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This note resolves an open problem asked by Bezrukov in the open problem session of
IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a
sequence of invariants presents some symmetric property. We extend this result to a few
other sequences.
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1. Introduction

Let G = (V,E) be a simple undirected connected graph, with |V | = n and |E| = m.

For any pair of integers a 6 b, we denote by [a, b] the set {a, a+1, . . . , b− 1, b} and

we set [a] := [1, a]. For any set S and integer i,
(

S

i

)

denotes the set of all the subsets

of S of size i. All the definitions in this section are relative to G but we choose to

indicate the graph in subscript notation only if it would be ambiguous otherwise.

For any subset S ⊆ V , we define the following values:

• e(S) = |{uv ∈ E | u ∈ S and v ∈ S}|,

• vc(S) = |{uv ∈ E | u ∈ S or v ∈ S}|,

• c(S) = |{uv ∈ E | u ∈ S and v /∈ S}|.

We then define, for each i ∈ [0, n], the quantities:

• ∆(i) = max{e(S) | S ∈
(

V

i

)

},

• Σ(i) = min{e(S) | S ∈
(

V

i

)

},

• T(i) = max{vc(S) | S ∈
(

V

i

)

},

• Υ(i) = min{vc(S) | S ∈
(

V

i

)

},

• Θ(i) = max{c(S) | S ∈
(

V

i

)

},

• Φ(i) = min{c(S) | S ∈
(

V

i

)

}.
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By definition, observe that ∆(i) corresponds to the i-Densest Subgraph prob-

lem (the problem of finding i vertices of the graph s.t. the number of edges induced

by these vertices is maximum), Σ(i) to i-Sparsest Subgraph (the problem of

finding i vertices of the graph s.t. the number of edges induced by these vertices

is minimum), T(i) to Max i-Vertex Cover (also known as Partial Vertex

Cover or Max i-Coverage, the problem of finding a set of i vertices of the graph

s.t. the number of edges with at least one endpoint in this set is maximum), Υ(i)

to Min i-Vertex Cover (the problem of finding a set of i vertices of the graph

s.t. the number of edges with at least one endpoint in this set is minimum), Θ(i)

to Max (i, n − i)-Cut (the problem of finding a set of i vertices of the graph s.t.

the number of edges with one endpoint in this set and the other endpoint in the

complement is maximum) and Φ(i) to Min (i, n− i)-Cut (the problem of finding

a set of i vertices of the graph s.t. the number of edges with one endpoint in this

set and the other endpoint in the complement is minimum).

In combinatorial optimization, these problems are known as cardinality-

constrained, or size-constrained, or even fixed-cardinality graph problems. They all

inherit NP-hardness from their non cardinality-constrained variant, and have been

extensively studied mainly from the standpoint of parameterized complexity (see

for instance [6]) and approximation (see for instance [5]).

In graph theory, those problems are mostly known as edge isoperimetric graph

problems [2, 3] analogously to the isoperimetric problem of the ancient Greeks,

where one has to find a closed curve with a fixed given perimeter in order to

maximize the area of the interior.

Value Φ(i) is sometimes called the edge isoperimetric parameter. Edge isoperi-

metric inequality consists of upper bounding Φ(i)
i
. For instance, it is known that

ΦQd
(i)

i
> d − log i where Qd is the hypercube graph of dimension d [4, 7]. Such

inequalities lower bound the edge expansion of graphs and therefore indicate how

well they perform as expanders.

Finally, we define, for each i ∈ [n], the consecutive differences:

• δ(i) = ∆(i)−∆(i − 1),

• σ(i) = Σ(i)− Σ(i − 1),

• τ(i) = T(i)− T(i− 1),

• υ(i) = Υ(i)−Υ(i− 1),

• θ(i) = Θ(i)−Θ(i− 1),

• φ(i) = Φ(i)− Φ(i − 1).

For any s ∈ {δ, σ, τ, υ, θ, φ}, we say that the sequence s(1), . . . , s(n) (called s-

sequence) is symmetric if the value s(i)+s(n− i+1) does not depend on i. In other

words, the s-sequence is said to be symmetric if, for each i ∈ [n], s(i)+s(n−i+1) =

s(1) + s(n). It was conjectured by Bezrukov (open problem session of IWOCA

2014 [1]) that the δ-sequence of a graph G is symmetric iff G is regular. We prove

this conjecture and show that it extends to other sequences:
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Theorem 1. For any s ∈ {δ, σ, τ, υ} and graph G:

G is regular if and only if its s-sequence is symmetric.

We also observe that the θ-sequence and the φ-sequence are always symmetric.

2. Symmetry of Sequences and Regular Graphs

2.1. Max and min (k, n − k)-cut

Observation 1. Every graph has a symmetric θ-sequence (resp. φ-sequence).

Proof. By definition of a (k, n− k)-cut, Θ(i) = Θ(n− i), ∀i ∈ [0, n]. Thus, θ(i) =

Θ(i)−Θ(i− 1) = Θ(n− i)−Θ(n− i+1) = −θ(n− i+1). So, θ(i) + θ(n− i+1) =

0, ∀ i ∈ [n]. The same argument carries over to the φ-sequence.

2.2. k-densest and k-sparsest

We prove the conjecture (given in [1]) for the δ-sequence, namely:

Proposition 2. G is regular iff its δ-sequence is symmetric.

Proof. Let n be the number of vertices of G = (V,E), m its number of edges,

and d its minimum degree. Obviously, ∆(n) = m and ∆(n − 1) = m − d. Indeed,

an (n − 1)-densest contains all the vertices of V except one vertex of minimum

degree. Thus, δ(n) = m− (m− d) = d. Also, δ(1) = 0. Therefore, the δ-sequence is

symmetric iff for each i ∈ [n], δ(i) + δ(n− i+ 1) = d.

⇒ : We assume that G is d-regular. We observe that 2∆(i)+Φ(i) = id, ∀i ∈ [n].

So, δ(i) = ∆(i)−∆(i−1) = 1
2 (id−Φ(i))− 1

2 ((i−1)d−Φ(i−1)) = 1
2 (d−Φ(i)+Φ(i−1)).

Similarly, δ(n− i+1) = 1
2 (d−Φ(n− i+1)+Φ(n− i)). As Φ(n− i+1) = Φ(i− 1)

and Φ(n − i) = Φ(i), it holds that δ(i) + δ(n − i) = 1
2 (d − Φ(i) + Φ(i − 1) + d −

Φ(i − 1) + Φ(i)) = d.

⇐ : We now assume that the δ-sequence is symmetric, that is δ(i)+δ(n−i+1) =

d, ∀i ∈ [n]. We show by induction on i that ∆(n − i) = m− id+∆(i), ∀i ∈ [0, n].

This is true for i = 0 since ∆(n) = m and ∆(0) = 0. We suppose the property true

for j−1 for some j ∈ [n]. ∆(n− j) = ∆(n− (j−1))− δ(n− j+1) by definition of δ.

By induction hypothesis, one gets ∆(n− j) = m− (j−1)d+∆(j−1)− δ(n− j+1).

Since the δ-sequence is symmetric, ∆(n− j) = m− (j − 1)d+∆(j − 1) + δ(j)− d.

Therefore, ∆(n− j) = m− jd+∆(j), ending the induction.

The property for i = n yields ∆(0) = m − nd + ∆(n). Hence, m = nd

2 . As

m = 1
2Σv∈V deg(v), the previous identity only holds if ∀v ∈ V , deg(v) = d, that is

graph G is d-regular.

Proposition 3. G is regular iff its σ-sequence is symmetric.



November 9, 2016 9:25 IJFCS S0129054116500283 page 774
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Proof. We prove that the δ-sequence is symmetric iff the σ-sequence is symmetric

and conclude with Proposition 2. For that we show that δG(i) + δG(n − i + 1) +

σ
G
(i) + σ

G
(n − i + 1) = n − 1, ∀i ∈ [n], where G is the complement graph of G.

Thus, δG(i) + δG(n− i+1) does not depend on i iff σ
G
(i) + σ

G
(n− i+1) does not

depend on i.

Observe that ∆G(i) =
(

i

2

)

−Σ
G
(i). Thus, δG(i)+δG(n−i+1) = ∆G(i)−∆G(i−

1) + ∆G(n − i + 1) −∆G(n − i) =
(

i

2

)

− Σ
G
(i) − (

(

i−1
2

)

− Σ
G
(i − 1)) +

(

n−i+1
2

)

−

Σ
G
(n− i+1)− (

(

n−i

2

)

−Σ
G
(n− i)) = −(Σ

G
(i)−Σ

G
(i− 1)) + i− 1− (Σ

G
(n− i+

1)−Σ
G
(n− i))+n− i = −σ

G
(i)− σ

G
(n− i+1)+n− 1. This ends the proof since

the δ-sequence is symmetric iff G is regular iff G is regular.

2.3. Max and min k-vertex cover

Proposition 4. G is regular iff its τ-sequence is symmetric.

Proof. Equivalently, we show that the τ -sequence is symmetric iff the σ-sequence

is symmetric, and more precisely that τ(i) + τ(n− i+1) = σ(i) + σ(n− i+1). For

any i ∈ [n], the complement of a (n− i)-sparsest is a maximum i-vertex cover (that

is, a set of i vertices touching the largest number of edges) and T(i)+Σ(n− i) = m.

So, τ(i) + τ(n− i+ 1) = T(i)− T(i− 1) + T(n− i+ 1)− T(n− i) = −Σ(n− i) +

Σ(n− i+ 1)− Σ(i − 1) + Σ(i) = σ(i) + σ(n− i+ 1).

Proposition 5. G is regular iff its υ-sequence is symmetric.

Proof. For any i ∈ [n], the complement of a (n − i)-densest is a minimum i-

vertex cover (that is, a set of i vertices touching the smallest number of edges) and

Υ(i) + ∆(n − i) = m. Then, similarly to the previous proof, we can show that the

υ-sequence is symmetric iff the δ-sequence is symmetric.
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