (g, h).

Let g′(v) be the graph in Ud satisfying the following:

If v is contained in the same connected component of Gt − (X ∪ S) as a vertex w in
Bt \X, then g′(v) = g(w).
Otherwise, we know that the connected component containing v is label-isomorphic to a
graph in Ud; let g′(v) be this graph.

Let g′(w) = g(w) for w ∈ Bt \X. Also, for w ∈ Bt′ \X, let h′(w) be the set of labels that
appear in NGt′−(S∪X)(w) \Bt′ . Then

for every neighbor w of v in Bt \X, h′(w) ∪ {Lext(v)} = h(w), and
for every non-neighbor w of v in Bt \X, h′(w) = h(w).

Thus (g′, h′) is an extension of (g, h), and it is in c[t′, X, Lext, i], as required. J

We update c[t,X, L, i] as follows. We choose (g, h) ∈ F(t,X, L). We can check whether
(g, h) ∈ c[t′, X ∪ {v}, L, i − 1] in time 2O(wd2). If it is, then we add (g, h) to c[t,X, L, i].
Suppose that (g, h) /∈ c[t′, X ∪ {v}, L, i − 1]. Now, for every possible extension Lext of L
by choosing a label for v, and for every (g′, h′) ∈ c[t′, X, Lext, i], we test whether (g′, h′) is
an extension of (g, h). This takes time 2O(wd2) as |c[t′, X, Lext, i]| 6 2O(wd2). If there is at
least one extension of (g, h) for some extension Lext of L, then we add (g, h) to c[t,X, L, i];
otherwise, we do not add it. The correctness of this procedure follows from Claim 2, and
in total, we can complete the table c[t,X, L, i] in time 2O(wd2).

3) t is a join node with two children t1 and t2:

We show the following:

Claim 3. For every (g, h) ∈ F(t,X, L), (g, h) ∈ c[t,X, L, i] if and only if there exist integers
i1, i2 with i1 + i2 = i, (g, h1) ∈ c[t1, X, L, i1] and (g, h2) ∈ c[t2, X, L, i2] such that

for each w ∈ Bt \X, h1(w) ∩ h2(w) = ∅ and h(w) = h1(w) ∪ h2(w), and for `1 ∈ h1(w)
and `2 ∈ h2(w), the vertices with labels `1 and `2 in g(w) are not adjacent.



XX:16 Generalized feedback vertex set problems on bounded-treewidth graphs

Proof. The forward direction is straightforward. Suppose there exist integers i1, i2 with
i1 + i2 = i and two characteristics (g, h1) ∈ c[t1, X, L, i1] and (g, h2) ∈ c[t2, X, L, i2] as
specified in the claim. For each j ∈ {1, 2}, let (Sj , Lj) be a partial solution with respect to
c[ti, X, L, ij ] and (g, hj). Let Lt be the labeling of Gt− (X ∪S1 ∪S2) obtained from each of
L1 and L2. We claim that (Gt − (X ∪ S1 ∪ S2), Bt \X) with the labeling Lt is a d-labeled
graph with characteristic (g, h). We verify the conditions of the definition of characteristics.

From the assumption that each (g, hj) is a characteristic of (Gtj − (X ∪ Sj), Bt \X), we
can directly check that g satisfies the coincidence and complete conditions and h satisfies the
neighborhood condition. It remains to check that for every v ∈ Bt \X and the connected
component H of Gt − (X ∪ S1 ∪ S2) containing v, H is partially label-isomorphic to g(v).

We consider H as the sum of H ∩ (Gt1 − (S ∪ X1)) and H ∩ (Gt2 − (S ∪ X2)) with
the same boundary V (H) ∩ (Bt \ X)). Clearly H is connected, and since g satisfies the
coincidence condition, for every v1, v2 ∈ V (H) ∩ (Bt \ X), g(v1) = g(v2). Let Q := g(v).
Since each (g, hj) is a characteristic of (Gtj − (X ∪ Sj), Bt \X), each H ∩ (Gti − (S ∪Xi))
is component-wise partially label-isomorphic to Q. Moreover, by the assumption that for
w ∈ Bt \X, `1 ∈ h1(w), and `2 ∈ h2(w), the vertices with labels `1 and `2 in g(w) are not
adjacent, H ∩ (Gt1 − (S ∪X1)) and H ∩ (Gt2 − (S ∪X2)) are component-wise Q-compatible.
By Proposition 10, H is partially label-isomorphic to g(v).

We conclude that (g, h) is a characteristic of (Gt − (X ∪ S1 ∪ S2), Bt \X). J

In the algorithm, choose a pair (g, h) ∈ F(t,X, L). For all integers i1, i2 with i1 + i2 = i,
(g, h1) ∈ c[t1, X, L, i1] and (g, h2) ∈ c[t2, X, L, i2], we check whether for each w ∈ Bt \ X,
h1(w)∩h2(w) = ∅ and h(w) = h1(w)∪h2(w), and for `1 ∈ h1(w) and `2 ∈ h2(w), the vertices
with labels `1 and `2 in g(w) are not adjacent. If there is such a pair of characteristics, then
we add (g, h) to c[t,X, L, i]; otherwise, we do not add anything to c[t,X, L, i]. We can
complete the table c[t,X, L, i] in time 2O(wd2)k as i 6 k.

Total running time. We denote |V (G)| by n. Note that the number of nodes in T

is O(wn) by Lemma 7. For fixed t ∈ V (T ), there are at most 2w+1 possible choices for
X ⊆ Bt, and for fixed X ⊆ Bt, there are at most dw+1 possible functions L on Bt \ X.
Thus, there are O(n · k · max(2, d)w+1) tables. In summary, the algorithm runs in time
O(n · k ·max(2, d)w+1) · 2O(wd2) · k = 2O(wd2)k2n. J

5 Bounded P-Block Vertex Deletion when P is a class of
chordal graphs

In this section, we prove Theorem 1, restated below.

I Theorem 14. Let P be a class of graphs that is chordal, block-hereditary, and recognizable
in polynomial time. Then Bounded P-Block Vertex Deletion can be solved in time
2O(wd2)k2n on graphs with n vertices and treewidth w.

We provide an overview of our approach for Theorem 1. Let (G,S) and (H,S) be two
compatible block d-labeled P-block graphs. Recall that S-blocks, Pair(G,S), and Part(G,S)
were defined in Section 2.

1. We first focus on S-blocks of (G,S). We follow the idea in the proofs of Theorems 3
and 13 for dealing with S-blocks. Specifically, for each non-trivial block of G[S], we guess
its final shape, and store the labelings of the vertices and their neighbors in the S-block
of G containing it. We store these as a b-characteristic of (G,S). Note that some vertices
can be in more than one non-trivial block of G[S], and we need to consider these blocks
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separately. So, the natural domains for functions g and h are Pair(G,S) rather than S.
Using b-characteristics, we control S-blocks in (G,S)⊕ (H,S).

2. By the procedure in (1), we may assume that every S-block of (G,S) ⊕ (H,S) is a P-
block graph with at most d vertices. Note that (G,S)⊕ (H,S) still may have a chordless
cycle. Let C be the set of all connected components of G[S]. We show in Proposition 20
that (G,S) ⊕ (H,S) has a chordless cycle if and only if Inc(C,Part(G,S) ∪ Part(H,S))
has no cycles. To use this fact, we need to store Part(G,S). If we store all such possible
partitions, then, in the worst case, the number of such partitions can be 2c·w logw for
some constant c. To avoid storing all such partitions, we borrow the representative
set technique for obtaining a 2O(w) · nO(1)-algorithm for the Feedback Vertex Set
problem from [1].

In Section 5.1, we formally define a representative set, and recall some necessary results.
In Section 5.2, we define the notion of b-characteristics, analogous to characteristics used in
Section 4. We prove the main result in Section 5.3.

5.1 Representative sets
Let S be a set, and let A be a set of partitions of S. A subset A′ of A is called a representative
set if it satisfies that

for every X1 ∈ A and every partition Y of S where Inc(S,X1 ∪ Y) has no cycles, there
exists a partition X2 ∈ A′ such that Inc(S,X2 ∪ Y) has no cycles.

We need to compute a representative set for a family of partitions. To apply the ideas
in [1], it is necessary to translate our problem to finding a pair of partitions X1,X2 where
Inc(S,X1 ∪ X2) is connected. For the Feedback Vertex Set problem, the authors in [1]
add one universal vertex to the given graph and deal with the size constraint on the vertex
and edge sets of the obtained connected graph, using the fact that a connected graph T is
a tree if and only if |V (T )| = |E(T )|+ 1. In our setting, we argue by restricting the size of
partitions in A.

I Lemma 15. Let S be a set and let X1,X2 be two partitions of S such that Inc(S,X1 ∪X2)
is connected. Then Inc(S,X1 ∪ X2) has no cycles if and only if |X1|+ |X2| = |S|+ 1.

Proof. Let H := Inc(S,X1 ∪ X2). The result follows from the fact that |V (H)| = |S| +
|X1|+ |X2|, |E(H)| = 2|S|, and a connected graph H has no cycles if and only if |E(H)| =
|V (H)| − 1. J

For a set S and a partition X of S, a partition Y of S is called a 1-coarsening of X
if Y = X \ {X1, . . . , Xm} ∪ {X1 ∪ · · · ∪ Xm} for some X1, . . . , Xm ∈ X . Notice that the
partition X itself is a 1-coarsening of X . We will use the following observation. For two
partitions X1,X2 of a set S, the following are equivalent:

Inc(S,X1 ∪ X2) has no cycles.
There exists a 1-coarsening X ′1 of X1 such that Inc(S,X ′1 ∪ X2) is connected and has no
cycles.

Such a 1-coarsening X ′ can be obtained by taking one part of X for each connected com-
ponent of Inc(S,X1 ∪X2) and unifying them into one part. Since the new part of X ′1 would
be a cut vertex of Inc(S,X ′1 ∪ X2), there will not be an additional cycle in Inc(S,X ′1 ∪ X2)
while it is connected.

We explicitly describe a necessary subroutine, Algorithm 1.
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Algorithm 1 RepPartitions(S,A)
Input: A set S and a family A of partitions of S.
Output: A representative set R of A.

1: We compute the family A′ of all 1-coarsenings of partitions in A.
2: For each 1 6 i 6 |S|, let Ai := {X ∈ A′ : |X | = i} and let Bi be the set of all partitions

of S of size i.
3: For each 1 6 i, j 6 |S| with i+ j = |S|+ 1, we obtain a set Ri from Ai with respect to
Bj using Theorem 16.

4: We take the set R from
⋃

16i6|S|Ri by taking the original partition before taking 1-
coarsening, and output R.

I Theorem 16 ([1]; See also Theorem 11.11 in [5]). Given two families of partitions A, B of
a set S, one can in time AO(1)2O(|S|) find a set A′ ⊆ A of size at most 2|S|−1 such that for
every X1 ∈ A and every Y ∈ B such that Inc(S,X1 ∪ Y) is connected, there exists X2 ∈ A′
such that Inc(S,X2 ∪ Y) is connected.

I Proposition 17. Given a family A of partitions of a set S, Algorithm 1 outputs a repre-
sentative set of A of size at most |S| · 2|S|−1 in time AO(1)2O(|S|).

Proof. Let R be the output of Algorithm 1. Clearly, R ⊆ A, because we take the original
partitions of

⋃
16i6|S|Ri at the last step. Thus, it is sufficient to show that

for every X1 ∈ A and every partition Y of S where Inc(S,X1 ∪ Y) has no cycles, there
exists a partition X2 ∈ R such that Inc(S,X2 ∪ Y) has no cycles.

To show this, let X1 ∈ A and Y be partitions of S such that Inc(S,X1∪Y) has no cycles.
We know that there exists a 1-coarsening X2 of X1 such that Inc(S,X2∪Y) is connected and
has no cycles. This 1-coarsening X2 is obtained in Step 1. In Step 3, we obtain R|X2|, and
there exists X3 ∈ R|X2| such that Inc(S,X3 ∪ Y) is connected and has no cycles. Let X4 be
the partition obtained from X3 by taking the original partition before taking 1-coarsening.
We have that X4 ∈ R and Inc(S,X4 ∪ Y) has no cycles, as required. By Theorem 16,
|R| 6

∑
16i6|S||Ri| 6 |S| · 2|S|−1 and Algorithm 1 runs in time AO(1)2O(|S|). J

We remark that Proposition 17 can also be obtained by applying the representative set
technique for matroids developed by Fomin et al. [10], using the graphic matroid correspond-
ing to Inc(S,A).

5.2 b-characteristics
We fix a class of graphs that is block-hereditary and consists of only chordal graphs, and a
positive integer d. Let Ud be the set of all d-labeled biconnected P-block graphs, where each
H in Ud has labeling LH . For convenience, we write g(v,B) and h(v,B) instead of g((v,B))
and h((v,B)) for functions g and h defined on Pair(G,S). For a block d-labeled graph (G,S)
with a labeling L, a b-characteristic of (G,S) is a pair (g, h) of functions g : Pair(G,S)→ Ud
and h : Pair(G,S)→ 2[d] satisfying the following:

1. for every (v1, B1), (v2, B2) ∈ Pair(G,S) where B1 and B2 are contained in the same
S-block of (G,S), g(v1, B1) = g(v2, B2),

2. for every (v,B) ∈ Pair(G,S) and the S-block H of G containing B, h(v,B) = L(NH(v)\
S),
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3. for every (v,B) ∈ Pair(G,S) and the S-block H of G containing B, H is partially
label-isomorphic to g(v,B), and

4. for every (v,B) ∈ Pair(G,S) and the S-block H of G containing B, and every w ∈
V (H) \ S, H[NH [w]] is label-isomorphic to g(v,B)[Ng(v,B)[w]] where w is the vertex in
g(v,B) with label L(w).

We say g satisfies the coincidence condition if g satisfies 1, and g satisfies the complete
condition if g satisfies 4. We also say h satisfies the neighborhood condition if h satisfies 2.
For a block d-labeled P-block graph with a b-characteristic of (g, h), we say that the sum
(G,S)⊕ (H,S) respects (g, h) if for each (v,B) ∈ Pair(G,S), the S-block of (G,S)⊕ (H,S)
containing B is label-isomorphic to g(v,B).

We prove an analogue of Theorem 13.

I Theorem 18. Let P be a class of graphs that is block-hereditary and consists of only
chordal graphs, and let d be a positive integer. Let (G1, S), (G2, S), and (H,S) be three
block d-labeled P-block graphs and C be the set of connected components of G2[S] such that

Inc(C,Part(G2, S) ∪ Part(H,S)) has no cycles,
for each i ∈ {1, 2}, (Gi, S) is compatible with (H,S), and
(G1, S) and (G2, S) have the same b-characteristic (g, h).

If (G1, S)⊕(H,S) is a block d-labeled P-block graph that respects (g, h), then (G2, S)⊕(H,S)
is a block d-labeled P-block graph that respects (g, h).

Before proving this, we prove a lemma about the transitive property of S-blocks. This
is rather clear for the connected component version, but for the block version, we need an
additional assumption that Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles.

I Lemma 19. Let P be a class of graphs that is block-hereditary and consists of only chordal
graphs, and let A be a set. Let (G,S) and (H,S) be two compatible block d-labeled chordal
graphs, C be the set of connected components of G[S], and g : Pair(G,S)→ A be a function
such that

Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles,
for every (v1, B1), (v2, B2) ∈ Pair(G,S) where B1 and B2 are contained in the same
S-block of G, g(v1, B1) = g(v2, B2), and
for every (v1, B1), (v2, B2) ∈ Pair(G,S) where B1 and B2 are contained in the same
S-block of H, g(v1, B1) = g(v2, B2).

If F is an S-block of (G,S)⊕(H,S) and (v1, B1), (v2, B2) ∈ Pair(G,S) where V (B1), V (B2) ⊆
V (F ), then g(v1, B1) = g(v2, B2).

Proof. Let F be an S-block of (G,S)⊕(H,S), and (v,B) ∈ Pair(G,S) where V (B) ⊆ V (F ).
It is sufficient to show that for every (v′, B′) ∈ Pair(G,S) with V (B′) ⊆ V (F ), g(v′, B′) =
g(v,B). Let (v′, B′) ∈ Pair(G,S) with V (B′) ⊆ V (F ). We may assume that B 6= B′ and F
is 2-connected.

We first prove a base case where B and B′ share a cut vertex of G[S].

Claim 1. If B and B′ share a cut vertex w of G[S], then g(v,B) = g(v′, B′).

Proof. Let C be the connected component of G[S] containing B and B′, and let U1, . . . , Up
be the set of all induced subgraphs of C consisting of w and one of the connected com-
ponents of C − w. Let CG and CH be the connected components of G and H containing
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C, respectively. Note that for each i ∈ {1, . . . , p}, there is a unique block of G[S] in Ui
containing w. We call itMi. Since B 6= B′, B and B′ are two distinct blocks ofM1, . . . ,Mp.

Let W1 −W2 − · · · −Wm be the shortest sequence of graphs in {U1, . . . , Up} such that

B and B′ are unique blocks containing w in W1 and Wm, respectively, and
for each i ∈ {1, . . . ,m− 1}, there is a path from Wi−w to Wi+1−w in G−w or H −w.

Such a sequence always exists as F is 2-connected and there is a path from B−w to B′−w in
(CG∪CH)−w. Clearly, for each i ∈ {1, . . . ,m−1}, there is an S-block of G or H containing
the unique blocks containing p in Wi and Wi+1. From this, we can observe that for every
unique block B′′ containing p inW1, . . . ,Wm, g(w,B′′) = g(v,B) and, in particular, we have
g(v′, B′) = g(v,B), as required. J

Let A and A′ be the connected components of G[S] containing B and B′ respectively.
Since Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles and F is connected, there is a unique
path from A to A′ in Inc(C,Part(G,S)∪Part(H,S)). Let A = A1 −A2 − · · · −Am = A′ be
the sequence of connected components of G[S] that appear on the unique path from A to
A′ in Inc(C,Part(G,S) ∪ Part(H,S)). We prove the statement by induction on m. In the
case when A = A′, it is easy to verify using Claim 1, by induction on the number of cut
vertices between B and B′ in A. We may assume that m > 2, and the statement holds for
every positive integer smaller than m.

Since F is 2-connected, there are two vertex-disjoint paths P1 and P2 from B to B′ in
F . Furthermore, for each i ∈ {1, 2}, there is a subpath P ′i of Pi whose end vertices are
in Am−1, Am, and other vertices are not in S. Let Q1 be a path in Am between two end
vertices of P ′1 and P ′2 in Am, and let Q2 be a path in Am−1 between two end vertices of P ′1
and P ′2 in Am−1. Clearly ((G,S) ⊕ (H,S))[V (P ′1) ∪ V (P ′2) ∪ V (Q1) ∪ V (Q2)] is a cycle of
G or H, and as P1 and P2 are contained in F , all vertices in Q1 and Q2 are in F as well.
We choose two blocks Bm−1 in Am−1 and Bm in Am containing at least two vertices of Q2
and Q1, respectively. Let vm−1 ∈ V (Bm−1) and vm ∈ V (Bm). By the induction hypothesis,
g(vm−1, Bm−1) = g(v,B), and since Bm−1 and Bm are contained in the same S-block of G
or H, we have g(vm, Bm) = g(v,B). Finally, by applying the same argument for the case
when A = A′, we can conclude that g(v′, B′) = g(vm, Bm). J

As mentioned earlier, the fact that (G,S)⊕(H,S) respects (g, h) does not guarantee that
(G,S)⊕(H,S) is a P-block graph whose blocks contain at most d vertices. In Proposition 20,
we show that if (G,S) ⊕ (H,S) respects (g, h) and Inc(C,Part(G,S) ∪ Part(H,S)) has no
cycles, then (G,S)⊕ (H,S) is a block d-labeled P-block graph.

I Proposition 20. Let P be a class of graphs that is block-hereditary and consists of only
chordal graphs, and let d be a positive integer. Let (G,S) and (H,S) be two compatible
block d-labeled P-block graphs with labelings LG and LH respectively, and (g, h) be a b-
characteristic of (G,S) such that (G,S) ⊕ (H,S) respects (g, h). Let C be the set of all
connected components of G[S]. The following are equivalent:

1. (G,S)⊕ (H,S) is a block d-labeled P-block graph.
2. (G,S)⊕ (H,S) is chordal.
3. Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles.

Proof. (1 ⇒ 2). This direction is trivial as P consists of only chordal graphs.

(2 ⇒ 3). Suppose that Inc(C,Part(G,S)∪Part(H,S)) has a cycle C1 −A1 −C2 −A2 −
· · ·−Cn−An−C1 where C1, . . . , Cn ∈ C and A1, . . . , An ∈ Part(G,S)∪Part(H,S). Without
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Figure 3 Finding a chordless cycle in Proposition 20.

loss of generality, we may assume that A1 ∈ Part(G,S). For convenience, let Cn+1 := C1
and An+1 := A1. For each 1 6 i 6 n, let Pi be the shortest path from Ci to Ci+1 in Ai,
and let vi, wi be the end vertices of Pi where vi ∈ V (Ci) and wi ∈ V (Ci+1). Let Qi be the
shortest path from wi to vi+1 in Ci+1. We divide cases depending on whether n = 2 or not.

Suppose n = 2. We choose C1, C2, P1, P2, Q1, Q2 such that the cycle C passes the
minimum number of connected components of G[S]. This minimality implies that C1 and
C2 are the only connected components of G[S] that contain vertices of both P1 and P2,
and there are no edges between the internal vertices of P1 and the internal vertices of P2.
Therefore, P1 ∪ P2 ∪ C1 ∪ C2 contains a chordless cycle, as required.

Now, assume that n > 3. In this case, v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1 is a cycle
in (G,S)⊕ (H,S), but is not necessarily a chordless cycle. Call this cycle C. We claim that
C contains a chordless cycle.

Let x be the next vertex of v2 in P2, and let y be the previous vertex of wn in Pn. See
Fig. 3 for an illustration. Take a shortest path P from x to y in the path y−Qn−P1−Q1−x.
Clearly P has length at least 2, as x and y are contained in distinct connected components
of Q. Also, every internal vertex of P has no neighbors in the other path of the cycle
v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1 between x and y. So, if we take a shortest path P ′
from x to y along the other part of the cycle v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1, then
P ∪ P ′ is a chordless cycle. This proves the claim.

(3 ⇒ 2). Suppose, towards a contradiction, that (G,S) ⊕ (H,S) contains a chordless
cycle C. Since (G,S) and (H,S) are chordal, C should contain a vertex of G−S and a vertex
of H − S. By assumption, we know that every S-block of (G,S)⊕ (H,S) is chordal. Thus,
C can contain at most one vertex from each S-block of (G,S) ⊕ (H,S). Furthermore, we
can observe that |V (C) ∩ V (F )| 6 1 for every connected component F of G[S]. Otherwise,
one of S-blocks of (G,S) ⊕ (H,S) should contain all vertices of C, contradicting the fact
that every S-block is chordal.

Let C1−C2− · · · −Cn−C1 be the sequence of connected components of G[S] such that

1. for each v ∈ V (C) ∩ V (Ci), one neighbor of v in C is contained in G− S and the other
is contained in H − S, and

2. C passes through the connected components of G[S] in this order.

As C contains at least one vertex of G−S and one vertex of H −S, such a sequence exists,
and n > 2. Without loss of generality, we may assume that the internal vertices in the path
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from C1 to C2 (corresponding to the first part of the sequence) are contained in G. Then,
the internal vertices in the path from C2 to C3 are contained in H, and we use parts of G−S
and H − S alternately. For each i, pick Ai ∈ Part(G,S) ∪ Part(H,S) corresponding to a
connected component of G or S containing the internal vertices of the path from Ci to Ci+1.
Then C1 −A1 −C2 −A2 − · · · −Cn −An −C1 is a cycle of Inc(C,Part(G,S)∪Part(H,S)).

(2 ⇒ 1). Let L := LG ⊕ LH . Suppose there exists a block B of (G,S) ⊕ (H,S) where
L|V (B) is not a d-labeling of B. Note that every block of (G,S)⊕ (H,S) contained in either
G or H is a d-labeled P-block. Also, since (G,S)⊕ (H,S) respects (g, h), every S-block of
(G,S) ⊕ (H,S) is a d-labeled P-block. Therefore, B is not an S-block, and it contains at
least one vertex of G− S and one vertex of H − S. We choose a triple (v, w,D) such that

v ∈ V (B)∩V (G−S), w ∈ V (B)∩V (H −S), and D is a cycle containing v and w in B;
and
the length of D is minimum.

Let P1 and P2 be the two paths from v to w in D.
We claim that there are no edges between the internal vertices of P1 and the internal

vertices of P2. Suppose there is an edge p1p2 for some p1 ∈ V (P1) \ {v, w} and p2 ∈
V (P2) \ {v, w}. Clearly, either both p1 and p2 are contained in G, or both are contained in
H. In any case, one of p1 and p2 should be contained in G− S or H − S, as B can contain
at most one vertex of each connected component of G[S]. Now, if p1 and p2 are contained
in G, then we can replace v with one of p1 and p2 that is in G − S, and obtain a cycle
shorter than D; a contradiction. Similarly, if they are contained in H, then we obtain a
cycle shorter than D. This implies that there are no edges between the internal vertices of
P1 and the internal vertices of P2. Since vw /∈ E(G), D contains a chordless cycle, which
contradicts the fact that (G,S) ⊕ (H,S) is chordal. We conclude that (G,S) ⊕ (H,S) is a
block d-labeled P-block graph. J

We also need the following lemma.

I Lemma 21. Let P be a class of graphs that is block-hereditary and consists of only chordal
graphs, and d be a positive integer. Let (G,S) and (H,S) be two compatible block d-labeled
P-block graphs such that Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles where C is the set of
connected components of G[S]. If F is an S-block of (G,S) ⊕ (H,S) and CF is the set of
connected components of (F ∩G)[S], then Inc(CF ,Part(F ∩G,S ∩ V (F ))∪Part(F ∩H,S ∩
V (F ))) has no cycles.

Proof. Let SF := S∩V (F ). Suppose towards a contradiction that Inc(CF ,Part(F ∩G,SF )∪
Part(F ∩H,SF )) has a cycle. Since Inc(C,Part(G,S) ∪ Part(H,S)) has no cycles, G or H
has a connected component D with a sequence C1 − F1 − · · · − Cm − Fm − C1 such that

C1, . . . , Cm are connected components of G[S] that are contained in D,
each Fi is a connected component of G ∩ F or H ∩ F depending on whether D is a
connected component of G or H, and
for each i ∈ {1, . . . ,m}, V (Ci ∩ Fi) and V (Ci ∩ Fi−1) are non-empty.

But then the path from V (C1 ∩ F1) to V (C1 ∩ Fm) in C1 should be contained in F , which
is a contradiction. We conclude that Inc(CF ,Part(F ∩ G,SF ) ∪ Part(F ∩ H,SF )) has no
cycles. J

We prove the main combinatorial result.
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Proof of Theorem 18. Suppose (G1, S) ⊕ (H,S) is a block d-labeled P-block graph that
respects (g, h). Since Inc(C,Part(G2, S) ∪ Part(H,S)) has no cycles, if (G2, S) ⊕ (H,S)
respects (g, h), then by Proposition 20, (G2, S)⊕ (H,S) is a block d-labeled P-block graph.
Therefore, it is sufficient to show (G2, S)⊕ (H,S) respects (g, h).

Choose a pair (v,B) ∈ Pair(G2, S). Let Q := g(v,B), and let F be the S-block of
(G2, S)⊕ (H,S) containing B. As a shortcut, set SF := V (F ) ∩ S. Let LF be the function
from V (F ) to [d] which sends each vertex to its label given from G2 or H. This is well
defined, as G2 and H have the same labels on vertices in S. Let LQ be the labeling of Q.

We claim that LF is a block d-labeling of F and F is partially label-isomorphic to Q.
We verify the conditions of Proposition 11 by regarding F as the sum of (F ∩G2, FS) and
(F ∩ H,FS). We additionally show that LQ(V (Q)) ⊆ LF (V (F )), in order to complete
the proof. Using Lemma 19, we confirm that for every pair (v′, B′) ∈ Pair(G2, S) where
V (B′) ⊆ V (F ), g(v′, B′) = Q.

Claim 1. For every (v′, B′) ∈ Pair(G2, S) with V (B′) ⊆ V (F ), g(v′, B′) = Q.

Proof. Note that Inc(C,Part(G2, S)∪Part(H,S)) has no cycles. Since (g, h) is a b-characteristic
of (G2, S), for every (v1, B1), (v2, B2) ∈ Pair(G2, S) where B1 and B2 are contained in the
same S-block of G2, g(v1, B1) = g(v2, B2). Also, since (G1, S) ⊕ (H,S) respects (g, h), for
every (v1, B1), (v2, B2) ∈ Pair(H,S) where B1 and B2 are contained in the same S-block of
H, g(v1, B1) = g(v2, B2). Thus the claim follows from Lemma 19. J

Let CF be the set of connected components of F [SF ]. Since Inc(C,Part(G2, S)∪Part(H,S))
has no cycles, by Lemma 21, Inc(CF ,Part(F ∩G2, SF )∪Part(F ∩H,SF )) has no cycles. To
apply Proposition 11, it remains to show that (F ∩G2, SF ) and (F ∩H,SF ) are block-wise
Q-compatible.

Claim 2. F ∩G2 and F ∩H are block-wise partially label-isomorphic to Q.

Proof. By Claim 1 and the fact that (g, h) is a b-characteristic of (G2, S), F ∩G2 is block-
wise partially label-isomorphic to Q. By Claim 1 and the fact that (G1, S)⊕(H,S) respects
(g, h), F ∩H is block-wise partially label-isomorphic to Q. J

Claim 3. F ∩G2 and F ∩H are block-wise Q-compatible.

Proof. Choose a pair (v,B) ∈ Pair(F, SF ) and let B1, B2 be the S-blocks of G2 and H

containing B respectively. Let B′1 be the S-block of G1 containing B. Since (G1, S)⊕ (H,S)
respects (g, h), NG1(v)∩ V (B′1 − S) and NF (v)∩ V (B2 − S) have disjoint sets of labels. As
(G1, S) and (G2, S) have the same b-characteristic, NG1(v)∩V (B1−S) and NG2(v)∩V (B′1−
S) have the same set of labels, and thus NG2(v) ∩ V (B1 − S) and NF (v) ∩ V (B2 − S) have
disjoint sets of labels. For `1 ∈ LF (NG2(v)∩ V (B1 − S)) and `2 ∈ LF (NF (v)∩ V (B2 − S)),
the vertices in Q with labels `1 and `2 are not adjacent because there are no edges between
NG2(v) ∩ V (B′1 − S) and NF (v) ∩ V (B2 − S), and (G1, S)⊕ (H,S) respects (g, h). J

Therefore, by Proposition 11, LF is a block d-labeling of F and F is partially label-
isomorphic to Q. Lastly, we show that F and Q have the same set of labels, which implies
that F is label-isomorphic to Q.

Claim 4. LQ(V (Q)) ⊆ LF (V (F )).
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Proof. Suppose there is a vertex v in Q such that F has no vertex with the label LQ(v).
We choose such a vertex v so that there exists w ∈ V (Q) that is adjacent to v in Q where
the label of w appears in F . We can choose such vertices v and w because Q is connected,
V (F ) 6= ∅, and LF (V (F )) ⊆ LQ(V (Q)). Let w′ be a vertex in F with label LQ(w). Suppose
w′ ∈ V (F −S) or there is a connected component of G[S] consisting of w′. Then there is an
S-block B of G or H containing w′, and B[NB [w′]] should be label-isomorphic to Q[NQ[w]].
So we may assume that w′ is contained in S, and there is a non-trivial block B′ of (F ∩G)[S]
containing w′.

Again, we observe that the S-block of (G1, S)⊕ (H,S) containing B′ is label-isomorphic
to Q. We can also observe that every label appearing in the neighborhood of w′ in the S-
block of (G1, S)⊕(H,S) containing B′ appears in the neighborhood of w′ in (G2, S)⊕(H,S)
as well, because (G1, S) and (G2, S) have the same b-characteristic. This concludes the proof
of the claim. J

We conclude that F is label-isomorphic to Q. Since (v,B) was arbitrary chosen, it implies
that (G2, S)⊕ (H,S) respects (g, h). J

5.3 Main algorithm
We use the following observation:

I Lemma 22. Let S be a set and X1,X2,Y be sets of subsets of S such that X2 is a coarsening
of X1, and Inc(S,X2 ∪ Y) has no cycles. Then Inc(S,X1 ∪ Y) has no cycles.

Proof. Since we can obtain X2 from X1 by a sequence of merging two parts into one part, it
is sufficient to prove when exactly one set of X2 is the union of two sets in X1, and other sets
of X1 are contained in X2. Suppose Inc(S,X1 ∪ Y) has a cycle c1d1c2d2 · · · cmdmc1 where
{c1, . . . , cm} ⊆ S, and let B ∈ X2, B1, B2 ∈ X1 where B = B1 ∪ B2. Clearly, {d1, . . . , dm}
contains both vertices B1 and B2 in Inc(S,X1 ∪ Y), otherwise, we can obtain the same
cycle in Inc(S,X2 ∪ Y) by replacing Bi with B. Thus, there is a path from the elements
of B1 to the elements of B2 in Inc(S,X1 ∪ Y) − {B1, B2}, and it creates a cycle with B in
Inc(S,X2 ∪ Y); a contradiction. J

Proof of Theorem 1. Using Theorem 6 and Lemma 7, we obtain a nice tree decomposition
of G of width at most 5w+4 in time O(cw ·n) for some constant c. Let (T,B = {Bt}t∈V (T ))
be the resulting nice tree decomposition and let r be its root node. For each node t of T ,
let Gt be the subgraph of G induced by the union of all bags Bt′ where t′ is a descendant
of t. Let Ud be the class of all biconnected d-labeled P-block graphs, where each H in Ud
has a labeling LH . Note that |Ud| 6 2(d

2). We define the following notation for every pair of
a node t of T and X ⊆ Bt:

1. Let Comp(t,X) be the set of all connected components of G[Bt \X].
2. Let Part(t,X) be the set of all partitions of Comp(t,X).
3. Let Block(t,X) be the set of all non-trivial blocks of G[Bt \X].
4. Let Pair(t,X) be the set of all pairs (v,B) where B ∈ Block(t,X) and v ∈ V (B).

For each node t of T , X ⊆ Bt, and a function L : Bt \ X → [d], we define F(t,X, L)
as the set of all pairs (g, h) consisting of a function g : Pair(t,X) → Ud and a function
h : Pair(t,X) → 2[d], and for an integer i with 0 6 i 6 k, and (g, h) ∈ F(t,X, L), let
c[t,X, L, i, (g, h)] be the family of all partitions X in Part(t,X) satisfying the following
property: there exist S ⊆ V (Gt) \Bt with |S| = i and a block d-labeling L′ of Gt− (X ∪S)
where
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Gt − (X ∪ S) is a P-block graph,
(g, h) is a b-characteristic of (Gt − (X ∪ S), Bt \X), and
L = L′|Bt\X and X = Part(Gt − (X ∪ S), Bt \X).

Such a pair (S,L′) is called a partial solution with respect to c[t,X, L, i, (g, h)] and X .
The main idea is that instead of fully computing c[t,X, L, i, (g, h)], we recur-

sively enumerate a representative set r[t,X, L, i, (g, h)] in c[t,X, L, i, (g, h)]. Indeed,
the set r[t,X, L, i, (g, h)] represents the partial solutions represented by partitions of
c[t,X, L, i, (g, h)]. To see this, suppose X ∈ c[t,X, L, i, (g, h)] and

there exists a partial solution (S,L′) with respect to X and c[t,X, L, i, (g, h)], and
there exists Sout ⊆ V (G) \ V (Gt) where G− (S ∪X ∪ Sout) is a block d-labeled P-block
graph respecting (g, h).

The graph G − (S ∪ X ∪ Sout) can be seen as the sum of (Gt − (X ∪ S), Bt \ X) and
(G− (V (Gt) \Bt)− (X ∪ Sout), Bt \X). Let Z := Part(G− (V (Gt) \Bt)− (X ∪ Sout), Bt \
X). Since G − (S ∪ X ∪ Sout) respects (g, h), Inc(Comp(t,X),X ∪ Z) has no cycles by
Proposition 20. As r[t,X, L, i, (g, h)] is a representative set of c[t,X, L, i, (g, h)], there exists
Y ∈ r[t,X, L, i, (g, h)] where Inc(Comp(t,X),Y∪Z) has no cycles. By Theorem 18, a partial
solution (S′, L′′) with respect to Y satisfies the property that G−(S′∪X∪Sout) is a P-block
graph respecting (g, h). Thus, we can store Y instead of X .

Whenever we update r[t,X, L, i, (g, h)], we confirm that

|r[t,X, L, i, (g, h)]| 6 w · 2w−1.

We describe how to update families r[t,X, L, i, (g, h)] depending on the type of node t, and
prove the correctness of each procedure. We fix such a tuple. For each leaf node t, we assign
r[t, ∅, L, i, (g, h)] := ∅ where L, g, and h are empty functions. We may assume that t is not
a leaf node.

1) t is an introduce node with child t′:

Let v be the vertex in Bt \Bt′ . If v ∈ X, then Gt −X = Gt′ − (X \ {v}) and Bt \X =
Bt′ \ (X \{v}). So, we can set r[t,X, L, i, (g, h)] := r[t′, X \{v}, L, i, (g, h)]. We assume that
v /∈ X. Let Lres := L|Bt′\X .

A pair (g, h) ∈ F(t,X, L) is called valid if it satisfies that

for every (v1, B), (v2, B) ∈ Pair(t,X), we have g(v1, B) = g(v2, B),
for every (w,B) ∈ Pair(t,X), B is partially label-isomorphic to g(w,B),
for every (v,B) ∈ Pair(t,X), h(v,B) = ∅, and
for every (v,B) ∈ Pair(t,X) and a neighbor w of v in B and ` ∈ h(w,B), L(v) /∈ h(w,B)
and the vertices in g(v,B) with labels L(v) and ` are not adjacent.

A pair (g′, h′) ∈ F(t′, X, Lres) is called a restriction of (g, h) if for every (w1, B1) ∈
Pair(t′, X) and (w2, B2) ∈ Pair(t,X) with V (B1) ⊆ V (B2), g′(w1, B1) = g(w2, B2) and
h′(w1, B1) = h(w1, B2).

We prove the following for the original set c[t,X, L, i, (g, h)].

Claim 1. Let (g, h) be a valid pair. For every X ∈ Part(t,X), X ∈ c[t,X, L, i, (g, h)] if and
only if there exist a restriction (g′, h′) of (g, h) and Y ∈ c[t′, X, Lres, i, (g′, h′)] such that

v has neighbors on at most one connected component in each part of Y, and
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if v has at least one neighbor in G[Bt \ X], then X is the partition obtained from Y
by unifying all parts of Y containing connected components having neighbors of v into
one part, and replacing such connected components with the connected component of
G[Bt \X] containing v; and otherwise, X = Y ∪ {{v}}.

Proof. Suppose X ∈ c[t,X, L, i, (g, h)]. This means there exists a partial solution (S,Lt)
with respect to c[t,X, L, i, (g, h)] and X . Let Y := Part(Gt′ − (X ∪ S), Bt′ \ X). If v has
neighbors on two distinct components in one part of Y, then we obtain a chordless cycle, and
this does not happen as Gt− (X ∪S) is chordal. Since we can naturally obtain a restriction
(g′, h′) for (Gt′ − (X ∪ S), Bt′ \X), we conclude the forward direction of the claim.

For the converse, suppose there exist (g′, h′) and Y satisfying the assumption. By the
assumption, there exists a partial solution (S,Lt′) with respect to c[t′, X, Lres, i, (g′, h′)] and
Y. Let H := Gt − (X ∪ S), H ′ := Gt′ − (X ∪ S), and Z := Part(G[Bt \X], Bt′ \X). Let
Lt be the function from V (H) to [d] obtained from Lt′ by further assigning Lt(v) := L(v).
Observe that Inc(Comp(t′, X),Y ∪Z) has no cycles because v has neighbors on at most one
connected component in each part of Y.

We claim that (g, h) is a b-characteristic of (H,Bt \X).

1. (g satisfies the coincidence condition.)
Let (v1, B1), (v2, B2) ∈ Pair(H,Bt \X) such that B1 and B2 are contained in a (Bt \X)-
block of (H,Bt \ X). As (g, h) is valid, we may assume B1 6= B2. Note that B1 − v
and B2 − v are contained in connected components in the same part of Y. Also, if
|V (Bi)| = 2 and v ∈ V (Bi), then Bi cannot be contained in the same (Bt \X)-block of
(H,Bt \X) with B3−i. For i ∈ {1, 2}, we may assume that |V (Bi)| > 3 if it contains v.
Let B′i := Bi if v /∈ V (Bi), and otherwise, we choose a non-trivial block B′i of G[Bt′ \X]
contained in Bi. Let v′i ∈ V (B′i). It is sufficient to show that g′(v′1, B′1) = g′(v′2, B′2) as
g(v1, B1) = g′(v′1, B′1) and g(v2, B2) = g′(v′2, B′2).
For two pairs (w1, D1), (w2, D2) ∈ Pair(t′, X), if D1 and D2 are contained in the same
(Bt′ \ X)-block of (H ′, Bt′ \ X) or (Gt[Bt \ X], Bt′ \ X), then g′(w1, D1) = g′(w2, D2)
because (g′, h′) is a b-characteristic of (H ′, Bt′ \X) and (g′, h′) is a restriction of (g, h).
By Lemma 19, we have g′(v′1, B′1) = g′(v′2, B′2).

2. (h satisfies the neighborhood condition.)
Let (w,B) ∈ Pair(H,Bt \ X) and F be the (Bt \ X)-block of (H,Bt \ X) containing
B. If w = v, then NF (v) \ (Bt \ X) = ∅ and since (g, h) is a valid pair, we have
h(v,B) = ∅ = Lt(NF (v) \ (Bt \ X)). If B does not contain v, then this is also true.
We may assume that v 6= w, B contains v, and |V (B)| > 3. Choose a pair (w,B′) ∈
Pair(H ′, Bt′ \X) where V (B′) ⊆ V (B), and let F ′ be the (Bt′ \X)-bock of (H ′, Bt′ \X)
containing B′. Note that NF (w) \ (Bt \ X) = NF ′(w) \ (Bt′ \ X). Thus, we have
h(w,B) = h′(w,B′) = Lt(NF (w) \ (Bt \X)).

3. (For every (w,B) ∈ Pair(H,Bt \X) and the (Bt \X)-block F of H containing B, F is
partially label-isomorphic to g(w,B).)
Let F1 := F ∩H ′, F2 := F ∩G[Bt \X], and CF be the set of all connected components
of F1[V (F1 ∩ F2)]. We consider F as the sum of (F1, V (F1 ∩ F2)) and (F2, V (F1 ∩ F2)).
Since Inc(Comp(t′, X),Y∪Z) has no cycles, by Lemma 21, Inc(CF ,Part(F1, V (F1∩F2))∪
Part(F2, V (F1 ∩ F2))) has no cycles.
Since (g′, h′) is a b-characteristic of (F ′, Bt′ \X) and (g, h) is a valid pair, (F1, V (F1∩F2))
and (F2, V (F1 ∩ F2)) are block-wise partially label-isomorphic to g(w,B). Furthermore,
as (g, h) is valid, (F1, V (F1 ∩F2)) and (F2, V (F1 ∩F2)) are block-wise Q-compatible. By
Proposition 11, F is partially label-isomorphic to g(w,B).



É. Bonnet, N. Brettell, O. Kwon, D. Marx XX:27

4. (g satisfies the complete condition.)
This follows from the fact that (g′, h′) is a restriction of (g, h) and it is a b-characteristic
of (H ′, Bt′ \X).

All together we can conclude that X ∈ c[t,X, L, i, (g, h)]. J

When v /∈ X, we update r[t,X, L, i, (g, h)] as follows. We will construct a set K, and
then obtain r[t,X, L, i, (g, h)] by taking a representative set from K. Set K := ∅. We
can check whether (g, h) is valid or not in time O(wd2). If it is not valid, then we assign
r[t,X, L, i, (g, h)] := ∅. If (g, h) is valid, then for every (g′, h′) ∈ F(t′, X, Lres), we test
whether (g′, h′) is a restriction of (g, h). Assume that (g′, h′) is a restriction of (g, h),
otherwise, we skip it. Now, for each Y ∈ r[t′, X, Lres, i, (g′, h′)], we check the two conditions
for (g′, h′) and Y in Claim 1, and if it is satisfied, then we add the set X described in Claim
1 to K; otherwise, we skip it. Since |F(t,X, L)| 6 2O(wd2) and |r[t′, X, Lres, i, (g′, h′)]| 6
w · 2w−1, the whole procedure can be done in time 2O(wd2). After we do this for all possible
candidates, we take a representative set of K using Proposition 17, and assign the resulting
set to r[t,X, L, i, (g, h)]. Since |K| 6 2O(wd2), by Proposition 17, the procedure of taking a
representative set can be done in time 2O(wd2). Also, we have |r[t,X, L, i, (g, h)]| 6 w ·2w−1.

We claim that r[t,X, L, i, (g, h)] is a representative set of c[t,X, L, i, (g, h)]. Let X ∈
c[t,X, L, i, (g, h)] and Z ∈ Part(t,X) where Inc(Comp(t,X),X ∪ Z) has no cycles. By
Claim 1, there exist a restriction (g′, h′) of (g, h) and Y ∈ c[t′, X, Lres, i, (g′, h′)] satisfying
the two conditions of Claim 1. Let U be the connected component of Bt \X containing v,
and let Z1 be the partition of Bt′ \X such that Z1 is obtained from Z by replacing U with
the connected components of Bt′ \X contained in U . Since v has neighbors in at most one
connected component in each part of Y, we can observe that Inc(Comp(t′, X),Y ∪ Z1) has
no cycles. So, there exists Y1 ∈ r[t′, X, Lres, i, (g′, h′)] where Inc(Comp(t′, X),Y1 ∪ Z1) has
no cycles.

We observe that v has neighbors in at most one connected component of each part of
Y1 because all connected components of G[Bt′ \ X] having a neighbor of v are still in the
same part of Z1. Thus, the partition X1, that is obtained from Y1 in Claim 1, is added
to the set K. Note that Inc(Comp(t,X),X1 ∪ Z) has no cycles. Therefore, there exists
X2 ∈ r[t,X, L, i, (g, h)] such that Inc(Comp(t,X),X2 ∪ Z) has no cycles, as required.

2) t is a forget node with child t′:

Let v be the vertex in Bt′ \ Bt. For an extension L′ of L on Bt′ \ X, a pair (g′, h′) ∈
F(t′, X, L′) is called an extension of (g, h) with respect to L′ if

1. for every (w1, B1) ∈ Pair(t,X) and (w2, B2) ∈ Pair(t′, X) with V (B1) ⊆ V (B2), we have
g′(w2, B2) = g(w1, B1),

2. for every (w,B1) ∈ Pair(t,X) and (v,B2) ∈ Pair(t′, X) where w is a neighbor v and
V (B1) ⊆ V (B2), h′(w,B2) = h(w,B1) \ {L′(v)}, and

3. for every (w,B1) ∈ Pair(t,X) and (w,B2) ∈ Pair(t′, X) where V (B1) ⊆ V (B2) and
either v /∈ V (B2) or vw /∈ E(G), we have h′(w,B2) = h(w,B1).

We show the following:

Claim 2. For every X ∈ Part(t,X), X ∈ c[t,X, L, i, (g, h)] if and only if one of the following
holds:

1. X ∈ c[t′, X ∪ {v}, L, i− 1, (g, h)].
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2. There exist an extension Lext of L on Bt′ \ X and an extension (g′, h′) of (g, h) in
F(t′, X, Lext) with respect to Lext and Y ∈ c[t′, X, Lext, i, (g′, h′)] such that X is the
partition obtained from Y by replacing the connected component U of Bt \X containing
v with the connected components of Bt′ \X contained in U .

Proof. We show the backwards direction. If X ∈ c[t′, X ∪ {v}, L, i − 1, (g, h)], then X ∈
c[t,X, L, i, (g, h)], as we can put v into the corresponding deletion set. Suppose the statement
2 holds. So, there exists a partial solution (S,Lt′) with respect to c[t′, X, Lext, i, (g′, h′)] and
Y. As (g′, h′) is an extension of (g, h), we can verify that (Gt − (X ∪ S), Bt \X) is a block
d-labeled graph having (g, h) as a b-characteristic. Thus, X ∈ c[t,X, L, i, (g, h)].

For the other direction, suppose that X ∈ c[t,X, L, i, (g, h)]. So there exists a partial
solution (S,Lt) with respect to c[t,X, L, i, (g, h)] and X . If v ∈ S, then X ∈ c[t′, X ∪
{v}, L, i − 1, (g, h)]. This corresponds to the first case. We may assume that v /∈ S. Let
Lext := Lt|Bt′\X and Y := Part(Gt−(X∪S), Bt′\X). Since Gt−(X∪S) = Gt′−(X∪S), one
can observe that X is the partition obtained from Y by replacing the connected component
U of Bt\X containing v with the connected components of Bt′ \X contained in U . We focus
on showing that there exists an extension (g′, h′) of (g, h) in F(t′, X, Lext) where (g′, h′) is
a b-characteristic of (Gt′ − (X ∪ S), Bt′ \X).

For each (v,B) ∈ Part(t′, X),

if there exists a pair (w,B′) ∈ Pair(t,X) where B and B′ are contained in the same block
of Gt − (X ∪ S), then we let g′(v,B) = g(w,B′), (this is well-defined because (S,Lt) is
a partial solution with respect to c[t,X, L, i, (g, h)] and X ),
otherwise, we know that the block of Gt′ − (X ∪ S) containing v is label-isomorphic to
a graph in Ud; let g′(v,B) be this graph.

For (w,B) ∈ Pair(t′, X) where B does not contain v, let g′(w,B) = g(w,B). Also, for
every (w,B) ∈ Pair(t′, X), let h′(w,B) be the set of labels that appear in the neighbors of
w in the block of Gt′ − (Bt ∪X) containing B. Then (g′, h′) is an extension of (g, h), and
Y ∈ c[t′, X, Lext, i, (g, h)]. J

We update r[t,X, L, i, (g, h)] as follows. Set K := ∅. First, we add all partitions in
r[t′, X ∪ {v}, L, i− 1, (g, h)] to K. At the second step, for every possible extension Lext of L
by choosing a label for v, and for every (g′, h′) ∈ F(t′, X, Lext), we test whether (g′, h′) is
an extension of (g, h). In case when (g′, h′) is an extension of (g, h) with respect to Lext, for
all partitions Y ∈ r[t′, X, L, i, (g′, h′)], we add the set X satisfying the second statement in
Claim 2 to K, and otherwise, we skip this pair. This can be done in time 2O(wd2). After we
do this for all possible candidates, we take a representative set of K using Proposition 17, and
assign the resulting set to r[t,X, L, i, (g, h)]. Notice that |K| 6 2O(wd2). By Proposition 17,
the procedure of obtaining a representative set can be done in time 2O(wd2), and we have
|r[t,X, L, i, (g, h)]| 6 w · 2w−1.

We claim that r[t,X, L, i, (g, h)] is a representative set of c[t,X, L, i, (g, h)]. Let X ∈
c[t,X, L, i, (g, h)] and Z ∈ Part(t,X) where Inc(Comp(t,X),X ∪ Z) has no cycles. By
Claim 2, one of two statements in the claim holds. If X ∈ c[t′, X ∪ {v}, L, i − 1, (g, h)],
then there exists X1 ∈ r[t′, X ∪ {v}, L, i − 1, (g, h)] where Inc(Comp(t′, X),X1 ∪ Z) has
no cycles. So, X1 is added to K, and thus, there exists X2 ∈ r[t,X, L, i, (g, h)] such that
Inc(Comp(t,X),X2 ∪ Z) has no cycles. Assume that the statement 2 holds. If v has at
least one neigbhor in G[Bt \X], then let Z1 be the partition obtained from Z by unifying
all parts having a connected component containing a neighbor of v and replacing those
connected components of G[Bt′ \X] with the connected component of G[Bt \X] containing
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v, and otherwise, let Z1 := Z ∪{{v}}. Observe that Inc(Comp(t′, X),Y ∪Z1) has no cycles.
Thus, there exists Y1 ∈ r[t′, X, Lext, i, (g′, h′)] where Inc(Comp(t′, X),Y1 ∪ Z1) also has no
cycles. In the procedure, the set satisfying the second statement in Claim 2 to K, and thus,
there exists X2 ∈ r[t,X, Lext, i, (g′, h′)] where Inc(Comp(t,X),X2 ∪ Z) has no cycles.

3) t is a join node with two children t1 and t2:

We show the following:

Claim 3. For every X ∈ Part(t,X), X ∈ c[t,X, L, i, (g, h)] if and only if there exist integers
i1, i2 with i1 + i2 = i, (g, h1) ∈ F(t1, X, L), (g, h2) ∈ F(t2, X, L), X1 ∈ c[t1, X, L, i1, (g, h1)],
and X2 ∈ c[t2, X, L, i2, (g, h2)] such that

Inc(Comp(t,X),X1 ∪ X2) has no cycles,
X = X1 ] X2, and
for each (w,B) ∈ Pair(t,X), h1(w,B)∩h2(w,B) = ∅ and h(w,B) = h1(w,B)∪h2(w,B),
and for `1 ∈ h1(w,B) and `2 ∈ h2(w,B), the vertices with labels `1 and `2 in g(w,B)
are not adjacent.

Proof. The forward direction is straightforward by Proposition 20. Suppose there exist
integers i1, i2 with i1 + i2 = i, (g, h1), (g, h2), and partitions X1,X2 as specified in the claim.
For each j ∈ {1, 2}, let (Sj , Lj) be a partial solution with respect to c[tj , X, L, ij , (g, hj)]
and Xj . For each i ∈ {1, 2}, let Hi := Gti − (X ∪Si), and let H := H1 ∪H2. Let LH be the
function from V (H) to [d] where LH(v) is given from block d-labelings L1 and L2.

We claim that (g, h) is a b-characteristic of (F,Bt \ X). Since X = Part(F,Bt \ X)
it implies that X ∈ c[t,X, L, i, (g, h)]. We verify the conditions of the definition of b-
characteristics.

1. (g satisfies the coincidence condition.)
Since Inc(Comp(t,X),X1 ∪ X2) has no cycles and (g, hi) is a b-characteristic of Hi, it
follows from Lemma 19.

2. (h satisfies the neighborhood condtiion.)
It follows from the assumption that h(v,B) = h1(v,B) ∪ h2(v,B) for each (v,B) ∈
Part(t,X).

3. (For every (v,B) ∈ Pair(H,Bt \X) and the (Bt \X)-block F of H containing B, F is
partially label-isomorphic to g(v,B).)
We consider F as the sum of (F ∩ H1, V (F ) ∩ (Bt \ X)) and (F ∩ H2, V (F ) ∩ (Bt \
X)). Let CF be the set of connected components of G[F ∩ (Bt \ X)]. By Lemma 21,
Inc(CF ,Part(F ∩H1, V (F ) ∩ (Bt \X)) ∪ Part(F ∩H2, V (F ) ∩ (Bt \X))) has no cycles.
Since each (g, hj) is a b-characteristic of (Hj , Btj \X), (F ∩H1, V (F ) ∩ (Bt \X)) and
(F ∩H2, V (F )∩ (Bt \X)) are block-wise partially label-isomorphic to g(v,B). Moreover,
(F∩H1, V (F )∩(Bt\X)) and (F∩H2, V (F )∩(Bt\X)) are block-wise g(v,B)-compatible,
because of the assumption that for each (w,B) ∈ Pair(t,X), h1(w,B)∩h2(w,B) = ∅ and
h(w,B) = h1(w,B) ∪ h2(w,B), and for `1 ∈ h1(w,B) and `2 ∈ h2(w,B), the vertices
with labels `1 and `2 in g(w,B) are not adjacent. By Proposition 11, F is partially
label-isomorphic to g(v,B).

4. (g satisifes the complete condition.)
This follows from the fact that (g, hj) is a b-characteristic of (Hj , Bt \X).

It proves that (g, h) is a b-characteristic of (H,Bt \X). J
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We update r[t,X, L, i, (g, h)] as follows. Set K := ∅. We fix integers i1, i2 with i1 +i2 = i,
(g, h1) ∈ F(t1, X, L) and (g, h2) ∈ F(t2, X, L). We can check in time O(wd2) the condition
that

for each (w,B) ∈ Pair(t,X), h1(w,B)∩h2(w,B) = ∅ and h(w,B) = h1(w,B)∪h2(w,B),
and for `1 ∈ h1(w,B) and `2 ∈ h2(w,B), the vertices with labels `1 and `2 in g(w,B)
are not adjacent.

If these pairs do not satisfy this condition, then we skip them. We assume that these pairs
satisfy this condition. For X1 ∈ r[t1, X, L, i1, (g, h1)] and X2 ∈ r[t2, X, L, i2, (g, h2)], we test
whether Inc(Comp(t,X),X1 ∪X2) has no cycles and X = X1 ]X2. We can check it in time
O(w). If they satisfy the two conditions, then we add the partition X to the set K, and other-
wise, we do not add. After we do this for all possible candidates, we take a representative set
of K using Proposition 17, and assign the resulting set to r[t,X, L, i, (g, h)]. The total run-
ning time is k ·2O(wd2) because |F(tj , X, L)| 6 2O(wd2) and |r[tj , X, L, ij , (g, hj)]| 6 w ·2w−1

for each j ∈ {1, 2}. We have |r[t,X, L, i, (g, h)]| 6 w · 2w−1.
We claim that r[t,X, L, i, (g, h)] is a representative set of c[t,X, L, i, (g, h)]. Let X ∈

c[t,X, L, i, (g, h)] and Z ∈ Part(t,X) where Inc(Comp(t,X),X ∪ Z) has no cycles. By
Claim 3, there exist (g, h1) ∈ F(t1, X, L), (g, h2) ∈ F(t2, X, L), X1 ∈ c[t1, X, L, i1, (g, h1)],
and X2 ∈ c[t2, X, L, i2, (g, h2)] where Inc(Comp(t,X),X1 ∪ X2) has no cycles and X =
X1 ] X2. By Lemma 22, each Inc(Comp(t,X),Xj ∪ Z) has no cycles. For each j ∈ {1, 2},
let Zj := Xj ]Z. We observe that each Inc(Comp(t,X),Xj ∪Z3−j) has no cycles, and thus,
there exists X ′j ∈ r[tj , X, L, ij , (g, hj)] where Inc(Comp(t,X),X ′j ∪ Z3−j) has no cycles. Let
X ′ := X ′1 ]X ′2. By the construction, this set X ′ should be added to K and thus there exists
X ′′ ∈ r[t,X, L, i, (g, h)] where Inc(Comp(t,X),X ′′ ∪ Z) has no cycles.

Total running time. We denote |V (G)| by n. Note that the number of nodes in T

is O(wn) by Lemma 7. For fixed t ∈ V (T ), there are at most 2w+1 possible choices for
X ⊆ Bt, and for fixed X ⊆ Bt, there are at most dw+1 possible functions L. Furthermore,
the size of F(t,X, L) is bounded by 2O(wd2). Thus, there are O(n ·k ·max(2, d)w+1 ·2O(wd2))
tables.

In summary, the algorithm runs in time O(n ·k ·max(2, d)w+1) ·2O(wd2) ·k = 2O(wd2)k2n.
J

6 Lower bound for fixed d

We showed that Bounded P-Component Vertex Deletion and Bounded P-Block
Vertex Deletion admit single-exponential time algorithms parameterized by treewidth,
whenever P is a class of chordal graphs. We now establish that, assuming the ETH, this is
no longer the case when P contains a graph that is not chordal.

In the k×k Independent Set problem, one is given a graph G = ([k]× [k], E) over the
k2 vertices of a k-by-k grid. We denote by 〈i, j〉 with i, j ∈ [k] the vertex of G in the i-th row
and j-th column. The goal is to find an independent set of size k in G that contains exactly
one vertex in each row. The Permutation k × k Independent Set problem is similar
but with the additional constraint that the independent set should also contain exactly one
vertex per column.

I Theorem 23. For any fixed integer d > 4, if P contains the cycle graph on ` > 4 ver-
tices, then Bounded P-Component Vertex Deletion, or Bounded P-Block Ver-
tex Deletion, is not solvable in time 2o(w logw)nO(1) on graphs of treewidth at most w
even for fixed d = `, unless the ETH fails.
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Proof. We reduce from Permutation k×k Independent Set which, like Permutation
k × k Clique, cannot be solved in time 2o(k log k)nO(1) unless the ETH fails [13]. Let
G = ([k] × [k], E) be an instance of Permutation k × k Independent Set. We assume
that ∀h, i, j ∈ [k] with h 6= i, 〈i, j〉〈h, j〉 ∈ E. Adding these edges does not change the Yes-
and No-instances, but has the virtue of making Permutation k × k Independent Set
equivalent to k × k Independent Set. We also assume that ∀h, i, j ∈ [k], 〈i, j〉〈i, h〉 /∈ E,
since at most one of 〈i, j〉 and 〈i, h〉 can be in a given solution. Let m := |E| = O(k4) be
the number of edges of G.

Outline. We build two almost identical graphs G′ = (V ′, E′) and G′′ = (V ′, E′′) with
treewidth at most (3d+ 4)k+ 4d+ 3 = O(k), and ((3d− 2)k2 + 2k)m vertices, such that the
following three conditions are equivalent:

1. G has an independent set of size k with one vertex per row of G.
2. There is a set S ⊆ V ′ of size at most (2d + 2)k(k − 1)m such that each connected

component of G′ − S has size at most d.
3. There is a set S ⊆ V ′ of size at most (2d+ 2)k(k − 1)m such that each block of G′′ − S

has size at most d.

The overall construction of G′ and G′′ will display m almost copies of the encoding of
an edgeless G arranged in a cycle. Each copy embeds one distinct edge of G. The point of
having the information of G distilled edge by edge in G′ and G′′ is to control the treewidth.
This general idea originates from a paper of Lokshtanov et al. [11].

Se1 He1 Se2 He2 Se3 He3 Sem Hem

Figure 4 A high-level schematic of G′ and G′′. The Heis only differ by a constant number of
edges (in red/light gray) that encode their edge ei of G.

Construction. We first describe G′. As a slight abuse of notation, a gadget (and, more
generally, a subpart of the construction) may refer to either a subset of vertices or to an
induced subgraph. For each e = 〈ie, je〉〈i′e, j′e〉 ∈ E, we detail the internal construction of
He and Se of Fig. 4 and how they are linked to one another. Each vertex v = 〈i, j〉 of G is
represented by a gadget He(v) on 2d+2 vertices in G′: two isolated vertices ve− and ve+, and
two disjoint cycles of length d. We add all the edges between He(〈i, j〉) and He(〈i, j′〉) for
i, j, j′ ∈ [k] with j 6= j′. We also add all the edges between He(〈ie, je〉) and He(〈i′e, j′e〉).
Note that, in general, there is no edge between He(〈i, j〉) and He(〈i′, j〉) for i, i′, j ∈ [k]
with i 6= i′. We call He the graph induced by the union of every He(v), for v ∈ V (G).
The row/column selector gadget Se consists of a set Ser of k vertices with one vertex rei for
each row index i ∈ [k], and a set Sec of k vertices with one vertex cej for each column index
j ∈ [k]. The gadget Se forms an independent set of size 2k. We arbitrarily label the edges
of G: e1, e2, . . . , em. For each h ∈ [m] and v = 〈i, j〉 ∈ V , we link veh

− to reh
i (the row index

of v) and we add a path with d − 3 edges from veh
− to ceh

j (the column index of v). We
also link veh

+ to reh+1
i and to ceh+1

j with the convention that em+1 = e1. That concludes the
construction (see Fig. 5). To obtain G′′ from G′, we add the edges ceh

j c
eh
j+1 for every h ∈ [m]

and j ∈ [k − 1]. We ask for a deletion set S of size s := (2d+ 2)k(k − 1)m.

Treewidth of G′ and G′′. We claim that the pathwidth, and hence treewidth, of
G′ and G′′ are bounded by (3d + 4)k + 4d + 3. For any edge e ∈ E, we set H(e) :=
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row index column index
Se1
r Se1

c

He1

row index column index
Se2
r Se2

c

He2

...

Figure 5 The overall picture of G′ and G′′ with k = 3. Dotted edges are subdivided d− 4 times.
In particular, if d = 4, they are simply edges. Edges between two boxes link each vertex of one box
to each vertex of the other box. The gray edges in the column selectors S

eh
r are only present in G′′.

He(〈ie, je〉) ∪ He(〈i′e, j′e〉). For any i ∈ [m], we set S̃i := Se1 ∪ Sei ∪ Sei+1 (with the
convention that em+1 = e1). For each e ∈ E, and i ∈ [k], He(i) denotes the union of the
He(v) for all vertices v of the i-th row. Finally, Je(i) denotes the union of He(i) with the
(d−4)k vertices of the subdivision of 〈i, j〉e−cej for every j ∈ [k]. Here is a path decomposition
of G′ and G′′ where the bags contain no more than (3d+ 4)k + 4d+ 4 vertices:

S̃1 ∪H(e1) ∪ Je1(1)→ S̃1 ∪H(e1) ∪ Je1(2)→ . . .→ S̃1 ∪H(e1) ∪ Je1(k)→
S̃2 ∪H(e2) ∪ Je2(1)→ S̃2 ∪H(e2) ∪ Je2(2)→ . . .→ S̃2 ∪H(e2) ∪ Je2(k)→

...
S̃m ∪H(em) ∪ Jem(1)→ S̃m ∪H(em) ∪ Jem(2)→ . . .→ S̃m ∪H(em) ∪ Jem(k).

As |S̃h| = 6k for any h ∈ [2,m − 1] (while |S̃1| = |S̃m| = 4k), |H(eh)| = 2(2d + 2), and
|Jeh(i)| 6 (2d+ 2)k + (d− 4)k = (3d− 2)k for any i ∈ [k], the size of a bag is bounded by
maxh∈[m],i∈[k] |S̃h ∪H(eh) ∪ Jeh(i)| 6 6k + 2(2d+ 2) + (3d− 2)k = (3d+ 4)k + 4d+ 4.

Soundness of the reduction. We first show 1 ⇒ 2. Let us assume that there is an
independent set I := {v1 = 〈1, j1〉, v2 = 〈2, j2〉, . . . , vk = 〈k, jk〉} in G. We define the deletion
set S ⊆ V ′ as follows. For each e ∈ E and i ∈ [k], we delete all of He(i) except He(vi). The
cardinality of S adds up to a total of mk(|He(i)| − |He(vi)|) = mk((2d + 2)k − 2d − 2) =
(2d + 2)k(k − 1)m = s vertices. We claim that all the connected components of G′ − S
are isomorphic to Cd. First, we observe that the Cds inside any He(vi), for e ∈ E and
i ∈ [k], are isolated in G′ − S. Indeed, He(vi) is the only remaining He(v) from He(i).
So, it might only be linked to He(vj) with some j 6= i ∈ [k]. But this would imply that
vivj ∈ E, contradicting that I is an independent set. From this, we also derive that, for any
i ∈ [k] and e ∈ E, the vertices vie− and vie+ are only adjacent to a row/column selector in
G′ − S, so they have degree 2 in G′ − S. Besides those Cds contained in the He(vi)s, we
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claim that the rest of G′ − S is mk disjoint Cds formed with the vertices vpeh−1
+ , vpeh

− , reh
p ,

ceh
jp
, and the d − 4 vertices of the subdivision of vpeh

− c
eh
jp
, for any h ∈ [m] and p ∈ [k] (with

the convention that e0 = em). Indeed, let us recall that {j1, j2, . . . , jk} = [k]. Therefore,
({vpeh−1

+ , vp
eh
− , r

eh
p , c

eh
jp
,the d− 4 vertices of the subdivision of vpeh

− c
eh
jp
})h∈[m],p∈[k] is a family

of mk pairwise disjoint sets of size d. The vertices reh
p and ceh

jp
have degree 2 in G′ − S

since I contains only one vertex in the p-th row of G, and I contains only one vertex in
the jp-th column; and in both cases this vertex is vp. The vertices vpeh−1

+ and vp
eh
− also

have degree 2 in G′ − S as mentioned already. Therefore, G′ − S is a disjoint union of Cds.
The implication 1 ⇒ 3 is derived similarly. We now claim that, with the same deletion set
S, all the blocks of G′′ − S are isomorphic to Cd or K2. As P is a hereditary class that
contains the induced cycle of length d > 4, it holds that K2 ∈ P. We still have the property
that the Cds within any He(vi) are isolated in G′′ − S. Now, the slight difference is that
({vpeh−1

+ , vp
eh
− , r

eh
p , c

eh
jp
,the d− 4 vertices of the subdivision of vpeh

− c
eh
jp
})h∈[m],p∈[k] induces m

disjoint Ck,ds in G′′ − S, where Ck,d is the graph obtained by linking each of the k vertices
of a path to the two endpoints of a path on d− 1 vertices. Informally, Ck,d corresponds to k
Cds attached to different vertices of a path on k vertices. In this case, the path consists of
the vertices ceh

1 , ceh
2 , . . . , ceh

k . Finally, we observe that the blocks of Ck,d are k Cds and k− 1
K2s.

We now show that 2 ⇒ 1 and 3 ⇒ 1. We assume that there is a set S ⊆ V ′ of size at
most s such that all the blocks of G′′ − S (resp. G′ − S) have size at most d. We note that
this corresponds to assuming 3 (resp. a weaker assumption than 2). The first property we
show on S is that, for any e ∈ E and i ∈ [k], |He(i) ∩ S| > (2d+ 2)(k − 1). In other words,
strictly more than 2d+ 2 vertices of He(i) cannot remain in G′′ − S (or G′ − S). Assume,
for the sake of contradiction, that He(i) − S contains at least 2d + 3 vertices. Observe
that He(i) − S cannot contain at least one vertex from three distinct He(u), He(v), and
He(w) (with u, v and w in the i-th row of G), since then He(i) − S would be 2-connected
(and of size > d). For the same reason, He(i) − S cannot contain at least two vertices
in He(u) and at least two vertices in another He(v). Therefore, the only way of fitting
(2d + 3) vertices in He(i) − S is the (2d + 2) vertices of an He(u) plus one vertex from
some other He(v). But then, this vertex of He(v) would form, together with one Cd of
He(u), a 2-connected subgraph of G′′ − S (or G′ − S) of size d + 1. Now, we know that
|He(i) ∩ S| > (2d + 2)(k − 1). As there are precisely mk sets He(i) in G′ (and they are
disjoint), it further holds that |He(i)∩S| = (2d+ 2)(k−1), since otherwise S would contain
strictly more than s = (2d+ 2)k(k − 1)m vertices. Thus, He(i)− S contains exactly 2d+ 2
vertices. By the previous remarks, He(i) − S can only consist of the 2d + 2 vertices of the
same He(u) or 2d + 1 vertices of He(u) plus one vertex from another He(v). In fact, the
latter case is not possible, since the vertex of He(v) would form, with at least one remaining
Cd of the 2d+1 vertices of He(u), a 2-connected subgraph of G′′−S (or G′−S) of size d+1.
Note that this is why we needed two disjoint C4s in the construction instead of just one. So
far, we have proved that, assuming 2 or 3, for any e ∈ E and i ∈ [k], He(i) ∩ S = He(vi,e)
for some vertex vi,e of the i-th row of G, and for any e ∈ E, Se ∩ S = ∅.

The second part of the proof consists of showing that vi,e does not depend on e. For-
mally, we want to show that there is a vi such that, for any e ∈ E, vi,e = vi. Observe
that it is enough to derive that, for any h ∈ [m], vi,eh

= vi,eh+1 (with em+1 = e1).
Let j ∈ [k] (resp. j′ ∈ [k]) be the column of vi,eh

(resp. vi,eh+1) in G. We first assume
2. For any h ∈ [m], vi,eh

eh
+ , reh+1

i , vi,eh+1
eh+1
− , ceh+1

j′ , ceh+1
j plus the d − 4 vertices of

the subdivision of vi,eh+1
eh+1
− c

eh+1
j′ induces a path (that is, a connected subgraph) of size

d + 1 in G′′ − S, unless j = j′ (with em+1 = e1). Therefore, j = j′. As vi,eh
and
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vi,eh+1 have the same column j and the same row i in G, vi,eh
= vi,eh+1 . Now, we as-

sume 3. For any h ∈ [m], vi,eh
eh
+ , reh+1

i , vi,eh+1
eh+1
− , c

eh+1
j′ , c

eh+1
j′+1 , . . . , c

eh+1
j−1 , c

eh+1
j if j > j′

(resp. vi,eh
eh
+ , r

eh+1
i , vi,eh+1

eh+1
− , c

eh+1
j′ , c

eh+1
j′−1, . . . , c

eh+1
j+1 , c

eh+1
j if j 6 j′) plus the d− 4 vertices

of the subdivision of vi,eh+1
eh+1
− c

eh+1
j′ induces a cycle (that is, a 2-connected subgraph) of

length at least d + 1 in G′′ − S, unless j = j′ (with em+1 = e1). Again, j = j′; and the
vertices vi,eh

and vi,eh+1 have the same column and the same row in G, which implies that
vi,eh

= vi,eh+1 . In both cases (2 or 3), we can now safely define vi := vi,e.
We finally claim that {v1, v2, . . . , vk} is an independent set in G (and for each i ∈ [k], vi

is in the i-th row). Indeed, if there were an edge e = vivj ∈ E for some i 6= j ∈ [k], then
He(vi) ∪He(vj) would induce a 2-connected subgraph of size 2(2d + 2) > d in G′′ − S (or
G′ − S).

That finishes the proof that 1 ⇔ 2 ⇔ 3. Therefore, for any fixed integer d > 4, an
algorithm running in time 2o(w logw)|V ′|O(1) for either Bounded P-Component Vertex
Deletion or Bounded P-Block Vertex Deletion on graphs of treewidth w with Cd ∈
P would also solve Permutation k × k Independent Set in time

2o(((3d+4)k+4d+3) log((3d+4)k+4d+3))(((3d− 2)k2 + 2k)m)O(1) = 2o(k log k)nO(1),

which contradicts the ETH. J

7 Hardness and lower bounds, when d is not fixed

In this section, we prove Theorem 5. Our first reduction is from the following problem:

Multicolored Clique Parameter: k

Input: A graph G, a positive integer k, and a partition (V1, V2, . . . , Vk) of V (G).
Question: Is there a k-clique X of G such that |X ∩ Vi| = 1 for each i ∈ [k]?

We call a set Vi, for some i ∈ [k], a color class. The problem Multicolored Clique is
known to beW [1]-complete (see, for example, [5]), and it is clear that this remains true under
the assumption that there are no edges between vertices of the same color class. Moreover,
we may assume that each color class has the same size, and between every distinct pair of
color classes we have the same number of edges [9]. We say that X ⊆ V (G) is a multicolored
k-clique if X is a k-clique such that |X ∩ Vi| = 1 for each i ∈ [k].

I Theorem 24. Bounded P-Component Vertex Deletion is W [1]-hard parameterized
by the combined parameter (w, k), when P contains all chordal graphs.

Before proving this theorem, we describe the reduction used in the proof. Given an instance
(G, k, (V1, . . . , Vk)) of Multicolored Clique, where each color class has size t, we con-
struct a graph G′ such that G has a multicolored k-clique if and only if there exists a set
S ⊆ V (G′) of size at most k′ such that each connected component of G′ − S consists of at
most d vertices, where k′ = 3

(
k+1

2
)
− 6 and d = 3t2 + 3t + 3, and the treewidth of G′ is

bounded above by 54k − 69. We may assume that k > 2.
Let Vi = {v1

i , v
2
i , . . . , v

t
i}, for each i ∈ [k]. For i, j ∈ [k] with i < j, we denote the set of

edges in G[Vi ∪ Vj ] by Ei,j , and we may assume that |Ei,j | = p, say. We construct G′ from
several gadgets; namely, an “edge-encoding gadget” Gi,j for each i, j ∈ [k] with i < j, which
represents the set Ei,j , linked together by copies of one of the “propagator gadgets”, Hi or
H̃i, which collectively represent the color class Vi for some i ∈ [k]. We also have a gadget
Gi,i, for each i ∈ [2, k − 2], which ensures that the vertex selection in the Hi gadgets also
propagates to the H̃i gadgets.
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Each gadget encodes a sequence of integers X = 〈x0, x1, . . . , xz+1〉, where x0 > 3, and
xs − xs−1 > 3 for each s ∈ [z + 1]. We denote such a gadget G(X) and call it a gadget of
G′ of order z. It is constructed as follows. First, set

(d0, d1, d2, . . . , dz) := (x0, x1 − x0, x2 − x1, . . . , xz − xz−1, xz+1 − xz).

Note that dq > 3 for every q ∈ [0, z]. For each q ∈ [0, z], we now define a graph Pq
which resembles a “thickened path”. For q ∈ [1, z− 1], let Pq be the graph on the vertex set
{wq,1, wq,2, . . . , wq,dq−1} with edges between distinct wq,d and wq,d′ if and only if |d−d′| ∈ [2].
For q ∈ {0, z}, let Pq be the graph on the vertex set {wq,1, wq,2, . . . , wq,dq} with edges
between distinct wq,d and wq,d′ if and only if |d − d′| ∈ [3]. For each q ∈ [z], we add a
vertex uq adjacent to wq−1,1, wq−1,2, wq,1, and wq,2. The resulting graph G(X) consists
of (
∑
q∈[z] dq)+1 = xz+1 +1 vertices, and, for q ∈ [z], the graph obtained by deleting uq has

two components: one of size xq, and the other of size xz+1−xq. Let B := {w0,1, w0,2, w0,3}
and D := {wz,1, wz,2, wz,3}. Since we will use several copies of this gadget, we usually refer
to Pq as Pq(G(X)), a vertex v ∈ V (G(X)) as v(G(X)), and B or D as B(G(X)) or D(G(X)),
respectively; but we sometimes omit the “(G(X))” when there is no ambiguity.

We now describe the edge encoding gadget Gi,j , for some i, j ∈ [k] with i < j; an
example is given in Fig. 6a. We can uniquely describe an edge between a vertex in Vi and
a vertex in Vj by an ordered pair (a, b), representing the edge vai vbj , where a, b ∈ [t]. We
define an injective function φ from such a pair to an integer in {3, 6, . . . , 3t2}, as given by
(a, b) 7→ 3t(a− 1) + 3b. Thus, the set {φ(a, b) : vai vbj ∈ Ei,j} uniquely describes the set Ei,j .
Let (f0

i,j , f
1
i,j , . . . , f

p
i,j) be the sequence obtained after ordering the elements of this set in

increasing order, and let fp+1
i,j = 3t2 + 3. Note that f0

i,j > 3, and fqi,j − f
q−1
i,j > 3 for each

q ∈ [p+ 1]. Finally, we set Gi,j := G
(〈
f0
i,j , f

1
i,j , . . . , f

p+1
i,j

〉)
.

We define the propagator gadgets as Hi := G(〈3, 6, . . . , 3(t+ 1)〉) and H̃i :=
G(〈3t, 6t, . . . , 3(t+ 1)t〉); see Figs. 6b and 6c. Note that these gadgets have size 3(t+ 1) + 1
and 3t(t + 1) + 1, respectively. For each color class Vi, where i ∈ [2, k − 1], we will take i
copies of the gadget Hi, and k − i + 1 copies of H̃i; whereas for i = 1 (or i = k), we take
k− 1 copies of H̃i (or Hi, respectively) only. Let Hi denote the set containing the copies of
Hi, and let H̃i denote the copies of H̃i. Note that |Hi ∪ H̃i| = k+ 1 when i ∈ [2, k− 1], and
|Hi ∪ H̃i| = k − 1 when i ∈ {1, k}.

Finally, for each i ∈ [2, k − 2], we have a special gadget Gi,i :=
G (〈φ(1, 1), φ(2, 2), . . . , φ(t, t)〉). Intuitively, this gadget is used to ensure the vertex selected
in each Hi ∈ Hi is the same as in each H̃i ∈ H̃i. However, we also consider Gi,i an edge
encoding gadget, since it is treated as one in the construction.

In order to describe how these gadgets are joined together in G′, as shown in Fig. 7, we
require some terminology. Given some Gi,j and Gi,j′ with i, j, j′ ∈ [k], we say we connect
Gi,j to Gi,j′ using H̃i to describe adding all nine edges between D(Gi,j) and B(H̃i), and all
nine edges between D(H̃i) and B(Gi,j′). In this case, we also say H̃i connects from Gi,j and
connects to Gi,j′ . Given some Gi,j and Gi′,j with i, i′, j ∈ [k], the operation of connecting
Gi,j to Gi′,j using Hj is defined analogously. We give the following cyclic ordering to
the edge encoding gadgets: (G1,2, G1,3, . . . , G1,k, G2,2, G2,3, . . . , G2,k, . . . , Gk−1,k−1, Gk−1,k).
For each Gi,j , we connect this gadget to the next gadget Gi,j′ in the cyclic ordering that
matches on the first index using one of the copies of H̃i, and also connect it to the next
gadget Gi′,j in the ordering that matches on the second index using one of the copies of Hj .
For example, we connect G1,3 to G1,4 using a copy of H̃1, and connect G1,3 to G2,3 using a
copy of H3. This completes the construction.
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(a) The edge encoding gadget Gi,j (with t = 5) for the
edges {v1

i v4
j , v2

i v1
j , v2

i v3
j , v3

i v2
j , v3

i v5
j , v4

i v4
j , v5

i v1
j , v5

i v3
j }, encoded as

〈12, 18, 24, 36, 45, 57, 63, 69〉.

(b) A propagator gadget Hj (with t = 5), which will be linked to
edge encoding gadgets Gi,j with i 6 j.

(c) A propagator gadget H̃i (with t = 5), which will be linked to
edge encoding gadgets Gi,j with i 6 j.

Figure 6 The different uses of the gadgets: the edge encoding gadget and the two kinds of
propagator gadgets.
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G1,2 H̃1 G1,3 H̃1 G1,4 H̃1

G2,2 H̃2 G2,3 H̃2 G2,4 H̃2

H2 H3 H4

G3,3 H̃3 G3,4 H̃3

H2 H3 H4

H3 H4

Figure 7 The overall picture with k = 4.

Proof of Theorem 24. Observe that each vertex v ∈ V (G′) is contained in precisely one
gadget, and so each vertex of G′ inherits either a ‘u’ label or a ‘w’ label from its gadget. In
what follows, whenever we refer to an edge encoding gadget Gi,j , or a propagator gadget H̃i

or Hj , it is for some i ∈ [1, k − 1] and j ∈ [2, k] with i 6 j.
Treewidth. We now describe a path decomposition of G′ that illustrates that its path-

width, and hence treewidth, is at most 54k − 69.
First, observe that for a gadgetH := G(〈x0, x1, . . . , xz+1〉), there is a path decomposition

where each bag has size at most 4. By adding B(H)∪D(H) to every bag, we obtain a path
decomposition where each bag has size at most 10; we denote this path decomposition by
P(H). Note that H is only linked to other gadgets in G′ by edges with one end in either
B(H) or D(H).

Recall that the edge encoding gadgets are joined together using propagator gadgets with
respect to the cyclic ordering

(G1,2, G1,3, . . . , G1,k, G2,2, G2,3, . . . , G2,k, . . . , Gk−1,k−1, Gk−1,k).

Consider an auxiliary multigraph F on the vertex set {Gi,j : i ∈ [1, k − 1], j ∈ [2, k], i 6 j}
where there is an edge between Gi,j , Gi′,j′ ∈ V (F ) whenever the gadget Gi,j is connected
to Gi′,j′ using some propagator gadget in G′. (Formally, there is an edge for i = i′ and
|j − j′| ∈ {1, k − i, k − 2}, or j = j′ and |i− i′| ∈ {1, j − 1, k − 2}.)

We now show that F has pathwidth at most 3k− 5. Let G1 = {G1,j : j ∈ [2, k]} and, for
i ∈ [2, k−1], let Gi = {Gi,j : j ∈ [i, k]}. Then (G1∪G2∪G3,G1∪G3∪G4, . . . ,G1∪Gk−2∪Gk−1)
is a path decomposition for F where the largest bag, the first one, has size 3k−4. We denote
this path decomposition P(F ).

We extend this to a path decomposition of G′ by replacing each bag of P(F ) with
a path, which is in turn constructed from several concatenated “subpaths”, one for each
gadget. Suppose, for some i, j ∈ [k] with i 6 j, we have that H̃i and Hj connect to Gi,j
in G′, and H̃ ′i and H ′j connect from Gi,j in G′; then we denote Xi,j = D(H̃i) ∪ D(Hj) ∪
B(Gi,j) ∪ D(Gi,j) ∪ B(H̃ ′i) ∪ B(H ′j). Let Z ⊆ [k] × [k] such that

⋃
(i,j)∈Z Gi,j is a bag of

the path decomposition of F . From this bag, we construct a path where each bag contains
Q =

⋃
(i,j)∈Z Xi,j . The subpaths of this path are as follows. For each (i, j) ∈ Z we have

a subpath obtained from P(Gi,j) by adding Q to each bag. Every edge of F is contained
in some bag of the path decomposition, and corresponds to a propagator gadget H of G′.
For each such H, we have a subpath obtained from P(H) by adding Q to each bag. These
subpaths are then concatenated together, end to end, to create the path that replaces the
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bag
⋃

(i,j)∈Z Gi,j in P(F ). After doing this for each bag, we obtain a path decomposition of
G′.

Note that |Z| 6 3k − 4, and |Xi,j | = 18, for any (i, j) ∈ Z. So |Q| 6 18(3k − 4). A
path decomposition P(H), for some gadget H, has bags with size at most 10, but each
bag meets Q in precisely the elements B(H) ∪ D(H). So the pathwidth of G′ is at most
18(3k − 4) + 4− 1 = 54k − 69.

Correctness (⇒). First, let X be a multicolored k-clique in G; we will show that G′
has a set S ⊆ V (G′) such that |S| = 3

(
k+1

2
)
− 6 and each component of G′ − S has at most

d vertices, where d = 3t2 + 3t+ 3. Let γ(i) be the index of the unique vertex in X ∩ Vi for
each i ∈ [k]; that is, X ∩ Vi = {vγ(i)

i }. For each H ∈ Hi ∪ H̃i, we add the vertex uγ(i)(H)
to S; there are (k − 2)(k + 1) + 2(k − 1) = k(k + 1)− 4 such gadgets, so this many vertices
are added to S so far. For each pair i, j ∈ k with i < j, there is some q ∈ [p] such that
φ(γ(i), γ(j)) = fqi,j ; we add the vertex uq(Gi,j) to S. For i ∈ [2, k − 2], we also add the
vertex uγ(i)(Gi,i) to S. Now |S| = k(k + 1)− 4 +

(
k
2
)

+ k − 2 = 3
(
k+1

2
)
− 6.

We now consider the size of the components of G′ − S. We first analyze the size of the
components of a gadget Gi,j , H̃i or Hj after deleting S. Note that S meets the vertex set of
one of these gadgets in precisely one vertex, and the deletion of this vertex splits the gadget
into two components. The two components of Gi,j − uq have fqi,j = 3t(γ(i)− 1) + 3γ(j) and
fq+1
i,j −f

q
i,j = 3t2 +3− (3t(γ(i)−1)+3γ(j)) vertices. The two components of H̃i−uγ(i) have

3tγ(i) and 3t(t+ 1− γ(i)) vertices, while the two components of Hj − uγ(j) have 3γ(j) and
3(t+ 1−γ(j)) vertices. These gadgets are joined in such a way that the size of a component
of G′ − S is[

3t(γ(i)− 1) + 3γ(j)
]

+ 3t(t+ 1− γ(i)) + 3(t+ 1− γ(j))
= 3t2 + 3t+ 3
=
[
3t2 + 3−

(
3t(γ(i)− 1) + 3γ(j)

)]
+ 3tγ(i) + 3γ(j),

as required.
(⇐). Suppose G′ has a set S ⊆ V (G′) with |S| 6 3

(
k+1

2
)
− 6 such that each component

of G′ − S has at most d vertices, where d = 3t2 + 3t+ 3. We call any such set S a solution.
First, we show, loosely speaking, that we may assume each vertex in S is a ‘u’ vertex of

its gadget, not a ‘w’ vertex. Let H be a gadget of G′ of order s. There are two cases to
consider: the first is when, for some r ∈ [1, s− 1], we have that S ∩ V (Pr(H)) 6= ∅. Suppose
Pr(H) contains a pair of adjacent vertices w and w′ such that {w,w′} ∩ S 6= ∅. If w ∈ S
and w′ /∈ S, then, in G′ − (S \ {w}), only the component containing w′ can have size more
than d, and |V (Pr(H))| 6 3t2 < d, so replacing w′ in S with ur−1(H) or ur(H) also gives
a solution. If {w,w′} ⊆ S, then (S \ {w,w′}) ∪ {ur−1(H), ur(H)} is also a solution. So we
may assume that V (Pr(H)) ∩ S = ∅ for each r ∈ [1, s− 1].

Now we consider the second case; let Gi,j be an edge encoding gadget, let H ∈ Hi
and H̃ ∈ H̃j connect from Gi,j , and let J be the set of vertices V (Py(Gi,j)) ∪ V (Pz(H)) ∪
V (Pz(H̃)), for (y, z) ∈ {(p, 0), (0, k + 1)}. Observe that G′[J ] is connected and |J | 6 d;
intuitively, these are the vertices involved in the “join” of multiple gadgets in G′. We show
that if J ∩ S 6= ∅, then there is some solution S′ with J ∩ S′ = ∅. Let U := NG′(J), so
|U | = 3. If |J ∩ S| > 3, then (S \ J) ∪ U is a solution. Moreover, if |U \ S| 6 |J ∩ S|, then
(S \ J) ∪ U is again a solution. Assuming otherwise, we can pick U ′ ⊆ U \ S such that
|U ′| = |J ∩ S|. If G′[(J ∪ U) \ S] is connected, then S′ = (S \ J) ∪ U ′ is a solution. But
since |J ∩ S| 6 2, it follows, by the construction of G′, that G′[J \ S] is connected. Thus,
in the exceptional case, the deletion of J ∩ S disconnects some u ∈ U \ S from G′[J \ S].
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But in this case, if we ensure that U ′ is chosen to contain u, then we still obtain a solution
S′ = (S \ J) ∪ U ′.

Next, we claim that each edge encoding gadget Gi,j or propagator gadget H̃i ∈ H̃i, has at
least one vertex in S. Consider the subgraph Di,j of G′ induced by V (Gi,j)∪V (H̃i)∪V (Hj),
where H̃i and Hj connect from Gi,j . Recall that Gi,j consists of 3t2 + 3 + 1 vertices, H̃i

consists of 3t2 + 3t + 1 vertices, Hj consists of 3t + 3 + 1 vertices, and hence Di,j has size
2d + 3. If V (H̃i) ∩ S is empty, then the connected subgraph of Di,j − S containing V (H̃i)
also contains Pp(Gi,j), which has size at least 3, so this connected subgraph contains at
least 3t2 + 3t + 1 + 3 = d + 1 vertices; a contradiction. Similarly, if V (Gi,j) ∩ S is empty,
then the connected subgraph of Di,j−S containing V (Gi,j) also contains at least 3t vertices
of V (H̃i), so at least d + 1 in total; a contradiction. So |V (H̃i) ∩ S|, |V (Gi,j) ∩ S| > 1, as
claimed.

Now we claim that each connected component of G′ − S has size exactly d. Pick S′ ⊆ S
such that |V (Gi,j) ∩ S′| = 1 for each edge encoding gadget Gi,j , and |V (H̃i) ∩ S′| = 1 for
each H̃i ∈ H̃i. So |S′| = 2

((
k+1

2
)
− 2
)
, and |S \ S′| =

(
k+1

2
)
− 2. The graph G′ − S′ has(

k+1
2
)
−2 components, and the deletion of each vertex in S \S′ further increases the number

of components by one. Since |V (G′)| = (2d+3)
((
k+1

2
)
−2
)
, each of the

(
k+1

2
)
−2 components

of G′ − S′ has size at least 2d+ 1, so the remaining
(
k+1

2
)
− 2 vertices in S \ S′ must evenly

split each of these components into components of size exactly d, as claimed.
Next we show that each gadget Hj ∈ Hj also has at least one vertex in S. Suppose we

have some Hj for which S ∩ V (Hj) = ∅. We calculate the size, modula 3, of the connected
component C of G′−S that contains Hj . Since the size of V (C)∩V (H̃i) or V (C)∩V (Gi,j)
is congruent to 0 (mod 3), and |V (Hj)| ≡ 1 (mod 3), we deduce that |V (C)| ≡ 1 (mod 3);
a contradiction. So |S ∩ V (Hj)| > 1 for every Hj ∈ Hj with j ∈ [2, k]. Since |S| = 3

(
k
2
)
, it

follows that each gadget meets S in precisely one vertex.
Finally, suppose uq(Gi,j) ∈ S, for some q ∈ [p]. Then φ(a, b) = fqi,j , for some a, b ∈ [t].

Let H̃i ∈ Hi and Hj ∈ Hj be the propagators that connect from Gi,j . Now, the connected
component of G′ − S containing 3t2 + 3− (3t(a− 1) + 3b) vertices of Gi,j − uq also contains
3ta′ vertices of H̃i, and 3b′ vertices of Hj , for some a′, b′ ∈ [t]. So

3t2 + 3ta′ − 3t(a− 1) + 3b′ − 3b+ 3 = 3t2 + 3t+ 3.

Working modula t, we deduce that 3(b′ − b+ 1) ≡ 3 (mod t), hence b = b′. It then follows
that 3t(a′ − (a− 1)) = 3t, so a = a′. Thus ua(H̃i), ub(Hj) ∈ S.

On the other hand, if, for some a, b ∈ [t] we have ua(H̃i), ub(Hj) ∈ S, where H̃i and
Hj connect to Gi,j , then the component of G′ − S containing vertices from these three
gadgets contains 3t(t+ 1− a) vertices from H̃i, as well as 3(t+ 1− b) vertices from Hj , and
3t(a′−1)+3b′ from Gi,j for some a′, b′ ∈ [t]. Since this component has a total of 3t2 +3t+3
vertices, working modula t we deduce that 3b′ + 3 − 3b ≡ 3 (mod t), so b = b′. It follows
that 3t(a− a′ + 1) = 3t, so a = a′. Thus, uq(Gi,j) ∈ S for q ∈ [p] such that φ(a, b) = fqi,j .

We deduce that for every l ∈ [k], there exists some γ(l) such that V (H̃) ∩ S = {uγ(i)}
for every H̃ ∈ H̃i, V (H) ∩ S = {uγ(j)} for every H ∈ Hj , and V (Gi,j) ∩ S = {uq} for
q ∈ [p] such that fqi,j = φ(γ(i), γ(j)). It follows that each v

γ(i)
i v

γ(j)
j is an edge of G, and

X = {vγ(i)
i : i ∈ [k]} is a multicolored k-clique in G, as required. J

Theorem 24 implies that Bounded P-Component Vertex Deletion has no algo-
rithm running in time f(w)nO(1), assuming FPT 6= W [1]. However, we can say something
stronger, assuming the ETH holds. Since, in the parameterized reduction in the previous
proof, the treewidth of the reduced instance G′ has linear dependence on k, a f(w)no(w)-
time algorithm for this problem would lead to a f(k)no(k)-time algorithm for Multicolored
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Clique. But, assuming the ETH holds, no such algorithm for Multicolored Clique
exists [12]. So we have the following:

I Theorem 25. Unless the ETH fails, there is no f(w)no(w)-time algorithm for Bounded
P-Component Vertex Deletion when P contains all chordal graphs.

Furthermore, Marx [14] showed that, assuming the ETH holds, Subgraph Isomorphism
has no f(k)no(k/ log k)-time algorithm, where k is the number of edges in the smaller graph.
By reducing from Subgraph Isomorphism, instead of Multicolored Clique, we obtain
a lower bound with the combined parameter treewidth and solution size.

I Theorem 26. Unless the ETH fails, there is no f(k′)no(k′/ log k′)-time algorithm for
Bounded P-Component Vertex Deletion, where k′ = w + k, when P contains all
chordal graphs.

Proof. Let (G,H) be a Subgraph Isomorphism instance where the task is to find if G has
a subgraph isomorphic to H. Let k := |V (H)| and t := |V (G)|, and suppose V (G) = {va :
a ∈ [t]} and V (H) = {vi : i ∈ [k]}. Let Vi = {vai : a ∈ [t]} for each i ∈ [k], and let G+ be the
graph on the vertex set

⋃
i∈[k] Vi with an edge vai vbj if and only if i 6= j and vavb is an edge

of G. Now the task is to select |E(H)| edges of G+ that induce a multicolored subgraph
of G+; that is, the vertex set of this edge-induced subgraph meets each Vi in exactly one
vertex.

We construct G′ from G+ using a similar construction as in the proof of The-
orem 24, but we only have an edge encoding gadget Gi,j for 1 6 i < j 6
k when vivj is an edge in H. More specifically, we take the subsequence of
(G1,2, G1,3, . . . , G1,k, G2,2, G2,3, . . . , G2,k, . . . , Gk−1,k−1, Gk−1,k) consisting of each Gi,j for
which vivj ∈ E(H), as well as Gi,i for all i ∈ [2, k − 1], and, as before, connect each Gi,j to
the next Gi,j′ in the cyclic ordering that matches on the first index using a copy of H̃i, and
also connect it to the next gadget Gi′,j in the ordering that matches on the second index
using a copy of Hj . Note that p = |Ei,j | = 2|E(G)|.

By a routine adaptation of Theorem 24, it is easy to see that tw(G′) = O(k), and
that G has a subgraph isomorphic to H if and only if G′ has a set S ⊆ V (G′) of size
at most k′ such that each connected component of G′ − S has size at most d. Now the
parameter in the reduced instance is k′′ := tw(G′) + k′ = O(|V (H)|) + O(|V (H)|2) =
O(|E(H)|). Thus, an f(k′′)no(k′′/ log k′′)-time algorithm for Bounded P-Component Ver-
tex Deletion would lead to an algorithm for Subgraph Isomorphism running in time
f(|E(H)|)no(|E(H)|/ log |E(H)|). But there is no algorithm for Subgraph Isomorphism with
this running time unless the ETH fails [14]. J
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