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Abstract
We propose a polynomial-time algorithm which takes as input a finite set of points of R3 and
compute, up to arbitrary precision, a maximum subset with diameter at most 1. More precisely,
we give the first randomized EPTAS and deterministic PTAS for Maximum Clique in unit ball
graphs. Our approximation algorithm also works on disk graphs with arbitrary radii.

Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum
Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics ’90]. Since then, it
has been an intriguing open question whether or not tractability can be extended to general disk
graphs. Recently, it was shown that the disjoint union of two odd cycles is never the complement
of a disk graph [Bonnet, Giannopoulos, Kim, Rzążewski, Sikora; SoCG ’18]. This enabled the
authors to derive a QPTAS and a subexponential algorithm for Max Clique on disk graphs.

In this paper, we improve the approximability to a randomized EPTAS (and a deterministic
PTAS). More precisely, we obtain a randomized EPTAS for computing the independence number
on graphs having no disjoint union of two odd cycles as an induced subgraph, bounded VC-
dimension, and large independence number. We then address the question of computing Max
Clique for disks in higher dimensions. We show that intersection graphs of unit balls, like
disk graphs, do not admit the complement of two odd cycles as an induced subgraph. This,
in combination with the first result, straightforwardly yields a randomized EPTAS for Max
Clique on unit ball graphs. In stark contrast, we show that on ball and unit 4-dimensional
disk graphs, Max Clique is NP-hard and does not admit an approximation scheme even in
subexponential-time, unless the Exponential Time Hypothesis fails.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In an intersection graph, the vertices are geometric objects with an edge between any pair
of intersecting objects. Intersection graphs have been studied for many different families
of objects due to their practical applications and their rich structural properties [12, 27].
Among the most studied ones are disk graphs, which are intersection graphs of closed disks
in the plane, and their special case, unit disk graphs, where all the radii are equal. Their
applications range from sensor networks to map labeling [20], and many standard optimiza-
tion problems have been studied on disk graphs, see for example [34] and references therein.
Most of the hard optimization and decision problems remain NP-hard on disk graphs and
even unit disk graphs. For instance, disk graphs contain planar graphs [25] on which several
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of those problems are untractable. Although shifting techniques and separator theorems
may often lead to subexponential classic or parameterized algorithms [3, 7, 26, 31]. Many
approximation algorithms have been designed specifically on (unit) disk graphs, or more
generally on geometric intersection graphs, see for instance [16, 19, 21, 28, 29, 33] to cite
only a few. Besides ad hoc techniques, local search and VC-dimension play an important role
in the approximability of problems on (unit) disk graphs. For the main packing and covering
problems (Maximum Independent Set, Min Vertex Cover, Minimum Dominating
Set, Minimum Hitting Set, and their weighted variants) at least a PTAS is known.

However, all the techniques that we mentioned are only amenable to packing and covering
problems. The Maximum Clique problem is arguably the most prominent problem which
does not fall into those categories. For example, anything along the lines of exploiting a
small separator cannot work for Maximum Clique, where the densest instances are the
hardest. Therefore, it seems that new ideas are necessary to get improved approximate or
exact algorithms for this problem. This is why, in this paper, we focus on solving Maximum
Clique on (unit) disk graphs in dimension 2 or higher.

Previous results.

In 1990, Clark et al. [17] gave an elegant polynomial-time algorithm for Maximum Clique
on unit disk graphs when the input is a geometric representation of the graph. It goes as
follows: guess in quadratic time the two more distant centers of disks in a maximum clique,
remove all the centers that would contradict this maximality, observe that the resulting
graph is co-bipartite, implying that an optimum solution can be found in polynomial time.
However, recognizing unit disk graphs is NP-hard [13], and even ∃R-complete [24]. In par-
ticular, if the input is the mere unit disk graph, one cannot expect to efficiently compute
a geometric representation in order to run the previous algorithm. Raghavan and Spinrad
showed how to overcome this issue and suggested a polynomial-time algorithm which does
not require the geometric representation [30]. Their algorithm is a subtle blind reinterpreta-
tion of the algorithm by Clark et al. It solves Maximum Clique on a superclass of the unit
disk graphs or correctly claims that the input is not a unit disk graph. Hence, it cannot be
used to efficiently recognize unit disk graphs.

The complexity of Maximum Clique on general disk graphs is a notorious open question
in computational geometry. On the one hand, no polynomial-time algorithm is known, even
when the geometric representation is given. On the other hand, the NP-hardness of the
problem has not been established, even when only the graph is given as input.

The piercing number of a collection of geometric objects is the minimum number of points
that hit all the objects. It is known since the fifties (although the first published records
of that result came later in the eighties) that the piercing number of pairwise intersecting
disks is 4 [18, 32]. An account of this story can be found in a recent note by Har-Peled et
al. [22]. Ambühl and Wagner observed that this yields a 2-approximation for Maximum
Clique [5]. Indeed, after guessing in polynomial time four points hitting a maximum
clique and removing every disk not hit by those points, the instance is partitioned into
four cliques; or equivalently, two co-bipartite graphs. One can then solve optimally both
instance formed by one co-bipartite graph and return the larger solution. This cannot give
a solution more than twice smaller than the optimum. Since then, the problem has proved
to be elusive with no new positive or negative results. The question on the complexity
and further approximability of Maximum Clique on general disk graphs is considered as
folklore [6], but was also explicitly mentioned as an open problem by Fishkin [20], Ambühl
and Wagner [5]. Cabello even asked if there is a 1.99-approximation for disk graphs with
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two sizes of radii [14, 15]. Recently, Bonnet et al. [10] showed that the disjoint union of
two odd cycles is not the complement of a disk graph. From this result, they obtained a
subexponential algorithm running in time 2Õ(n2/3) for Maximum Clique on disk graphs,
based on a win-win approach. They also got a QPTAS by calling a PTAS for Maximum
Independent Set on graphs with sublinear odd cycle packing number due to Bock et
al. [9], or branching on a low-degree vertex.

Our results.

Our main contributions are twofold. The first is an EPTAS (Efficient Polynomial-Time
Approximation Scheme, that is, a PTAS in time f(ε)nO(1)) for Maximum Independent
Set on graphs of X (d, β, 1) with constant VC-dimension d, independence number at least
βn, and no disjoint union of two odd cycles as an induced subgraph.

I Theorem 1. For any constants d ∈ N, 0 < β 6 1, for every 0 < ε < 1, there is a
randomized (1 − ε)-approximation algorithm running in time 2Õ(1/ε3)nO(1) for Maximum
Independent Set on graphs of X (d, β, 1) with n vertices.

Using the forbidden induced subgraph result of Bonnet et al. [10], it is then easy to
reduce Maximum Clique on disk graphs to Maximum Independent Set on X (3, β, 1)
for some constant β. We therefore obtain an EPTAS for Maximum Clique on disk graphs,
settling almost1 completely the approximability of this problem.

I Theorem 2. There is a randomized EPTAS for Maximum Clique on disk graphs,
even without geometric representation. Its running time is 2Õ(1/ε3)nO(1) for a (1 − ε)-
approximation on a graph with n vertices.

The second contribution is to show the same forbidden induced subgraph for unit ball
graphs as the one obtained for disk graphs. The proofs are radically different and the classes
are incomparable. So the fact that the same obstruction applies for disk graphs and unit
ball graphs might simply be a coincidence.

I Theorem 3. A complement of a unit ball graph cannot have a disjoint union of two odd
cycles as an induced subgraph. In other words, if G is a unit ball graph, then iocp(G) 6 1.

In the previous statement iocp denotes the induced odd cycle packing number of a graph,
i.e., the maximum number of odd cycles as a disjoint union in an induced subgraph. Again,
Theorem 1 and Theorem 3 naturally lead to:

I Theorem 4. There is a randomized EPTAS in time 2Õ(1/ε3)nO(1) for Maximum Clique
on unit ball graphs, even without the geometric representation.

Before that result, the best approximation factor was 2.553, due to Afshani and Chan [1].
In particular, even getting a 2-approximation algorithm (as for disk graphs) was open.

Finally we show that such an approximation scheme, even in subexponential time, is
unlikely for ball graphs, and unit 4-dimensional disk graphs. Our lowerbounds also imply
NP-hardness. To the best of our knowledge, the NP-hardness of Maximum Clique on unit
d-dimensional disk graphs was only known when d is superconstant (d = Ω(logn)) [2].

In the following paragraphs, we sketch the principal lines of our two main contributions.

1 The NP-hardness, ruling out a 1-approximation, is still to show.
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EPTAS for Maximum Independent Set on X (d, β, 1)

The first main result of this paper asserts that if a graph G satisfies that every two odd
cycles are joined by an edge, the Vapnik-Chervonenkis dimension of the hypergraph of the
neighborhoods of G is bounded, and α(G) is at least a constant fraction of |V (G)|, then
α(G) can be computed in polytime at any given precision. More precisely, we present in
that case a randomized EPTAS running in time 2Õ(1/ε3)nO(1) and a deterministic PTAS.

Our algorithm works as follows. We start by sampling hopefully in a fixed optimum
solution I. We include the selected vertices in our solution and remove their neighborhood
from the graph. Due to the classic result of Haussler and Welzl [23] on ε-nets of size
O(d/ε log 1/ε) (where d is the VC-dimension), this sampling lowers the degree in I of the
remaining vertices. We compute a shortest odd cycle. If this cycle is short, we can remove
its neighborhood from the graph and solve optimally the problem in the resulting graph,
which is bipartite by assumption. If this cycle is long, we can efficiently find a small odd-
cycle transversal. This is shown by a careful analysis on the successive neighborhoods of the
cycle, and the recurrent fact that this cycle is the shortest among the ones of odd length.

The complement of the union of two odd cycles is not a unit ball graph

Given a needle in R3 whose middlepoint is attached to the origin, one can apply a continuous
motion in order to turn it around (a motion à la Kakeya, henceforth Kakeya motion). If we
now consider two needles, each with a Kakeya motion, then the two needles will go through
the same position. This simply follows from the fact that two antipodal curves on the 2-
sphere intersect. The second main result of this paper is a translation of this Jordan-type
theorem in terms of intersection graphs: The complement of unit balls does not contain the
disjoint union of two odd cycles. The proof can really be seen as two Kakeya motions, each
one along the two odd cyles, leading to a contradiction when the needles achieve parallel
directions.

Together with the first result, it implies a randomized EPTAS for Maximum Clique
on disk graphs, and for the following problem: Given a set S of points in R3, find a largest
subset of S of diameter at most 1.

Organization

The rest of the paper is organized as follows. In Section 2, we recall some relevant notations
for graphs and elementary geometry, the definitions of VC-dimension, disk graphs, and
approximation schemes. We finish this section by introducing a class of graphs parameterized
by three constants: the VC dimension, the ratio independence number divided by number
of vertices, and the maximum number of odd cycles that can be found as a disjoint union
in an induced subgraph. In Section 3, we design a randomized EPTAS for Maximum
Independent Set on this class. In Section 4, we show that complements of unit ball
graphs do not have a disjoint union of two odd cycles as an induced subgraph. This yields a
randomized EPTAS for Maximum Clique on unit ball graphs (as well as on disk graphs).
This is tight in two directions: having different values of radii, and the dimension of the
ambient space. Indeed, we complement this positive result by showing that Maximum
Clique is unlikely to even have a QPTAS on ball graphs where all the radii are arbitrarily
close to 1, and on 4-dimensional unit ball graphs.



Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, and Stéphan Thomassé XX:5

2 Preliminaries

Graph notations

Let G be a simple graph. We denote by G its complement, i.e., the graph obtained by
making every non-edge an edge and vice versa. V (G) and E(G) represent its set of vertices
and its set of edges, respectively. We denote by α(G) the independence number of G, i.e.,
the size of a maximum independent set (or stable set), and by ω(G) the clique number of
G, i.e., the size of a maximum clique. For S ⊆ V (G), its open neighborhood, denoted by
NG(S), is the set of vertices that are not in S and have a neighbor in S, and its closed
neighborhood is defined by NG[S] = S ∪ NG(S). We omit the subscript G if the graph is
obvious from the context and we write NG(x) instead of NG({x}).

The odd cycle packing number of G, denoted by ocp(G), is defined as the maximum
number of vetex-disjoint odd cycles and the induced odd cycle packing number of G, denoted
iocp(G), is the maximum number of vertex-disjoint odd cycles with no edge between any
two of them.

VC-dimension

VC-dimension has been introduced by Vapnik and Chervonenkis in the seminal paper [35].
Let H = (V,E) be a hypergraph. A set X of vertices of H is shattered if for every subset
Y of X there exists a hyperedge e ∈ E such that e ∩ X = Y . An intersection between X
and a hyperedge e of E is called a trace (on X). Equivalently, a set X is shattered if all its
2|X| traces exist. The VC-dimension of a hypergraph is the maximum size of a shattered
set. As an abuse of language, we call VC-dimension of a graph G, denoted by VCdim(G),
the VC-dimension of the hypergraph (V (G), {NG(v) | v ∈ V (G)}).

Geometric notations

For a positive integer d, we denote by Rd the d-dimensional euclidean space. If x and y are
two points of Rd, xy is the straight-line segment whose endpoint are x and y. We denote
by d(x, y) the euclidean distance between x and y. A d-dimensional closed disk is defined
from a center x ∈ Rd and a radius r ∈ R+, as the set of points {y ∈ Rd | d(x, y) 6 r}, i.e.,
at distance at most r from x. The diameter of a subset S ⊆ Rd is the quantity sup

x,y∈S
d(x, y).

The piercing number (also called hitting set or transversal) of a collection O of geometric
objects in Rd is the minimum number of points of Rd that pierce (or hit) all the objects of
O, i.e., each object contains at least one of these points.

Disk graphs and their forbidden induced subgraphs

A d-dimensional disk graph is the intersection graph of d-dimensional closed disks of Rd. We
shorten 2-dimensional disk graph in disk graph, and 3-dimensional disk graph in ball graph.
A d-dimensional unit disk graph is the intersection graph of unit d-dimensional closed disks
of Rd, that is, disks with radius 1. Unit d-dimensional disk graphs can be thought of only
with points: vertices are points (at the center of the disks) and two points are adjacent if
they are at distance at most 2. In particular, solving Maximum Clique on those graphs is
equivalent to finding a maximum subcollection of points whose diameter is at most a fixed
value.

Bonnet et al. established the following obstruction for disk graphs.
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I Theorem 5 ([10]). The complement of a disk graph cannot have the disjoint union of two
odd cycles as an induced subgraph.

This can be equivalently rephrased as: if G is a disk graph, then iocp(G) 6 1.

Approximation schemes

A PTAS (Polynomial-Time Approximation Scheme) for a minimization (resp. maximiza-
tion) problem is an approximation algorithm which takes an additional parameter ε > 0 and
outputs in time nf(ε) a solution of value at most (1 + ε)OPT (resp. at least (1 − ε)OPT)
where OPT is the optimum value. Observe that from now on, we consider that approxim-
ation ratios of maximization problems are smaller than 1, unlike the convention we used in
the introduction. An EPTAS (Efficient PTAS) is the same with running time f(ε)nO(1), an
FPTAS (Fully PTAS) is in time 1

ε

O(1)
nO(1), a QPTAS (Quasi PTAS) is in time npolylog n for

every ε. Finally, and this is quite informal and not standard, we call SUBEXPAS (subex-
ponential AS) an approximation scheme with running time 2n0.99 for every ε. All those
approximation schemes can come deterministic or randomized.

The class X (d, β, i)

In the next section, we present a randomized EPTAS and a deterministic PTAS for ap-
proximating the independence number α on graphs with constant VC-dimension, linear
independence number, and induced odd cycle packing number equals to 1.

Actually, we extend these algorithms to the case iocp(G) = i, for any constant i. Let
X (d, β, i) be the class of simple graphs G satisfying:

VCdim(G) 6 d,
α(G) > β|V (G)|, and
iocp(G) 6 i.

For any positive constants d, β < 1, i, we get a deterministic PTAS and a randomized
EPTAS for Maximum Independent Set on X (d, β, i). It will turn out that the complement
of the interesting instances are in X (3, 1

6 , 1) (or X (3, 1
4 , 1)) for disk graphs, and in X (4, 1

12 , 1)
for unit ball graphs.

3 EPTAS for Maximum Independent Set on X (d, β, i)

We start by showing that X (d, β, 1) has a randomized EPTAS.

I Theorem 1. For any constants d ∈ N, 0 < β 6 1, for every 0 < ε < 1, there is a
randomized (1 − ε)-approximation algorithm running in time 2Õ(1/ε3)nO(1) for Maximum
Independent Set on graphs of X (d, β, 1) with n vertices.

Proof. Let H be a graph in X (d, β, 1) with n vertices and I be a maximum independent
set of H. In particular, |I| > βn. Since finding a maximum independent set in a bipartite
graph can be done in polynomial time, we get the desired (1 − ε)-approximation if we can
find a vertex-set T such that:

T is an odd-cycle transversal, i.e., its removal yields a bipartite graph, and
|T ∩ I| 6 ε|I|.
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At high level, our algorithm will thus select and remove some odd-cycle transversals T ,
and then apply the bipartite case algorithm. We will do this at least once for a set T that
satisfies the second item, with some strong guarantee. Of course the key ingredient in finding
a suitable odd-cycle transversal is the fact that iocp(H) 6 1. For instance, this implies that
for any odd cycle C, the set N [C] is an odd-cycle transversal.

Let c := 8( 1
(βε)2 + 1

βε + 1) = O(1/ε2), δ := ε
c = O(ε3), and s := 10d

δ log 1
δ . We call

short odd cycle an odd cycle of length at most c, and long odd cycle an induced odd cycle
of length more than c. First we can assume that βn is larger than 2s, otherwise we can find
an optimum solution by brute-force in time 2n = 2Õ(1/ε3). Hence, |I| > 2s.
I Claim 1. There exists a subset S ⊆ I of size s = 10d

δ log 1
δ such that N(S) contains all

vertices that have more than δ|I| neighbors in I.

Proof. Let A denote the set of vertices v such that |N(v) ∩ I| > δ|I|. We define the
hypergraph K := (I, {N(v) ∩ I, v ∈ A}). By assumption on H, the hypergraph K has VC-
dimension d. By definition of K, all its edges have size at least δ|V (K)|. A celebrated result
in VC-dimension theory by Haussler and Welzl [23], later improved by Blumer et al. [8],
ensures that every such hypergraph K admits a hitting set (a set of vertices that intersects
every edge) of size at most 10d

δ log 1
δ . J

Algorithmically, we have two ways of selecting the set S, leading to a deterministic PTAS
or a randomized EPTAS. Either we run the rest of the algorithm for every subset of V (H)
of size 10d

δ log 1
δ inducing an independent set (which constitutes nf(ε) possible sets), or we

use another result proven in [23]: not only the hitting set exists but a uniform sample
of V (K) of size 10d

δ log 1
δ is a hitting set with high probability. So we do the following

t := d log(10−10)
log(1−(β/2)s)e = 2Õ(1/ε3) many times: we select uniformly at random a set S of size

s = 10d
δ log 1

δ , and continue the rest of the algorithm if S is an independent set. Since
|I| > 2s, it holds that Pr(S ⊆ I) > (β/2)s. As we try out t samples, at least one satisfies
S ⊆ I with probability at least 1− (1− (β/2)s)t > 1− 10−10.

We now assume that the sample S satisfies the properties of Claim 1. We start by
putting in T all the vertices of N(S) (note that no such vertex is in I). We define the graph
H ′ := H −N(S). We got rid of the vertices with at least δ|I| neighbors in I: in H ′, there
are no such vertices anymore. We want to find an odd-cycle transversal in H ′ that has few
vertices in I.

We now run a polynomial-time algorithm (see for instance [4]) that determines whether
the graph is bipartite and, if not, outputs a shortest odd cycle Cog in H ′.

If H ′ is bipartite, then T := NH(S) is an odd-cycle transversal of H with |T ∩ I| = 0.
If g = |Cog| 6 c, that is, if Cog is a short odd cycle, then |NH′(Cog) ∩ I| 6 cδ|I| = ε|I|,
and therefore T := NH(S)∪NH′ [Cog] is an odd-cycle transversal of H with |T ∩I| 6 ε|I|.

We can now safely assume that g > c, i.e., Cog is a long odd cycle. We decompose H ′
into the successive neighborhoods of Cog, which we call layers. We define the first layer as
L1 := NH′(Cog). We define by induction the other layers as the non-empty sets Li := {v |
∃u ∈ Li−1 with uv ∈ E(H ′) and v /∈ Lj for j < i}. Let us denote by λ the index of the last
non-empty layer. Before entering into the formal details of the second part of the proof let
us briefly explain its structure:

First, we observe that if there are many layers, there is one with index at most 2
βε that

contains at most εβ
2 n 6 ε

2 |I| of the vertices. We can thus delete this layer, and note
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that connected components that do not contain Cog are bipartite. We then focus on the
component containing Cog, which has only few layers.
Secondly, we show that this component admits an odd-cycle transversal of size at most
ε
2 |I| (informally, the neighborhood at distance up to O( 1

ε ) of O( 1
ε ) consecutive vertices

on the cycle Cog).

In other words, we can find ε|I| vertices whose deletion yields a bipartite graph (see
Figure 1), which together with N(S) form the desired odd-cycle transversal.

Figure 1 The layers (columns) and the strata (rows of a column). If the number of successive
neighborhoods is large, a small cutset (in blue) is found among the first d 2

βε
e layers. To the right

of this cutset, we know that the graph is bipartite. This brings us back to the case with fewer than
2
βε

layers, where we can find a small odd cycle transversal (in red).

If λ > 2
βε , then there is some index i 6 d 2

βεe such that Li is of size at most βε
2 n 6 ε

2 |I|.
We remove that layer Li from the graph. Since iocp(H ′) = 1, the set

⋃
i<j6λ Lj induces a

bipartite graph. Indeed, it is disjoint from the closed neighborhood of the odd cycle Cog.
We can easily find a maximum independent set on this part of the graph, and focus on the
other part, which is Cog ∪

⋃
16j<i Lj . We set H ′′ := H ′[Cog ∪

⋃
16j<i Lj ].

The graph H ′′ has less than 2
βε layers emanating from Cog. We will find an odd-cycle

transversal of size at most ε
2 |I|. We first need some new definitions.

For 1 6 j 6 g, let Sj be the set of vertices w ∈ V (H ′) such that there is a shortest path
from w to Cog which ends in vj , while no shortest path from w to Cog ends in vi with i < j

(note that vj ∈ Sj). We point out that the sets (S1, . . . , Sg) induce a partition of each layer
Lk. This simply follows from the fact that for every vertex w ∈ Lk, there is a minimum
index j(w) such that there is a shortest path from v to Cog ending in vj(w). For each pair
(k, `), we define a stratum as L`k := S` ∩ Lk. Note that if L`k = ∅, then for any k′ > k,
L`k′ = ∅.

Let z := d 4
βεe+2 and for any non-negative integer γ at most gz−1, Sγ :=

⋃
γz+16j6(γ+1)z

Sj .

I Claim 2. For any non-negative integer γ 6 2
βε , the graph B := H ′′ − Sγ is bipartite.

Proof. Observe that g
z − 1 > 2

βε , so each Sγ of the claim is well-defined. It holds that
Cog∩Sγ =

⋃
γz+16j6(γ+1)z{vj}. We exhibit a proper 2-coloring of B by coloring its vertices

as follows. We start by coloring each vertex of the path Cog \ Sγ in an alternated manner,
i.e., one endpoint of the path gets color 0, its neighbor gets color 1, the next vertex gets
color 0, and so on.

For each pair (k, `) such that 1 6 k < i, 1 6 ` 6 g, and ` /∈ [γz + 1, (γ + 1)z], we color
all the vertices in the stratum L`k = S` ∩ Lk with the opposite color of the one used for
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the stratum L`k−1 = S` ∩ Lk−1 (with the convention that L0 := Cog). This process colors
unambiguously all the vertices of B.

Let us prove that the resulting coloring is proper. First note that the vertices of a same
stratum form an independent set. Indeed, assume by contradiction that L`k contains an edge
uw. There is a shortest path P1 from v` to u and a path P2 from w to v`. Since u and w are in
the same layer Lk, P1 and P2 have the same length; more precisely, |P1| = |P2| = k < i 6 2

βε .
Thus, P1, uw, P2 defines a closed walk with 2k+1 edges. An odd closed walk of length 2k+1
implies the existence of an odd induced cycle of length at most 2k+1. As 2k+1 < 4

βε+1 < g,
we reach a contradiction on the minimality of Cog.

There is no edge between a stratum L`k and a stratum L`k′ with |k−k′| > 2, by definition
of the layers. Moreover, for 1 6 ` < `′ 6 g, there is no edge uw with u ∈ L`k and w ∈ L`′k′
with min(`′−`, `+g−`′) > 4

βε +1 since otherwise it would be possible to construct a shorter
odd cycle than Cog. Indeed if P1 is a shortest path between v` and u and P2 is a shortest path
between w and v`′ . Then, P1, uw, P2 is an odd walk of length k+k′+1. However, a shortest
path between v` and v`′ within Cog has length min(`′ − `, `+ g − `′) > 4

βε + 1 > k + k′ + 1.
Hence, the walk P1, uw, P2 can be extended into an odd closed walk of length stricly smaller
than g, by taking the path from v`′ to v` in Cog with the same parity as k+k′; a contradiction.

Therefore, if there is a monochromatic edge uw in B, it must be between L`k and L`
′

k′

with |k − k′| ∈ {0, 1}, min(`′ − `, ` + g − `′) < 4
βε + 1, and {`, `′} ∩ [γz + 1, (γ + 1)z] = ∅.

We fix k, k′, `, `′ satisfying those conditions. We call small interval of ` and `′, denoted
by si(`, `′), the integer interval [`, `′] if min(`′ − `, ` + g − `′) = `′ − ` and [`′, g] ∪ [1, `] if
min(`′− `, `+ g− `′) = `+ g− `′. What we showed in the previous paragraph implies that if
{`, `′}∩ [γz+ 1, (γ+ 1)z] = ∅, then si(`, `′)∩ [γz+ 1, (γ+ 1)z] = ∅. Indeed, the small interval
of ` and `′ is a circular interval over [1, g] of length less than 4

βε + 1 < z. In particular, the
vertices of Cog indexed by the small interval of ` and `′ are all in B.

Assume first that k = k′. There is a path P1 from v` to u, and a path P2 from w to v`′ ,
both of length k. Since by assumption the color for L`k is the same as the color for L`′k′ , the
vertices v` and v′` have the same color (by construction of the 2-coloring). Thus we have, in
Cog − Sγ , a path P indexed by si(`, `′) from v`′ to v` of even length less than 4

βε + 1. We
emphasize that it is crucial that si(`, `′)∩ [γz+1, (γ+1)z] = ∅ (meaning that all the vertices
of Cog indexed by si(`, `′) are still in B), to deduce that P is a path of even length from
the mere fact that v` and v′` have the same color. Finally, the concatenation P1, uw, P2, P

yields an odd cycle of odd length less than 2k + 1 + 4
βε + 1 6 8

βε + 2 < g.
Now let us assume that |k − k′| = 1; say, without loss of generality, k′ = k + 1. In that

case, by construction of the 2-coloring, the edge can only be monochromatic if v` and v`′

receive distinct colors. Furthermore, there is a path P1 from v` to u, and a path P2 from
w to v`′ with length of distinct parities (k and k + 1, respectively). Moreover, since v` and
v`′ get distinct colors, there is in Cog − Sγ , a path P indexed by si(`, `′) from v`′ to v` of
odd length at most 4

βε + 1. Again, we crucially use that all the vertices of Cog indexed
by si(`, `′) are in B, to deduce that P is of odd length from the fact that v` and v`′ get
distinct colors. Finally, the concatenation P1, uw, P2, P is an odd cycle of length less than
k + 1 + k + 1 + 4

βε + 1 6 8
βε + 3 < g; a contradiction.

We conclude that the 2-coloring is indeed proper. J

Since the sets of {Sγ}γ∈[0,b 2
βε c] are pairwise disjoint, a smallest set of the collection

satisfies |Sγ | 6 βε
2 n 6 ε

2 |I|. By Claim 2, removing this Sγ from H ′′ makes the graph
bipartite. So, we do that and finally compute a maximum independent set in polynomial
time in H ′′ − Sγ . We return the best solution found. The pseudo-code is detailed in
Algorithm 1. J
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Algorithm 1 EPTAS for Maximum Independent Set on X (d, β, 1)
Precondition: H satisfies d := VCdim(G) = O(1), α(G) > β|V (G)|, and iocp(G) 6 1
1: function Stable(H, ε):
2: c ← 8(1/(βε)2 + 1/(βε) + 1)
3: δ ← ε

c

4: s ← 10d
δ log 1

δ

5: if β|V (H)| < 2s then solve H optimally by brute-force . |V (H)| = Õ(1/ε3)
6: end if
7: for _← 1 to t = 2Õ(1/ε3) do
8: S ← uniform sample of V (G) of size s . S ⊆ I with probability > (β2 )s
9: if G[S] contains an edge then break and go to the next iteration
10: end if
11: H ′ ← H −N [S] . remove S and its neighborhood
12: Cog ← shortest odd cycle in H ′ . in polynomial time [4]
13: g ← |Cog| . Cog = v1v2 . . . vg
14: if g 6 c then . short odd cycle
15: S ← S ∪ max stable on the bipartite H ′ −N [Cog] . iocp(G) = 1
16: else . long odd cycle
17: L` ← vertices of H ′ at distance exactly ` from Cog
18: Li ← smallest layer among {L`}16`6d2/βεe . |Li| 6 ε

2α(G)
19: H ′′ ← H ′[Cog ∪

⋃
16j<i Lj ]

20: Sk ← vertices of H ′′ whose closest vertex on Cog of minimum index is vk
21: z ← d 4

βεe+ 2
22: Sγ ← smallest set among {

⋃
k∈[γz+1,(γ+1)z] Sk}γ∈[0,b 2

βε c] . |Sγ | 6 ε
2α(G)

23: S ← S ∪ max stable on the bipartite H ′[
⋃
j>i Lj ] . iocp(G) = 1

24: S ← S ∪ max stable on the bipartite H ′′ − Sγ . Claim 2
25: end if
26: end for
27: return S at the iteration maximizing its cardinality
28: end function
Postcondition: output S is a stable set of size at least (1− ε)α(G) with high probability
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I Theorem 2. There is a randomized EPTAS for Maximum Clique on disk graphs,
even without geometric representation. Its running time is 2Õ(1/ε3)nO(1) for a (1 − ε)-
approximation on a graph with n vertices.

Proof. With a geometric representation, we could invoke the following argument to get a
linear maximum stable set. Recall that the piercing number of a family of geometric objects
is the minimum number of points such that each object contains at least one of those points.
The piercing number of a collection of pairwise intersecting disks in the plane is 4 [18, 32].
The number of faces in an arrangement of n circles (disk boundaries) is O(n2), and all the
points within one face hits the same disks. In time O(n8), one can therefore exhaustively
guess four points piercing a maximum clique C. We can remove all the disks which are not
hit by any of those four points, since they are not part of C. This new instance G can have
its vertices partitioned into four cliques, hence α(G) > |V (G)|/4.

Without a geometric representation, we suggest the following. Disk graphs are 6ω-
degenerate (and closed by induced subgraphs), i.e., there is a vertex of degree at most 6ω,
where ω is the clique number of the graph. Furthermore, the neighborhood of this vertex is
easily partitionable into 6 cliques. We can find such a vertex in polynomial time. We branch
on two outcomes. Either this vertex is in a maximum clique: we run the approximation of
Theorem 1 on its closed neighborhood G which satifies α(G) > |V (G)|/6. Or this vertex
is not in any maximum clique: we delete it from the graph. Our branching tree has size
2n+ 1, so it only costs an extra linear multiplicative factor.

It is folklore that disk graphs have VC-dimension at most 3 (see for instance [11]) and,
since the VC-dimension of a graph is equal to the one of its complement, the VC-dimension of
G is also at most 3. Finally, by Theorem 5 [10], iocp(G) 6 1. We only call the approximation
algorithm (a polynomial number of times) with disk graphs G such that G ∈ X (3, 1

6 , 1)
(argument without the geometric representation) or G ∈ X (3, 1

4 , 1) (argument with the
geometric representation). Hence, we conclude by Theorem 1. J

It is known that the VC-dimension of unit balls and the piercing number of pairwise
intersecting unit balls are both constant. In Section 4, we will show that the induced odd
cycle packing number of unit ball graphs is at most 1. This is the missing element for the
EPTAS to also work for Maximum Clique on unit balls.

We conclude this section by extending the EPTAS to work for constant (not necessarily 1)
induced odd cycle packing number.

I Theorem 6. For any constants d, i ∈ N, 0 < β 6 1, for every ε > 0, there is a randomized
(1−ε)-approximation algorithm running in time 2Õ(1/ε3)nO(1) for Maximum Independent
Set on graphs of X (d, β, i) with n vertices.

Proof. Let I be a maximum independent set. We show by induction on i that we can find in
time 2Õ(1/ε′3)nO(1) a stable set of size (1− iε′)|I|. The base case is Theorem 1. We assume
that there is such an algorithm when the induced odd cycle packing number is i − 1. We
follow Algorithm 1 with a graph H such that iocp(H) = i. On line 15 and 23, the graph
is not necessarily bipartite anymore (on line 24, the resulting graph is still bipartite in this
case). Although, the induced odd cycle packing number is decreased to i − 1. So, by the
induction hypothesis we get a stable set within a factor (1− (i− 1)ε′) of the optimum. To
get there, we removed a subset of vertices of size at most ε′|I|. Therefore, the solution S

that we obtain satisfies |S| > (1− iε′)|I|.
We obtain the theorem by setting ε := iε′ since i is absorbed in the Õ in the running

time. J
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4 Balls and higher dimensions

We start by showing the main result of this section: for every unit ball graph G, iocp(G) 6 1.
A closed polygonal chain C in Rd is defined by a set of points (or vertices) x1, x2, . . . , xp ∈ Rd
as the straight-edge segments x1x2, x2x3, . . . , xp−1xp, xpx1. We call direction of a non-zero
vector its equivalence class by the relation ~u ∼ ~v ⇔ ∃λ ∈ R+, ~u = λ~v. We denote the
direction of ~u by dir(~u). We define the set of directions

Needle(C) :=
⋃

16i6p
[xi−1 ← xi → xi+1] ∪ [xi−1 → xi ← xi+1],

where the indices are taken modulo p, [xi−1 ← xi → xi+1] := {dir(−→xix) | x ∈ xi−1xi+1},
and [xi−1 → xi ← xi+1] := {dir(−→xxi) | x ∈ xi−1xi+1}.

I Lemma 7. Let C1 and C2 be two closed polygonal chains of R3 on an odd number of
vertices each. Then, Needle(C1) ∩Needle(C2) is non-empty.

Proof. We want to establish the existence of a direction which is common to Needle(C1) and
Needle(C2). For that, we yield a continuous map from R+ to Needle(C1) that we naturally
interpret as a curve on the 2-sphere. Indeed the set of directions in R3 is isomorphic to the
set of points on the 2-sphere. As we do not need a specific parameterization of the curve,
we just describe how we continuously move a vector

−→
ab whose direction runs through the

entire set Needle(C1). Let x1, x2, . . . , xp be the vertices of C1.
We start with a in x1 and b in x2. We continuously move a from x1 to x3 (on the

straight-edge segment x1x3) while b stays fixed at x2. For the next step, a is fixed at x3 and
b continuously moves from x2 to x4. And in general, we move the point with index i − 1
from xi−1 to xi+1 while the other point stays fixed at xi (where the indices are modulo p).
Since p is odd, we reach the situation where b is in x1 and a is in x2. We do the same one
more time, so that a is back to x1 and b is back to x2, and we stop. One may observe that
this process spans Needle(C1).

This defines a closed curve C1 on the 2-sphere since we are finally back to dir(−−→x1x2)
from where we started. Furthermore, C1 is antipodal, i.e., closed by taking antipodal points.
Indeed, for each direction attained in a [xi−1 ← xi → xi+1], we attain the opposite direction
in [xi−1 → xi ← xi+1]. Similarly Needle(C2) draws a closed antipodal curve on the 2-sphere
C2. The curves C1 and C2 intersect since they are closed and antipodal. An intersection
point corresponds to a direction shared by Needle(C1) and Needle(C2). J

We will apply this lemma on the closed polygonal chains C1 and C2 formed by the centers
of unit balls realizing two odd cycle complements. The contradiction will come from the
fact that not all the pairs of centers x ∈ C1 and y ∈ C2 can be at distance at most 2.

I Theorem 3. A complement of a unit ball graph cannot have a disjoint union of two odd
cycles as an induced subgraph. In other words, if G is a unit ball graph, then iocp(G) 6 1.

Proof. Let x1, x2, . . . , xp ∈ R3 (y1, y2, . . . , yq ∈ R3) be the centers of unit balls representing
the complement of an odd cycle of length p (resp. q), such that xi and xi+1 (resp. yi
and yi+1) encode the non-adjacent pairs. Let C1 (resp. C2) be the closed polygonal chain
obtained from the centers x1, x2, . . . , xp (resp. y1, y2, . . . , yq). By Lemma 7, there are two
collinear vectors −→xix and −→yjy with x on the straight-line segment xi−1xi+1 and y on the
straight-line segment yj−1yj+1.
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yj xi

x
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y

Figure 2 The two cases for the collinear vectors −→xix and −→yjy.

Let suppose that −→xix and −→yjy have the same direction (left of Figure 2). In the plane2
containing xi, x, yj , and y, those four points are in convex position and the convex hull
is cyclically ordered xi, x, y, yj . We obtain a contradiction by showing that the sum of the
diagonals d(xi, y) + d(yj , x) is strictly smaller than the sum of two opposite sides d(xi, x) +
d(yj , y).

Considering edges and non-edges, we have d(xi, yj−1) 6 2 < d(yj , yj−1) and d(xi, yj+1) 6
2 < d(yj , yj+1). The points strictly closer to xi than to yj is an open half-space. In
particular, they form a convex set and all the points in the segment yj−1yj+1 are therefore
closer to xi than to yj . Hence, d(xi, y) < d(yj , y). Symmetrically, d(yj , x) < d(xi, x). So
d(xi, y) + d(yj , x) < d(yj , y) + d(xi, x), a contradiction.

Let now assume that −→xix and −→yjy have opposite direction (right of Figure 2). In that
case, the four coplanar points xi, x, yj , y are in convex position in their plane and the
convex hull is cyclically ordered xi, x, yj , y. We will attain the similar contradiction that
d(x, y) + d(xi, yj) < d(xi, x) + d(yj , y). As previously, d(yj−1, xi−1) 6 2 < d(xi, xi−1) and
d(yj−1, xi+1) 6 2 < d(xi, xi+1). Hence, by convexity, we have d(yj−1, x) < d(xi, x). Sim-
ilarly, d(yj+1, x) < d(xi, x). We obtained that point x is closer to yj−1 and yj+1 than
to xi. Therefore, applying again the convexity argument, we get that d(x, y) < d(x, xi).
Besides, d(xi, yj) 6 2 < d(y, yj). So we arrive at the contradiction d(x, y) + d(xi, yj) <
d(x, xi) + d(y, yj). J

It is folklore that unit ball graphs have VC-dimension 4. At the price of a multiplicative
factor n in the running time, one can guess a vertex v in a maximum clique of a unit ball
graph G, and look for a clique in its neighborhood H := G[N(v)]. It can be easily shown
that the neighborhood of this vertex (in fact, of any vertex) can be partitioned into, say
50 cliques. But actually 12 cliques are enough following the proof of the kissing number
for spheres. Thus α(H) > |V (H)|/12. Therefore, from Theorem 1 and Theorem 3, we
immediately obtain the following.

I Theorem 4. There is a randomized EPTAS in time 2Õ(1/ε3)nO(1) for Maximum Clique
on unit ball graphs, even without the geometric representation.

From Theorem 3, we also get an exact subexponential algorithm running in time 2Õ(n2/3)

for Maximum Clique on unit ball graphs. Indeed, such an algorithm was obtained for the
class of graphs G such that iocp(G) 6 1 [10].

2 or a plane if it is not unique
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In sharp contrast, we will prove that with an extra dimension or with different radii
(even arbitrarily close to each other), a PTAS is highly unlikely. In both cases, we show
that there is a constant ratio which is not attainable even in subexponential time, unless the
ETH fails. A 2-subdivision of a simple graph is the graph obtained by subdividing each edge
exactly twice. A co-2-subdivision is the complement graph of a 2-subdivision. The class of
the 2-subdivisions (resp. co-2-subdivisions) is the set of all graphs that are the 2-subdivision
(co-2-subdivision) of a simple graph.

The following result was shown by Bonnet et al.

I Theorem 8 ([10]). There is a constant α > 1 such that Maximum Clique on co-2-
subdivisions is not α-approximable even in time 2n0.99 , unless the ETH fails. Moreover,
Maximum Clique is NP-hard on co-2-subdivisions.

Therefore, we just need to show that all co-2-subdivisions can be realized by our geometric
objects. This appears like a simple and powerful method to rule out a PTAS (QPTAS, and
even SUBEXPAS) for a geometric clique problem.

The co-2-subdivision of a graph with n vertices and m edges can be thought of as follows.
It is made by a clique of n vertices representing the initial vertices, and a clique of 2m vertices
minus a perfect matching; each anti-matched pair of vertices corresponding to an edge in
the initial graph. Each vertex representing half an initial edge is adjacent to all the vertices
representing the initial vertices but one.

I Theorem 9. The class of 4-dimensional unit disks contains all the co-2-subdivisions.

Proof. Given any simple graph G = (V,E) with n vertices and m edges, we want to build
a set S of n+ 2m points in R4 where each vertex v is represented by a point p(v) and each
edge e, by two points p+(e) and p−(e). A pair of points in S should be at distance at most
2, except if it is the two points of the same edge e, or if it is a point p(v) with either a
p+(vw) or a p−(wv); those pairs should be at distance strictly more than 2. We call x, y, z, t
the coordinates of R4. Let P be the plane defined by the intersection of the hyperplanes of
equation z = 0 and t = 0. The projection π onto P of the points p+(e) (resp. p−(e)) fall
regularly on the "top" part (resp. "bottom" part) of a circle C of P centered at the origin
O = (0, 0, 0, 0) and of diameter 2, such that for each edge e, π(p+(e)) and π(p−(e)) are
antipodal on C. We just defined the points π(p+(e)) and π(p−(e)). The actual points p+(e)
and p−(e) will be fixed later by moving them very slightly away from their projection in
a two-dimensional plane orthogonal to P. Let η be the maximum distance between a pair
(π(p+(e)), π(p−(e′))) with e 6= e′. By construction η < 2.

Let P⊥ be the (2-dimensional) plane containing the center O of C and orthogonal to
P; in other words, the intersection of the hyperplanes of equation x = 0 and y = 0. We
observe that all the points of P⊥ are equidistant to all the points π(p+(e)) and π(p−(e)).
We place all the points p(v) in P⊥ regularly spaced on a arc of a circle lying on P⊥ centered
at O and of radius

√
3 − ε. One can notice that for any (v, e, s) ∈ V × E × {+,−},

d(p(v), π(ps(e))) =
√

4− 2
√

3ε+ ε2. We will choose ε � 2 − η � 1 so that this shared
distance is just below 2 and the points {p+(e), p−(e)}e∈E realize the same adjacencies than
their projection by π.

For every e = uv ∈ E, we place p+(e) such that
−−−−−−−−−−→
π(p+(e))p+(e) = − (ε+ε′)

‖Op(u)‖
−−−→
Op(u) and

p−(e) such that
−−−−−−−−−−→
π(p−(e))p−(e) = − (ε+ε′)

‖Op(v)‖
−−−→
Op(v). In words, we push very slightly p+(e)

(resp. p−(e)) away from π(p+(e)) (resp. π(p−(e))) in the opposite direction of
−−−→
Op(u) (resp.

−−−→
Op(v)). This way, p+(e) is at distance more than 2 from p(u). Indeed, d(p+(e), p(u)) =
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O

P

C

π(p+(e1 ))

π(p−(e1 ))

1

P⊥
p(v1)

√
3− ε

Figure 3 The overall construction for 4-dimensional unit disks. We only represent the centers.

‖
−−−−−−−−−−→
p+(e)π(p+(e))+

−−−−−−−→
π(p+(e))O+

−−−→
Op(u)‖ = ‖

−−−−−−−→
π(p+(e))O+

−−−→
Op(u)+

−−−−−−−−−−→
p+(e)π(p+(e))‖ = ‖

−−−−−−−→
π(p+(e))O+

(
√

3− ε+ ε+ ε′)
−−−−→
Op(u)
‖
−−−−→
Op(u)‖

‖ =
√

1 + (
√

3 + ε′)2 > 2. Similarly, d(p−(e), p(v)) > 2. We choose
ε′ infinitesimal (in particular, ε′ � ε) so that, still, d(p+(e), p(w)) < 2 for any w 6= u and
d(p−(e), p(w)) < 2 for any w 6= v. J

I Corollary 10. There is a constant α > 1 such that Maximum Clique on 4-dimensional
unit disks is not α-approximable even in time 2n0.99 , unless the ETH fails. Moreover, Max-
imum Clique is NP-hard on 4-dimensional unit disks.

The proof of Theorem 9 can be tweaked for balls of different radii. For a real ε > 0, we
say that the radii of a representation (or the representation itself) are ε-close if the radii are
all contained in the interval [1, 1 + ε]. We denote by B(1, 1 + ε) the ball graphs having an
ε-close representation.

I Theorem 11. For any ε > 0, the subclass of ball graphs B(1, 1 + ε) contains all the
co-2-subdivisions.

Proof. Let x, y, z be the coordinates of R3. We start similarly and define the same π(p+(e))
and π(p−(e)) as in the previous construction for the points p+(e) and p−(e) on a circle C
of diameter 2 centered at O = (0, 0, 0) on a plane P of equation z = 0. One difference
is that π(p+(e)) and π(p−(e)) are no longer projections. We then place the points p(v)
regularly spaced along the z-axis. More precisely, if the vertices are numbered v1, v2, . . . , vn,
the position of p(vi) is (0, 0,

√
3 + iε′). The radius of the disk representing vi centered at

p(vi) is set to ri :=
√

1 + (
√

3 + iε′)2 − 1 + ε′′. The radii associated to the centers p+(e)
and p−(e) are all set to 1. We move p+(vivj) (resp. p−(vivj)) away from π(p+(vivj))
(resp. π(p−(vivj))) in the opposite direction of

−−−−−−−−−→
p+(vivj)p(vi) (resp.

−−−−−−−−−→
p−(vivj)p(vj)) by an

infinitesimal quantity, in order to only suppress the overlap of the disks centered at p+(vivj)
and p(vi) (resp. p−(vivj) and p(vj)). We make ε′ and ε′′ small enough that all the values
ri are between 1 and 1 + ε. J

We call quasi unit ball graphs those graphs in the intersection
⋂
ε>0 B(1, 1 + ε). As a

corollary, we get some strong inapproximability even for quasi unit ball graphs.

I Corollary 12. There is a constant α > 1 such that Maximum Clique on quasi unit ball
graphs is not α-approximable even in time 2n0.99 , unless the ETH fails. Moreover, Maximum
Clique is NP-hard on quasi unit ball graphs.
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