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—— Abstract

As the class Ty of graphs of twin-width at most 4 contains every finite subgraph of the infinite grid
and every graph obtained by subdividing each edge of an n-vertex graph at least 2logn times, most
NP-hard graph problems, like MAX INDEPENDENT SET, DOMINATING SET, HAMILTONIAN CYCLE,
remain so on T;. However, MIN COLORING and k-COLORING are easy on both families because they
are 2-colorable and 3-colorable, respectively.

We show that MIN COLORING is NP-hard on the class 73 of graphs of twin-width at most 3.
This is the first hardness result on 73 for a problem that is easy on cographs (twin-width 0), on
trees (whose twin-width is at most 2), and on unit circular-arc graphs (whose twin-width is at most 3).
We also show that for every k > 3, k-COLORING is NP-hard on 7;. We finally make two observations:
(1) there are currently very few problems known to be in P on 7 (graphs of twin-width at most d)
and NP-hard on Tg4+1 for some nonnegative integer d, and (2) unlike 74, which contains every graph
as an induced minor, the class 73 excludes a fixed planar graph as an induced minor; thus it may
be viewed as a special case (or potential counterexample) for conjectures about classes excluding
a (planar) induced minor. These observations are accompanied by several open questions.

Funding This work has been supported by the French National Research Agency through the project
TWIN-WIDTH with reference number ANR-21-CE48-0014.

1 Introduction

The graph parameter twin-width was introduced in 2020 [15]. The family of graph classes
of bounded twin-width is broad and diverse: it includes classes of bounded clique-width,
d-dimensional grids, classes excluding a fixed minor [15], some cubic expanders [11]. Moreover,
there are algorithms that work on any class of effectively! bounded twin-width: a fixed-
parameter tractable first-order model checking algorithm [15], single-exponential param-
eterized algorithms [12], improved approximation algorithms [12, 6], fast shortest-path
algorithms [12, 4], etc. Most NP-hard graph problems remain intractable on graphs of
twin-width at most 4. This paper tackles the hardness of coloring graphs of low twin-width.

For any nonnegative integer d, we denote by 7 the class of graphs of twin-width at most d.
Finite subgraphs of the infinite planar grid [15] and (> 2logn)-subdivisions of n-vertex
graphs [5] are in 74. Problems such as MAX INDEPENDENT SET, VERTEX COVER, MAX
CLIQUE, FEEDBACK VERTEX SET, DOMINATING SET, and MAX INDUCED MATCHING are
NP-hard on the latter family, while HAMILTONIAN PATH and HAMILTONIAN CYCLE are
NP-hard on the former. Therefore all these problems are NP-hard on 7;. Notably, MIN
COLORING is easy on subgraphs of the grid, since they are bipartite. It is also easy on strict
subdivisions (i.e., when every edge is subdivided at least once), since such graphs are always
3-colorable and bipartiteness can be checked in linear time. We show that MIN COLORING
is already NP-hard on 73. This is the first problem that is shown NP-hard on 73 while
being in P on classes known to have twin-width at most 3 (cographs, trees, unit circular-arc
graphs).

L A class C has effectively bounded twin-width if there is an integer d and a polynomial-time algorithm
that outputs a d-sequence (see Section 2 for all relevant definitions) of any input graph from C.
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» Theorem 1. MIN COLORING is NP-hard and, unless the ETH fails, requires 2%V™) time
on n-vertex graphs of twin-width at most 3 (even if a 3-sequence is provided).

In the previous theorem, the ETH (for Exponential-Time Hypothesis) [28] asserts that
there exists a constant A > 1 such that n-variable 3-SAT cannot be solved in time O(\").
The reduction requires the number of colors to grow with n.

We also show that 3-COLORING is NP-hard on 7;. Note that planar graphs have
twin-width at least 7 [33] (and at most 8 [27]). So we cannot just invoke the hardness
of 3-COLORING in planar graphs. One would need to provide 4-sequences for the graphs
produced by the reduction. Another option would be to tune long subdivisions and turn
them into hard 3-COLORING instances. Instead, we give an ad hoc construction for which
both the correctness and membership in 7 are easy to verify.

» Theorem 2. 3-COLORING is NP-hard on graphs of twin-width at most 4.

This again holds even if a 4-sequence is provided and directly implies that k-COLORING
is also hard on Ty, for any fixed k > 3.

On the algorithmic side, most graph problems are in P on 77 since this class has bounded
clique-width [13] and is a subclass of permutation graphs [3]. Although 1-sequences can
be computed in polynomial time in 77 [14], and even in linear time [3], the corresponding
algorithms do not require a sequence to be provided as part of the input. MAX INDEPENDENT
SET (and consequently, VERTEX COVER and MAX CLIQUE) can be solved in polynomial
time in 73 if 2-sequences are provided as part of the input [12].

While 77 can be recognized in polynomial time, it is NP-hard to decide if a graph (of 7T5)
is in 74. The complexity of the recognition of 75 and of 73 is open.

T T2 T3 Ts
MIN COLORING P [3, 21] ? NP-c (Theorem 1)
3-COLORING P [13, 16] ? ? NP-c (Theorem 2)
k-COLORING, k > 3 P [13, 16] ? ? NP-c (Corollary 3)
MAX INDEPENDENT SET P [13,16] P [12] ? NP-c [5]
VERTEX COVER P [13,16] P [12] ? NP-c [5]
Max CLIQUE P [13,16] P [12] ? NP-c [5]
FEEDBACK VERTEX SET P [13, 16] ? ? NP-c [5]
DOMINATING SET P [13, 16] ? ? NP-c [5]
MAX INDUCED MATCHING P [13, 16] ? ? NP-c [5]
HAMILTONIAN PATH P [3, 19] ? ? NP-c [15, 30]
HAMILTONIAN CYCLE P [3, 20] ? ? NP-c [15, 30]
RECOGNITION P [14, 3] ? ? NP-c [5]

Table 1 Complexity of some of the main NP-complete graph problems in 74 for d = 1,2, 3, 4.
The P in gray in the 72 column means that 2-sequences are required by the known algorithm.

Table 1 suggests the task of closing these gaps.

» Question 1. FEstablish, for a problem II of Table 1, a nonnegative integer d such that
IT on Tg is in P and IT on Tgy1 is NP-hard.

To our knowledge, the only problems for which Question 1 is settled are FIREFIGHTER and
RESTRICTED VERTEX MULTICUT, which are in P on 7 (as they are polynomial-time solvable
on permutation graphs [24, 34]) and NP-hard on 73 (as they are hard on trees [23, 17]).
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As the current paper is on graph coloring, we ask the following question.
» Question 2. Is MIN COLORING on To in P?

As we mentioned, MIN COLORING is the first problem to be shown NP-hard on 73 while
being tractable on classes known to have twin-width at most 3: cographs (which coincide
with 7o [15]), trees (which are in 73 [15]), and unit circular-arc graphs (which are in 73 [9,
below Theorem 5.5]). Without this requirement, other examples would include ACHROMATIC
NUMBER, which is NP-hard on cographs [8], BANDWIDTH, which is NP-hard on trees [25], and
PARTIAL REPRESENTATION EXTENSION, which is NP-hard on unit circular-arc graphs [22].
Theorem 1 thus involved a novel encoding that incurred a quadratic blow-up. We wonder
whether this blow-up can be avoided.

» Question 3. Can MIN COLORING be solved in time 2°0V™ on n-vertex graphs of T5?

The class 77 is now well understood [3]. In particular, it is a subclass of permutation
graphs with bounded clique-width. We believe that the classes 72 and T3 have some still
hidden structure. While the membership problem in 73 is NP-hard [5], that of 75 and of T3
are open. It was proven that weakly sparse subclasses (i.e., excluding a biclique K, as
a subgraph) of 72 have bounded treewidth, whereas this is not the case for T3 [7].

However, bounded-degree subclasses of 73 have bounded treewidth. This is because
bounded-degree graphs of large treewidth admit subdivisions of large walls or their line graphs
as induced subgraphs [32] and those graphs have twin-width (exactly) 4 [2]. Furthermore, the
latter result combined with [1, 10] (extending [32]) implies that every subclass of T3 without
large subdivided cliques as subgraphs has bounded treewidth. As 3-COLORING is in P on any
class of bounded treewidth, if 3-COLORING is NP-hard on 73, then the hard instances must
contain arbitrarily large clique subdivisions as subgraphs. The hard 3-COLORING instances
that the proof of Theorem 2 builds do not: they have a single vertex of degree more than 4.

» Question 4. Is 3-COLORING on T3 in P?
The same question holds for MAX INDEPENDENT SET.
» Question 5. [s MAX INDEPENDENT SET on T3 in P?

Another consequence of the abovementioned result of [2] is that T3 excludes a fixed
planar graph as an induced minor. Thus Questions 4 and 5 are special cases of the same
questions on any class excluding a planar induced minor, which was previously raised for
MAX INDEPENDENT SET [18]. The class 73 is a good candidate for a negative answer to the
latter question (on the pessimistic side), or Question 5 could serve as a preliminary step in
positively answering it (on the optimistic side). There are other questions and conjectures on
classes excluding a planar induced minor. They can be revisited on the particular class 73,
like for instance the following conjecture appearing in [26].

» Question 6. Is there a universal constant ¢ such that every graph of Ts admits a balanced
separator included in the neighborhood of at most ¢ vertices?

We recall the relevant definitions and notation in Section 2, show Theorem 1 in Section 3,
and Theorem 2 in Section 4.

2 Preliminaries

For two integers ¢ and j, we denote by [i,j] the set of integers that are at least ¢ and at
most j. For every integer ¢, [¢] is a shorthand for [1,4].
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2.1 Standard graph-theoretic definitions and notation

We denote by V(G) and E(G) the set of vertices and edges of a graph G, respectively. For
S C V(G), the subgraph of G induced by S, denoted G[S], is obtained by removing from G
all the vertices that are not in S. Then G — S is a shorthand for G[V(G) \ S]. We denote by
N¢(v) the set of neighbors of v in G. A subdivision of a graph G is any graph H obtained
from G by replacing edges e of G by paths with at least one edge whose extremities are the
endpoints of e. A (= s)-subdivision is a subdivision where every edge is replaced by a path
with at least s internal vertices.

In this paper, a coloring of a graph is implicitly assumed to be a proper vertex-coloring.

2.2 Trigraphs, partition sequences, and twin-width

A trigraph G has vertex set V(G), black edge set E(G), red edge set R(G) such that
E(G)NR(G) =0 (and E(G),R(G) C (V(2G))). Two vertices u,v such that uv € R(G) are
called red neighbors. The red degree of u is its number of red neighbors. The mazimum red
degree of G is the maximum red degree among all its vertices.

Given a (tri)graph G and a partition P of V(G), the quotient trigraph G /P is the trigraph
with vertex set P, where PP’ is a black edge if these two parts are fully adjacent via black
edges (i.e., for every u € P and every v € P’, uv € E(G)), and a red edge if there is u € P
and v € P’ such that uv € R(G) or uy,us € P and vy,ve € P’ such that ujv; € E(G) and
UV ¢ E(G)

A partition sequence of an n-vertex (tri)graph G is a sequence P, Pp_1,...,P1 of
partitions of V(G) such that P,, = {{v} : v € V(GQ)}, P1 = {V(G)}, and for every i € [n—1],
P; is obtained from P; 1 by merging P, P’ € P; 1 into PUP’. A d-sequence of G is a partition
sequence P, ..., Py such that for every i € [n], the maximum red degree of G/P; is at most d.
The twin-width of a (tri)graph is the least integer d such that it admits a d-sequence.

A partition sequence is called partial when we relax the condition that the last partition
has a single part. We say that a trigraph is fully red if it does not have any black edges.
We will use the simple fact that turning some (or all) black edges red cannot decrease
the twin-width of a trigraph. Therefore, when showing twin-width upper bounds, we may
sometimes assume that all the edges (black and red) are in fact red, if this simplifies a later
argument.

3 Hardness of Coloring Graphs of Twin-Width 3

As a decision problem, MIN COLORING inputs a graph G and an integer k and asks whether
the chromatic number of G, x(G), is at most k. As a function problem, one is given the mere
graph G and has to output a (proper) x(G)-coloring of G. We show that MIN COLORING is
NP-hard on 73, even in its decision form and when a 3-sequence of G is given in input. As
MIN COLORING is polynomial-time solvable on cographs, on trees, and on unit circular-arc
graphs (all of which have twin-width at most 3), and planar graphs are not included in 73,
this requires finding a novel kind of encoding of rich structures (here, 3-SAT instances)
onto graphs of twin-width at most 3.

» Theorem 1. MIN COLORING is NP-hard and, unless the ETH fails, requires 220YN) time
on N-vertex graphs of twin-width at most 3 (even if a 3-sequence is provided).

Proof. We reduce from 3-SAT, which is NP-complete [31], and unless the ETH fails, its
n-variable m-clause instances cannot be solved in time 2°(**™) by the so-called Sparsification
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Lemma [29]; it is indeed shown that, under the ETH, n-variable 3-SAT cannot be solved in
time 2°") even on instances with O(n) clauses. Let z1,...,z, be the variables of a 3-SAT
instance ¢, and ¢y, ..., ¢, be its clauses.

We describe the construction of a graph G := G(p) with chromatic number (at most)
2n if and only if ¢ is satisfiable. We start with two paths P, P’ each on 2np vertices with
p := 2n + m, which we partition evenly into p subpaths on 2n vertices. Let Ay, Aa,..., 4,
(resp. By, Ba, ..., By) be the vertex sets of the subpaths of P (resp. P’) from left to right. We
set A := Uie[p] A7 = V( ) and B := Uze[p B7 = V(Pl) We denote by A 1,Q5,2y 505 2n the
2n vertices of the subpath P[A;] from left to right. Similarly we denote by b; 1,b;2,...,b; 2,
the 2n vertices of the subpath P’[B;] from left to right. We now define G[A] (resp. G[B]) as
PS2n=1 (resp. P'S?n1) that is, for every u,v € A (resp. u,v € B), uv € E(G) whenever u
and v are at distance at most 2n — 1 in P (resp. in P’). In particular, each A; (and each B;)
is a clique of size 2n, and for all ¢,i" € [p] with ¢ < ¢, it holds that a; ; and a; ;- are adjacent
if and only if i/ =i+ 1 and 5/ < j. There is no edge between A and B.

For every i € [p], we add one vertex v; adjacent to a subset of A; U B;, as follows.

For every i € [n], Ng(v2i—1) = (A2i—1 U Bai—1) \ {a2i—1,2i—1,a2i—1,2i,b2i—1,2i—1} and
Ng(v2;) = (A2; U By;) \ {a2i,2i—1, a2i,2i, b2i 2 }-

For every i € [2n+1,2n+m)], say ¢;_a, is the clause s1%j, V 225, V 8314, (repeat a literal
if it had only two), where s1, $2, 83 are signs in {—,e} (e is the positive sign). Then,
Ne(vi) = (Bi\{bi,2j1» bi2jss bi2js ) V{025 — p(s1)5 Qi 252 — £ (s2)5 Qi 25— £ (s3) } With f(=) =
and f(e) =

This finishes the construction of G; see Figure 1 for an illustration. Note that G has
N := (4n+ 1)p = O(n(n + m)) vertices, and that it can be constructed in polynomial time
from ¢. Thus, provided the reduction is correct, which we next prove, a 200YN)_time algorithm
for MIN COLORING on the produced instances would imply a 2°(**™)_time algorithm for
n-variable m-clause 3-SAT, hence refute the ETH.

Ay Az As Ay As Asg ! Az Asg
[oooooo][oooooo][oooooo][oooooo][oooooo][oooooo][oooooo][oooooo]

[o

Bl BQ Bg B4 Bs B6 ' B7 B8

Figure 1 The graph G(y) for ¢ consisting of two clauses ¢1 = 1V —-x2Vzs and c2 = 1 Va2 V3.
The variable gadgets and clause gadgets are delimited by the vertical dashed line. Not to clutter the
picture, we have not drawn the edges in G[A U B.

If ¢ is satisfiable, then G is 2n-colorable. Let A be a satisfying assignment for ¢
We then describe a (proper) 2n-coloring ¢ of G.

For every ¢ € [p] and every j € [2n], we set c(b; ;) = J.
For every i € [p] and every j € [n], we set ¢(a;2j—1) = 2j —1 and c(a; 2;) = 2j if A assigns
x;j to true, or c(a;2;) = 2j — 1 and ¢(a; 2;—1) = 27, otherwise.
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As the 2n colors repeat with period 2n along each path of {P, P'}, no edge of G[AU B] is
monochromatic. We now simply need to argue that for every vertex v;, there is at least one
color ¢’ of [2n] not present in Ng(v;); and set ¢(v;) = ¢.

For every i € [2n], we can set c¢(v;) = i, as this color does not appear in Ng(v;). For
every i € 2n+1,2n +m|, with ¢;_o, = s12;, V S2xj, V sszj, and s1, s, s3 € {—, e}, there is
an h € {1, 2,3} such that A satisfies spx;,. Then we can set c(v;) = 2jp. Indeed, if A sets
z;, to true, then f(sp) = 1 and a; 2j, -1 is colored 2j, — 1, whereas if A sets z;, to false,
then f(sp) =0 and a; 2j, is colored 2j;, — 1; thus, in both cases, color 27, is still available

for v;. See Figure 2 for an example.

Ay As As Ay As As ! Az Asg
[oooooo][oooooo][oo‘oo"oo][oooooo][oooooo][oooooo][oooooo][oooooo]

© & © © ©

[oc’)o‘o\o\ ][oooooo][oooooo][oooooo][oooooo][ 636060 '[oo‘oio][dobobo]
Bl BQ Bg B4 Bs BG ' B? BS

M\ /TN /
/T1\\ / 11\ /] 1\
/1T \ \
/w\\\ /

/ \ /)

Figure 2 A (proper) 2n-coloring of the graph G(¢) of Figure 1 corresponding to the satisfying
assignment A = {z1 — false, x2 > true, z3 — true}. The coloring of v7 (resp. vs) witnesses that cq

(resp. c2) is satisfied by literal 3 (resp. —x1).

If G is 2n-colorable, then ¢ is satisfiable. Fix a (proper) coloring c: V(G) — [2n]
of G, with ¢(S) := {c(v) : v € S} for any S C V(G). As By is a clique, we can further assume
that ¢(b1 ;) = j for every j € [2n]|. By a straightforward induction, for every i € [p — 1] and
J € [2n], c(a;;) = c(ait1,;) and c(b; ;) = c(bi1,5) = J, and for every i € [p], ¢(4;) = [2n] =
¢(B;). Indeed both A; and B; are 2n-vertex cliques, thus ¢(A;) = ¢(B1) = [2n], and when
2n-coloring PS?"~1 (resp. P'S?"~1) from left to right, the only available color for a;41 ;
(resp. biy1,5) is c(a; ;) (resp. c(bi;)).

We first show that, for every i € [p] and j € [n], {c(aiz2j—1),c(ai2;)} = {25 — 1,25}
Assume for contradiction that there is an h € {c(a;2j-1),c(aiz2;)} \ {27 — 1,25}. By the
previous paragraph, observe that h does not depend on 4. This implies that 25 — 1 ¢
{c(ai2j—1),c(aiz2;)} or 25 ¢ {c(a;2i—1),c(a;2;)}. In the former case, vy;—1 would need
a (2n + 1)-st color, whereas in the latter case, the same would happen to vs;.

Let A be the truth assignment that sets, for every j € [n], z; to true if ¢(a; 2j-1) = 25 — 1
and c(a;2;) = 27, and to false, if c(a;2;—1) = 2j and c¢(aiz2;) = 2j — 1 (again, note that
this does not depend on 7). Let us show that A satisfies all the clauses of ¢. For each
i € [2n+1,2n +m], say ci_on = S12j, V Saxj, V s3x;, With s1, 50,53 € {—,e}. Since v; is
adjacent to B; \ {bi 2, bi2j,, i 25, }, it holds that c(v;) € {241, 2j2,2j3}; say, c(vi) = 2jp,
with h € {1,2,3}. This implies that c(a;2j,—f(s,)) 7 2Jn, thus c(a; 25, —(sp)) = 2Jn — 1.
Therefore, s, = € and A sets z;, to true, or s;, = - and A sets z;, to false. In both cases,

the literal spx;, of ¢;—9, is satisfied by A.

G admits a 3-sequence. We describe a partition sequence for G of width at most 3.
The sequence has two stages. In the first stage, each A; and each B; is merged into a single
part. Throughout this stage, we denote by P; (resp. P/) the current part containing a;1
(resp. b;,1). For j going from 2 to 2n, for ¢ going from 1 to p, merge P; and singleton {a; ;},
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and merge P/ and singleton {b; ;}.

Let us argue that this partial sequence has width at most 3. At any point, the singleton
parts {ai jt+1},...,{ai2.} in between P; = {a;1,...,a;;} and Py are all fully adjacent to
P; U P;;1, some of these singletons are adjacent to v;, and they have no other adjacencies.
Thus these parts have red degree 0. Note that the singleton parts {ap j4+1},...,{ap2n} do
not have incident red edges either. Each singleton part {v;} has red degree at most 2, without
any red neighbor outside {P;, P/}. Finally, at any point, each P; has at most three red
neighbors: P;_q (if it exists), v;, and P,y (if it exists). Indeed, all the other parts are either
fully nonadjacent to P; or have red degree 0. Symmetrically, P/ has always at most three
red neighbors.

After the first stage is completed, the resulting trigraph is fully red (we may well assume
that n > 2), has 3p vertices, and consists of two p-vertex paths whose ith vertices have an
additional shared neighbor of degree 2, for every i € [p]. In the second stage, we finish the
3-sequence, as follows. Let us call @ the part containing v;. For ¢ going from 2 to p, we
merge P; and P;, and keep denoting the resulting part by P, we merge P and P/, and
denote the resulting part by Pj, and then we merge @ and {v;}. Finally, only three parts
remain that we merge to a single part in any way. One can observe that at any time of the
second stage when at least three parts are left, every part P; or P/ (including Pi, P{) has
at most three red neighbors, and @, as well as every part {v;}, has two red neighbors. So
this finishes the description of a 3-sequence of G(y).

As this sequence can be computed in polynomial time for any formula ¢, the hardness of
MIN COLORING on T3 further holds when a 3-sequence is provided as part of the input. <

4 Hardness of 3-Coloring Graphs of Twin-Width 4

The hardness proof of the previous section requires an unbounded number of colors. In this
section we show that deciding if a graph of twin-width at most 4 is 3-colorable is NP-hard. We
also get a similar ETH lower bound, and readily extend this hardness result to k-COLORING.

» Theorem 2. 3-COLORING is NP-hard and, unless the ETH fails, requires 220YN) time on
N-vertex graphs of twin-width at most 4 (even if a 4-sequence is provided).

Proof. We reduce from the NP-complete NOT-ALL-EQUAL 3-SAT problem [35] (where each
clause is on three distinct variables). Furthermore, by the Sparsification Lemma [29], unless
the ETH fails, there is no 2°(")-time algorithm for n-variable O(n)-clause instances. Indeed,
the reduction from 3-SAT to NOT-ALL-EQUAL 3-SAT in [35] is linear. Let x1,...,z, be
the variables of an instance ¢ and ¢y, ..., ¢, its clauses, with m = O(n). We build a graph
G := G(p) as follows.

For each clause ¢; = £1 V {3 V /3, add a triangle ¢; on three vertices u;,v;, w;, where
uj,v;, w; correspond to £y, fo, 3, respectively.

For each variable x;, start with the m-vertex path z; 122 2; m. Let j1 < jo2 <--- < g
be the clause indices in which z; appears, with ¢ > 1. For each h € [¢g—1], let sp, spy1 € {7, ¢}
be the signs of z; in clauses c;, and cj,, . If either

|7h+1 — Jjn| is even and sp, # spy1, Or

|ih+1 — Jn| is odd and s, = sp41,
and denote the new vertex by x/ Let P; be the

2Jh41 NI

resulting (still induced) path, which we refer to as the variable path (of x;).

subdivide once the edge z; 5, ., 175

We add one vertex z adjacent to every vertex of Uie[n] V(P;). Finally, for each clause
cj = $1%i V STy V S3xi,, we add the edges u;x;, j, v;Tiy j, and wjz;, ; (regardless of
S1, 82, 83). This concludes the construction; see Figure 3 for an illustration.
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Figure 3 The graph G(p) for the 7-variable 8-clause formula ¢ with: ¢ = z1 V —z2 V x3,
co =1 VT4V ITs5,c3=x2V X3V Te,Ca =x1VTeV Z7,C5 =Tg4VT5VZIT7,C6=2T2V TgV Tg,
cr =21 Vx5 Var, cg =x3V xe V 7.

Note that G has N vertices with N < 3m + (2m — 1)n + 1 = O(n?). As we will next
show that the reduction is correct and the twin-width of G is at most 4, this establishes the
claimed ETH lower bound. Indeed, deciding if G is 3-colorable in 2°(VN) time would solve
the NOT-ALL-EQUAL 3-SAT instance ¢ in 2°(™) time.

Parity property along the variable paths. Fix a variable x; with occurrences at
indices j1 < -+ < j, and signs s1,. .., 4, respectively. By construction, for every h € [¢ — 1],
the distance in P; between x; ;, and z; 5, , is even if and only if s;, = s,41. Consequently,
in any (proper) 2-coloring of P;,

c(x;j,) = c(w;j,,) <= sp = sp, forall h,h' € [q],

i.e., all positive occurrences receive the same color and all negative occurrences receive the
other color. Indeed, an even distance between x; j, and x; ., (thus with equal color in
a 2-coloring of P;) does not change the sign of z;, whereas an odd distance flips the sign
of x;.

If ¢ is satisfiable, then G is 3-colorable. Let A be a truth assignment such that
every clause of ¢ has at least one literal set to true and at least one literal set to false. We
define a 3-coloring ¢ of G. First, set ¢(z) = 3.

For each variable x;, pick (arbitrarily) one clause index j* such that z; appears in ¢;-, and
let s* be the sign of z; in ¢;«. Set ¢(x; ;=) =1 if A sets literal s*z; to true, and c(x; j+) = 2
otherwise. Since z has color 3, the path P; must use only colors in {1,2}, and the coloring
of P; is uniquely determined by the color of z; ;-. By the parity property above, for every
occurrence of z; in a clause ¢; with sign s, the vertex x; ; has color 1 if and only if A sets
sz; to true (and color 2 otherwise).

Now fix a clause ¢; = {1 V {3 V {3 with triangle ¢; = {u;,v;,w;}. The three neighbors
Tiy,j» Tig,js Tig,j Of t; are colored in {1,2} and, since A satisfies ¢, these three colors are not
all equal. Then, let a,b € [3] be such that c(z;, ;) # c(z;,,;). Give the neighbor of z;, ;
(resp. x;, ;) in t; the color of {1,2} opposite to c(x;, ;) (resp. ¢(z;,,;)). Give the third vertex
of t; color 3. This yields a proper 3-coloring of ¢; extending the already fixed colors on the
variable paths. Doing this independently for all clauses completes a (proper) 3-coloring of G;
see Figure 4.
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Figure 4 A 3-coloring of G(¢) for the formula ¢ of Figure 3 corresponding to the assignment
where all variables are set to true except x4, which is set to false.

If G is 3-colorable, then ¢ is satisfiable. Let ¢ be a (proper) 3-coloring of G. Up to
color permutation, we can assume that ¢(z) = 3. Since z is adjacent to every vertex of every
P;, each path P; uses only colors in {1,2}.

We define an assignment A of the variables of ¢ as follows. For each variable xz;, if x;
appears positively in some clause ¢;j, A sets x; to true if ¢(z; ;) = 1, and to false otherwise;
if x; appears only negatively, A sets z; to false if ¢(x; ;) = 1 for some clause ¢; containing
literal —z;, and to true otherwise. This is well-defined by the parity property: all positive
occurrences have the same color and all negative occurrences have the other color (in {1,2}).

Consider any clause c¢; = ¢ V {3 V {3 represented by triangle ¢;. If the three literals
01,05, 03 had the same truth value under A, then the three neighbors of ¢; on the variable
paths would all receive the same color in {1,2}. In that case, each of u;,v;,w; would be
forbidden to use that color, leaving only two colors for the triangle ¢;, which would not result
in a 3-coloring of G. Hence, in every clause, not all three literals have the same truth value
under A. Therefore, A satisfies ¢ (as a NOT-ALL-EQUAL 3-SAT instance).

G admits a 4-sequence. We describe a partition sequence for G of width at most 4. It
is computable in polynomial time and does not depend on ¢ beyond knowing n and m. The
sequence has four stages.

In the first stage, we merge each clause gadget into a single part. For each j € [m],
merge {u;} with {v;}, then merge the result with {w;}. We denote the resulting part by
T; := {u;,v;, w;}. Throughout this stage, every non-singleton part has red degree at most 3,
and every singleton part has at most one red neighbor.

In the second stage, we merge every existing x; ; with z; ;, and set X; ; := {z] ;, 7 ;}
if 27 ; exists, and X, ; := {z;;} otherwise. This does not create any part of red degree
at least 4. The rest of the partition sequence has width at most 4, even if every variable
path (which has now exactly m vertices) is fully red. We thus assume that this is the case.
Henceforth, for each j € [m], we keep denoting by X; ; the part containing x4 ;.

In the third stage, for ¢ going from 2 to n, for j going from 1 to m, we merge X; ; with
X; ;. This merge cannot increase the red degree of a part that is not the resulting part
(recall that we assumed that the variable paths are fully red), and the latter has at most
four red neighbors: T} (if it is adjacent to), X; ;_1 (if it exists), X; ;41 and X; j41 (if they
exist). Indeed note that at this point, X; ;_1 has already been merged with X7 ;_.
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In the last stage, for j going from 2 to m, we merge X;; and X; j, and keep denoting
the resulting part by X 1, and we merge T} and T}, and keep denoting the resulting part
by T7. This never creates a part with red degree larger than 3. Finally, there are three parts
left: T1, X7 1,{#}, which we merge in any order. The concatenation of the four stages is
a 4-sequence for (G, which concludes the proof. |

» Corollary 3. For every k > 3, k-COLORING is NP-hard and, unless the ETH fails, requires
22(V) time on n-vertex graphs of twin-width at most 4.

Proof. Adding k — 3 universal vertices to the graph G(¢) built in the proof of Theorem 2
does not change its twin-width and makes the resulting graph k-colorable if and only if G(y)
is 3-colorable. |
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