
On the Complexity of General Game Playing

Édouard Bonnet and Abdallah Saffidine

LAMSADE

Université Paris-Dauphine
edouard.bonnet@dauphine.fr

School of Computer Science and Engineering
The University of New South Wales
abdallahs@cse.unsw.edu.au

Abstract. The Game Description Language (GDL) used in General Game Play-
ing (GGP) competitions provides a compact way to express multi-agents systems.
Multiple features of GDL contribute to making it a convenient tool to describe
multi-agent systems. We study the computational complexity of reasoning in GGP
using various combinations of these features. Our analysis offers a complexity
landscape for GGP with fragments ranging from NP to EXPSPACE in the single-
agent case, and from PSPACE to 2EXPTIME in the multi-agent case.

1 Introduction

General Game Playing (GGP) research aims at developing systems capable of rea-
soning on a variety of multi-agent situations encoded in the Game Description Lan-
guage (GDL) [4]. GDL can be seen as a domain specific logic programming language
that provides a compact representation for transition systems. As such, GDL can be re-
lated both the Planning Domain Description Language (PDDL) and to Datalog.

The similarity between GDL and PDDL stems from the fact that both languages were
created to describe dynamic situations. PDDL revolves around the agent’s actions and
allows modeling the preconditions and effects of actions chosen by a planning system.
On the other hand, GDL focusses on predicates that characterize a current state and
possible actions and their effects can be inferred via logical reasoning on the state.

While GDL is based on Datalog and incorporates many aspects of it such as negation-
as-failure, it features multiple elements absent in Datalog such as nested function con-
stants and more importantly a multi-agent system semantics as opposed to a (set of)
model(s).

Many language features of GDL make it a convenient tool to describe games and
other multi-agent systems. However, this very expressivity makes reasoning about de-
scribed systems challenging.

In this paper, we tackle the computational complexity of reasoning about systems
described in GDL. We study the impact, or lack thereof, of the most notable language
features on the problems of finding a winning strategy for a given agent, and on the
reachability problem.

Some standard results on the complexity of logic programming can be lifted to
GDL [3]. While these results apply to the static part of GDL: state queries such as
computing the legal moves for each agent, they do not tell much about the dynami-
cal aspects of the game. Indeed, few complexity results for GGP have been established
before. In particular, the multi-agent propositional fragment was known to be EXP-
TIME-complete [10]. In this paper, we provide the first comprehensive analysis of the



complexity of GDL and its dependency on the language features used. Our results are
summarized in Table 1.

Table 1. Complexity of the reachability problem with rational agents. This can also be seen as
the complexity of determining whether a given player has a winning strategy. The multi-agent
results hold with as few as one rational agent in a stochastic environment, i.e., with Nature as a
player, as well as with two rational agents with conflicting goals. Markov chain features a single
agent which is Nature.

Fragment Single-agent Markov chain Multi-agent

Prop. and Monot. NP-c PP-c PSPACE-c
Propositional PSPACE-c PSPACE-c EXPTIME-c
Monotonic NEXPTIME-c PEXPTIME-c EXPSPACE-c
Bounded EXPSPACE-c EXPSPACE-c 2EXPTIME-c
Full UNDEC UNDEC UNDEC

Several researchers have investigated the complexity of planning in other descrip-
tion languages such as STRIPS [1] or PDDL [9].

After defining the syntax, semantics, and fragments of GDL, we introduce the com-
plexity theoretic framework in which we carry our analysis. We then proceed to the
core of the paper, establishing upper complexity bounds for the fragments of GDL and a
reduction from the word problem for Turing Machines (TMs) with space or time restric-
tions to GDL providing matching lower bounds.

2 The Game Description Language

The Game Description Language (GDL) has been developed to formalise the rules of
any finite game with complete information in such a way that the description can be
automatically processed by a general game player.

GDL game descriptions are sets of normal logic program clauses [3] written in prefix
notation using s-expressions, where variables are indicated by a leading ?. A language
especially designed for game descriptions, GDL uses a few pre-defined predicate sym-
bols shown in Table 2.

In GDL it is assumed that gameplay happens synchronously, that is, all players move
simultaneously and the world changes only in response to moves.

GDL imposes some syntactic restrictions on a set of clauses with the intention to
ensure uniqueness and finiteness of the set of derivable predicate instances [6]. Specifi-
cally, the program must be stratified and satisfy the recursion restriction. Stratified logic
programs are known to admit a unique stable model [3].

Definition 1. A GDL program satisfies the recursion restriction if the following holds
for every rule R. If the body of R contains a predicate q depending the head of R, p,
then at least one of the following must hold for every argument vj of q in R. Either vj
is ground, or vj appears as an argument of p in R, or vj appears as an argument of
another predicate r of R such that r does not depend on p.



Table 2. Predefined GDL predicates and their interpretation.

Predicate instance Meaning

(role r) r is a player
(init f) f holds in the initial position

(true f) f holds in the current position
(legal r m) player r has legal move m
(does r m) player r does move m
(next f) f holds in the next position

terminal the current position is terminal
(goal r n) player r gets goal value n

The semantics of a set of game rules has been informally described by a state tran-
sition system [4] and later formalised as follows [12]. Let G |= A denote that atom A
is true in the unique answer set of a stratified set of rules G. The players in game G
are R = {r : G |= (role r)}. The initial state is {f : G |= (init f)}. A move m
is legal in state S if G ∪ Strue |= (legal r m). Here, Strue is the collection of facts
{(true f1), . . . , (true fk)} that compose the current state S = {f1, . . . , fk}. A joint
move assigns each role r ∈ R a legal move. The state transition from state S by joint
move M results in the state {f : G ∪ Strue ∪Mdoes |= (next f)}. Here, Strue is as
above and Mdoes denotes the collection of facts {(does r1 m1), . . . , (does rn mn)}
such that joint move M assigns mi to player ri. Finally, a terminal state is any S such
that G∪Strue |= terminal; and a goal value for player r ∈ R in state S is any v for
which G ∪ Strue |= (goal r v) holds.

We adopt the convention that random is a special role constrained to select its
action uniformly at random among its legal moves [13]. This is necessary to model
games involing chance events such as throwing a dice or tossing a coin.

The recursion restriction ensures that only a finite number of predicate instances
are derivable from a fixed set of clauses. However, the set of clauses G ∪ Strue in
the semantics of GDL is a dynamic. As a result, the recursion restriction is not enough
to guarantee a bounded number of predicate instances over the course of a game. We
therefore propose the following stronger restriction on GDL programs.

Definition 2. Let ∆ be a GDL program. Let ∆′ be the program ∆ extended with the set
of rules {(←(true ?f) (next ?f )) , (←(true ?f) ( init ?f )) , (←(does ?r ?m) ( legal ?r ?m))}.
We say that ∆ satisfies the General Recursion Restriction (GRR) exactly when ∆′ satis-
fies the recursion restriction.

The GRR makes the dependency between the true, init, and next as well as the
does and legal predicates explicit. Intuitively, the recursion restriction bounds the
size of terms for a fixed set of clauses, and the GRR bounds the size of terms across a
sequence of sets of clauses related by the GDL dynamics.

Consider the game of Tictactoe. We can distinguish two sets of features: the control
fluent determines which player is going to mark a cell, and the cell fluent determines



which player, if any, has marked a given location of the board. control instances al-
ternate as the game is played, but cell instances are more static. If a predicate instance
of the form (true ( cell m n x)) appears in a state, then it must appear in all subsequent
states. Conversely, if a predicate instance of the form (true ( cell m n b)) does not ap-
pear in a state, then it cannot appear in any subsequent states. Thus, the instances of the
fluent cell are monotonic while the instances of control are not.

Definition 3. A fluent f is persistent if for every state s where f holds, f holds in every
successor of s. f is anti-persistent if for every state s where f does not hold, f does
not hold in every successor of f . A fluent is monotonic if it is either persistent or anti-
persistent. 1

Variables, non-monotonic fluent instances, and sets of clauses not satisfying the
GRR are source of computational complexity in GDL reasoning. To study their influence
formally, we define the following fragments of the Game Description Language.

Definition 4. A game description is in bounded domain if it satisfies the GRR. A game
description is propositional if it satisfies the GRR and has a bounded number of vari-
ables. A description is monotonic if the number of non-monotonic fluents is bounded by
a constant.2

Table 3 summarizes the dependency between the game features and the GDL frag-
ment considered.

Table 3. Game features.

Class Query # fluents # different Longest
# 6= moves states acyclic path

Prop. and Monot. ∈ P poly expo poly
Propositional ∈ P poly expo expo
Monotonic EXPTIME-c expo 2-exp expo
Bounded EXPTIME-c expo 2-exp 2-exp
Full EXPTIME-c unbounded unbounded unbounded

Game features such as the maximum number of fluents holding in any one state, or
the number of legal moves depend mainly on whether variables are allowed. Variables
also impact static state queries: the complexity jumps from P-complete to EXPTIME-
complete when variables are allowed in the representation [3]. Conversely, as long as
the GRR is satisfied, the nesting depth of function symbols remains polynomial. The

1 We can actually have a more general definition where we just bound for each fact the number
of alternations between being true and false.

2 As usual in complexity theory, we implicitly consider sets of descriptions. For example, a
set of descriptions corresponds to generalized chess, and each board size maps to one GDL
description. When the number of variables is bounded, increasing the size of the chess instance
can polynomially increase the size of the GDL code but not the number of variables.



game description can therefore be rewritten so that nested symbols are only allowed to
depth 2 (to accommodate the fixed arity of the predefined keywords).

The number of facts is at most linear if there are no variables, and singly-exponential
if there are variables. As the number of facts nf and the number of possible states ns
are linked by the relation ns = 2nf , the number of different states is singly-exponential
or doubly-exponential depending on whether there are variables. The number of legal
moves, in a given state, is at most linear if there are no variables, and singly-exponential
if there are variables.

The following proposition justifies our definition of propositional.

Proposition 1. One can transform a GDL encoding with a constant number of variables
into a polynomial size GDL encoding without variables (in polynomial time).

Proof. For each rule featuring a variable, write down all the possible instantiated rules.
This has constant blow-up dc where d is the size of the domain and c is the constant
number of variables.

3 Turing Machines and Complexity Classes

The reader can find the following standard definitions in [8].

Definition 5. A Turing Machine (TM) is a tuple 〈Q, q1, ∆, g〉 where Q is a finite set of
states; q1 ∈ Q is a distinguished initial state; ∆ ⊆ Q×{0, 1}×Q×{0, 1}×{←,→}
is a set of transition rules; and g : Q → {∃,∀, ?,>,⊥} is a labeling of the states. The
labels denote respectively existential, universal, stochastic, (final) accepting, and (final)
rejecting states.

Definition 6. A configuration is a triple 〈w1, q, w2〉 where q is the current state, w1w2

is the content of the tape, and the head is upon the first letter of w2.

Definition 7. The probability p that a configuration 〈w1, q, w2〉 is accepting can be
defined inductively as follows. If q is accepting then we set p = 1 and if q is rejecting
then p = 0. Else let n be the number of possible transitions and for each transition i,
let pi be the probability that the resulting configuation is accepting. If q is existential
then we set p = maxi pi, if q is universal then p = min pi, and if q is stochastic then
p =

∑
i pi

n .
A word w is recognized if the probability that configuration 〈ε, q1, w〉 is accepting

is greater than 1/2.

Equivalently, the acceptance condition can be seen as a game between Existential
player who chooses the transition applied from existential states and Universal player
who does so from universal ones.

Definition 8. A TM is deterministic if in each non-final configuration there is exactly
one applicable transition. A TM is non-deterministic if all non-final states are existential,
alternating if they are existential or universal, probabilistic if they are stochastic, and
stochastic-alternating if they are existential or stochastic.



DTIME(f(n)) is the class of deterministic machines working in time O(f(n)).
DSPACE(f(n)) is the class of deterministic machines working in spaceO(f(n)). NTIME(f(n))
and NSPACE(f(n)) are their non-deterministic counterpart and ATIME(f(n)) and ASPACE(f(n))
are their alternating counterpart.

Theorem 1 (Savitch [11]). NPSPACE = PSPACE and NEXPSPACE = EXPSPACE.

Theorem 2 (Chandra et al. [2]). APTIME = PSPACE, APSPACE = EXPTIME, AEXP-
TIME = EXPSPACE, and AEXPSPACE = 2EXPTIME.

SATIME(f(n)) is the class of stochastic-alternating machines working in timeO(f(n)).
SAATIME(f(n)) is the class of machines working in timeO(f(n)) with existential, uni-
versal and stochastic states. PSPACE(f(n)), SASPACE(f(n)), and SAASPACE(f(n)) are
defined similarly for space.

Proposition 2. For any function f ∈ Ω(n) growing no slower than linearly, SAATIME(f(n)) =
SATIME(f(n)) = ATIME(f(n)), and SAASPACE(f(n)) = SASPACE(f(n)) = ASPACE(f(n)).

Proof. We recall an idea first used to show that NP ⊆ PP [5], and to show that AP-
TIME ⊆ SAPTIME [7]. This idea, more generally, allows to show that ATIME(f(n)) ⊆
SATIME(f(n)) and that ASPACE(f(n)) ⊆ SASPACE(f(n)).

To simulate an alternating machine with a stochastic-alternating machine, one can
start on a stochastic state. In the first branch all the runs are rejecting but one, and in the
second branch the alternating machine is mimicked by switching the universal states
to stochastic states. To win the Existential player needs to win all his games “against
nature” in the second branch, which is equivalent to defeating Universal player.

Now, we show that SAATIME(f(n)) ⊆ NSPACE(f(n)) = ATIME(f(n)). LetA be a
general machine (existential, universal and stochastic states) working in time O(f(n)).

Without loss of generality, we can assume that in every non-final configuration there
are exactly two applicable transitions; that all the runs have the same length 3f(n); and
that, besides the transition towards final state, that there are only three possible kinds
of transition: from existential state to universal state, from universal state to stochastic
state, and from stochastic state to existential state [7].

We traverse the computing tree of A as follows. We maintain on the tape of our
NSPACE(f(n)) machine A′ two counters cW and cL up to 2f(n) and a pointer which
represents our position in the computing tree. We maintain one additional counter c
which indicates how many stochastic state have been encountered along the branch.
This can be done using space O(f(n)). Basically, cW will count the number of accept-
ing runs, and cL the number of rejecting runs. If the state is existential, we guess which
transition to apply. If the state is universal, we check all the transitions one after the
other. If the state is stochastic, we increment c, and we check the left transition, then the
right one. When we reach a leaf, we add 2f(n)−c to cW if the final state is accepting, or
we add 2f(n)−c to cL if the final state is rejecting. When all the computation tree has
been explored, we accept if cW contains a bigger number than cL.

SAASPACE(f(n)) ⊆ DTIME(2f(n)) = ASPACE(f(n)). Indeed, the configuration
graph of the general machine has O(2f(n)) vertices, and we can decide the value of
the stochastic reachability game in polynomial time in the number of vertices, i.e.,
O(2f(n)).



4 Upper bounds

A GDL state is defined by a set of (true) facts. An extensive representation of a state
is an exhaustive list of grounded facts. An implicit representation of a state is a list of
terms, such that all the possible instantiations of the terms should exactly match the set
of true facts. In the former case, we say that the state is implicitly represented, and in
the latter, extensively represented. An extensive representation can be exponentially (in
the arity of the function constant) larger than an implicit representation. For instance,
if the set of constants is D = {0, 1}, {g ?x1 ?x2, h 1 ?y} is the implicit representation
and {g 0 0, g 0 1, g 1 0, g 1 1, h 1 0, h 1 1} is the extensive representation of the same
state. In the multi-agent case, the problem is to decide whether the first agent can win
even if the other agents cooperate against him. Thus, we can merge all the opponents
into one unique opponent, and we can consider that there are only two agents. In the
following propositions, we show the corresponding result for the single-agent case, and
Theorem 2 on alternation transfers the result from the single-agent to the multi-agent
case.

Proposition 3. Single-agent propositional monotonic GDL is in NP. Multi-agent propo-
sitional monotonic GDL is in PSPACE.

Proof. The length of a shortest win is polynomial. Indeed, from a winning sequence
of joint moves, you can remove all those joint moves which have no effect on the list
of facts. It is still a winning sequence. Now, the list of facts is different from one state
to the next. As it is propositional, the total number nf of facts is linear in the GDL
encoding. As it is monotonic, one can characterise fully the winning sequence by a
set of nf intervals representing the period of validity of each fact. At each state, one
interval starts or ends, so the winning sequence is of size at most 2nf .

A strategy for the single agent consists of finding the one move to apply, at each
move. The number of (propositional) moves is linear in the description of the game.
Thus, you can guess a polynomial word encoding all the moves to apply from the be-
ginning to the end of the game. Check if that word corresponds to a winning strategy
can be done in polynomial time. At each step, you maintain the list of facts by applying
a linear number of “next” rule, and you check if the moves are legal by considering a
linear number of “legal” rules. If you reach the desired goal value at the end then you
accept.

Proposition 4. Single-agent propositional GDL is in PSPACE. Multi-agent propositional
GDL is in EXPTIME.

Proof. A state can be extensively represented in polynomial space. The number of legal
moves in a given state is linearly bounded. Non-deterministic polynomial space allows
to guess which move to play and maintain the current list of facts. Thus, it belongs to
NPSPACE, which is equal to PSPACE by Savitch’s theorem (Theorem 1).

Proposition 5. Single-agent monotonic GDL is in NEXPTIME. Multi-agent monotonic
GDL is in EXPSPACE.



Proof. The number of facts is singly-exponential, but the depth of a game is also only
singly-exponential 2n

c

since it is monotonic. The number of legal moves in a given state
is exponentially bounded by 2n

c′

. Deriving in GDL the next state from the current state,
and that a state is terminal, is of singly-exponential depth bounded by, say, 2n

c′′

. Thus,
a certificate for a winning strategy of the single-agent is of size at most nc

′
2n

c

2n
c′′

.
Hence, it belongs to NEXPTIME.

Proposition 6. Single-agent bounded GDL is in EXPSPACE. Multi-agent bounded GDL
is in 2EXPTIME.

Proof. A state can be represented extensively in exponential space. The number of legal
moves in a state is exponentially bounded. Non-deterministic exponential space allows
to guess which move to play and maintain the current list of facts. Thus, it belongs to
NEXPSPACE, which is equal to EXPSPACE by Savitch’s theorem (Theorem 1).

5 Lower bounds

In this section, we obtain the lower bounds for the complexity results described in Ta-
ble 1. We describe how we can encode TMs with various restrictions in different frag-
ments GDL in a three-step reduction.

The first part is a set of generic axioms of constant size. The second part is a set
of machine specific axioms encoding the transition rules and the labeling of the states.
The third part encodes the restriction set on the running time or the tape space used by
the machine. There, we provide a different encoding for each specific restriction.

The choice of the third part alone determines to which fragment of GDL the pro-
gram belongs. Indeed, the number of variables appearing in the first and second part is
constant and the fluents introduced in the first part can be made monotonic in the third
part.

Generic Axioms In our description, variables starting with ?p are GDL variables ranging
over tape position indices. The variables starting with ?t, ?q, ?a, ?d, and ?r range
respectively over the time domain, the states of the machine, the letters of the alphabet,
the direction of transitions, and the players (or roles).

We use the following auxiliary predicates. accept and reject take a state index
as argument and characterize final states. Similarly, label characterizes non-final state
labels and indicates their type. delta takes 5 arguments a, i, b, j, d such that a and b
denote alphabet symbols, i and j represent states, and d represents a direction. This
rigid predicate records the transition rules of the machine: there are as many instances
of delta as there are elements in ∆.

The zerop and succp predicates encode the relation between the possible po-
sitions of the machine cursor on the tape. (zerop p) holds for the unique leftmost
position p of the cursor on the tape. (succp p1 p2) holds exactly when p1 represents
a cursor position immediately to the right of p2. zerot, succt encode the relation be-
tween the different times represented. input takes a possible cursor position i and a
tape symbol a and denotes that the ith letter of the input word is a. now characterizes
the current time.



Listing 1. GDL simulation of a TM: generic termination and acceptance.

1 (← ( r o l e ? r ) ( l a b e l ? r ? q ) )
2 (← t e r m i n a l ( t rue ( s t a t e ? t ? q ) ) ( a c c e p t ? q ) )
3 (← t e r m i n a l ( t rue ( s t a t e ? t ? q ) ) ( r e j e c t ? q ) )
4
5 (← ( goa l e x i s t s 100) ( r o l e e x i s t s ) ( t rue ( s t a t e ? t ? q ) ) ( a c c e p t ? q ) )
6 (← ( goa l e x i s t s 0 ) ( r o l e e x i s t s ) ( t rue ( s t a t e ? t ? q ) ) ( r e j e c t ? q ) )
7 (← ( goa l u n i v e r 0 ) ( r o l e u n i v e r ) ( t rue ( s t a t e ? t ? q ) ) ( a c c e p t ? q ) )
8 (← ( goa l u n i v e r 100) ( r o l e u n i v e r ) ( t rue ( s t a t e ? t ? q ) ) ( r e j e c t ? q ) )

Listing 2. GDL simulation of a TM: generic initial configuration.

9 (← ( i n i t ( head ? t ? p ) ) ( z e r o t ? t ) ( z e r o p ? p ) )
10 (← ( i n i t ( s t a t e ? t 1 ) ) ( z e r o t ? t ) )
11 (← ( i n i t ( t a p e ? t ? p ? a ) ) ( z e r o t ? t ) ( i n p u t ? p ? a ) )
12 (← ( i n i t ( t a p e ? t ? p2 0 ) ) ( z e r o t ? t ) ( l e s s ? p1 ? p2 ) ( e n d i n p u t ? p1 ) )
13
14 (← ( l e s s ? p1 ? p2 ) ( succp ? p1 ? p2 ) )
15 (← ( l e s s ? p1 ? p3 ) ( succp ? p1 ? p2 ) ( l e s s ? p2 ? p3 ) )

We also use three main sets of fluents. The tape fluent encodes the content of
the machine tape. state encodes the current state of the machine. head encodes the
position of the cursor on the tape.

We have one agent per non-final state label and the game ends when the machine
reaches a final configuration (line 1–3, Listing 1).

The goal of an existential player, if such a player exists for the game, is to bring the
game into an accepting configuration (lines 5 to 6). Conversely, the goal of a universal
player, if such a player exists for the game, is to bring the game into a rejection config-
uration (lines 7 to 8). When we simulate TMs without existential (resp. universal) states,
the predicate role does not hold for exist (resp. univer) and the utility of the
existential (resp. universal) player does not need to be defined. A player random may
also be introduced if the machine has stochastic states but we do not need to specify
goal values for that player. Note that the random role is a distinguished player in GDL
which is assumed to select a move uniformly at random among its legal moves.

At the beginning, the head is on the first cell of the tape, the machine is in the initial
state, and the tape contains the input word and then blank symbols (line 9 to 12 in List-
ing 2). We have introduced the less predicate such that (less p1 p2) holds when
p2 if situated further right that p1. It can be based on the more elementary successor
predicate succp.

The semantics of GDL assume simultaneous actions by all agents. However in our
reduction from TMs, only the agent corresponding to the label of the current state makes
a meaningful decision at a time. To comply with the semantics of the language, we use
two kind of actions: an apply action taking a letter, a state, and a direction as ar-
guments and recording the transition effects, and a pass action. The mapping from



Listing 3. GDL simulation of a TM: generic applicable transitions.

16 (← ( l e g a l ? r ( a p p l y ? a2 ? q2 ? d ) ) ( d e l t a ? a1 ? q1 ? a2 ? q2 ? d )
17 ( t rue ( head ? t ? p ) ) ( t rue ( t a p e ? t ? p ? a1 ) )
18 ( l a b e l ? q1 ? r ) ( now ? t ) ( t rue ( s t a t e ? t ? q1 ) ) )
19 (← ( l e g a l ? r2 p a s s ) ( r o l e ? r2 ) ( d i s t i n c t ? r1 ? r2 )
20 ( l a b e l ? q ? r1 ) ( now ? t ) ( t rue ( s t a t e ? t ? q ) ) )

Listing 4. GDL simulation of a TM: generic evolution of the configuration.

21 (← ( next ( t a p e ? t 2 ? p ? a ) ) ( now ? t 1 ) ( s u c c t ? t 1 ? t 2 )
22 ( does ? r ( a p p l y ? a ? q ? d ) ) ( t rue ( head ? t 1 ? p ) ) )
23 (← ( next ( t a p e ? t 2 ? p2 ? a ) ) ( now ? t 1 ) ( s u c c t ? t 1 ? t 2 ) ( d i s t i n c t ? p1 ? p2 )
24 ( t rue ( t a p e ? t 1 ? p2 ? a ) ) ( t rue ( head ? t 1 ? p1 ) ) )
25
26 (← ( next ( s t a t e ? t 2 ? q ) ) ( now ? t 1 ) ( s u c c t ? t 1 ? t 2 )
27 ( does ? r ( a p p l y ? a ? q ? d ) ) )
28
29 (← ( next ( head ? t 2 ? p2 ) ) ( now ? t 1 ) ( s u c c t ? t 1 ? t 2 ) ( succp ? p2 ? p1 )
30 ( t rue ( head ? t 1 ? p1 ) ) ( does ? r ( a p p l y ? a ? q l e f t ) ) )
31 (← ( next ( head ? t 2 ? p2 ) ) ( now ? t 1 ) ( s u c c t ? t 1 ? t 2 ) ( succp ? p1 ? p2 )
32 ( t rue ( head ? t 1 ? p1 ) ) ( does ? r ( a p p l y ? a ? q r i g h t ) ) )

possible transitions into legal agent moves is given in Listing 3. For instance, if the cur-
rent state has label ∃ then the player exists chooses among the instances of apply
to select a transition for the TM, and the other agents, if any, perform a pass action.

The evolution of the configuration of the machine as the transitions are selected
is described in Listing 4. The cell under the head changes according to the transition
effects, but the rest of the tape remains unaffected (line 21 to 24). The next state is
determined by the transition effects recorded in the apply action. After a transition,
the head moves one cell to the left or one cell to the right depending on the kind of
transition performed (line 29 to 32).

Machine-dependent Axioms Assuming numbered states, Q = {q1, . . . , q|Q|}, Listing 5
collects the machine-dependent GDL axioms: state labels and transitions.

The number of variables appearing in the fragments described so far is bounded by
a constant that does not depend on the size of the input. Indeed, variables only appear
in the generic part of the translation that does not depend on the specific machine to be
simulated. The size of Listing 5 naturally depends on the specific machine but it only
contains ground terms and it does not introduce any new fluent.

Time and Tape Axioms Let us detail how we can ensure that a fragment satisfies the
monotonicity assumption. Listing 6 provides axioms to be included when monotonicity
is needed. We first add inertia rules that guarantee the persistence of the state, head,
and tape fluents (Line 1 to 3 in Listing 6).



Listing 5. GDL simulation of a TM: machine specific axioms.

33 For all state qi ∈ Q, add
34 ( a c c e p t i ) when g(qi) = >
35 ( r e j e c t i ) when g(qi) = ⊥
36 ( l a b e l e x i s t s i ) when g(qi) = ∃
37 ( l a b e l u n i v e r i ) when g(qi) = ∀
38 ( l a b e l random i ) when g(qi) =?
39
40 For all transition rules (a, qi)→ (b, qj , d) ∈ ∆, add
41 ( d e l t a a i b j l e f t ) when d =←
42 ( d e l t a a i b j r i g h t ) when d =→

Listing 6. Ensuring monotonicity: inertia axioms and linear time axioms.

1 (← ( next ( s t a t e ? t ? q ) ) ( t rue ( s t a t e ? t ? q ) ) )
2 (← ( next ( head ? t ? p ) ) ( t rue ( head ? t ? p ) ) )
3 (← ( next ( t a p e ? t ? p ? a ) ) ( t rue ( t a p e ? t ? p ? a ) ) )
4
5 (← ( next ( p a s t ? t ) ) ( t rue ( s t a t e ? t ? q ) ) )
6 (← ( now ? t ) ( t rue ( s t a t e ? t ? q ) ) ( not ( t rue ( p a s t ? t ) ) ) )
7
8 (← ( z e r o t ? x ) ( z e r o p ? x ) )
9 (← ( s u c c t ? x ? y ) ( succp ? x ? y ) )

This importance of the time argument for these fluents now becomes clearer. We
can have monotonicity without the head of the machine always pointing at the same
cell at every stage of the game. The monotonic fact that is remembered throughout the
rest of the game is that at some fixed time t, the head pointed at a given cell.

Since past configurations are remembered when monotonicity is enforced, we need
to distinguish which is the current one. Recall that fluents need to be monotonic but not
arbitrary predicates. We can therefore define a non-monotonic now predicate. To do so,
we introduce a persistent past fluent such that (true (past ?t)) only holds for
past time points ?t (Line 5 to 6 in Listing 6). past is persistent since it only depends
on state which is persistent.

Finally, we give time a linear structure mapped from the linear structure of the tape.
Thus, the simulation length inherits any bound on the size of the tape (Line 8 to 9 in
Listing 6). When monotonicity is not required, history is not kept in the state and time
points need not be distinguished. In that case, simpler axioms are used (Listing 7).

Listing 7. Dummy time axioms.

1 ( now dummy) ( z e r o t dummy) ( s u c c t dummy dummy)



Listing 8. Tape of size nc and input w of size n: linear encoding.

1 ( z e r o p 0 )
2 ( succp h h′ ) for all h ∈ {0, . . . , nc − 1} and h′ = h+ 1
3 ( i n p u t i wi ) for all i ∈ {0, . . . , n− 1}
4 ( e n d i n p u t n )

Listing 9. Tape of size 2n
c

and input w of size n: binary encoding.

1 ( b i t 0 ) ( b i t 1 ) ( z e r o p ( b i n 0 . . . 0 ) )
2 (← ( succp ( b i n ? bnc . . . ? bh+1 0 1 . . . 1) ( b i n ? bnc . . . ? bh+1 1 0 . . . 0 ) )
3 ( b i t ? bh+1 ) . . . ( b i t ? bnc ) ) for all h ∈ {1, . . . , nc}
4
5 For i ∈ {0, . . . , n− 1} with the binary writing blogn . . . b1, add
6 ( i n p u t ( b i n 0 . . . 0 blogn . . . b1 ) wi )
7 If the binary writing of n− 1 is blogn . . . b1, then add
8 ( e n d i n p u t ( b i n 0 . . . 0 blogn . . . b1 ) )

We now provide the axioms defining the tape structure, zerop and succp, as well
as the axioms defining the input word, input and endinput. If w is an input word
of size n, then for each i ∈ {0, . . . , n− 1}, wi denotes the i+1-th letter of w. Listing 8
gives a linear encoding such that a polynomial number of consecutive tape positions
can be represented. This encoding uses a polynomial number of axioms and does not
use any variable. Listing 9 gives a binary encoding such that an exponential number of
consecutive tape positions can be represented. The additional bit predicate provides
the domain of bit variables, namely 0 and 1. This encoding uses a polynomial number
of variables and a polynomial number of axioms.

Combining the Listings We have now described all the elements needed for the reduc-
tion of a TM to a GDL program.

Theorem 3. Let c be a fixed constant. Propositional monotonic GDL can simulate a
TM working in TIME(nc). Propositional GDL can simulate a TM working in SPACE(nc).

Listing 10. Tape of unbounded size and input w of size n: unary encoding.

1 ( i n i t ( a c c e s s z e r o ) )
2 (← ( next ( a c c e s s ? x ) ) ( t rue ( a c c e s s ? x ) ) )
3 (← ( next ( a c c e s s ( i n c r ? x ) ) ) ( t rue ( a c c e s s ? x ) ) )
4 ( z e r o p z e r o )
5 (← ( succp ? x ( i n c r ? x ) ) ( t rue ( a c c e s s ? x ) ) )
6
7 For i ∈ {0, . . . , n− 1}, add
8 ( i n p u t ( i n c r . . . ( i n c r z e r o ) ) wi ) with i nested incr.
9 ( e n d i n p u t ( i n c r . . . ( i n c r z e r o ) ) ) with n nested incr.



Monotonic GDL can simulate a TM working in TIME(2n
c

). Bounded GDL can simulate
a TM working in SPACE(2n

c

). GDL can simulate an unrestricted TM, using a bounded
number of variables and only monotonic fluents.

Proof. By combining Listings 1–5 with one time listing (6 or 7) and one tape listing
(8, 9, or 10), we obtain a GDL description simulating a given TM M . The chosen list-
ings determine the constraints on M and the properties satisfied by the description as
indicated in Table 4.

Listings 9 and 10 are the only ones not using a constant number of variables or not
satisfying the GRR, so we obtain a propositional GDL program as long as none of these
two fragment is used. Similarly, the GRR is satisfied as long as Listing 10 is not used.

Positions of the game correspond to configurations of the machine and joint moves
correspond to transitions. If we assume the players exists and univer to be rational
and the player random to be making each decision uniformly at random, then we can
conclude that the likelihood of reaching a position such that accept holds is more
than 1/2 if and only if M accepts w.

The potential time/space constraint on the TM result in potential properties satisfied
by the GDL program, and the type of the machine (non-deterministic, alternating, . . . ) in-
duces the number and type of agents in the corresponding game. Using Theorem 1, 2, 3
and Proposition 2, we derive the lower bounds for the results in Table 1.

Table 4. Effect of the time and tape listings added to Listings 1–5 on the TM restrictions and the
GDL properties satisfied by the encoding.

Listing Restriction on the TM GDL properties

Time Tape Monot. GRR Prop.

6 8 TIME(nc) 3 3 3

6 9 TIME(2n
c

) 3 3 7

6 10 — 3 7 7

7 8 SPACE(nc) 7 3 3

7 9 SPACE(2n
c

) 7 3 7

7 10 — 7 7 7

6 Conclusion

We have established the complexity of the adversarial reachability problem in the most
natural fragments of GGP. That is, can a specified agent ensure a win assuming the other
agents are adversaries or are playing a fix mixed strategy. Using backward induction,
our results directly generalize to finding Nash equilibria in GGP when the number of
agents is polynomial in the size of the GDL description. However, it is possible to create
contrived GDL descriptions involving exponentially many agents. Whether our results
carry over to finding Nash equilibria in arbitrary GDL games remains open at this stage.



GDL has recently been extended to allow defining imperfect information (II) games [13].
The only extensions to the language are that the official specification of the random
role and the introduction of sees, a new keyword indicating the knowledge of each
player on the state of the game. We have investigated how a random role affected the
complexity. A natural avenue for future work is to extend the complexity landscape
when the predicate sees is allowed.

A recent paper shows that the General Game Playing problem is universal in the
sense that there is a tight relation between extensive-form games and models of GDL
programs [14]. We have focused here on another dimension of universality: computabil-
ity and complexity. Besides the Turing-completeness of GDL, we have shown that a wide
range of standard complexity classes could be captured as finding a winning strategy in
GGP via natural syntactic assumptions.



Bibliography

[1] Tom Bylander, ‘The computational complexity of propositional STRIPS plan-
ning’, Artificial Intelligence, 69(1), 165–204, (1994).

[2] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer, ‘Alternation’,
Journal of the ACM, 28(1), 114–133, (1981).

[3] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov, ‘Complex-
ity and expressive power of logic programming’, ACM Computing Surveys, 33(3),
374–425, (2001).

[4] Michael Genesereth and Nathaniel Love, ‘General Game Playing: Overview of
the AAAI competition’, AI Magazine, 26, 62–72, (2005).

[5] John Gill, ‘Computational complexity of probabilistic turing machines’, SIAM J.
Comput., 6(4), 675–695, (1977).

[6] Nathaniel C. Love, Timothy L. Hinrichs, and Michael R. Genesereth, ‘General
Game Playing: Game Description Language specification’, Technical report, LG-
2006-01, Stanford Logic Group, (2006).

[7] Christos H. Papadimitriou, ‘Games against nature’, Journal of Computer and Sys-
tem Sciences, 31(2), 288–301, (1985).

[8] Christos H. Papadimitriou, Computational complexity, Addison-Wesley, Reading,
Massachusetts, 1994.

[9] Jussi Rintanen, ‘Complexity of planning with partial observability’, in 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS), pp. 345–
354. AAAI Press, (2004).

[10] Ji Ruan, Wiebe Van der Hoek, and Michael Wooldridge, ‘Verification of games
in the Game Description Language’, Journal of Logic and Computation, 19(6),
1127–1156, (2009).

[11] Walter J. Savitch, ‘Relationships between nondeterministic and deterministic tape
complexities’, Journal of Computer and System Sciences, 4(2), 177–192, (1970).

[12] Stephan Schiffel and Michael Thielscher, ‘A multiagent semantics for the Game
Description Language’, in Agents and Artificial Intelligence (ICAART), eds.,
Joaquim Filipe, Ana Fred, and Bernadette Sharp, volume 67 of Communications in
Computer and Information Science, 44–55, Springer, Berlin / Heidelberg, (2010).

[13] Michael Thielscher, ‘A general Game Description Language for incomplete in-
formation games’, in 24th AAAI Conference on Artificial Intelligence (AAAI), pp.
994–999, Atlanta, (July 2010). AAAI Press.

[14] Michael Thielscher, ‘The general Game playing Description Language is univer-
sal’, in 22nd International Joint Conference on Artificial Intelligence, IJCAI, pp.
1107–1112, (July 2011).


