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Fine-grained complexity of coloring unit disks and balls

Csaba Biró∗, Édouard Bonnet†, Dániel Marx†, Tillmann Miltzow†, Paweł Rzążewski†‡

Abstract

We investigate the possible complexity of an algo-
rithm deciding the `-colorability of an intersection
graph of unit disks. We exhibit a smooth increase
of complexity as the number ` of colors increases: If
we restrict the number of colors to ` = Θ(nα) for
some 0 ≤ α ≤ 1, then the problem of coloring the
intersection graph of n unit disks with ` colors

• can be solved in time exp
(
O(
√
n` log n)

)
, and

• cannot be solved in time exp
(
o(
√
n`)

)
, unless

the ETH fails.

More generally, we consider the problem of color-
ing d-dimensional unit balls in the Euclidean space
and obtain analogous results showing that the prob-
lem

• can be solved in time exp
(
O(n1−1/d`1/d log n)

)
,

and
• cannot be solved in time exp

(
O(n1−1/d−ε`1/d)

)
for any ε > 0, unless the ETH fails.

1 Introduction

On planar graphs, many classic algorithmic problems
enjoy a certain “square root phenomenon” and can
be solved significantly faster than what is known to
be possible on general graphs: for example, Inde-
pendent Set, 3-Coloring, Hamiltonian Cycle,
Dominating Set can be solved in time 2O(

√
n) on an

n-vertex planar graph, while no 2o(n) algorithms ex-
ist for general graphs, assuming the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane
[2]. The square root in the exponent seems to be best
possible for planar graphs: assuming the ETH, the
running time for these problems cannot be improved
to 2o(

√
n).

In some cases, a similar speedup can be obtained
for 2-dimensional geometric problems, for example,
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there are 2O(
√
n logn) time algorithms for Indepen-

dent Set on unit disk graphs or for TSP on 2-
dimensional point sets [5, 1]. More generally, for d-
dimensional geometric problems, running times of the
from 2O(n1−1/d) or nO(k1−1/d) appear naturally, and
Marx and Sidiropoulos [4] showed that, assuming the
ETH, this form of running time is essentially best pos-
sible for some problems.

In this paper, we explore whether such a speedup
is possible for geometric coloring problems. Let us
consider now the problem of coloring the intersection
graph of a set of unit disks in the 2-dimensional plane,
that is, assigning a color to each disk such that if two
disks intersect, then they receive different colors. For
a constant number of colors, geometric objects can
behave similarly to planar graphs: 3-Coloring can
be solved in time 2O(

√
n) on the intersection graph

of n unit disks in the plane and, assuming the ETH,
there is no such algorithm with running time 2o(

√
n).

However, while every planar graph is 4-colorable, unit
disks graphs can contain arbitrary large cliques, and
hence the `-colorability is a meaningful question for
larger, non-constant, values of ` as well. We show
that if the number ` of colors is part of the input and
can be up to Θ(n), then, surprisingly, no speedup is
possible: Coloring the intersection graph of n unit
disks with ` colors cannot be solved in time 2o(n), as-
suming the ETH. What happens between these two
extremes of constant number of colors and Θ(n) col-
ors? Our main 2-dimensional result exhibits a smooth
increase of complexity as the number ` of colors in-
creases.

Theorem 1 For any fixed 0 ≤ α ≤ 1, the problem
of coloring the intersection graph of n unit disks with
` = Θ(nα) colors

• can be solved in time 2O(n
1+α
2 logn) =

2O(
√
n` logn), and

• cannot be solved in time 2o(n
1+α
2 ) = 2o(

√
n`), un-

less the ETH fails.

The proof is not very specific to disks and can be easily
adapted to, say, axis-parallel unit squares or other fat
objects. However, it seems that the requirement of
fatness is essential for this type of complexity behavior
as, for example, the coloring of the intersection graphs
of line segments (of arbitrary lengths) does not admit
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any speedup compared to the 2O(n) algorithm, even
for a constant number of colors.

Theorem 2 There is no 2o(n) time algorithm for 6-
Coloring the intersection graph of line segments in
the plane, unless the ETH fails.

How does the complexity change if we look at the
generalization of the coloring problem into higher di-
mensions? It is known for some problems that if we
generalize the problem from two dimensions to d di-
mensions, then the square root in the exponent of
the running time changes to a 1 − 1/d power, which
makes the running time closer and closer to the run-
ning time of the brute force as d increases. For the
`-coloring problem, the correct exponent seems to be
n1−1/d times `1/d. That is, as d increases, the running
time becomes less and less sensitive to the number of
colors and approaches 2O(n), even for constant num-
ber of colors.

Theorem 3 For any fixed 0 ≤ α ≤ 1 and dimension
d ≥ 2, the problem of coloring the intersection graph
of n unit balls in the d-dimensional Euclidean space
with ` = Θ(nα) colors

• can be solved in time 2
O

(
n
d−1+α
d logn

)
=

2O(n1−1/d`1/d logn), and

• cannot be solved in time 2n
d−1+α
d

−ε
for any ε > 0,

unless the ETH fails.

The upper bounds of Theorems 1 and 3 follow fairly
easily using standard techniques. Clearly, the prob-
lem of coloring unit d-balls with ` colors makes sense
only if every point of the space is contained in at
most ` balls: otherwise we would immediately know
that there is no `-coloring. On the other hand, if
every point is contained in at most ` of the n balls,
then it is known that there is a balanced separator
of size O(n1−1/d`1/d) [5]. By finding such a separator
and trying every possible coloring on the disks of the
separator, we can branch into `O(n1−1/d`1/d) smaller
instances. This recursive procedure has the running
time as claimed.

2 Auxiliary problems

We start with introducing two auxiliary problems,
which will serve as middle steps in the hardness reduc-
tion. For a fixed dimension d and i ∈ [d], we denote by
ei the d-dimensional vector, whose i-th coordinate is
equal to 1 and all remaining coordinates are equal to
0. For two positive integers g, d, we denote by R[g, d]
the d-dimensional grid, i.e., a graph whose vertices are
all vectors from [g]d, and two vertices are adjacent if

they differ on exactly one coordinate, and exactly by
one (on that coordinate). In other words, a and a′ are
adjacent if a = a′ ± ei for some i ∈ [d]. We will often
refer to vertices of a grid as cells.

Problem: d-grid 3-Sat
Input: A d-dimensional grid G = R[g, d], k ∈
N+, a function ζ : v ∈ V (G) 7→ {v1, v2, . . . , vk}
mapping each cell v to k fresh boolean variables,
and a set C of constraints of two kinds:

clause constraints: for a cell v, a set C(v) of
pairwise variable-disjoint disjunctions of at
most 3 literals on ζ(v);

equality constraints: for adjacent cells v and
w, a set C(v, w) of pairwise variable-disjoint
constraints of the form vi = wj (with i, j ∈
[k]).

Question: Is there an assignment of the
variables such that all constraints are satis-
fied?

The size of the instance I = (G, k, ζ, C) of d-grid 3-
Sat is the total number of variables, i.e., gdk.

Problem: Partial d-grid Coloring
Input: An induced subgraph G of R[g, d],
` ∈ N+, and a function ρ : v ∈ V (G) 7→
{pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a
set of ` points in [`]d.
Question: Is there an `-coloring of all the points
such that:

• two points in the same cell get different col-
ors;
• if v and w are adjacent in G, say, w = v+ ei

(for some i ∈ [d]), and p ∈ ρ(v) and q ∈ ρ(w)
receive the same color, then p[i] 6 q[i] where
a[i] := a · ei is the i-th coordinate of a?

Here the size of the instance is the total number of
points, i.e., |V (F )|` ≤ gd`.

3 2-dimensional lower bounds

First, by a reduction from 3-Sat, we show that 2-
grid 3-Sat with total size n and k variables per cell
cannot be solved in time 2o(

√
nk), unless the ETH fails.

The main result of this section is the following theo-
rem.

Theorem 4 For any 0 6 α 6 1, there is no 2o(
√
n`)

algorithm solving Partial 2-grid Coloring on a
total of n points and ` = Θ(nα) points in each cell
(that is n/` cells), unless the ETH fails.
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Proof. We present a reduction from 2-grid 3-Sat
to Partial 2-grid Coloring. Let I = (G, k, ζ, C)
be an instance of 2-grid 3-Sat, where G = R[g, 2]
and each cell contains k variables. We construct an
equivalent instance J = (F, `, ρ) of Partial 2-grid
Coloring with |V (F )| = Θ(|V (G)|) = Θ(g2) and
` := 4k points per cell, where F is an induced sub-
graph of R[g′, 2] with g′ = Θ(g). Let us present the
key ideas of the construction.

Standard cells. A standard cell is a cell where the
points p1, . . . , p` are on the main diagonal, that is pi =
(i, i) for every i ∈ [`] (see cells in Fig. 1).

Reference coloring. Later in the construction we
will choose one standard cell R̄, whose coloring will
be referred to as the reference coloring. Now, by the
color i ∈ [`], we mean the color of the point pi in R̄.

Variable-assignment cells. For each cell v =
(i, j) ∈ V (G), we introduce in F a standard cell A(v)),
called the variable-assignment cell. The cell A(v) is
responsible for encoding the truth assignment of vari-
ables in ζ(v). If i+j is even, then the cell A(v) is also
called even. Otherwise A(v) is odd.
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Figure 1: Even cells (left) and odd (right) variable-
assignment cells.

In our construction, we make sure that each variable-
assignment cell receives one of the standard colorings.
If A(v) is even, the coloring ϕ of A(v) is standard
if {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and
ϕ(pi) = i for i ∈ [4k] \ [2k]. If the cell A(v) is odd,
its standard colorings ϕ are the ones with ϕ(pi) = i
for i ∈ [2k] and {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for
i ∈ [2k] \ [k]. The choice of the particular standard
coloring for the points in A(v) defines the actual as-
signment of variables in ζ(v). If A(v) is even, then for
each i ∈ [k], we interpret the coloring in the following
way:
p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variable vi to
true;
p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variable vi to
false.

If A(v) is odd, for each i ∈ [k], we interpret it in that
way:
p2k+2i−1 7→ 2i−1 , p2k+2i 7→ 2i as setting the variable

vi to true;
p2k+2i−1 7→ 2i , p2k+2i 7→ 2i−1 as setting the variable
vi to false.

Local reference cells. For each inner face of G (see
Fig. 2), we introduce a new standard cell, called a
local reference cell. Moreover, we set the reference R̄
to be uppermost-leftmost local reference cell. In the
construction, we will ensure that the coloring of each
local reference cell is exactly the same, i.e., is exactly
the reference coloring.

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 2: High-level illustration of J .

Overview of the construction. Figure 2 presents
the arrangement of the cells in F . For each variable-
assignment cell A(v), we introduce a clause-checking
gadget, which is responsible for ensuring that all
clauses in C(v) are satisfied. This gadget requires an
access to the reference coloring, which can attain from
the local reference cells (we can choose any of the lo-
cal reference cells close to A(v)). For each edge vw
of G, we introduce a consistency gadget. In fact, for
inner edges of G (i.e., the ones not incident with the
outer face) we introduce two consistency gadgets, one
for each face incident with vw. This gadget is respon-
sible for ensuring the consistency on three different
levels:

• to force all equality constraints C(v, w) to be sat-
isfied,
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• to ensure that each of A(v) and A(w) receives
one of the standard colorings,
• to ensure that the local reference cell contains

exactly the reference coloring.

This gadget also requires access to the reference color-
ing, so we join it with the appropriate local reference
cell (see Fig. 2).

Now, we observe that the total number of points in
F is n = O(g2`) = O(n′), where n′ = g2k is the total
size of I. Thus, the existence of an algorithm solving
J in time 2o(

√
n`) could be used to solve I in time

2o(
√
n′k), which, in turn, contradicts the ETH. �

Now, to prove the lower bound in Theorem 1, we need
to show a reduction from Partial 2-grid Coloring
to the problem of coloring unit disk graphs. This
reduction is fairly standard and uses a well-known
approach [3, Theorems 1 and 3]. presented on Fig-
ure 3.

Figure 3: Reduction from Partial 2-grid Color-
ing to coloring unit disks.

4 Coloring unit d-dimensional balls

The d-dimensional lower bound of Theorem 3 goes
along the same lines, but we first prove a lower bound
for d-grid 3-Sat. Based on earlier results by Marx
and Sidiropoulos [4], we prove an almost tight lower
bound for this d-dimensional 3-SAT by embedding
a 3-SAT instance with roughly gd−1k variables and
clauses into the d-dimensional g× · · ·× g-grid R[g, d].
Then the reduction from this problem to coloring unit
balls in d-dimensional space is very similar to the 2-
dimensional case.
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