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Abstract15

The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an16

edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions17

to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian18

cycle C into a new Hamiltonian cycle C′ by replacing k edges. We analyze the problem of determining19

whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown20

that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether21

or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in22

time f(k)no(k/ log k) for any function f , while (ii) it is possible to improve on the brute-force running23

time of O(nk) and save linear factors in the exponent. Modern TSP heuristics are very successful24

at identifying the most promising edges to be used in k-opt moves, and experiments show that25

very good global solutions can already be reached using only the top-O(1) most promising edges26

incident to each vertex. This leads to the following question: can improving k-opt moves be found27

efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new28

algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also29

holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving30

k-move can be found in time O(n(23/135+εk)k), where limk→∞ εk = 0. This improves upon the31

best-known bounds for general graphs. Due to its practical importance, we devote special attention32

to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear33

time. For k ≤ 7, we give quasi-linear time algorithms for general weights. For k = 8 we obtain a34

quasi-linear time algorithm when the weights are bounded by O(polylogn). On the other hand, based35

on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in36

edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence37

we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic38

weights on bounded-degree graphs.39
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1 Introduction52

1.1 Motivation53

The Traveling Salesman Problem (TSP) hardly needs an introduction; it is one of the54

most important problems in combinatorial optimization, which asks to find a Hamiltonian55

cycle of minimum weight in an edge-weighted complete graph. Local search is widely used56

in practical TSP solvers [10, 11]. The most commonly used neighborhood is a k-move (or57

k-opt move). A k-move on a Hamiltonian cycle C is a pair (E−, E+) of edge sets such that58

E− ⊆ E(C), |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. Marx [13]59

showed that finding an improving k-move (i.e., a k-move that results in a lighter Hamiltonian60

cycle) is W[1]-hard parameterized by k, and this result was refined by Guo et al. [6] to61

obtain an f(k)nΩ(k/ log k) lower bound under the Exponential Time Hypothesis (ETH). For62

small values of k, the current fastest running time is O(nk) for k = 2, 3 (by exhaustive63

search), O(n3) for k = 4 [4], and O(n3.4) for k = 5 [3]. Moreover, de Berg et al. [4] and64

Cygan et al. [3] showed that improving the running time to O(n3−ε) for k = 3 or k = 465

implies a breakthrough result of O(n3−δ)-time algorithm for All-Pairs Shortest Paths.66

From the hardness shown by the theoretical studies, it seems that local search can be67

applied only to small graphs. Nevertheless, state-of-the-art local search TSP solvers can deal68

with large graphs with tens of thousands of vertices. This is mainly due to the following two69

heuristics.70

1. They sparsify the input graph by picking the top-d important incident edges for each71

vertex according to an appropriate importance measure. For example, Lin-Kernighan [12]72

picks the top-5 nearest neighbors, and its extension LKH [8] picks the top-5 α-nearest73

neighbors, where the α-distance of an edge is the increase of the Held-Karp lower74

bound [7] by including the edge. The empirical evaluation by Helsgaun [8] showed that75

the sparsification by the α-nearest neighbors can preserve almost optimal solutions.76

2. They mainly focus on sequential k-moves. In general, E− ∪E+ is a set of edge-disjoint77

closed walks, each of which alternately uses edges in E− and E+. If it consists of a single78

closed walk, the move is called sequential. Graphs of maximum degree d with n vertices79

have at most n(2(d−2))k−1 sequential k-moves (n choices for the starting point, 2 choices80

for the next edge in E−, and at most d − 2 choices for the next edge in E+), which81

is linear in n when considering d and k as constants. On the other hand, linear-time82

computation of non-sequential k-moves appears non-trivial. Lin-Kernighan does not83

search for non-sequential moves at all, and after it finds a local optimum, it applies special84

non-sequential 4-moves called double bridges to get out of the local optimum. LKH-2 [9]85

improves Lin-Kernighan by heuristically searching for non-sequential moves during the86

local search.87

This state of affairs raises the following questions: what is the complexity of finding88

improving k-moves in bounded-degree graphs? How does the complexity scale with k, and89

can it be done efficiently for small values of k? Since improving sequential moves can be90

found in linear time for fixed k and d, to answer these questions we have to investigate91

non-sequential k-moves in bounded-degree graphs.92
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1.2 Our contributions93

We classify the complexity of finding improving k-moves in bounded-degree graphs in various94

regimes. We present improved algorithms that exploit the degree restrictions using the95

structure of k-moves, treewidth bounds, color-coding, and suitable data structures. We also96

give new lower bounds based on the Exponential Time Hypothesis (ETH) and hypotheses97

from fine-grained complexity concerning the complexity of detecting triangles. To state our98

results in more detail, we first introduce the two problem variants we consider; a weak variant99

to which our lower bounds already apply, and a harder variant which can be solved by our100

algorithms.101

k-opt Detection Parameter: k.
Input: An undirected graph G, a weight function w : E(G) → Z, an integer k, and a
Hamiltonian cycle C ⊆ E(G).
Question: Can C be changed into a Hamiltonian cycle of strictly smaller weight by a
k-move?

102

The related optimization problem k-opt Optimization is to compute, given a Hamilto-103

nian cycle in the graph, a k-move that gives the largest cost improvement, or report that no104

improving k-move exists. With this terminology, we describe our results.105

We show that k-opt Detection is unlikely to be fixed-parameter tractable on bounded-106

degree graphs: we give a new constant-degree lower-bound construction to show that there107

is no function f for which k-opt Detection on subcubic graphs with weights {1, 2} can108

be solved in time f(k) · no(k/ log k), unless ETH fails. Hence the running time lower bound109

for general graphs by Guo et al. [6] continues to hold in this very restricted setting. While110

the degree restriction does not make the problem fixed-parameter tractable, it is possible111

to obtain faster algorithms. By adapting the approach of Cygan et al. [3], exploiting the112

fact that the number of sequential moves is linear in n in bounded-degree graphs, and113

proving a new upper bound on the pathwidth of an k-edge even graph, we show that k-114

opt Optimization in n-vertex graphs of maximum degree O(1) can be solved in time115

O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0. This improves on the behavior116

for general graphs, where the current-best running time [3] is O(n(1/4+εk)k).117

Since quasi-linear running times are most useful for dealing with large inputs, we perform118

a fine-grained analysis of the range of k for which improving k-moves can be found in119

time O(npolylogn) on n-vertex graphs. Observe that in the bounded-degree setting, the120

number of edges m is O(n). We prove lower bounds using the hypothesis that detecting121

a triangle in an unweighted graph cannot be done in nearly-linear time in the number of122

edges m, which was formulated in several ways by Abboud and Vassilevska Williams [1,123

Conjectures 2–3]. By an efficient reduction from Triangle Detection, we show that an124

algorithm with running time O(n polylogn) for 9-opt Detection in subcubic graphs with125

weights {1, 2} implies that a triangle in anm-edge graph can be found in time O(mpolylogm),126

contradicting popular conjectures. We complement these lower bounds by quasi-linear127

algorithms for all k ≤ 8 to obtain a complete dichotomy for the case of integer weights128

bounded by O(polylogn). When the weights are not bounded, we obtain quasi-linear time129

algorithms for all k ≤ 7, leaving open only the case k = 8.130

1.3 Organization131

Preliminaries are presented in Section 2. In Section 3 we give faster XP algorithms for132

varying k. By refining these ideas, we give quasi-linear-time algorithms for k ≤ 8 in Section 4.133

Section 5 gives the reduction from Triangle Detection to establish a superlinear lower134

ESA 2019
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bound on subcubic graphs for k = 9. In Section 6 we describe the lower bound for varying k.135

2 Preliminaries136

Given a graph G edge-weighted by w : E(G) → Z, and a subset F ⊆ E(G) of its edges,137

w(F ) :=
∑
e∈F w(e). A k-move on a Hamiltonian cycle C is pair (E−, E+) of edge sets such138

that |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. A k-move is called139

improving if w((C \ E−) ∪ E+) < w(C), or equivalently and more simply w(E+) < w(E−).140

A necessary condition for a pair (E−, E+) to be a k-move is that the multiset of endpoints141

of E− is equal to the multiset of endpoints of E+. An exchange (E−, E+) that satisfies this142

condition is called a k-swap. We say that a k-swap results in the graph (C \E−) ∪E+. Note143

that a k-swap always results in a spanning disjoint union of cycles. A k-swap resulting in a144

graph with a single connected component is therefore a k-move. An infeasible k-swap is a145

k-swap which is not a k-move.146

We say that a k-swap (E−, E+) induces the graph E− ∪ E+. As a slight abuse of147

notation, a k-swap will sometimes directly refer to this graph. A k-swap (E−, E+) such148

that all edges E− ∪E+ are visited by a single closed walk alternating between E− and E+
149

is called sequential. In particular, in a simple graph, every 2-swap is sequential. One can150

notice that an infeasible (sequential) 2-swap results in a disjoint union of exactly two cycles.151

A k-move can always be decomposed into sequential ki-swaps (with
∑
ki = k) but some152

k-moves cannot be decomposed into sequential ki-moves. The quantity w(E−)− w(E+) is153

called the gain of the swap (E−, E+). We distinguish neutral swaps, with gain 0, improving154

swaps, with strictly positive gain, and worsening swaps, with strictly negative gain.155

For an integer n, we denote [n] = {1, . . . , n}. A k-embedding (or shortly: embedding) is156

an increasing function f : [k]→ [n]. A connection k-pattern (or shortly: connection pattern)157

is a perfect matching in the complete graph on the vertex set [2k]. A pair (f,M) where f is158

a k-embedding and M is a connection k-pattern, is an alternative description of a k-swap.159

Indeed, let e1, . . . , en be subsequent edges of C. Then, E− = {ef(i) : i ∈ [k]}. Vertices of the160

connection pattern correspond to endpoints of E−, i.e., vertices 2i− 1, 2i ∈ [2k] correspond161

to the left and right (in the clockwise order) endpoint of ef(i), respectively. Thus, edges of162

the connection pattern correspond to a set E+ of |M | edges in G. We say that a k-swap163

(E−, E+) fits into M if there is an embedding f such that (f,M) describes (E−, E+). Note164

that every pair of an embedding and a connection pattern (f,M) describes exactly one165

swap (E−, E+). Conversely, for a swap (E−, E+) the corresponding embedding f is also166

unique (and determined by E−). However, in case E− contains incident edges, the swap fits167

into more than one matching M (see Fig. 1). See [3] for a more formal description of the168

equivalence.169

The notion of a connection pattern can be extended to represent k′-swaps, for k′ < k, as170

follows. Note that a matching N in the complete graph on the vertex set [2k] corresponds to171

an |N |-swap if and only if there is a set ι(N) ⊆ [k] such that V (N) = {2i− 1, 2i : i ∈ ι(N)}.172

For a set X ⊆ [k], by M [X] we denote the swap N such that ι(N) = X. We say that a173

connection pattern M decomposes into swaps N1, . . . , Nt when M =
⊎t
i=1Ni and each Ni is174

a connection pattern of a swap. The notion of fitting extends to k′-swaps in the natural way.175

Consider a connection pattern N of a swap, for V (N) ⊆ [2k]. We call N sequential if176

N ∪ {{2i− 1, 2i} : i ∈ ι(N)} forms a simple cycle. In particular, every connection pattern177

can be decomposed into sequential connection patterns of (possibly shorter) swaps. The178

correspondence between sequential swaps and sequential connection pattern is somewhat179

delicate, so let us explain it in detail.180
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Figure 1 A sequential swap (left) which fits two connection patterns (center, right). The pattern
in the center is not sequential, while the pattern on the right is sequential. On the left the solid red
edges are in E− , the dashed green edges are in E+, and the thin black edges are the remaining
edges of the Hamiltonian cycle C. In the central and right pictures, the dashed green edges form
some connection patterns.

Let N be a sequential connection pattern, V (N) ⊆ [2k]. Recall that for every embedding181

f there is exactly one |N |-swap (E−, E+) that fits into N . Clearly, this swap is sequential,182

since every edge in {{2i− 1, 2i} : i ∈ ι(N)} corresponds to an edge of E− and every edge in183

N corresponds to an edge in E+. Thus the resulting set of edges E− ∪ E+ forms a single184

closed walk. In particular, if the image of f contains two neigboring indices i, i+ 1 ∈ [n], the185

closed walk is not a simple cycle.186

Conversely, it is possible that a sequential swap fits into a connection pattern which is187

not sequential, see Fig. 1 for an example. However, every sequential `-swap (E−, E+) fits at188

least one sequential connection pattern. This sequential connection pattern is determined by189

the closed walk which certifies the sequentiality of the swap. Indeed, let E− = {ei1 , . . . , ei`},190

where i1, . . . , i` is an increasing sequence. Let v0, . . . , v2`−1 be the closed walk alternating191

between E− and E+, in particular assume that E− = {vivi+1 : i is even}. Consider any192

i = 0, . . . , ` − 1 and the corresponding edge eij = v2iv2i+1 in E−, for some j ∈ [`]. If v2i193

is the left endpoint of eij , we put w2i = 2j − 1 and w2i+1 = 2j, otherwise w2i = 2j and194

w2i+1 = 2j − 1. Then w0, . . . , w2`−1 is a simple cycle and N = {wiwi+1 : i is odd} is a195

sequential connection pattern. By construction, (E−, E+) fits N , as required. Keeping in196

mind the nuances in the notions of sequential swaps and corresponding sequential connection197

patterns, for simplicty, we will often just say ‘a sequential swapM ’ for a matchingM , instead198

of the more formal ‘a sequential connection pattern M of a swap’.199

Fix a connection pattern M and let f : S → [n] be a partial embedding, for some S ⊆ [k].200

For every j ∈ S, let v2j−1 and v2j be the left and right endpoint of ef(j), respectively. We201

define202

E−f = {ef(i) | i ∈ S},203

E+
f = {{vi′ , vj′} | i, j ∈ S, i′ ∈ {2i− 1, 2i}, j′ ∈ {2j − 1, 2j}, {i′, j′} ∈M}.204

205

Then, gainM (f) = w(E−f )− w(E+
f ).206

3 Fast XP algorithms207

For every fixed integers k and d, the number of sequential k-swaps in a graph of maximum208

degree d is O(n), and we can enumerate all of them in the same running time. Therefore,209

we can find the best improving k-move that can be decomposed into at most c sequential210

ESA 2019
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k-swaps in O(nc) time. Because c is at most bk2 c, we obtain an O(nb k
2 c)-time algorithm for211

k-opt Optimization. In what follows, we will improve this naive algorithm. Below we212

present a relatively simple algorithm which exploits the range tree data structure [15] and213

achieves running time roughly the same as the more sophisticated algorithm of Cygan et214

al. [3] for general graphs.215

I Theorem 1. For every fixed integers k, c, and d, there is an O(nd c
2 e polylogn)-time216

algorithm to compute the best improving k-move that can be decomposed into c sequential217

swaps in graphs of maximum degree d.218

Proof. When c = 1, we can use the naive algorithm. Suppose c ≥ 2 and let h := d c2e.219

For each possible connection pattern M consisting of c sequential swaps, we find the220

best embedding as follows. Let M =
⋃c
i=1Ni, where each Ni corresponds to a sequential221

swap. We split M into two parts ML =
⋃h
i=1Ni and MR =

⋃c
i=h+1Ni and we define222

L =
⋃h
i=1 ι(Ni) and R =

⋃c
i=h+1 ι(Ni). Note that L ] R = [k]. Let fL : L → [n] and223

fR : R→ [n] be embeddings of L and R, respectively. The union of these two embeddings224

results in an embedding of [k] if and only if the following conditions hold.225

For each i ∈ [k − 1] with i ∈ L and i+ 1 ∈ R, fL(i) < fR(i+ 1) holds.226

For each i ∈ [k − 1] with i ∈ R and i+ 1 ∈ L, fR(i) < fL(i+ 1) holds.227

We can efficiently compute a pair of embeddings satisfying these conditions using an ortho-228

gonal range maximum data structure as follows. Let {l1, . . . , lp} = {i : li ∈ L and li + 1 ∈ R}229

and let {r1, . . . , rq} = {i : ri − 1 ∈ R and ri ∈ L}. We first enumerate all the |L|-swaps that230

fit into ML and all the |R|-swaps that fit into MR, in O(nh) time. For each such |L|-swap231

(fL,ML), we create a (p+ q)-dimensional point (fL(l1), . . . , fL(lp), fL(r1), . . . , fL(rq)) with232

a priority gainML
(fL), and we collect these points into a data structure. It stores O(nh)233

points. For each |R|-swap (fR,MR), we query for the embedding fL of maximum priority234

satisfying fL(li) < fR(li + 1) for every i ∈ [p] and fR(ri − 1) < fL(ri) for every i ∈ [q], and235

we answer the pair maximizing the total gain, i.e., the sum gainML
(fL) + gainMR

(fR). Using236

the range tree data structure [15], each query takes O(logp+q nh) = O(polylogn) time, so237

the total running time is O(nh polylogn). J238

Since c ≤ bk2 c we get the following corollary.239

I Corollary 2. For all fixed integers k and d, k-opt Optimization in graphs of maximum240

degree d can be solved in time O(nd k−1
4 e polylogn).241

Let us take another look at the proof of Theorem 1. Recall that for merging embeddings242

fL and fR, we were interested only in values fL(i) for i ∈ L such that i+ 1 ∈ R or i− 1 ∈ R.243

The embeddings of the remaining elements of L were forgotten at that stage, but we knew244

that it is possible to embed them and we stored the gain of embedding them. This suggests245

the following, different approach. We decompose the connection pattern into sequential246

swaps and we scan the swaps in a carefully chosen order. Assume we scanned t swaps already247

and there are c− t swaps ahead. Assume that only p� t of the t ‘boundary’ swaps interact248

with the remaining c− t swaps, where two swaps N1 and N2 interact when there is i ∈ ι(N1)249

such that i− 1 ∈ ι(N2) or i+ 1 ∈ ι(N2). Then it suffices to compute, for every embedding250

fL of the p swaps, the gain of the best (i.e., giving the highest gain) embedding gL of the t251

swaps, such that fL matches gL on the boundary swaps. This amounts to O(np) values to252

compute, since each sequential swap can be embedded in O(n) ways, if k and the maximum253

degree are O(1). The idea is to (1) compute these values fast (in time linear in their number)254

using analogous values computed for the prefix of t − 1 swaps, (2) find an order of swaps255
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so that p is always small, namely p ≤ (23/135 + εk)k. The readers familiar with the notion256

of pathwidth recognize that p here is just the pathwidth of the graph obtained from the257

path 1, 2, . . . , k by identifying vertices in the set ι(N) for every sequential swap N in M , and258

that (2) is just dynamic programming over path decomposition. The resulting algorithm is259

summarized in Theorem 3, and due to space limits, its formal proof is skipped here and will260

be included in the full version.261

I Theorem 3. For all fixed integers k and d, k-opt Optimization in graphs of maximum262

degree d can be solved in time O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0.263

4 Fast algorithms for small k264

Note that the algorithm for k-opt Optimization from Corollary 2 is quasi-linear for k ≤ 5.265

In this section we extend the quasi-linear-time solvability to k ≤ 7 for k-opt Detection.266

Under an additional assumption of bounded weights, we are able to reach quasi-linear time267

for k = 8 as well, but the details of this part are deferred to the full version because of space268

constraints. To be precise, in the k = 7 case we prove the following stronger statement than269

just finding an arbitrary improving k-move.270

I Theorem 4. For k ≤ 7, there is a quasi-linear-time algorithm to compute the best improving271

k-move in bounded-degree graphs under the assumption that there are no improving k′-moves272

for k′ < k.273

We say that a connection pattern M of k-swaps is reducible if it can be decomposed into274

two moves. Note that if M is improving, then at least one of the two moves is improving,275

contradicting the assumption of Theorem 4.276

B Observation 5. If there are no improving k′-moves for k′ < k, then no improving k-swap277

fits into a reducible connection pattern.278

Before we formulate our algorithm, we need two lemmas. We can prove these lemmas by279

case analysis, and because of the space constraints, their proofs are skipped here and will be280

included in the full version. Let M [X] and M [Y ] be two swaps in a connection pattern M ,281

for some disjoint X,Y ⊆ [k]. Interaction between M [X] and M [Y ] is any i ∈ [k − 1] such282

that i ∈ X and i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X.283

I Lemma 6. For any k ≥ 6, there is no feasible and irreducible connection k-pattern that284

contains two 2-swaps that interact at least twice.285

Let M be a connection pattern, i.e., a perfect matching on vertices [2k]. We say that M ′286

is obtained from M by swapping i and i+ 1, for i ∈ [k], when M ′ is obtained from M by287

swapping the mates of 2i− 1 and 2i+ 1 and swapping the mates of 2i and 2i+ 2.288

I Lemma 7. LetM be a feasible irreducible connection k-pattern. Assume thatM decomposes289

into three sequential swaps M [X], M [Y ], and M [Z], such that |X| = |Y | = 2. If there is290

exactly one index i ∈ [k− 1] with i ∈ X and i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X, the connection291

pattern M ′ obtained from M by swapping i and i+ 1 is either feasible or reducible.292

Now we are ready to describe the algorithm from Theorem 4 (see also Pseudocode 1).293

For each feasible and irreducible connection k-pattern M , we compute the best embedding294

as follows. If M consists of at most two sequential swaps, we can use the algorithm in295

Theorem 1. Otherwise, M consists of three sequential swaps M [X], M [Y ], M [Z] such that296
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Pseudocode 1 Quasi-linear-time algorithm for k ≤ 7
1: for each feasible irreducible connection k-pattern M do
2: if M consists of at most two sequential swaps then
3: Apply the algorithm in Theorem 1.
4: else
5: Let M = M [X] ]M [Y ] ]M [Z] where |X| = |Y | = 2 and |Z| = k − 4.
6: if there are no interactions between X and Y then
7: for each embedding fZ for Z do
8: Independently compute the best embeddings fX for X and fY for Y .
9: else
10: Relax the constraint fX(i) < fY (i+ 1) to fX(i) 6= fY (i+ 1).
11: for each embedding fZ for Z do
12: Compute the best pair (fX , fY ) satisfying the relaxed constraints.

X ] Y ] Z = [k], |X| = |Y | = 2 and |Z| = k − 4. For each embedding fX : X → [n] of297

X = {i, j} we create a 2-dimensional point (fX(i), fX(j)) with priority gainX(fX) and we298

put all the points in a range tree data structure DX [15]. We build an analogous data299

structure for Y . Next, for each embedding fZ for Z, we compute the best pair of embeddings300

(fX , fY ) for X and Y as follows.301

If there are no interactions between X and Y , we can find the best pair in O(polylogn)302

time by independently picking the best embeddings for X and Y by querying the range trees303

DX andDY . Indeed, first note that there is no index i ∈ [k−1] such thatX = {i, i+1} because304

in such a case, both the 2-swap and the remaining (k− 2)-swap have to be feasible (similarly305

for Y ). Since there are no interactions between X and Y , we must have i− 1 ∈ Z ∪ {0} and306

i+1 ∈ Z∪{k+1} for every i ∈ X∪Y . To find the best embedding fX of X = {i, j}, we query307

DX with the constraints fZ(i− 1) < fX(i) < fZ(i+ 1) and fZ(j − 1) < fX(j) < fZ(j + 1),308

where we define fZ(0) := 0 and fZ(k + 1) := n+ 1. We proceed analogously for Y .309

Finally, assume there are interactions between X and Y , so from Lemma 6, there is exactly310

one interaction. W.l.o.g. i ∈ X and i+1 ∈ Y . Note that i−1 ∈ Z∪{0} and i+2 ∈ Z∪{k+1}.311

We first relax the constraint fZ(i − 1) < fX(i) < fY (i + 1) < fZ(i + 2), where we define312

fZ(0) := 0 and fZ(k + 1) := n + 1, to three constraints fZ(i − 1) < fX(i) < fZ(i + 2),313

fZ(i − 1) < fY (i + 1) < fZ(i + 2), and fX(i) 6= fY (i + 1). We then drop the disturbing314

inequality constraint fX(i) 6= fY (i+ 1) by color-coding1. We color each vertex in [n] in red315

or blue, and we independently pick the best embedding for X (resp. Y ) that uses only red316

(resp. blue) vertices. By using a family of perfect hash functions [5], we can construct a set317

of O(log2 n) colorings such that, for every pair of embeddings fX and fY , there is at least318

one coloring that colors all the vertices in fX red and all the vertices in fY blue.319

We now obtain the best pair of embeddings (fX , fY ) satisfying the relaxed constraints.320

If the obtained k-swap is not improving, we immediately know that there are no improving321

k-moves that fit into M . If it is improving and satisfies the original constraint, we are322

done. Finally, if it is improving but does not satisfy the original constraint, it fits into the323

connection pattern M ′ that is obtained from M by swapping i and i+ 1. By Lemma 7, M ′324

1 Instead of color-coding, we can adapt the range tree to support orthogonal range maximum queries
with an additional constraint of the form x 6= i by keeping one additional point in each node. With this
approach, we can avoid the additional log2 n factor. Because this paper does not focus on optimizing
the polylogn factor, we do not touch on the details.
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Figure 2 An instance of Triangle Detection

is either feasible or reducible. Because no improving k-swaps fit into reducible connection325

patterns, M ′ has to be feasible. We therefore obtain a k-move that is as good as the best326

k-move that fits into M . This completes the proof of Theorem 4.327

We finally consider the case of k = 8. Note that, because Lemma 6 and 7 do not328

assume k ≤ 7, the above algorithm can also compute the best improving k-move that can be329

decomposed into three sequential swaps of size (2, 2, k − 4) for any fixed k under the same330

assumption. Moreover, any connection patterns of 8-moves consisting of four 2-swaps are331

reducible because it always induces a pair of two 2-swaps that interact at least twice. The332

remaining case for k = 8 is only when the 8-move can be decomposed into three sequential333

swaps of size (2, 3, 3). In order to tackle this case, we exploit the bounded-weight assumption334

as follows. For each connection pattern M = M [X] ]M [Y ] ]M [Z] with |X| = 2 and335

|Y | = |Z| = 3, and for each embedding fZ for Z, we want to compute the best pair of336

embeddings fX for X and fY for Y . When all the weights are integers from [W ], the gain337

of (fX ,M [X]) is an integer from [−2W, 2W ], and the gain (fY ,M [Y ]) is an integer from338

[−3W, 3W ]. We therefore have only O(W 2) pairs of gains. By guessing the pair of gains, the339

query of finding the best pair can be reduced to the query of finding an arbitrary pair, and340

the latter query can be efficiently answered by adapting the range tree. This leads to the341

following algorithm, whose detailed description is skipped here and will be included in the342

full version.343

I Theorem 8. When all the weights are integers from [W ], there is an O(W 2n polylogn)-344

time algorithm to compute the best improving 8-move under the assumption that there are no345

improving k′-moves for k′ < 8.346

5 Lower bound for k = 9347

The starting point for our reduction is the following problem (see Fig. 2 for an exemplary348

instance).349

Triangle Detection Parameter: m := |E(H)|.
Input: An undirected graph H whose vertex set V (H) is partitioned into A ∪B ∪ C.
Question: Is there a triple (a, b, c) ∈ A×B × C such that {ab, ac, bc} ⊆ E(H)?

350

We assume without loss of generality that A, B, and C are three independent sets, so that351

finding such a triple is equivalent to finding a triangle in the graph H. By simple reductions352

that incur only a constant blow-up in the number of vertices and edges, this problem is353

equivalent to determining whether a graph has a triangle or not.354

B Assumption 1 (Triangle hypothesis [1]). There is a fixed δ > 0 such that, in the Word RAM355

model with words of O(logn) bits, any algorithm requires m1+δ−o(1) time in expectation to356

detect whether an m-edge graph contains a triangle.357
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It should be noted that one can solve Triangle Detection in time O(nω) where n is358

the number of vertices and ω ≤ 2.373 is the best-known exponent for matrix multiplication.359

Alon et al. [2] found an elegant win-win argument to solve Triangle Detection in time360

O(m
2ω

ω+1 ): the 3-vertex paths in which the middle vertex has degree less than m
ω−1
ω+1 can be361

listed in time O(m ·m
ω−1
ω+1 ) = O(m

2ω
ω+1 ), and for each, one can check if they form a triangle,362

whereas the number of vertices of degree greater than m
ω−1
ω+1 is at most m

2
ω+1 , so one can363

detect a triangle in time O(m
2ω

ω+1 ) in the subgraph that they induce. After more than two364

decades, this is still the best worst-case running time (when nω = Ω(m
2ω

ω+1 )). This suggests365

that the triangle hypothesis is likely to hold. Moreover, if one thinks that the above scheme366

yields the best possible running time and that ω will eventually reach 2, then exponent 4/3367

could be the right answer for Triangle Detection parameterized by the number of edges.368

The following is implied by [1, Conjecture 2] (since ω ≥ 2), in the regime m = Θ(n3/2) (so369

that O(n2) and O(m4/3) coincide).370

B Assumption 2. In the Word RAM model with words of O(logn) bits, any algorithm371

requires m4/3−o(1) time in expectation to detect whether an m-edge Θ(m2/3)-node graph372

contains a triangle.373

We show that Subcubic 9-opt Detection parameterized by the number of vertices374

is as hard as Triangle Detection parameterized by the number of edges, by providing375

a linear-time reduction from the latter to the former. In light of Theorem 4, this implies376

that Bounded-Degree 8-opt Detection is the only remaining open case where a quasi-377

linear algorithm is not known but also not ruled out by a standard fine-grained complexity378

assumption.379

I Lemma 9. There is an O(m)-time reduction from Triangle Detection on m-edge380

graphs to Subcubic 9-opt Detection on O(m)-vertex undirected graphs with edge weights381

in {1, 2}.382

Proof. From a tripartitioned instance of Triangle Detection H = (A ∪ B ∪ C,E(H))383

with m edges, we build a subcubic graph G with Θ(m) vertices, an edge-weight function384

w : E(G)→ {1, 2}, and a Hamiltonian cycle C. From C, there is a swap of up to 9 edges (i.e.,385

up to 9 deletions and the same number of additions) which results in a lighter Hamiltonian386

cycle if and only if H has a triangle.387

Overall construction of G.388

We will build G by adding chords to the cycle C. Henceforth, a chord is an edge of G389

which is not in C. It is helpful to think C as a (subdivided) triangle whose three sides390

correspond to A, B, and C, which we call the A-side (left), B-side (right), and C-side391

(bottom), respectively. We will only name the edges of G (and not the vertices), since the392

problem is more efficiently described in terms of edges. We will define some sequential393

3-swaps (we recall that a sequential i-swap is a closed walk of length 2i alternating edges394

of E(C) and edges of E(G) \ E(C)). Eventually, all the edges that are not in a described395

sequential 3-swap are incident to a vertex of degree 2, making them undeletable. (One can396

also enforce that by subdividing every irrelevant edge once.)397

The improving 9-move, should there be a triangle abc in H, will consist of a sequence of398

three 3-swaps. More precisely, it consists of one improving 3-swap, which splits C into three399

cycles respectively containing:400

(1) a part of the vertex gadget of some a ∈ A,401
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(2) the part of the B-side below the vertex gadget of b, as well as the C-side, and402

(3) the part of the B-side above the vertex gadget of some b ∈ NH(a) ∩B.403

This decreases the total weight by 1. Then a neutral 3-swap reconnects (1) and (2) together,404

but also detaches (4) a part of the vertex gadget of some c ∈ NH(a) ∩ C. Finally a neutral405

3-swap glues (3), (1)+(2), and (4) together, provided bc ∈ E(H). This results in a new406

Hamiltonian cycle of length w(C)− 1.407

There will be relatively few edges of weight 2. To simplify the presentation, every edge is408

of weight 1, unless specified otherwise. Let ~H be the directed graph obtained from H by409

orienting its edges from A to B, from B to C, and from C to A. Note that finding a directed410

triangle in ~H is equivalent to finding a triangle in H.411

Vertex scopes, extended scopes, and nested chords.412

For (X,Y ) ∈ {(A,B), (B,C), (C,A)}, we set Z := {A,B,C} \ {X,Y } and we do the413

following as a preparatory step to encode the arcs of ~H. Each vertex v ∈ X is given414

a (pairwise vertex-disjoint) subpath Iv of C, called the extended scope of v, with |Iv| :=415

6(|NH(v) ∩ Y |) + 3(|NH(v) ∩ Z|)− 1 vertices. We think of Iv as being displayed from left to416

right with the leftmost vertex of index 1, and the rightmost one of index |Iv|. The extended417

scopes of the vertices of A, B, and C occupy respectively the A-side, B-side, and C-side. In418

what follows, it will be more convenient to have a circular notion of left and right. Starting419

from the bottom corner of the A-side, and going clockwise to the top corner of the A-side,420

then down to the bottom corner of the B-side, the relative left and right within the A-side421

and the B-side coincide with the usual notion as displayed in Figure 3a. But then closing422

the loop from the right corner of the C-side to its left corner, left and right are switched: the423

closer to the bottom corner of A (resp. B), the more “right” (resp. “left”).424

Each vertex v ∈ X has |NH(v) ∩ Y | nested chords spaced out every three vertices. More425

precisely, the second vertex of Iv is adjacent to the penultimate, the fifth to the one of index426

|Iv| − 4, the eighth to the one of index |Iv| − 7, and so on, until |NH(v) ∩ Y | chords are427

drawn. Each of these chords is associated to an edge vy ∈ E({v}, Y ), and is denoted by vy.428

A vertex just to the right of the left endpoint, or just to the left of the right endpoint, of429

such a chord will remain of degree 2 in G. This is the case of the vertices of index 3, 6, . . .430

and |Iv| − 2, |Iv| − 5, . . . in Iv. We call l−(v, y) (resp. r−(v, y)) the edge of Iv incident to431

both the left endpoint of vy and the vertex just to its left (resp. right endpoint of vy and432

the vertex just to its right). Both endpoints of l−(v, y) and of r−(v, y) will eventually have433

degree 3 in G.434

The chord linking the most distant vertices in Iv is called the outermost chord, while435

the one linking the closest pair is called the innermost chord. We also say that a chord e is436

wider than a chord e′ if e links a farther pair on Iv than e′ does. The central path Jv ⊂ Iv437

on |Iv| − (6|NH(v) ∩ Y | − 4) = 3(|NH(v) ∩ Z| + 1) vertices, surrounded by the innermost438

chord, is called the scope of v. We map in one-to-one correspondence the edges of E({v}, Z)439

to every three edges of Jv starting from the third edge (that is, the third, sixth, and so on).440

Note that we have the exact space to do so, since |Jv| = 3(|NH(v) ∩ Z|+ 1). We denote by441

zv the edge in Jv corresponding to the edge vz ∈ E({v}, Z).442

Encoding the arcs of ~H.443

The last step to encode the arcs of ~H, or equivalently the edges of H, is the following.444

Keeping the notations of the previous paragraphs, for every edge xy ∈ E(X,Y ), we add two445

chords (of weight 1): one chord l+(x, y) between the left endpoint of l−(x, y) and the right446
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(a) The construction for the instance of Fig-
ure 2. Edges of C are in black, chords are
in red, bold edges are the ones with weight
2. The three chords in blue are the edges to
add to perform the neutral 3-swap S(5, 1) of
S(C,A).

l−(5,1)3545r−(5,1)l−(6,2)36r−(6,2)

l−(4,5)

r−(3,5)

r−(3,6)

l−(3,6)

l−(3,5)

r−(4,5)

24

13

l−(1,3)

r−(1,3)

l−(2,4)

r−(2,4)

51

62

C-side

B-sideA-side

S(1, 3)

S(5, 1)

S(3, 5)

(b) The 9-move corresponding to the triangle
135 results in a Hamiltonian cycle using one
less edge of weight 2. Note that after the
swaps S(1, 3) and S(5, 1) are performed, the
only 3-swap that can reconnect the three
cycles into one, is S(3, 5), implying the ex-
istence of the edge 35, and thereby of the
triangle 135.

Figure 3 Illustration of the reduction (left) and of a potential solution (right).

endpoint of xy and one chord r+(x, y) between the right endpoint of r−(x, y) and the left447

endpoint of xy. We finish the construction of G (and C) by subdividing each edge between448

consecutive extended scopes once, to make the resulting edges undeletable. The edges l−(a, b)449

for (a, b) ∈ A×B get weight 2, while all the other edges of E(G) get weight 1. This finishes450

the construction of (G,w, C). See Figure 3a for an illustration.451

Improving and neutral 3-swaps.452

For each (x, y) ∈ E( ~H), we denote by S(x, y) the 3-swap ({xy, l−(x, y), r−(x, y)}, {xy, l+(x, y),453

r+(x, y)}). For (X,Y ) ∈ {(A,B), (B,C), (C,A)}, we define the set of 3-swaps S(X,Y ) :=454 ⋃
xy∈E(X,Y )

S(x, y), and S := S(A,B) ∪ S(B,C) ∪ S(C,A).455

Note that all the 3-swaps of S(A,B) are improving. They gain 1 since l−(a, b) has weight456

2 for any (a, b) ∈ A × B. On the other hand, all the 3-swaps of S(B,C) and S(C,A) are457

neutral. The edges added in swaps of S partition the chords of G, and the open neighborhood458

of the six vertices involved in every swap are six vertices of degree 2 in G. Therefore, all the459

possible swaps are in the set S, they are on vertex-disjoint sets of vertices, and any move is460

a sequence of 3-swaps of S.461

The vertices of C are incident to at most one chord. Hence the graph G is subcubic. It462

has
∑
v∈V (H) 1 + |Iv| 6 9|E(H)|+ |V (H)| = Θ(m) vertices and (G,w, C) takes Θ(m)-time463

to build. To summarize, we defined a linear reduction from Triangle Detection with464

parameter m to Subcubic 9-opt Detection with parameter n. So a quasi-linear algorithm465

for the latter would yield an unlikely quasi-linear algorithm for the former. We now check466

that the reduction is correct.467
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A triangle in H implies an improving 9-move for (G,w, C).468

Let abc be a triangle in H. In particular, all three swaps S(a, b), S(b, c), and S(c, a) exist.469

Performing these three 3-swaps results in a spanning union of (vertex-disjoint) cycles, whose470

total weight is w(C)− 1. Indeed S(a, b) is swap of weight −1, while S(b, c), and S(c, a) are471

both neutral.472

We thus only need to show that the three swaps result in a connected graph (hence,473

Hamiltonian cycle of lighter weight). By performing the 3-swap S(a, b), we create three474

components: (1) one on a vertex set Ka,b such that Ja ⊆ Ka,b ⊆ Ia, (2) one containing475

the scopes of vertices of the B-side to the right (lower part) of the scope of b, and (3) one476

containing the scopes of vertices of the B-side to the left (upper part) of the scope of b. Then477

the swap S(c, a) glues (1) and (2) together, but also disconnects (4) a cycle on a vertex set478

Kc,a such that Jc ⊆ Kc,a ⊆ Ic. At this point, there are three cycles: (3), (1)+(2), and (4).479

It turns out that the 3-swap S(b, c) deletes exactly one edge in each of these three cycles:480

bc in (4), l−(b, c) in (3), and r−(b, c) in (1)+(2). Therefore, S(b, c) reconnects these three481

components into one Hamiltonian cycle.482

An improving k-move for (G,w, C) with k 6 9 implies a triangle in H.483

We assume that there is an improving k-move M = (E−, E+) for (G,w, C) with k 6 9.484

Being improving, the k-move has to contain at least one improving 3-swap of S(A,B).485

Let S(a, b) be a 3-swap of S(A,B) in M such that for every other (improving) 3-swap486

S(a, b′) inM, the chord ab′ is wider than ab. Since S(a, b) exists, it holds in particular that487

ab ∈ E(H). Performing S(a, b) results in the union of three cycles: (1) on a vertex set Ka,b488

with Ja ⊆ Ka,b ⊆ Ia, and cycles (2) and (3) as described in the previous paragraph.489

By the choice of b, the only remaining swaps of M touching Ka,b are in S(C,A). So490

M has to contain a neutral 3-swap S(c, a) for some c ∈ C. This implies that ac ∈ E(H).491

Performing this swap results in three cycles: (3), (1)+(2), and (4), as described above. To492

reconnect all three components into one Hamiltonian cycle, the 3-swap has to delete exactly493

one edge in (3), (1)+(2), and (4). The only 3-swap that does so is S(b, c). This finally implies494

that bc ∈ E(H). Thus abc is a triangle in H. J495

We obtain the following theorem as a direct consequence of the previous lemma.496

I Theorem 10. Subcubic 9-opt Detection requires time:497

(1) n1+δ−o(1) for a fixed δ > 0, under the triangle hypothesis, and498

(2) n4/3−o(1), under the strong triangle hypothesis,499

in expectation, even in undirected graphs with edge weights in {1, 2}.500

If we use general integral weights and not just {1, 2}, we can show a stronger lower501

bound, by reducing from Negative Edge-Weighted Triangle. Again, we can assume502

that the instance is partitioned into three sets A, B, C, and we look for a triangle abc503

such that w′(ab) + w′(bc) + w′(ac) < 0, where w′ gives an integral weight to each edge.504

A truly subcubic (in the number of vertices) algorithm for this problem would imply one505

for All-Pairs Shortest Paths, which would be considered a major breakthrough. The506

assumption that such an algorithm is not possible is called the APSP hypothesis.507

We only change the above construction in the weight of the edges l−(x, y). Now each edge508

l−(x, y) gets weight −w′(xy). From a Negative Edge-Weighted Triangle-instance with509

n vertices, we obtain an equivalent instance of Subcubic 9-opt Detection with O(n2)510

vertices, in time O(n2). So we derive the following.511
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I Theorem 11. Subcubic 9-opt Detection requires time n3/2−o(1), under the APSP512

hypothesis.513

6 Lower bound for varying k514

In this section we describe the main ideas behind the lower bound for k-opt Detection515

in subcubic graphs for varying k. The details are deferred to the full version due to space516

restrictions. The overall approach is similar to the lower bound of Guo et al. [6], in that517

we give a linear-parameter reduction from the k-Partitioned Subgraph Isomorphism518

problem parameterized by the number of edges k. Marx [14] proved that, assuming the519

Exponential Time Hypothesis, the problem cannot be solved in time f(k) · no(k/ log k) for any520

function f .521

The instance created in the reduction of Guo et al. [6] may contain vertices of arbitrarily522

large degrees. To obtain such a reduction to k-opt Detection in subcubic graphs, an523

essential ingredient is a choice gadget with terminal pairs (x0, y0), . . . , (x`, y`) which enforces524

that sufficiently cheap Hamiltonian cycles that enter at xi, must leave via the corresponding yi.525

The gadget can be implemented by suitable weight settings and vertices of degree at most three.526

This gadget allows us to enforce synchronization properties, which enforce that an improved527

Hamiltonian cycle first selects which vertices to use in the image of the subgraph isomorphism,528

and then selects incident edges for each selected vertex. By carefully coordinating the gadgets,529

this allows us to implement the hardness proof by an edge selector strategy. It leads to a530

proof of the following theorem.531

I Theorem 12. There is no function f for which k-opt Detection on n-vertex graphs of532

maximum degree 3 with edge weights in {1, 2} can be solved in time f(k) · no(k/ log k), unless533

ETH fails.534

We remark that the lower bound also holds for permissive local search algorithms which535

output an improved Hamiltonian cycle of arbitrarily large Hamming distance to the starting536

cycle C, if a cheaper cycle exists in the k-opt neighborhood of C.537
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