
Parameterized Intractability of Even Set and Shortest Vector

Problem

ARNAB BHATTACHARYYA, National University of Singapore, Singapore

ÉDOUARD BONNET, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

LÁSZLÓ EGRI, Institute for Computer Science and Control, Hungarian Academy of Sciences, Hungary

SUPROVAT GHOSHAL, Indian Institute of Science, India

KARTHIK C. S.,Weizmann Institute of Science, Israel

BINGKAI LIN, Nanjing University, China

PASIN MANURANGSI, University of California, Berkeley, USA

DÁNIEL MARX, CISPA Helmholtz Center for Information Security, Germany

The 𝑘-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over F2,
which can be stated as follows: given a generator matrix A and an integer 𝑘 , determine whether the code

generated by A has distance at most 𝑘 , or in other words, whether there is a nonzero vector x such that Ax
has at most 𝑘 nonzero coordinates. The question of whether 𝑘-Even Set is fixed parameter tractable (FPT)

parameterized by the distance 𝑘 has been repeatedly raised in literature; in fact, it is one of the few remaining

open questions from the seminal book of Downey and Fellows (1999). In this work, we show that 𝑘-Even Set

isW[1]-hard under randomized reductions.

We also consider the parameterized 𝑘-Shortest Vector Problem (SVP), in which we are given a lattice whose

basis vectors are integral and an integer 𝑘 , and the goal is to determine whether the norm of the shortest

vector (in the ℓ𝑝 norm for some fixed 𝑝) is at most 𝑘 . Similar to 𝑘-Even Set, understanding the complexity of

this problem is also a long-standing open question in the field of Parameterized Complexity. We show that,

for any 𝑝 > 1, 𝑘-SVP isW[1]-hard to approximate (under randomized reductions) to some constant factor.

Additional KeyWords and Phrases: Parameterized Complexity, Inapproximability, Even Set, MinimumDistance

Problem, Shortest Vector Problem

ACM Reference Format:

Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin

Manurangsi, and Dániel Marx. 2018. Parameterized Intractability of Even Set and Shortest Vector Problem. J.

ACM 0, 0, Article 00 (2018), 40 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

The study of error-correcting codes gives rise to many interesting computational problems. One

of the most fundamental among these is the problem of computing the distance of a linear code.

Authors’ addresses: Arnab Bhattacharyya, National University of Singapore, Singapore; Édouard Bonnet, CNRS, ENS de

Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France, edouard.bonnet@ens-lyon.fr; László Egri, Institute for

Computer Science and Control, Hungarian Academy of Sciences, Hungary, laszlo.egri@mail.mcgill.ca; Suprovat Ghoshal,

Indian Institute of Science, India, suprovat@iisc.ac.in; Karthik C. S., Weizmann Institute of Science, Israel, karthik.srikanta@

weizmann.ac.il; Bingkai Lin, Nanjing University, China, lin@nju.edu.cn; PasinManurangsi, University of California, Berkeley,

USA, pasin@berkeley.edu; Dániel Marx, CISPA Helmholtz Center for Information Security, Germany, marx@cispa.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

0004-5411/2018/0-ART00 $15.00

https://doi.org/0000001.0000001

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

00:2 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

In this problem, which is commonly referred to as the Minimum Distance Problem (MDP), we are

given as input a generator matrix A ∈ F𝑛×𝑚
2

of a binary
1
linear code and an integer 𝑘 . The goal is

to determine whether the code has distance at most 𝑘 . Recall that the distance of a linear code is

min

0≠x∈F𝑚
2

∥Ax∥0 where ∥ · ∥0 denote the 0-norm (aka the Hamming norm).

To see the fundamental nature of MDP, let us discuss two other natural ways of arriving at

(equivalent formulations of) this problem.MDP has the following well-known dual formulation: the

minimum distance of the code generated by A ∈ F𝑛×𝑚
2

can be also expressed as min

0≠y∈F𝑚
2
,A⊥y=0

∥y∥0,

where A⊥
is the orthogonal complement of A. In other words, finding the minimum distance of the

code is equivalent to finding the minimum set of linearly dependent vectors among the column

vectors of A⊥
. Thus, MDP is equivalent to the the Linear Dependent Set problem on vectors over

F2 or, using the language of matroid theory, solving the Shortest Circuit problem on a represented

binary matroid.

One can arrive at a more combinatorial formulation of the problem as a variant of the Hitting

Set problem. Given a set system S over a universe 𝑈 and an integer 𝑘 , the Hitting Set problem

asks for a 𝑘-element subset 𝑋 of 𝑈 such that |𝑆 ∩ 𝑋 | ≠ 0 for every 𝑆 ∈ S. Hitting Set is a basic

combinatorial optimization that is well studied (often under the dual formulation Set Cover) in the

approximation algorithms and the parameterized complexity literature. More restrictive versions

of the problem are the Exact Hitting Set problem, where we require |𝑆 ∩ 𝑋 | = 1, and the Odd Set

problem, where we require |𝑆 ∩ 𝑋 | to be odd. By analogy, we can define the Even Set problem,

where we require |𝑆 ∩𝑋 | to be even, but in this case we need to add the requirement 𝑋 ≠ ∅ to avoid

the trivial solution. While Hitting Set, Exact Hitting Set, and Odd Set are known to beW[1]-hard

parameterized by 𝑘 , Even Set can be easily seen to be equivalent to MDP (in the dual formulation

of MDP, the rows of A⊥
play the same role as the sets in S).

The study of this problem dates back to at least 1978 when Berlekamp et al. [8] conjectured that

it is NP-hard. This conjecture remained open for almost two decades until it was positively resolved

by Vardy [55, 56]. Later, Dumer et al. [23] strengthened this intractability result by showing that

even approximately computing the minimum distance of the code is hard. Specifically, they showed

that, unless NP = RP, no polynomial time algorithm can distinguish between a code with distance

at most 𝑘 and one whose distance is greater than 𝛾 · 𝑘 for any constant 𝛾 ⩾ 1. Furthermore, under

stronger assumptions, the ratio can be improved to superconstants and even almost polynomial.

Dumer et al.’s result has been subsequently derandomized by Cheng and Wan [12] and further

simplified by Austrin and Khot [6] and Micciancio [43].

While the aforementioned intractability results rule out not only efficient algorithms but also

efficient approximation algorithms forMDP, there is another popular technique in coping with

NP-hardness of problems which is not yet ruled out by the known results: parameterization.

In parameterized problems, part of the input is an integer that is designated as the parameter of

the problem, and the goal is now not to find a polynomial time algorithm but a fixed parameter

tractable (FPT) algorithm. This is an algorithm whose running time can be upper bounded by

some (computable) function of the parameter in addition to some polynomial in the input length.

Specifically, forMDP, its parameterized variant
2 𝑘-MDP has 𝑘 as the parameter and the question is

whether there exists an algorithm that can decide if the code generated by A has distance at most 𝑘

in time 𝑓 (𝑘) · poly(𝑚𝑛) where 𝑓 can be any computable function that depends only on 𝑘 .

1
Note that MDP can be defined over larger fields as well; we discuss more about this in Section 8.

2
Throughout Sections 1 and 2, for a computational problem Π, we denote its parameterized variant by 𝑘-Π, where 𝑘 is the

parameter of the problem.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:3

Note that 𝑘-MDP can be solved in 𝑛𝑂 (𝑘)
time. This can be easily seen in the dual formulation,

as we can enumerate through all vectors y with Hamming norm at most 𝑘 and check whether

A⊥y = 0. In Parameterized Complexity language, this means that 𝑘-MDP belongs to the class XP.

The parameterized complexity of 𝑘-MDPwas first questioned by Downey et al. [22], who showed

that parameterized variants of several other coding-theoretic problems, including the Nearest

Codeword Problem and the Nearest Vector Problem
3
which we will discuss in more details in

Section 1.1.1, areW[1]-hard. Thereby, assuming the widely believedW[1] ≠ FPT hypothesis, these

problems are rendered intractable from the parameterized perspective. Unfortunately, Downey

et al. fell short of proving such hardness for 𝑘-MDP and left it as an open problem:

OpenQuestion 1.1. Is 𝑘-MDP fixed parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this day,

despite receiving significant attention from the community. In particular, the problem was listed as

an open question in the seminal 1999 book of Downey and Fellows [20] and has been reiterated

numerous times over the years [9, 13–16, 21, 24, 25, 28, 37]. This problem is one of the few questions

that remained open from the original list of Downey and Fellows [20]. In fact, in their second

book [21], Downey and Fellows even include this problem as one of the six
4
“most infamous” open

questions in the area of Parameterized Complexity.

Another question posted in Downey et al.’s work [22] that remains open is the parameterized

Shortest Vector Problem (𝑘-SVP) in lattices. The input of 𝑘-SVP (in the ℓ𝑝 norm) is an integer 𝑘 ∈ N
and a matrix A ∈ Z𝑛×𝑚 representing the basis of a lattice, and we want to determine whether the

shortest (non-zero) vector in the lattice has length at most 𝑘 , i.e., whether min

0≠x∈Z𝑚
∥Ax∥𝑝 ⩽ 𝑘 . Again,

𝑘 is the parameter of the problem. It should also be noted here that, similar to [22], we require the

basis of the lattice to be integer valued, which is sometimes not enforced in literature (e.g. [3, 54]).

This is because, if A is allowed to be any matrix in R𝑛×𝑚 , then parameterization is meaningless

because we can simply scale A down by a large multiplicative factor.

The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied, motivated

partly due to the fact that both algorithms and hardness results for the problem have numerous

applications. Specifically, the celebrated LLL algorithm for SVP [34] can be used to factor rational

polynomials, and to solve integer programming (parameterized by the number of unknowns) [35]

and many other computational number-theoretic problems (see e.g. [47]). Furthermore, the hardness

of (approximating) SVP has been used as the basis of several cryptographic constructions [3, 4, 48,

49]. Since these topics are out of scope of our paper, we refer the interested readers to the following

surveys for more details: [45, 47, 50, 51].

On the computational hardness side of the problem, van Emde-Boas [54] was the first to show

that SVP is NP-hard for the ℓ∞ norm, but left open the question of whether SVP on the ℓ𝑝 norm

for 1 ⩽ 𝑝 < ∞ is NP-hard. It was not until a decade and a half later that Ajtai [2] showed, under a

randomized reduction, that SVP for the ℓ2 norm is also NP-hard; in fact, Ajtai’s hardness result

holds not only for exact algorithms but also for (1 + 𝑜 (1))-approximation algorithms as well. The

𝑜 (1) term in the inapproximability ratio was then improved in a subsequent work of Cai and

Nerurkar [11]. Finally, Micciancio [40] managed to achieve a factor that is bounded away from

one. Specifically, Micciancio [40] showed (again under randomized reductions) that SVP on the

ℓ𝑝 norm is NP-hard to approximate to within a factor of
𝑝
√
2 for every 1 ⩽ 𝑝 < ∞. Khot [33] later

improved the ratio to any constant, and even to 2
log

1/2−Y (𝑛𝑚)
under a stronger assumption. Haviv

3
The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.

4
So far, two of the six problems have been resolved: that of parameterized complexity of 𝑘-Biclique [36] and that of

parameterized approximability of 𝑘-Dominating Set [32].

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:4 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

and Regev [29] subsequently simplified the gap amplification step of Khot and, in the process,

improved the ratio to almost polynomial. We note that both Khot’s and Haviv-Regev reductions

are also randomized and it is still open to find a deterministic NP-hardness reduction for SVP in the

ℓ𝑝 norms for 1 ⩽ 𝑝 < ∞ (see [42]); we emphasize here that such a reduction is not known even for

the exact (not approximate) version of the problem. For the ℓ∞ norm, the following stronger result

due to Dinur [17] is known: SVP in the ℓ∞ norm is NP-hard to approximate to within 𝑛Ω (1/log log𝑛)

factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [1, 7]. The authors of [1, 7] showed

that SVP for any ℓ𝑝 norm cannot be solved (or even approximated to some constant strictly greater

than one) in subexponential time assuming the (randomized) Gap Exponential Time Hypothesis

(Gap-ETH) [18, 39], which states that no randomized subexponential time algorithm can distinguish

between a satisfiable 3-CNF formula and one which is only 0.99-satisfiable.

As withMDP, Downey et al. [22] were the first to question the parameterized tractability of 𝑘-

SVP (for the ℓ2 norm). Once again, Downey and Fellows included 𝑘-SVP as one of the open problems

in both of their books [20, 21]. As with Open Question 1.1, this question remains unresolved to this

day:

OpenQuestion 1.2. Is 𝑘-SVP fixed parameter tractable?

We remark here that, similar to 𝑘-MDP, 𝑘-SVP also belongs to XP, as we can enumerate over

all vectors with norm at most 𝑘 and check whether it belongs to the given lattice. There are only

(𝑚𝑛)𝑂 (𝑘𝑝)
such vectors, and the lattice membership of a given vector can be decided in polynomial

time (e.g., see page 18 in [44]). Hence, this is an (𝑛𝑚)𝑂 (𝑘𝑝)
-time algorithm for 𝑘-SVP.

1.1 Our Results

The main result of this paper is a resolution to the previously mentioned Open Questions 1.1 and 1.2:

more specifically, we prove that 𝑘-MDP and 𝑘-SVP (on ℓ𝑝 norm for any 𝑝 > 1) are W[1]-hard
under randomized reductions. In fact, our result is stronger than stated here as we rule out not

only exact FPT algorithms but also FPT approximation algorithms as well. In particular, all of our

results use theW[1]-hardness of approximating the 𝑘-Bicliqe problem recently proved by Lin

[36] as a starting point.

With this in mind, we can state our results starting with the parameterized intractability of

𝑘-MDP, more concretely (but still informally), as follows:

Theorem 1.3 (Informal; see Theorem 6.1). For any 𝛾 ⩾ 1, given input (A, 𝑘) ∈ F𝑛×𝑚
2

× N, it is
W[1]-hard (under randomized reductions) to distinguish between

• the distance of the code generated by A is at most 𝑘 , and,

• the distance of the code generated by A is more than 𝛾 · 𝑘 .
Notice that our above result rules out FPT approximation algorithms with any constant approxi-

mation ratio for 𝑘-MDP. In contrast, we can only prove FPT inapproximability with some constant

ratio for 𝑘-SVP in ℓ𝑝 norm for 𝑝 > 1. These are stated more precisely below.

Theorem 1.4 (Informal; see Theorem 7.1). For any 𝑝 > 1, there exists a constant 𝛾𝑝 > 1 such

that given input (A, 𝑘) ∈ Z𝑛×𝑚 × N, it is W[1]-hard (under randomized reductions) to distinguish

between

• the ℓ𝑝 norm of the shortest vector of the lattice generated by A is ⩽ 𝑘 , and,

• the ℓ𝑝 norm of the shortest vector of the lattice generated by A is > 𝛾𝑝 · 𝑘 .
We remark that our results do not yield hardness for SVP in the ℓ1 norm and this remains an

interesting open question. Section 8 contains discussion on this problem. We also note that, for

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:5

Theorem 7.1 and onwards, we are only concerned with 𝑝 ≠ ∞; this is because, for 𝑝 = ∞, the

problem is NP-hard to approximate even when 𝑘 = 1 [54]!

1.1.1 Nearest Codeword Problem and Nearest Vector Problem. As we shall see in Section 2,

our proof proceeds by first showing FPT hardness of approximation of the non-homogeneous

variants of 𝑘-MDP and 𝑘-SVP called the 𝑘-Nearest Codeword Problem (𝑘-NCP) and the 𝑘-Nearest

Vector Problem (𝑘-NVP) respectively. For both 𝑘-NCP and 𝑘-NVP, we are given a target vector

y (in F𝑛
2
and Z𝑛 , respectively) in addition to (A, 𝑘), and the goal is to find whether there is any x

(in F𝑚
2
and Z𝑚 , respectively) such that the (Hamming and ℓ𝑝 , respectively) norm of Ax − y is at

most 𝑘 . Note that their homogeneous counterparts, namely 𝑘-MDP and 𝑘-SVP, explicitly require

the coefficient vector x to be non-zero, and hence they cannot be interpreted as special cases of

𝑘-NCPand 𝑘-NVP respectively.

As an intermediate step of our proof, we show that the 𝑘-NCP and 𝑘-NVP problems are hard to

approximate
5
(see Theorem 5.1 and Theorem 7.2 respectively). This should be compared to Downey

et al. [22], in which the authors show that both problems areW[1]-hard to solve exactly. Therefore
our inapproximability result significantly improves on their work to rule out any polylog(𝑘) factor
FPT-approximation algorithm (assuming W[1] ≠ FPT) and are also the first inapproximability

results for these problems.

We end this section by remarking that the computational complexity of both (non-parameterized)

NCP and NVP are also thoroughly studied (see e.g. [5, 19, 27, 41, 53] in addition to the references for

MDP and SVP), and indeed the inapproximability results of these two problems form the basis of

hardness of approximation forMDP and SVP. We would like to emphasize that whileW[1]-hardness

results were known for 𝑘-NCP and 𝑘-NVP, it does not seem easy to transfer them toW[1]-hardness

results for 𝑘-MDP and 𝑘-SVP; we really need parameterized inapproximability results for 𝑘-NCP

and 𝑘-NVP to be able to transfer them to (slightly weaker) inapproximability results for 𝑘-MDP

and 𝑘-SVP. There are other parameterized problems that resisted all efforts at proving hardness

so far, and we believe that it may be the case for these problems as well that building a chain of

inapproximability results is more feasible than building a chain of W[1]-hardness results.

1.2 Organization of the paper

In the next section, we give an overview of our reductions and proofs. After that, in Section 3, we

define additional notation and preliminaries needed to fully formalize our proofs. In Section 4, we

show the inapproximability of 𝑘-Linear Dependent Set (𝑘-LDS), a problem naturally arising from

linear algebra, that would be used as the base step for all future inapproximability results in this

paper. In Section 5 we show the inapproximability of 𝑘-NCP. Next, in Section 6, we establish the

constant inapproximability of 𝑘-MDP. Section 7 provides the inapproximability of 𝑘-NVP and

𝑘-SVP. Finally, in Section 8, we conclude with a few open questions and research directions.

2 PROOF OVERVIEW

In the non-parameterized setting, all the aforementioned inapproximability results for both MDP

and SVP are shown in two steps: first, one proves the inapproximability of their inhomogeneous

counterparts (i.e. NCP and NVP), and then reduces them to MDP and SVP. We follow this general

outline. That is, we first show, that both 𝑘-NCP and 𝑘-NVP areW[1]-hard to approximate. Then,

we reduce 𝑘-NCP and 𝑘-NVP to 𝑘-MDP and 𝑘-SVP respectively. In this second step, we employ

an adaptation of Dumer et al.’s reduction [23] for 𝑘-MDP and Khot’s reduction [33] for 𝑘-SVP.

While the latter reduction works almost immediately in the parameterized regime, there are several

5
While our 𝑘-MDP result only applies for F2, it is not hard to see that our intermediate reduction for 𝑘-NCP actually applies

for every finite field F𝑞 too.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:6 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

technical challenges in adapting Dumer et al.’s reduction to our setting. The remainder of this

section is devoted to presenting all of our reductions and to highlight such technical challenges

and changes in comparison with the non-parameterized setting.

As mentioned before, the starting point of all the hardness results in this paper is the W[1]-
hardness of approximating the 𝑘-Bicliqe problem. In Subsection 2.2, we show a gap-retaining

reduction from the gap 𝑘-Bicliqe problem to gap 𝑘-Linear Dependent Set (referred to hereafter

as 𝑘-LDS), an intermediate problem that we introduce which might be of independent interest.

We show a gap-retaining reduction from gap 𝑘-LDS to gap 𝑘-NCP in Subsection 2.3, and then a

randomized reduction from gap 𝑘-NCP to 𝑘-MDP in Subsection 2.4. Finally, in Subsection 2.5, we

show a gap-retaining reduction from gap 𝑘-LDS to gap 𝑘-NVP, and then a randomized reduction

from gap 𝑘-NVP to 𝑘-SVP.

In the next subsection, we first give an overview of Dumer et al.’s reduction [23] and highlight

the challenges in extending their reduction to the parameterized setting, following which we give

a sketch of the various steps involved in the actual reduction to 𝑘-MDP.

2.1 The Dumer-Micciancio-Sudan reduction

We start this subsection by describing the Dumer et al.’s (henceforth DMS) reduction [23]. The

starting point of the DMS reduction is the NP-hardness of approximating NCP to any constant

factor [5]. Let us recall that in NCP we are given a matrix A ∈ F𝑛×𝑚
2

, an integer 𝑘 , and a target

vector y ∈ F𝑛
2
, and the goal is to determine whether there is any x ∈ F𝑚

2
such that ∥Ax − y∥0 is at

most 𝑘 . Arora et al. [5] shows that for any constant 𝛾 ⩾ 1, it is NP-hard to distinguish the case when

there exists x such that ∥Ax − y∥0 ⩽ 𝑘 from the case when for all x we have that ∥Ax − y∥0 > 𝛾𝑘 .

Dumer et al. introduce the notion of “locally dense codes” to enable a gadget reduction from NCP

toMDP. Informally, a locally dense code is a linear code L with minimum distance 𝑑 admitting a

ball B(s, 𝑟) centered at s of radius6 𝑟 < 𝑑 and containing a large (exponential in the dimension)

number of codewords. Moreover, for the gadget reduction toMDP to go through, we require not

only the knowledge of the code, but also the center s and a linear transformation T used to index the

codewords in B(s, 𝑟), i.e., T maps B(s, 𝑟) ∩ L onto a smaller subspace. Given an instance (A, y, 𝑘)
of NCP, and a locally dense code (L,T, s) whose parameters (such as dimension and distance) we

will fix later, Dumer et al. build the following matrix:

B =

ATL −y
...

...

ATL −y
L −s
...

...

L −s

 𝑏 copies

𝑎 copies

, (1)

where 𝑎, 𝑏 are some appropriately chosen positive integers. If there exists x such that ∥Ax−y∥0 ⩽
𝑘 then consider z′ such that TLz′ = x (we choose the parameters of (L,T, s), in particular the

dimensions of L and T such that all these computations are valid). Let z = z′ ◦ 1, and note that

∥Bz∥0 = 𝑎∥Ax − y∥0 + 𝑏∥Lz − s∥0 ⩽ 𝑎𝑘 + 𝑏𝑟 . In other words, if (A, y, 𝑘) is a YES instance of NCP
then (B, 𝑎𝑘 + 𝑏𝑟) is a YES instance of MDP. On the other hand if we had that for all x, the norm of

∥Ax−y∥0 is more than 𝛾𝑘 for some constant
7 𝛾 > 2, then it is possible to show that for all zwe have

that ∥Bz∥0 > 𝛾 ′(𝑎𝑘+𝑏𝑟) for any𝛾 ′ < 2𝛾

2+𝛾 . The proof is based on a case analysis of the last coordinate

6
Note that for the ball to contain more than a single codeword, we must have 𝑟 ⩾ 𝑑/2.

7
Note that in the described reduction, we need the inapproximability of NCP to a factor greater than two, even to just

reduce to the exact version of MDP.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:7

of z. If that coordinate is 0, then, since L is a code of distance 𝑑 , we have ∥Bz∥0 ⩾ 𝑏𝑑 > 𝛾 ′(𝑎𝑘 + 𝑏𝑟);
if that coordinate is 1, then the assumption that (A, y, 𝑘) is a NO instance of NCP implies that

∥Bz∥0 > 𝑎𝛾𝑘 > 𝛾 ′(𝑎𝑘 + 𝑏𝑟). Note that this gives an inapproximability for MDP of ratio 𝛾 ′ < 2; this

gap is then further amplified by a simple tensoring procedure.

We note that Dumer et al. were not able to find a deterministic construction of locally dense

code with all of the above described properties. Specifically, they gave an efficient deterministic

construction of a code L, but only gave a randomized algorithm that finds a linear transformation

T and a center s w.h.p. Therefore, their hardness result relies on the assumption that NP ≠ RP,

instead of the more standard NP ≠ P assumption. Later, Cheng and Wan [12] and Micciancio [43]

provided constructions for such (families of) locally dense codes with an explicit center, and thus

showed the constant ratio inapproximability of MDP under the assumption of NP ≠ P.

Trying to follow the DMS reduction in order to show the parameterized intractability of 𝑘-MDP,

we face the following three immediate obstacles. First, there is no inapproximability result known

for 𝑘-NCP, for any constant factor greater than 1. Note that to use the DMS reduction, we need the

parameterized inapproximability of 𝑘-NCP, for an approximation factor which is greater than two.

Second, the construction of locally dense codes of Dumer et al. only works when the distance is

linear in the block length (which is a function of the size of the input). However, we need codes

whose distance are bounded above by a function of the parameter of the problem (and not dependent

on the input size). This is because the DMS reduction converts an instance (A, y, 𝑘) of 𝑘-NCP to an

instance (B, 𝑎𝑘 + 𝑏𝑟) of (𝑎𝑘 + 𝑏𝑟)-MDP, and for this reduction to be an FPT reduction, we need

𝑎𝑘 + 𝑏𝑟 to be a function only depending on 𝑘 , i.e., 𝑑 , the distance of the code L (which is at most

2𝑟), must be a function only of 𝑘 . Third, recall that the DMS reduction needs to identify the vectors

in the ball B(s, 𝑟) ∩ L with all the potential solutions of 𝑘-NCP. Notice that the number of vectors

in the ball is at most (𝑛𝑚)𝑂 (𝑟)
but the number of potential solutions of 𝑘-NCP is exponential in𝑚

(i.e. all x ∈ F𝑚
2
). However, this is impossible since 𝑟 ⩽ 𝑑 is bounded above by a function of 𝑘!

We overcome the first obstacle by proving the inapproximability of 𝑘-NCP upto poly-logarithmic

factors under W[1] ≠ FPT (see Subsection 2.2). Note that in order to follow the DMS reduction,

it suffices to just show the inapproximability of 𝑘-NCP for some constant factor greater than 2;

nonetheless the hardness of approximating 𝑘-NCP up to poly-logarithmic factors is of independent

interest.

We overcome the third obstacle by introducing an intermediate problem in the DMS reduction,

which we call the sparse nearest codeword problem. The sparse nearest codeword problem is a

promise problem which differs from 𝑘-NCP in the following way: the objective here considers the

distance of the target vector y to the nearest codeword Ax as well as the Hamming weight of the

coefficient vector x which realizes the nearest codeword. We show the inapproximability of the

sparse nearest codeword problem (See Subsection 2.3).

Finally, we overcome the second obstacle by introducing a variant of locally dense codes, which

we call locally suffix dense codes. Roughly speaking, we show that any systematic code which nears

the sphere-packing bound (aka Hamming bound) in the high rate regime is a locally suffix dense

code. Then we follow the DMS reduction with the new ingredient of locally suffix dense codes

(replacing locally dense codes) to reduce the sparse nearest codeword problem to 𝑘-MDP.

The full reduction goes through several intermediate steps, which we will describe in more detail

in the coming subsections. The high-level summary of these steps is also provided in Figure 1.

Throughout this section, for any gap problem, if we do not specify the gap in the subscript, then it

implies that the gap can be any arbitrary constant (or even super constant).

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:8 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

GapLDS Colored GapLDS GapMLD

𝑘-Cliqe One-Sided Bicliqe GapBSMD

GapSNC2.5 GapMDP1.01 GapMDP

Lin [36] Section 4.1

Sec
tion

4.2

Color-Coding Technique

(Section 4.2.1)

Section 5.2

Sec
tion

6.1

Introducing LSDC to

DMS reduction

(Sections 6.2.1 and 6.2.2)

Gap Amplification

(Proposition 6.6)

Fig. 1. The figure provides an overview of our reduction from the canonical W[1]-complete 𝑘-Clique problem

to the parameterized Minimum Distance problem. Our starting point is the gap one-sided biclique problem

which is now known to be W[1]-hard from Lin’s work [36]. Based on the hardness of approximating the

one-sided biclique problem, we obtain the constant inapproximability of a different graph problem, namely

the bipartite subgraph with minimum degree problem (GapBSMD); see Section 4.1 for details. Next, we reduce

GapBSMD to the gap linear dependent set problem (GapLDS) in Section 4.2, and then use standard color-

coding techniques in Section 4.2.1 to obtain the constant inapproximability of a colored version of GapLDS over

fields of non-constant size. In Section 5.2, we reduce the aforementioned colored version of GapLDS to the

GapMLD problem over F2, and thus rule out constant approximation parameterized algorithms for NCP. Via

a simple reduction from GapMLD, in Section 6.1 we obtain the constant parameterized inapproximability

of GapSNC. In Section 6.2.1, we formally introduce locally suffix dense codes and show how to efficiently

(but probabilistically) construct them. These codes are then used in Section 6.2.2 to obtain the parameterized

innapproximability of GapMDP1.01. The final step is a known gap amplification by tensoring (Proposition 6.6).

2.2 Parameterized Inapproximability of 𝑘-LDS

To prove the inapproximability of MDP we first consider its dual problem LDS. Given a set A of

𝑛 vectors over a finite field F𝑞 and an integer 𝑘 , the goal of 𝑘-LDS problem is to decide if there

are 𝑘 vectors in A that are linearly dependent. The gap version of this problem (GapLDS) is to

distinguish the case when there are 𝑘 vectors in A that are linearly dependent from the case when

any 𝛾𝑘 (𝛾 ⩾ 1) vectors in A are linearly independent. As briefly touched upon in the introduction,

𝑘-LDS is closely related to 𝑘-MDP: one might think of A as a matrix in F𝑛×𝑚𝑞 and the goal of 𝑘-LDS

is to find a vector y ∈ F𝑚𝑞 with ∥y∥0 ⩽ 𝑘 and Ay = 0, then 𝑘-LDS is a yes-instance if and only if

min

0≠x∈F𝑛′𝑞
∥A⊥x∥0 ⩽ 𝑘 , where A⊥ ∈ F𝑚×𝑛′

𝑞 is a matrix with maximum number of linearly independent

column vectors such that AA⊥ = 0. Note that the parameterized inapproximability of 𝑘-MDP

follows by the parameterized intractability of GapLDS over the binary field.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:9

However, we cannot prove the hardness of GapLDS over the binary field directly. Instead, we

tackle this problem in three steps. Our first step is to show the parameterized intractability of

GapLDS over large fields by giving a reduction from the One-Sided Bicliqe problem to GapLDS.

It will be more convenient to view the inapproximability result of One-Sided Bicliqe from [36]

as a hardness of the following problem which we call Bipartite Subgraph with Minimum Degree

(BSMD): given a bipartite graph 𝐺 and positive integers 𝑠, ℎ with 𝑠 ⩽ ℎ, find smallest (in terms of

edges) non-empty subgraph of 𝐺 such that every left vertex of the subgraph has degree at least

ℎ and every right vertex has degree at least 𝑠 . Here the parameter is 𝑠 + ℎ. The gap version of

BSMD, called GapBSMD𝛾 , is to distinguish between (i) the YES case in which𝐺 contains a complete

bipartite graph with 𝑠 vertices on the left and ℎ on the right (which satisfies the property with ℎ𝑠

edges) and (ii) the NO case in which every desired subgraph must have at least 𝛾 · ℎ𝑠 edges.
It is not hard to see that Lin’s reduction, with appropriate parameter setting, givesW[1]-hardness

of GapBSMD𝛾 for any constant 𝛾 . In what follows we sketch the reduction from GapBSMD to

GapLDS. Given an instance (𝐺 = (𝐿, 𝑅, 𝐸), 𝑠, ℎ) of GapBSMD, we choose a large finite field F𝑞 so

that the vertices of𝐺 can be treated as elements of F𝑞 . Then we construct a function] : 𝐿∪𝑅 → Fℎ−1𝑞

such that:

(L1) the images of any 𝑠 − 1 vertices in 𝐿 under] are linearly independent;

(L2) the images of any 𝑠 vertices in 𝐿 under] are linearly dependent.

Similarly,

(R1) the images of any ℎ − 1 vertices in 𝑅 under] are linearly independent;

(R2) while the images of any ℎ vertices in 𝑅 under] are linearly dependent.

We point out that one can construct functions satisfying the above properties by mapping the

vertices (now identified with field elements) to the columns of a Vandermonde matrix of appropriate

dimensions padded with zeros. Finally we construct a vector w𝑒 ∈ F𝑞 (ℎ−1)𝑞 for every edge in 𝑒 ∈ 𝐸

and then let {w𝑒 : 𝑒 ∈ 𝐸} be our target instance of GapLDS. To define𝑤𝑒 , firstly, we partition each

vector in F
𝑞 (ℎ−1)
𝑞 into 𝑞 blocks. Each vertex in 𝐺 has its unique corresponding block. Each block

has ℎ − 1 elements. Suppose 𝑒 = {𝑢, 𝑣} where 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝑅. We set the 𝑢-th block of the vector

w𝑒 equal to] (𝑣), the the 𝑣-th block of the vector w𝑒 equal to] (𝑢) and all the other blocks of w𝑒

equal to 0. Note that the 𝑢-th block is equal to] (𝑣) (not to] (𝑢)!) and the 𝑣-th block is equal to] (𝑢).
Suppose that 𝑢1, . . . , 𝑢𝑠 ∈ 𝐿 and 𝑣1, . . . , 𝑣ℎ ∈ 𝑅 form a complete bipartite subgraph in 𝐺 . We will

show that the 𝑠ℎ-sized set𝑊 = {w𝑢𝑖 ,𝑣𝑗 : 𝑖 ∈ [𝑠], 𝑗 ∈ [ℎ]} is linearly dependent. It is not hard to

see that for all 𝑖 ∈ [𝑠], the restriction of𝑊 to the 𝑢𝑖 -th block is a set of ℎ vectors {] (𝑣1), . . . ,] (𝑣ℎ)}.
By the property (R2) of], these vectors are linearly dependent, i.e., there are 𝑏1, . . . , 𝑏ℎ ∈ F𝑞 such

that

∑
𝑗 ∈[ℎ] 𝑏 𝑗] (𝑣 𝑗) = 0. Similarly, we can see that for all 𝑗 ∈ [ℎ], the restriction of𝑊 to the 𝑣 𝑗 -th

block is a set of 𝑠 linearly dependent vectors {] (𝑢1), . . . ,] (𝑢𝑠)} and
∑

𝑖∈[𝑠] 𝑎𝑖] (𝑢𝑖) = 0 for some

𝑎1, . . . , 𝑎𝑠 ∈ F𝑞 . It is easy to check that

∑
𝑖∈[𝑠], 𝑗 ∈[ℎ] 𝑎𝑖𝑏 𝑗𝑤𝑢𝑖 ,𝑣𝑗 = 0 and 𝑎𝑖𝑏 𝑗 (𝑖 ∈ [𝑠], 𝑗 ∈ [ℎ]) are not

all zero.

On the other hand, if 𝐺 is a NO instance of GapBSMD𝛾 , we will show that any linearly depen-

dent set must have at least 𝛾 · ℎ𝑠 vectors. Observe that every vector in the GapLDS instance is

corresponding to an edge in the graph 𝐺 . Suppose𝑊 is a set of linearly dependent vectors. We

consider the graph 𝐻𝑊 in 𝐺 induced by the edges corresponding to vectors in𝑊 . We can argue

that every vertex on the left side of 𝐻𝑊 must have at least ℎ neighbors and every vertex on the

right side of 𝐻𝑊 must have at least 𝑠 neighbors, using properties (R1) and (L1) respectively. From

the definition of the NO instance of GapBSMD𝛾 , we can immediately conclude that |𝑊 | ⩾ 𝛾 · ℎ𝑠 .

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:10 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

2.3 Parameterized Inapproximability of 𝑘-NCP

In the second step, we prove the inapproximability of 𝑘-NCP using the hardness of GapLDS. Note

that this is the step in which we reduce the field size to two, i.e., the hardness for GapLDS described

above is for a large field (F𝑞 where 𝑞 = Θ(𝑛)) but the 𝑘-NCP problem is for F2.
The reduction is simpler to state if we use the dual (equivalent) formulation of 𝑘-NCP called

Maximum Likelihood Decoding (𝑘-MLD). The gap version of the problem, denoted by GapMLD𝛾 ,

can be formulated as follows: Given a matrix A ∈ F𝑛×𝑚
2

, a vector y ∈ F𝑛
2
and a positive integer

𝑘 ∈ N, the goal of GapMLD𝛾 problem is to distinguish the case when there exists a nonzero vector

x ∈ F𝑚
2
with Hamming weight at most 𝑘 such that Ax = y from the case when for all x ∈ F𝑚

2
with

Hamming weight at most 𝛾𝑘 , Ax ≠ y.

Reducing GapLDS to GapMLD. We present a reduction from GapLDS to GapMLD. For ease of

presentation, we think of the input of GapMLD as a set W of vectors (i.e. column vectors of A)
in F𝑛

2
, the goal is to distinguish the case when there exist 𝑘 vectors whose sum is y from the case

when the sum of any nonempty subset of vectors inW of size at most 𝛾𝑘 is not equal to y (note

that 𝛾 ⩾ 1).

We start with the hardness of GapLDS𝛾 where the input vectors are F2𝑑 -vectors, for 𝑑 = Θ(log𝑛).
To reduce the field size, we transform vectors from F𝑚

2
𝑑
into F𝑑𝑚

2
using a linear bijection 𝑓 between

F𝑚
2
𝑑
and F𝑑𝑚

2
. Observe that, even ifw1, . . . ,w𝑘 are linearly dependent vectors in F

𝑚

2
𝑑
, the sum of their

images under 𝑓 is not necessarily zero. This is because we need coefficients 𝑎1, . . . , 𝑎𝑘 ∈ F
2
𝑑 \ {0}

so that

∑
𝑖∈[𝑘] 𝑎𝑖w𝑖 = 0 and hence

∑
𝑖∈[𝑘] 𝑓 (𝑎𝑖w𝑖) = 0, while

∑
𝑖∈[𝑘] 𝑓 (w𝑖) = 0 may not hold.

With these in mind, we will try to construct an instanceW ′
of GapMLD such that for all 𝑎 ∈ F

2
𝑑

and w ∈ W, 𝑓 (𝑎w) has a corresponding vector inW ′
. And ifW has 𝑘 linearly dependent vectors∑

𝑖∈[𝑘] 𝑎𝑖w𝑖 = 0, then the sum of vectors corresponding to 𝑓 (𝑎1w1), . . . , 𝑓 (𝑎𝑘w𝑘) is equal to y.
We need some mechanism to force the solution of GapMLD to select vectors corresponding to

at least 𝑘 distinct vectors 𝑓 (𝑎1w1), . . . , 𝑓 (𝑎𝑘w𝑘). To that end, we use the color-coding technique

to reduce GapLDS to its colored version (see Section 4.2.1 for details). Thus, we can assume that

the instance W of GapLDS comes with a coloring 𝑐 : W → [𝑘] such that if W is a YES instance,

then there are exactly 𝑘 vectors inW with distinct colors under 𝑐 that are linearly dependent.

For 𝑖 ∈ [𝑘], let e𝑖 ∈ F𝑘2 be the vector whose 𝑖-th coordinate is 1 and the other coordinates are

equal to 0. It is natural to construct a reduction as follows: given an instanceW of GapLDS over

F
2
𝑑 and a coloring function 𝑐 : W → [𝑘], output

W ′ = {e𝑐 (w) ◦ 𝑓 (𝑎w) : w ∈ W, 𝑎 ∈ F
2
𝑑 \ {0}} and y = 1𝑘 ◦ 0𝑚𝑑

as the target instance of GapMLD, where ◦ stands for the concatenation of vectors.

It is easy to see that ifW contains 𝑘 linearly dependent vectors

∑
𝑖∈[𝑘] 𝑎𝑖w𝑖 = 0, then the sum

of the vectors e𝑐 (w1) ◦ 𝑓 (𝑎1w1), . . . , e𝑐 (w𝑘) ◦ 𝑓 (𝑎𝑘w𝑘) is equal to 1𝑑𝑚 ◦ 0𝑘 .
On the other hand, if any 3𝑘 vectors ofW are linearly independent, wewill show that for any𝑊 ⊆

W ′
such that

∑
x∈𝑊 x = y, we have |𝑊 | ⩾ 3𝑘 . Let the elements of𝑊 be e𝑐 (w1)◦𝑓 (𝑎1w1), . . . , e𝑐 (w𝑘′)◦

𝑓 (𝑎𝑘′w𝑘′), and suppose for the sake of contradiction that 𝑘 ′ < 3𝑘 . By restricting the equation∑
x∈𝑊 x = y onto the last𝑚𝑑 coordinates, it follows that∑

𝑖∈[𝑘′]
𝑓 (𝑎𝑖w𝑖) = 0,

which implies ∑
𝑖∈[𝑘′]

𝑎𝑖w𝑖 = 0.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:11

At this moment, we cannot yet say that the set {w1, . . . ,w𝑘′} is linearly dependent (and therefore

contradicts 𝑘 ′ < 3𝑘), because w1, . . . ,w𝑘′ may contain duplicated elements. For example, it is

possible that 𝑘 ′ = 3, 𝑎1 + 𝑎2 + 𝑎3 = 0 and w1 = w2 = w3 could be any nonzero vector. To get a

contradiction by this way, we need to show that there is a vector w which appears exactly once in

w1, . . . ,w𝑘′ .

To see this, first observe that, since 𝑘 ′ < 3𝑘 , there must be a color 𝑗 ∈ [𝑘] that corresponds to
at most two vectors from w1, . . . ,w𝑘′ (duplicated counted). However, if we restrict the equation∑

x∈𝑊 x = y to only the 𝑗-th coordinate, we can see that the left hand side equals to the number of

occurrences of color 𝑗 modulo 2, whereas the right hand side is one. This means that there is only a

unique vector among w1, . . . ,w𝑘′ that is of the 𝑗-th color; this immediately implies that this vector

occurs only once in w1, . . . ,w𝑘′ . This in turns means that {w1, . . . ,w𝑘′} is linearly dependent and

therefore 𝑘 ′ > 3𝑘 , a contradiction.

Note that our argument only gives hardness of approximation with factor 3 − Y for any Y > 0.

Nonetheless, this factor suffices for the subsequent steps. We can in fact also prove hardness for

every constant factor, using a slight tweak of the above idea. Please see Section 5.2 for more details

Reducing GapMLD to GapSNC. Now we introduce the sparse nearest codeword problem that we

will use to prove the parameterized inapproximability of 𝑘-MDP. We define the gap version of this

problem, denoted by GapSNC𝛾 (for some constant 𝛾 ⩾ 1) as follows: on input (A′, y′, 𝑘), distinguish
between the YES case where there exists x ∈ F𝑚

2
such that ∥A′x − y′∥0 + ∥x∥0 ⩽ 𝑘 , and the NO

case where for all x (in the entire space), we have ∥A′x − y′∥0 + ∥x∥0 > 𝛾𝑘 . We highlight that the

difference between 𝑘-NCP and GapSNC𝛾 is that the objective also depends on the Hamming weight

of the coefficient vector x. We sketch below the reduction from an instance (A, y, 𝑘) of GapMLD𝛾

to an instance (A′, y′, 𝑘) of GapSNC𝛾 . Given A, y, let

A′ =

A
...

A
Id

𝛾𝑘 + 1 copies

, y′ =

y
...

y
0

𝛾𝑘 + 1 copies

.

Notice that for any x (in the entire space), we have

∥A′x − y′∥0 = (𝛾𝑘 + 1)∥Ax − y∥0 + ∥x∥0,

and thus both the completeness and soundness of the reduction easily follow.

2.4 Parameterized Inapproximability of 𝑘-MDP

Let us recall that in the NCP we are given a matrix A ∈ F𝑛×𝑞
2

, an integer 𝑘 , and a target vector

y ∈ F𝑛
2
, and the goal is to determine whether there is exists a vector x ∈ F𝑚

2
such that ∥Ax − y∥0 is

at most 𝑘 . A natural first idea for reducing an NCP instance (A ∈ F𝑛×𝑚
2

, y ∈ F𝑛
2
) to MDP would be

to introduce the 𝑛 × (𝑚 + 1) matrix

B =
[
A −y

]
; (2)

then any solution x ∈ F𝑚
2
of theNCP instance with ∥Ax−y∥0 ⩽ 𝑘 would give a solution x′ = x◦1 ∈

F𝑚+1
2

of the MDP instance with |Bx′ | ⩽ 𝑘 . However, the problem is that if the MDP instance has a

solution x′ = x ◦ 0 (i.e., the last coordinate is zero), then ∥Bx′∥0 ⩽ 𝑘 implies only ∥Ax∥0 ⩽ 𝑘 , but

does not imply ∥Ax − y∥0 ⩽ 𝑘 . Thus we need a way to force the last coordinate to 1 in the solution

of theMDP instance. We can try to use error correcting codes for this purpose. Let L ∈ Fℎ×𝑚
2

be

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:12 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

the generator matrix of an error correcting code with minimum distance 𝑑 . Let us consider now

the matrix

B =

[
A −y
L −s

]
; (3)

for some arbitrarily chosen vector s ∈ Fℎ
2
. Now for any nonzero x′ = x ◦ 0, we have ∥Bx′∥0 =

∥Ax∥0 + ∥Lx∥0 ⩾ ∥Ax∥0 + 𝑑 , since x is a nonzero vector and the code generated by L has minimum

distance 𝑑 . Thus the second term gives a penalty of 𝑑 if the last coordinate of x′ is 0. However,
the problem now is that if x is a solution of the NCP instance with ∥Ax − y∥0 ⩽ 𝑘 , then defining

x′ = x ◦ 1 gives ∥Bx′∥0 = ∥Ax − y∥0 + ∥Lx − s∥0 = 𝑘 + ∥Lx − s∥0. We would need to argue that

this second term ∥Lx − s∥0 is small, much smaller than the penalty 𝑑 in the previous case. While

in general, there is no reason why the chosen vector s would be close to Lx for the hypothetical

solution x. However, we can hope to increase the chances of finding such an s, if we could somehow

enforce that there are many distinct choices of x for which we would have ∥Ax− y∥0 ⩽ 𝑘 . This can

indeed by achieved by padding the matrix A with additional dummy zero columns, and padding

the corresponding solution x with additional dummy coordinates. In particular, this ensures that

for even a random choice of s (sampled from an appropriate distribution) is close to Lx for at least

one of the choices of x with non-negligible probability. We formalize this intuition in the form of

Locally Suffix Dense Codes described below.

Locally Suffix Dense Codes. A locally suffix dense code (LSDC) is a linear code L ∈ Fℎ×𝑚
2

of

block length ℎ with minimum distance 𝑑 such that the following holds. For any choice of prefix

x ∈ F𝑞
2
and a randomly drawn suffix vector s u.a.r∼ Fℎ−𝑞

2
the vector x ◦ s is 𝑟 close to the code L with

non-negligible probability. In other words, for every choice of prefix vector x, the restriction of the

code L to the affine subspace𝑉x := {x} × Fℎ−𝑞
2

is dense. While one can think of the suffix vector s as
being analogous to the center in LDC, note that s is merely a suffix which is used to extend the

vector x. Therefore, due to systematicity of the code, the distance of the vector x ◦ s to the code

L depends only on the choice of s, which allows us to ensure that the parameters 𝑟 and 𝑑 can be

chosen to functions of 𝑘 , without explicitly depending on the block length ℎ.

As in the case of Dumer et al. we too cannot find an explicit suffix s for the LSDCs that we
construct, but instead provide an efficiently samplable distribution such that, for any x ∈ F𝑞

2
, the

probability (over s sampled from the distribution) that B(x ◦ s, 𝑟) ∩ L ≠ ∅ is non-negligible. This is

what makes our reduction from GapSNC2.5 to GapMDP1.01 randomized. We will not elaborate more

on this issue here, but focus on the (probabilistic) construction of such codes. For convenience, we

will assume throughout this overview that 𝑘 is much smaller than 𝑑 , i.e., 𝑘 = 0.001𝑑 .

Recall that the sphere-packing bound (aka Hamming bound) states that a binary code of block

length ℎ and distance 𝑑 can have at most 2
ℎ/|B(0, ⌈𝑑−1

2
⌉) | codewords; this is simply because the

balls of radius ⌈𝑑−1
2
⌉ at the codewords do not intersect. Our main theorem regarding the existence

of locally dense suffix code is that any systematic code that is “near” the sphere-packing bound is a

locally dense suffix code with 𝑟 = ⌈𝑑−1
2
⌉. Here “near” means that the number of codewords must

be at least 2
ℎ/|B(0, ⌈𝑑−1

2
⌉) | divided by 𝑓 (𝑑) · poly(ℎ) for some function 𝑓 that depends only on 𝑑 .

(Equivalently, this means that the message length must be at least ℎ − (𝑑/2 +𝑂 (1)) logℎ.) The BCH
code over binary alphabet is an example of a code satisfying such a condition.

While we will not sketch the proof of the existence theorem here, we note that the general idea

is as follows. We choose L in such a way that for every choice of x ∈ F𝑞
2
, the restriction of L to the

affine subspace𝑉x is near the sphere packing bound. Then from the above discussion, it follows that

for s sampled uniformly from F
ℎ−𝑞
2

, the probability that B(x ◦ s, 𝑟) ∩ L ≠ ∅ is at least the probability

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:13

that a random point in F
ℎ−𝑞
2

is within distance 𝑟 = ⌈𝑑−1
2
⌉ of some codeword from 𝑉x ∩ L. The latter

is non-negligible from our choice of L which ensures that the restriction of the code to any affine

subspace 𝑉x nears the sphere-packing bound.

Finally, we remark that our proof here is completely different from the DMS proof of existence

of locally dense codes. Specifically, DMS uses a group-theoretic argument to show that, when a

code exceeds the Gilbert-Varshamov bound, there must be a center s such that B(s, 𝑟) contains
many codewords. Then, they pick a random linear map T and show that w.h.p. T(B(s, 𝑟) ∩ L) is the
entire space. Note that this second step does not use any structure of B(s, 𝑟) ∩ L; their argument is

simply that, for any sufficiently large subset 𝑌 , a random linear map T maps 𝑌 to an entire space

w.h.p. However, such an argument fails for us, due to the fact that, in LSDC, we want to ensure that

L is dense (up to Hamming distance 𝑟 = 𝑂 (𝑘)) in all the affine subspaces {𝑉x : x ∈ F𝑞
2
}, instead of

exactly covering the whole space Fℎ
2
. Now if we insist on exactly covering all the affine subspaces

using a linear map T, as in the DMS construction, we will then have T(B(s, 𝑟)) ⊇ Fℎ
2
. This would

instead require 𝑟 to depend on ℎ, whereas in our setting we want 𝑟 to depend only on the parameter

𝑘 .

Reducing GapSNC2.5 to GapMDP1.01. Equipped with the notion of locally suffix dense codes

defined above, we now prove the hardness of GapMDP1.01.

We begin with an instance (A, y, 𝑘) with A ∈ F𝑛×𝑞
2

of GapSNC2.5. Let L ∈ Fℎ×𝑚
2

be a locally suffix

dense code with distance 𝑑 ≈ 2.5𝑘 , where we can choose ℎ,𝑚 ⩽ poly(𝑞, 𝑑). We also choose a vector

s ∈ Fℎ
2
uniformly at random with the first 𝑞 coordinates equal to zero and construct the matrix

B =

[
A 0𝑛×(𝑚−𝑞) −y
L −s

]
.

We shall show that with probability at least 𝑝 = 𝑝 (𝑘) 8
, we have that (B, 𝑘 + 𝑑/2) is an instance

of GapMDP1.01.

If (A, y, 𝑘) is a YES instance of GapSNC2.5, then there exists x ∈ B(0, 𝑘) such that ∥Ax−y∥0 ⩽ 𝑘 .

Furthermore, from the guarantees of the locally suffix dense codes, with probability at least 𝑝 (over

the choice of the vector 𝑠), we have ∥Lx − s∥0 ⩽ (𝑑 − 1)/2. Therefore, setting z = x′ ◦ 1, we get that
∥Bz∥0 = ∥A′x′ − y∥0 + ∥Lx′ − s∥0 ⩽ 𝑘 + (𝑑 − 1)/2.

In other words, if (A, y, 𝑘) is a YES instance of NCP, then (B, 𝑘 +𝑑/2) is a YES instance ofMDP1.01.

On the other hand, if we had that ∥Ax − y∥0 + ∥x∥0 > 2.5𝑘 for all x, then for all non-zero z ∈ F𝑚
2
,

∥B(z ◦ 0)∥0 = ∥A′z∥0 + ∥Lz∥0 ⩾ 𝑑,

and

∥B(z ◦ 1)∥0 = ∥A′z − y∥0 + ∥Lz − s∥0 ⩾ 2.5𝑘.

Since from our choice of parameters, we have 𝑑 ≈ 2.5𝑘 ⩾ 1.01(𝑘 + 𝑑/2), which implies that

(B, 𝑘 + 𝑑/2) is a NO instance of MDP1.01.

Gap Amplification for GapMDP1.01. It is well known that the distance of the tensor product

of two linear codes is the product of the distances of the individual codes (see Proposition 6.6

for a formal statement). We can use this proposition to reduce GapMDP𝛾 to GapMDP𝛾2 for any

𝛾 ⩾ 1. In particular, we can obtain, for any constant 𝛾 , the intractability of GapMDP𝛾 starting from

GapMDP1.01 by just recursively tensoring the input code ⌈log
1.01 𝛾⌉ times.

8
Here the probability 𝑝 = 𝑝 (𝑘) depends only on the parameter 𝑘

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:14 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

2.5 Parameterized Intractability of 𝑘-SVP

We begin this subsection by briefly describing Khot’s reduction. The starting point of Khot’s

reduction is the NP-hardness of approximating NVP in every ℓ𝑝 norm to any constant factor [5].

Let us recall that in NVP in the ℓ𝑝 norm, we are given a matrix A ∈ Z𝑛×𝑚 , an integer 𝑘 , and a target

vector y ∈ Z𝑛 , and the goal is to determine whether there is any x ∈ Z𝑚 such that
9 ∥Ax − y∥𝑝𝑝 is at

most 𝑘 . The result of Arora et al. [5] states that for any constant 𝛾 ⩾ 1, it is NP-hard to distinguish

the case when there exists x such that ∥Ax−y∥𝑝𝑝 ⩽ 𝑘 from the case when for all (integral) xwe have
that ∥Ax − y∥𝑝𝑝 > 𝛾𝑘 . Khot’s reduction proceeds in four steps. First, he constructs a gadget lattice

called the “BCH Lattice” using BCH Codes. Next, he reduces NVP in the ℓ𝑝 norm (where 𝑝 ∈ (1,∞))
to an instance of SVP on an intermediate lattice by using the BCH Lattice. This intermediate

lattice has the following property. For any YES instance of NVP the intermediate lattice contains

multiple copies of the witness of the YES instance; For any NO instance of NVP there are also many

“annoying vectors” (but far less than the total number of YES instance witnesses) which look like

witnesses of a YES instance. However, since the annoying vectors are outnumbered, Khot reduces

this intermediate lattice to a proper SVP instance, by randomly picking a sub-lattice via a random

homogeneous linear constraint on the coordinates of the lattice vectors (this annihilates all the

annoying vectors while retaining at least one witness for the YES instance). Thus he obtains some

constant factor hardness for SVP. Finally, the gap is amplified via “Augmented Tensor Product”. It

is important to note that Khot’s reduction is randomized, and thus his result of inapproximability

of SVP is based on NP ≠ RP.

Trying to follow Khot’s reduction, in order to show the parameterized intractability of 𝑘-SVP,

we face only one obstacle: there is no known parameterized inapproximability of 𝑘-NVP for any

constant factor greater than 1. Let us denote by GapNVP𝑝,[for any constant [⩾ 1 the gap version

of 𝑘-NVP in the ℓ𝑝 norm. Recall that in GapNVP𝑝,[we are given a matrix A ∈ Z𝑛×𝑚 , a target vector

y ∈ Z𝑛 , and a parameter 𝑘 , and we would like to distinguish the case when there exists x ∈ Z𝑚
such that ∥Ax − y∥𝑝𝑝 ⩽ 𝑘 from the case when for all x ∈ Z𝑚 we have that ∥Ax − y∥𝑝𝑝 > [𝑘 . As it

turns out, our reduction from 𝑘-LDS to GapMLD, can be translated to show the inapproximability

of GapMLD over any larger (but still constant) field in a straightforward manner. We then provide

a simple reduction for GapMLD over large field to GapNVP𝑝 that establishes W[1]-hardness of
the latter.

Once we have established the constant parameterized inapproximability of GapNVP𝑝 , we follow

Khot’s reduction, and everything goes through as it is to establish the inapproximability for some

factor of the gap version of 𝑘-SVP in the ℓ𝑝 norm (where 𝑝 ∈ (1,∞)). We denote by GapSVP𝑝,𝛾

for some constant 𝛾 (𝑝) ⩾ 1 the the gap version of 𝑘-SVP (in the ℓ𝑝 norm) where we are given a

matrix B ∈ Z𝑛×𝑚 and a parameter 𝑘 ∈ N, and we would like to distinguish the case when there

exists a non-zero x ∈ Z𝑚 such that ∥Bx∥𝑝𝑝 ⩽ 𝑘 from the case when for all x ∈ Z𝑚 \ {0} we have
that ∥Bx∥𝑝𝑝 > 𝛾𝑘 . Let 𝛾∗ := 2

𝑝

2
𝑝−1+1 . Following Khot’s reduction, we obtain the inapproximability of

GapSVP𝑝,𝛾∗ .

Summarizing, in Figure 2, we provide the proof outline of our W[1]-hardness result of GapSVP𝑝

to some constant approximation factor, for every 𝑝 ∈ (1,∞).

3 PRELIMINARIES

We use the following notation throughout the paper.

9
Previously, we use ∥Ax − y∥𝑝 instead of ∥Ax − y∥𝑝𝑝 . However, from the fixed parameter perspective, these two versions

are equivalent since the parameter 𝑘 is only raised to the 𝑝-th power, and 𝑝 is a constant in our setting.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:15

GapLDS Colored GapLDS GapMLD

𝑘-Cliqe One-Sided Bicliqe GapBSMD

GapNVP𝑝
GapSVP

𝑝, 2
𝑝

2
𝑝−1+1

Khot’s Reduction

Lemma 7.3

Lin [36] Section 4.1

Sec
tion

4.2

Color-Coding Technique

(Section 4.2.1)

Section 5.2

Se
ct
io
n
7.1

Fig. 2. The figure provides an overview of our reduction from the canonical W[1]-complete 𝑘-Clique problem

to the parameterized Shortest Vector problem in the ℓ𝑝 norm, where 𝑝 ∈ (1,∞). The proof outline of the
reduction from 𝑘-Clique to GapMLD (to rule out constant approximation parameterized algorithms for NCP)

is reiterated in the above figure. In Section 7.1, we reduce GapMLD to GapNVP and obtain the constant

inapproximability of NVP. Then, applying Lemma 7.3 (i.e., Khot’s reduction) implies the parameterized

inapproximability of GapSVP
𝑝, 2

𝑝

2
𝑝−1+1

.

Notation.We use boldface (e.g. x,A or 0) to stress that the objects are vectors or matrices. When

we refer to a vector x, we assume that it is a column vector. Moreover, since subscripts will often

be used for other purposes, we instead use the notation x[𝑖] for 𝑖 ∈ N to denote the value of the

𝑖-th coordinate of the vector. For matrices, we use A[𝑖] to denote its 𝑖-th column vector.

For 𝑝 ∈ N, we use 1𝑝 (respectively, 0𝑝) to denote the all ones (respectively, all zeros) vector of
length 𝑝 . We sometimes drop the subscript if the dimension is clear from the context. For 𝑝, 𝑞 ∈ N,
we use 0𝑝×𝑞 to denote the all zeroes matrix of 𝑝 rows and 𝑞 columns. We use Id𝑞 to denote the

identity matrix of 𝑞 rows and 𝑞 columns.

For any vector x ∈ R𝑑 , the ℓ𝑝 norm of x is defined as ℓ𝑝 (x) = ∥x∥𝑝 =

(∑𝑑
𝑖=1 |x[𝑖] |𝑝

)
1/𝑝

. Thus,

ℓ∞ (x) = ∥x∥∞ = max𝑖∈[𝑑]{|x𝑖 |}. The ℓ0 norm of x is defined as ℓ0 (x) = ∥x∥0 = |{x[𝑖] ≠ 0 : 𝑖 ∈ [𝑑]}|,
i.e., the number of non-zero entries of x. We note that the ℓ0 norm is also referred to as the Hamming

norm. For 𝑎 ∈ N, 𝑡 ∈ N∪ {0}, and s ∈ {0, 1}𝑎 , we use B𝑎 (s, 𝑡) to denote the Hamming ball of radius

𝑡 centered at s, i.e., B𝑎 (s, 𝑡) = {x ∈ {0, 1}𝑎 | ∥s − x∥0 ⩽ 𝑡}. Finally, given two vectors x and y, we
use x ◦ y to denote the concatenation of vectors x and y.
We sometimes use ¤∪ to emphasize that the sets are disjoint; for instance, we may write

𝐺 = (𝐿 ¤∪ 𝑅, 𝐸) for bipartite graphs to indicate that 𝐿, 𝑅 are disjoint.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:16 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

3.1 Parameterized Promise Problems and (Randomized) FPT Reductions

In this subsection, we briefly describe the various kinds of fixed-parameter reductions that are used

in this paper. We start by defining the notion of promise problems in the fixed-parameter world,

which is naturally analogues to promise problems in the NP world (see e.g. [26]).

Definition 3.1. A parameterized promise problem Π is a pair of parameterized languages

(Π𝑌𝐸𝑆 ,Π𝑁𝑂) such that Π𝑌𝐸𝑆 ∩ Π𝑁𝑂 = ∅.
Next, we formalize the notion of algorithms for these parameterized promise problems:

Definition 3.2. A deterministic algorithm A is said to be an FPT algorithm for Π if the following

holds:

• On any input (𝑥, 𝑘), A runs in time 𝑓 (𝑘) |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐 .

• (YES) For all (𝑥, 𝑘) ∈ Π𝑌𝐸𝑆 , A(𝑥, 𝑘) = 1.

• (NO) For all (𝑥, 𝑘) ∈ Π𝑁𝑂 , A(𝑥, 𝑘) = 0.

Definition 3.3. A Monte Carlo algorithm A is said to be a randomized FPT algorithm for Π if

the following holds:

• A runs in time 𝑓 (𝑘) |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐 (on every randomness).

• (YES) For all (𝑥, 𝑘) ∈ Π𝑌𝐸𝑆 , Pr[A(𝑥, 𝑘) = 1] ⩾ 2/3.
• (NO) For all (𝑥, 𝑘) ∈ Π𝑁𝑂 , Pr[A(𝑥, 𝑘) = 0] ⩾ 2/3.

Finally, we define deterministic and randomized reductions between these problems.

Definition 3.4. A (deterministic) FPT reduction from a parameterized promise problem Π to a

parameterized promise problem Π′
is a (deterministic) procedure that transforms (𝑥, 𝑘) to (𝑥 ′, 𝑘 ′) that

satisfies the following:

• The procedure runs in 𝑓 (𝑘) |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐 .

• There exists a computable function 𝑔 such that 𝑘 ′ ⩽ 𝑔(𝑘) for every input (𝑥, 𝑘).
• For all (𝑥, 𝑘) ∈ Π𝑌𝐸𝑆 , (𝑥 ′, 𝑘 ′) ∈ Π′

𝑌𝐸𝑆
.

• For all (𝑥, 𝑘) ∈ Π𝑁𝑂 , (𝑥 ′, 𝑘 ′) ∈ Π′
𝑁𝑂

.

Definition 3.5. A randomized (one sided error) FPT reduction from a parameterized promise

problem Π to a parameterized promise problem Π′
is a randomized procedure that transforms (𝑥, 𝑘) to

(𝑥 ′, 𝑘 ′) that satisfies the following:
• The procedure runs in 𝑓 (𝑘) |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐 (on every

randomness).

• There exists a computable function 𝑔 such that 𝑘 ′ ⩽ 𝑔(𝑘) for every input (𝑥, 𝑘).
• For all (𝑥, 𝑘) ∈ Π𝑌𝐸𝑆 , Pr[(𝑥 ′, 𝑘 ′) ∈ Π′

𝑌𝐸𝑆
] ⩾ 1/(𝑓 ′(𝑘) |𝑥 |𝑐′) for some computable function 𝑓 ′

and constant 𝑐 ′.
• For all (𝑥, 𝑘) ∈ Π𝑁𝑂 , Pr[(𝑥 ′, 𝑘 ′) ∈ Π′

𝑁𝑂
] = 1.

Note that the above definition corresponds to the notion of Reverse Unfaithful Random (RUR)

reductions in the classical world [31]. The only difference (besides the allowed FPT running time) is

that the above definition allows the probability that the YES case gets map to the YES case to be

as small as 1/(𝑓 ′(𝑘)poly(|𝑥 |)), whereas in the RUR reductions this can only be 1/poly(|𝑥 |). The
reason is that, as we will see in Lemma 3.7 below, FPT algorithms can afford to repeat the reduction

𝑓 ′(𝑘)poly(|𝑥 |) times, whereas polynomial time algorithms can only repeat poly(|𝑥 |) times.

We also consider randomized two-sided error FPT reductions, which are defined as follows.

Definition 3.6. A randomized two sided error FPT reduction from a parameterized promise

problem Π to a parameterized promise problem Π′
is a randomized procedure that transforms (𝑥, 𝑘) to

(𝑥 ′, 𝑘 ′) that satisfies the following:

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:17

• The procedure runs in 𝑓 (𝑘) |𝑥 |𝑐 for some computable function 𝑓 and constant 𝑐 (on every

randomness).

• There exists a computable function 𝑔 such that 𝑘 ′ ⩽ 𝑔(𝑘) for every input (𝑥, 𝑘).
• For all (𝑥, 𝑘) ∈ Π𝑌𝐸𝑆 , Pr[(𝑥 ′, 𝑘 ′) ∈ Π′

𝑌𝐸𝑆
] ⩾ 2/3.

• For all (𝑥, 𝑘) ∈ Π𝑁𝑂 , Pr[(𝑥 ′, 𝑘 ′) ∈ Π′
𝑁𝑂

] ⩾ 2/3.

Note that this is not a generalization of the standard randomized FPT reduction (as defined in

Definition 3.5), since the definition requires the success probabilities for the YES and NO cases to

be constants independent of the parameter. In both cases, using standard techniques randomized

FPT reductions, can be used to transform randomized FPT algorithms for Π′
to randomized FPT

algorithm for Π, as stated by the following lemma:

Lemma 3.7. Suppose there exists a randomized (one sided/ two sided) error FPT reduction from a

parameterized promise problem Π to a parameterized promise problem Π′
. If there exists a randomized

FPT algorithm A for Π′
, there there also exists a randomized FPT algorithm for Π.

Proof. We prove this for one sided error reductions, the other case follows using similar argu-

ments. Suppose there exists a randomized one sided error reduction from Π to Π′
. Let 𝑓 ′(·), 𝑐 ′ be as

in Definition 3.5. We consider the following subroutine. Given instance (𝑥, 𝑘) of promise problem

Π, we apply the randomized reduction on (𝑥, 𝑘) to get instance (𝑥 ′, 𝑘 ′) of promise problem Π′
. We

run A on (𝑥 ′, 𝑘 ′) repeatedly 100 log(𝑓 ′(𝑘) |𝑥 |𝑐) times, and output the majority of the outcomes.

If (𝑥, 𝑘) is a YES instance, then with probability at least 1/(𝑓 ′(𝑘) |𝑥 |𝑐′), (𝑥 ′, 𝑘 ′) is also a YES

instance for Π′
. Using Chernoff bound, conditioned on (𝑥 ′, 𝑘 ′) being a YES instance, the majority of

the outcomes is YES with probability at least 1−𝑒−10 log(𝑓 ′ (𝑘) |𝑥 |𝑐
′)
. Therefore using union bound, the

output of the above algorithm is YES with probability at least 1/(𝑓 ′(𝑘) |𝑥 |𝑐′) − 𝑒−10 log(𝑓
′ (𝑘) |𝑥 |𝑐′) ⩾

1/2(𝑓 ′(𝑘) |𝑥 |𝑐′). Similarly, if (𝑥, 𝑘) is a NO instance, then the subroutine outputs YESwith probability

at most 𝑒−10 log(𝑓
′ (𝑘) |𝑥 |𝑐′)

.

Equipped with the above subroutine, our algorithm is simply the following: given (𝑥, 𝑘), it runs
the subroutine 10𝑓 ′(𝑘) |𝑥 |𝑐′ times. If at least one of the outcomes is YES, then the algorithm outputs

YES, otherwise it outputs NO. Again we can analyze this using elementary probability. If (𝑥, 𝑘) is a
YES instance, then the algorithm outputs NO only if outcomes of all the trials is NO. Therefore, the

algorithm outputs YES with probability at least 1− (1−1/2(𝑓 ′(𝑘) |𝑥 |𝑐′))10𝑓 ′ (𝑘) |𝑥 |𝑐
′
⩾ 0.9. Conversely,

if (𝑥, 𝑘) is a NO instance, then by union bound, the algorithm outputs NO with probability at least

1 − 10𝑓 ′(𝑘) |𝑥 |𝑐′𝑒−10 log(𝑓 ′ (𝑘) |𝑥 |𝑐
′) ⩾ 0.9. Finally, if A is FPT, then the running time of the proposed

algorithm is also FPT. Hence the claim follows
10
. □

Since the conclusion of the above proposition holds for both types of randomized reductions, we

will not be distinguishing between the two types in the rest of the paper.

3.2 Bipartite Subgraph with Minimum Degrees

As stated in the proof overview, it will be convenient to view Lin’s hardness of Bicliqe in terms

of hardness of approximating Bipartite Subgraph with Minimum Degree, where the goal, given

a bipartite graph 𝐺 , is to find a non-empty subgraph 𝐻 of 𝐺 such that every left vertex in 𝐻 has

degree at least ℎ and every right vertex of 𝐻 has degree at least 𝑠 . The parameter here is 𝑠 + ℎ.
The gap version that we will use is to distinguish between the YES case where there is such a

subgraph with ℎ𝑠 edges, i.e., a complete bipartite subgraph with 𝑠 left vertices and ℎ right vertices,

10
For the case of 2-sided error, we change the final step of the algorithm as follows; we invoke the subroutine𝑂 (log 1/𝛿)-

times (where 𝛿 is a constant) and again output the majority of the outcomes. The guarantees again follow by a Chernoff

bound argument.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:18 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

and the NO case where every such subgraph 𝐻 must contains more than 𝛾 · ℎ𝑠 edges (for 𝛾 ⩾ 1).

This is defined more precisely below.

𝛾-Gap Bipartite Subgraph with Minimum Degree Problem (GapBSMD𝛾)

Input: A bipartite graph 𝐺 = (𝐿 ¤∪ 𝑅, 𝐸) with 𝑛 vertices, 𝑠, ℎ ∈ N
Parameter: 𝑠 + ℎ
Question: Distinguish between the following two cases:

• (YES) There is a complete bipartite subgraph of𝐺 with 𝑠 vertices in 𝐿 and ℎ vertices in 𝑅.

• (NO) For any non-empty subgraph 𝐻 of 𝐺 such that every left vertex of 𝐻 has degree at

least ℎ and every right vertex of 𝐻 has degree at least 𝑠 , 𝐻 contains at least 𝛾 · (𝑠ℎ) edges.

3.3 Linear Dependent Set Problems

We next introduce the parameterized Linear Dependent Problem. In this problem, we are given F𝑞-
vectors w1, . . . ,w𝑛 and the goal is to find a smallest number of vectors that are linearly dependent.

It should be stressed here that the field F𝑞 is part of the input (i.e. 𝑞 will be of the order of 𝑛 in

our proofs); this is indeed the main difference between this problem and the Minimum Distance

Problem which is in fact equivalent to the Linear Dependent Problem for a fixed 𝑞 = 2.

𝛾-Gap Linear Dependent Set Problem (GapLDS𝛾)

Input: A field F𝑞 , a setW ⊆ F𝑚𝑞 and a positive integer 𝑘 ∈ N.
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exist 𝑘 distinct vectors w1, . . . ,w𝑘 ∈ W and 𝑎1, . . . , 𝑎𝑘 ∈ F𝑞 \ {0} such that∑
𝑖∈[𝑘] 𝑎𝑖w𝑖 = 0 (which implies that w1, . . . ,w𝑘 are linearly dependent)

• (NO) there are no 𝛾 · 𝑘 vectors inW that are linearly dependent

Notice here that the guarantee in the YES case is slightly stronger than “there exist 𝑘 vectors

that are linearly dependent”, as we also require the coefficients to be non-zero. (This would be

automatically true if, for instance, any 𝑘−1 vectors are linearly dependent.) We remark that this does

not significantly change the complexity of the problem, as our hardness applies to both versions;

however, it will be more convenient in subsequent steps to have such an additional guarantee.

It will also be convenient to work with a colored version of GapLDS which we introduce below.

𝛾-Gap Colored Linear Dependent Set Problem (GapLDS
col

𝛾)

Input: A field F𝑞 , a setW ⊆ F𝑚𝑞 , a positive integer 𝑘 ∈ N and a coloring 𝑐 : W → [𝑘]
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exist 𝑘 vectorsw1, . . . ,w𝑘 ∈ W of distinct colors (i.e. 𝑐 ({w1, . . . ,w𝑘 }) = [𝑘])
and 𝑎1, . . . , 𝑎𝑘 ∈ F𝑞 \ {0} such that

∑
𝑖∈[𝑘] 𝑎𝑖w𝑖 = 0

• (NO) there are no 𝛾 · 𝑘 vectors inW that are linearly dependent

We point out that in GapLDS
col

𝛾 we require the vectors to have distinct colors only in the YES

case; in the NO case, we assume that there are no 𝛾 · 𝑘 linearly dependent vectors of arbitrary

colors.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:19

3.4 Minimum Distance Problem

In this subsection, we define the fixed-parameter variant of the minimum distance problem and

other relevant parameterized problems. We actually define them as gap problems – as later in the

paper, we show the constant inapproximability of these problems.

For every 𝛾 ⩾ 1, we define the 𝛾-gap minimum distance problem
11
as follows:

𝛾-Gap Minimum Distance Problem (GapMDP𝛾)

Input: A matrix A ∈ F𝑛×𝑚
2

and a positive integer 𝑘 ∈ N
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ F𝑚
2
\ {0} such that ∥Ax∥0 ⩽ 𝑘

• (NO) for all x ∈ F𝑚
2
\ {0}, ∥Ax∥0 > 𝛾 · 𝑘

Next, for every 𝛾 ⩾ 1, we define the 𝛾-gap maximum likelihood decoding problem
12
as follows:

𝛾-Gap Maximum Likelihood Decoding Problem (GapMLD𝛾)

Input: A matrix A ∈ F𝑛×𝑚
2

, a vector y ∈ F𝑛
2
and a positive integer 𝑘 ∈ N

Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ B𝑚 (0, 𝑘) such that Ax = y
• (NO) for all x ∈ B𝑚 (0, 𝛾𝑘), Ax ≠ y

For brevity, we shall denote the exact version (i.e., GapMLD1) of the problem as MLD.

It should be noted that the Odd Set problem discussed in the introduction is closely related to

GapMLD; in particular, the only different is that, in OddSet, y is not part of the input but is always

fixed as 1, the all-ones vector. Indeed, it is not hard to see that our parameterized hardness of

approximation for GapMLD also transfers to that of GapOddSet. This is formulated in Appendix A.

We also define the GapMLD problem over larger (constant) field F𝑝 below; this version of the

problem will be used in proving hardness of Nearest Vector Problem. In this version, we have an

additional requirement that, in the YES case, the solution x must be a {0, 1}-vector. (Note that this
is automatically the case for GapMLD over F2.)

𝛾-Gap Maximum Likelihood Decoding Problem over F𝑝 (GapMLD𝛾,𝑝)

Input: A matrix A ∈ F𝑛×𝑚𝑝 , a vector y ∈ F𝑛𝑝 and a positive integer 𝑘 ∈ N
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ {0, 1}𝑚 with ∥x∥0 ⩽ 𝑘 such that Ax = y
• (NO) for all x ∈ F𝑚𝑞 such that ∥x∥0 ⩽ 𝛾𝑘 , Ax ≠ y

Finally, we introduce a “sparse” version of the GapMLD problem called the sparse nearest

codeword problem, and later in the paper, we show a reduction from GapMLD to this problem,

followed by a reduction from this problem to GapMDP. As its name suggest, the sparse nearest

11
In the parameterized complexity literature, this problem is referred to as the 𝑘-Even set problem [22] and the input to the

problem is (equivalently) given through the parity-check matrix, instead of the generator matrix as described in this paper.

12
The maximum likelihood decoding problem is also equivalently known in the literature as the nearest codeword problem.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:20 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

codeword problem priorities not only the Hamming distance of the codeword Ax to the target

vector y but also the “sparsity” (i.e. Hamming weight) of x. Formally, for every 𝛾 ⩾ 1, we define the

𝛾-gap sparsest nearest codeword problem as follows:

𝛾-Gap Sparse Nearest Codeword Problem (GapSNC𝛾)

Input: A matrix A ∈ F𝑛×𝑚
2

, a vector y ∈ F𝑛
2
and a positive integer 𝑘 ∈ N

Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ F𝑚
2
such that ∥Ax − y∥0 + ∥x∥0 ⩽ 𝑘

• (NO) for all x ∈ F𝑚
2
, ∥Ax − y∥0 + ∥x∥0 > 𝛾 · 𝑘

3.5 Shortest Vector Problem and Nearest Vector Problem

In this subsection, we define the fixed-parameter variants of the shortest vector and nearest vector

problems. As in the previous subsection, we define them as gap problems, for the same reason that

later in the paper, we show the constant inapproximability of these two problems.

Fix 𝑝 ∈ R⩾1. For every 𝛾 ⩾ 1, we define the 𝛾-gap shortest vector problem in the ℓ𝑝-norm
13
as

follows:

𝛾-Gap Shortest Vector Problem (GapSVP𝑝,𝛾)

Input: A matrix A ∈ Z𝑛×𝑚 and a positive integer 𝑘 ∈ N
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Z𝑚 \ {0} such that ∥Ax∥𝑝𝑝 ⩽ 𝑘

• (NO) for all x ∈ Z𝑚 \ {0}, ∥Ax∥𝑝𝑝 > 𝛾 · 𝑘

For every 𝛾 ⩾ 1, we define the 𝛾-gap nearest vector problem in the ℓ𝑝 -norm as follows:

𝛾-Gap Nearest Vector Problem (GapNVP𝑝,𝛾)

Input: A matrix A ∈ Z𝑛×𝑚 , vector y ∈ Z𝑛 and a positive integer 𝑘 ∈ N
Parameter: 𝑘

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Z𝑚 such that ∥Ax − y∥𝑝𝑝 ⩽ 𝑘

• (NO) for all x ∈ Z𝑚 , ∥Ax − y∥𝑝𝑝 > 𝛾 · 𝑘

3.6 Error-Correcting Codes

An error correcting code 𝐶 over alphabet Σ is a function 𝐶 : Σ𝑚 → Σℎ where 𝑚 and ℎ are

positive integers which are referred to as the message length (aka dimension) and block length of

𝐶 respectively. Intuitively, 𝐶 encodes an original message of length𝑚 to an encoded message of

length ℎ. The distance of a code, denoted by 𝑑 (𝐶), is defined as min

𝑥≠𝑦∈Σ𝑚
∥𝐶 (𝑥) − 𝐶 (𝑦)∥0, i.e., the

number of coordinates on which 𝐶 (𝑥) and 𝐶 (𝑦) disagree. We also define the systematicity of a

13
Note that we define GapNVP and GapSVP problems in terms of ℓ

𝑝
𝑝 , whereas traditionally, it is defined in terms of ℓ𝑝 .

However, it is sufficient for us to work with the ℓ
𝑝
𝑝 variant, since an 𝛼-factor inapproximability in ℓ

𝑝
𝑝 translates to an

𝛼1/𝑝
-factor inapproximabillity in the ℓ𝑝 norm, for any 𝛼 ⩾ 1.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:21

code as follows: Given 𝑠 ∈ N, a code 𝐶 : Σ𝑚 → Σℎ is 𝑠-systematic if there exists a size-𝑠 subset of

[ℎ], which for convenience we identify with [𝑠], such that for every 𝑥 ∈ Σ𝑠 there exists𝑤 ∈ Σ𝑚 in

which 𝑥 = 𝐶 (𝑤) |[𝑠] . We use the shorthand [ℎ,𝑚,𝑑] |Σ | to denote a code of message length𝑚, block

length ℎ, and distance 𝑑 .

Additionally, we will need the following existence and efficient construction of BCH codes for

every message length and distance parameter.

Theorem 3.8 (BCH Code [10, 30]). For any choice of ℎ,𝑑 ∈ N such that ℎ + 1 is a power of two and
that 𝑑 ⩽ ℎ, there exists a linear code over F2 with block length ℎ, message length ℎ −

⌈
𝑑−1
2

⌉
· log(ℎ + 1)

and distance 𝑑 . Moreover, the generator matrix of this code can be computed in poly(ℎ) time.

Finally, we define the tensor product of codes which will be used later in the paper. Consider

two linear codes𝐶1 ⊆ F𝑚2 (generated by G1 ∈ F𝑚×𝑚′
2

) and𝐶2 ⊆ F𝑛2 (generated by G2 ∈ F𝑛×𝑛
′

2
). Then

the tensor product of the two codes 𝐶1 ⊗ 𝐶2 ⊆ F𝑚×𝑛
2

is defined as

𝐶1 ⊗ 𝐶2 = {G1XG⊤
2
|X ∈ F𝑚′×𝑛′

2
}.

We will only need two properties of tensor product codes. First, the generator matrix of the tensor

products of two linear codes 𝐶1,𝐶2 with generator matrices G1,G2 can be computed in polynomial

time in the size of G1,G2. Second, the distance of 𝐶1 ⊗ 𝐶2 is exactly the product of the distances of

the two codes, i.e.,

𝑑 (𝐶1 ⊗ 𝐶2) = 𝑑 (𝐶1)𝑑 (𝐶2).

4 PARAMETERIZED INAPPROXIMABILITY OF LINEAR DEPENDENT SET

In this section, we show that the Linear Dependent Set problem has no constant factor FPT

approximation algorithm unless W[1] = FPT. More formally, we prove the following:

Theorem 4.1. For every 𝛾 ⩾ 1, GapLDS𝛾 and GapLDS
col

𝛾 areW[1]-hard.

The proof consists of two steps. First, we will reformulate Lin’s reduction for the Biclique problem

in terms of hardness of GapBSMD. Then, we reduce GapBSMDto our target problem GapLDS.

4.1 Translating One-Sided Biclique to GapBSMD

In the first step of our proof, we will show that GapBSMD is W[1]-hard to approximate to within

any constant factor, as stated more precisely below.

Theorem 4.2. For every 𝛾 ⩾ 1, GapBSMD𝛾 isW[1]-hard.

Our result relies crucially on the recentW[1]-hardness of approximation result for theOne-Sided

Bicliqe problem by Lin [36]. Recall that, in One-Sided Bicliqe, we are given a bipartite graph𝐺

and an integer 𝑠 and the goal is to find 𝑠 left vertices with maximum number of common neighbors.

The following theorem is the main result of Lin [36] for One-Sided Bicliqe.

Theorem 4.3 ([36, Theorem 1.3]). There is a polynomial time algorithm A such that, given a

graph 𝐺 with 𝑛 vertices and 𝑘 ∈ N with ⌈𝑛 6

𝑘+6 ⌉ > (𝑘 + 6)! and 6 | 𝑘 + 1, it outputs a bipartite graph

𝐺 ′ = (𝐴 ¤∪ 𝐵, 𝐸) and 𝑠 =
(
𝑘
2

)
satisfying:

(1) (YES) If 𝐺 contains a 𝑘-clique, then there are 𝑠 vertices in 𝐴 with at least ⌈𝑛 6

𝑘+1 ⌉ common

neighbors in 𝐵;

(2) (NO) If𝐺 does not contain a 𝑘-clique, any 𝑠 vertices in𝐴 have at most (𝑘 +1)! common neighbors

in 𝐵.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:22 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

Another ingredient of our reduction is a simple observation regarding the size of bipartite graphs

with prescribed minimum degrees, conditioned on the fact that any small subset of left vertices

have small number of neighbors. This is stated below.

Claim 4.4. For any 𝑠, ℓ, ℎ ∈ N, let (𝑋 ∪ 𝑌, 𝐸𝑊) be a non-empty bipartite graph such that

(i) every vertex in 𝑋 has at least ℎ neighbors,

(ii) every vertex in 𝑌 has at least 𝑠 neighbors, and,

(iii) every 𝑠-vertex set of 𝑋 has at most ℓ common neighbors.

Furthermore, the parameters ℎ, ℓ and 𝑠 satisfy ℎ/ℓ ⩾ 𝛾𝑠𝑠𝑠 . Then, |𝐸𝑊 | ⩾ (ℎ/ℓ)1/𝑠 ⩾ 𝛾 · ℎ𝑠 .

Proof of Claim 4.4. Consider any vertex𝑢 ∈ 𝑋 . By (i),𝑢 has at leastℎ neighbors in𝑌 , so |𝑌 | ⩾ ℎ.

By (ii), for every 𝑣 ∈ 𝑌 , 𝑣 has at least 𝑠 neighbors in 𝑋 . If
(|𝑋 |
𝑠

)
ℓ < |𝑌 |, then there must exist a

𝑠-vertex set in 𝑋 which has more than ℓ common neighbors in 𝑌 . Thus, we must have

|𝑋 |𝑠 ⩾
(
|𝑋 |
𝑠

)
⩾

|𝑌 |
ℓ
⩾

ℎ

ℓ
.

By (i) and our choice of parameters ℎ, ℓ, 𝑠 , we can conclude that |𝐸𝑊 | ⩾ ℎ |𝑋 | ⩾ (ℎ/ℓ)1/𝑠 · ℎ ⩾ 𝛾 · ℎ𝑠 ,
as desired. □

With Theorem 4.3 and Claim 4.4 in place, we can prove Theorem 4.2 simply by using the reduction

from Theorem 4.3 and choosing an appropriate value of ℎ; the guarantee in the NO case would

then follow from Claim 4.4.

Proof of Theorem 4.2. We reduce from the 𝑘-Cliqe problem which is well-known to beW[1]-

complete. Let (𝐺,𝑘) be an instance of 𝑘-Cliqe and 𝑛 be the number of vertices in𝐺 . Without loss

of generality, we can assume that 6 | 𝑘 + 1 and ⌈𝑛 6

𝑘+6 ⌉ > (𝑘 + 6)! · (𝛾 · 𝑘2)𝑘2

. Using the reduction

in Theorem 4.3, we can produce (𝐺 ′, 𝑠 =
(
𝑘
2

)
) in polynomial time with the guarantees as in the

theorem. We then set ℎ = (𝑘 + 6)! · (𝛾 · 𝑘2)𝑘2

and let (𝐻, 𝑠, ℎ) be our instance of GapBSMD𝛾 . We

will next show that this is indeed a valid reduction from 𝑘-Clique to GapBSMD𝛾 .

(YES Case) Suppose that 𝐺 contains a 𝑘-clique. Then, Theorem 4.3 guarantees that 𝐺 ′
contains

a complete bipartite subgraph with 𝑠 left vertices and ℎ right vertices as desired.

(NO Case) Suppose that 𝐺 does not contain a 𝑘-clique. Now, consider any non-empty subgraph

𝐻 of𝐺 ′
such that every left vertex of𝐻 has at least ℎ neighbors and every right vertex of𝐻 contains

at least 𝑠 neighbors, i.e., 𝐻 satisfies condition (i) and (ii) in Claim 4.4. Furthermore, since 𝐺 does

not contain a 𝑘-clique, (iii) in Claim 4.4 guarantees that every 𝑠 vertices in 𝐴 contains at most

ℓ = (𝑘 + 1)! common neighbors. It can be easily verified that our setting of parameters ℎ, ℓ and 𝑠

satisfies the inequality ℎ/ℓ ⩾ 𝛾𝑠𝑠𝑠 . Hence, by applying Claim 4.4 on 𝐻 , the number of edges in 𝐻

must be at least 𝛾 · (ℎ𝑠). This means that (𝐻, 𝑠, ℎ) is a NO instance of GapBSMD𝛾 as desired. □

4.2 Reducing GapBSMD to GapLDS

We now move on to the next step of our proof, which is the reduction from GapBSMD to GapLDS.

Since the reduction itself will be used in the subsequent proofs (with different parameter selec-

tions), we also state it separately below. We remark that the reduction as stated below goes from

GapBSMD𝛾 to the uncolored version of the problem (GapLDS𝛾); we will state how to go from here

to the colored version later on.

Theorem 4.5. Let 𝛾 ⩾ 1 be any constant. There is a polynomial time algorithm that, given an

instance (𝐺, 𝑠, ℎ) of GapBSMD𝛾 where 𝐺 contains 𝑛 vertices and any prime power 𝑞 > 𝑛, produces an

instance (W ⊆ F𝑚𝑞 , 𝑘 = ℎ𝑠) of GapLDS𝛾 such that

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:23

• (YES) If (𝐺, 𝑠, ℎ) is a YES instance of GapBSMD𝛾 , then (W, 𝑘) is a YES instance of GapLDS𝛾 .
• (NO) If (𝐺, 𝑠, ℎ) is a NO instance of GapBSMD𝛾 , then (W, 𝑘) is a NO instance of GapLDS𝛾 .

Proof. Assume that an instance (𝐺 = (𝐿 ¤∪𝑅, 𝐸), 𝑠, ℎ) of GapBSMD𝛾 and a prime power 𝑞 >

|𝐿 | + |𝑅 | are given. Before we construct W, let us first define additional notation. We identify

vertices in 𝐿 ¤∪𝑅 with distinct elements of F𝑞 . Let 𝐵 := 𝑠 + ℎ and let] : 𝐿 ∪ 𝑅 → F𝐵𝑞 be defined as

follows.

• for each 𝑣 ∈ 𝑅,] (𝑣) := (1, 𝑣, . . . , 𝑣ℎ−2) ◦ 0𝐵−ℎ+1,
• for each 𝑢 ∈ 𝐿,] (𝑢) := (1, 𝑢, . . . , 𝑢𝑠−2) ◦ 0𝐵−𝑠+1.

By a well-known property of Vandermonde matrices, any ℎ − 1 vectors in] (𝑅) are linearly

independent and any ℎ vectors from] (𝑅) are linearly dependent. To summarize, we have

(R1) For all 𝐼 ∈
(
𝑅
ℎ

)
, the vectors {] (𝑣) : 𝑣 ∈ 𝐼 } are linearly dependent.

(R2) For all 𝐼 ∈
(
𝑅

ℎ−1
)
, the vectors {] (𝑣) : 𝑣 ∈ 𝐼 } are linearly independent.

Similarly, we also have

(L1) For all 𝐼 ∈
(
𝐿
𝑠

)
, the vectors {] (𝑢) : 𝑢 ∈ 𝐼 } are linearly dependent.

(L2) For all 𝐼 ∈
(
𝐿

𝑠−1
)
, the vectors {] (𝑢) : 𝑢 ∈ 𝐼 } are linearly independent.

Let𝑚 = 𝑞𝐵 and consider vectors from F𝑚𝑞 = F
𝑞𝐵
𝑞 , which can be seen as the concatenation of 𝑞

blocks, each of 𝐵 coordinates. For 𝑥 ∈ F𝑚𝑞 , we use the notation x(𝑖) to refer to the 𝑖-block, i.e. the

𝐵-dimensional vector given by coordinates (𝑖 − 1)𝐵 + 1, (𝑖 − 1)𝐵 + 2, . . . , 𝑖𝐵.

Construction of (W, 𝑘). First, we let 𝑘 = ℎ𝑠 . Then, for each (𝑢, 𝑣) = 𝑒 ∈ 𝐸 (where 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅),

we introduce a vector w𝑒 ∈ F𝑞𝐵𝑞 such that

(W1) for all 𝑖 ∈ [𝑞] \ {𝑣,𝑢}, w(𝑖)
𝑒 = 0𝐵 ,

(W2) w(𝑣)
𝑒 =] (𝑢),

(W3) w(𝑢)
𝑒 =] (𝑣).

That is, we can imagine𝑤𝑒 as being partitioned into 𝑞 blocks of 𝐵 coordinates, with the repre-

sentation of 𝑢 appearing in the 𝑣-th block and the representation of 𝑣 appearing in the 𝑢-th block.

Note the use of 𝑢 and 𝑣 in the definition: the 𝑣-th block on its own describes both 𝑣 (by its position)

and 𝑢 (by its content), and similarly the 𝑢-th block also describes both endpoints of 𝑒 . We then let

W := {𝑤𝑒 : 𝑒 ∈ 𝐸}.
Obviously, (W, 𝑘) can be computed in polynomial time. We next argue its correctness.

(YES case) Suppose (𝐺, 𝑠, ℎ) is a YES instance of GapBSMD𝛾 . There exist a set 𝑋 ∈
(
𝐿
𝑠

)
and a set

𝑌 ∈
(
𝑅
ℎ

)
such that for all 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑌 , (𝑢, 𝑣) ∈ 𝐸. By (R1) and (L1), there exists 𝑏𝑢 ∈ F𝑞 for each

𝑢 ∈ 𝑋 and 𝑏𝑣 ∈ F𝑞 for each 𝑣 ∈ 𝑌 such that∑
𝑢∈𝑋

𝑏𝑢] (𝑢) = 0𝐵 and

∑
𝑣∈𝑌

𝑏𝑣] (𝑣) = 0𝐵 .

By (R2) and (L2), we deduce that, for all 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑌 , 𝑏𝑢 ≠ 0 and 𝑏𝑣 ≠ 0. We now claim that

{w(𝑢,𝑣) }𝑢∈𝑋,𝑣∈𝑌 is the set of desired vectors, with the coefficient of w(𝑢,𝑣) being 𝑏𝑢𝑏𝑣 ≠ 0. In other

words, we are left to show that ∑
𝑢∈𝑋,𝑣∈𝑌

𝑏𝑢𝑏𝑣w(𝑢,𝑣) = 0𝑚 .

To see that this is true, let w =
∑

𝑖∈[𝑠], 𝑗 ∈[ℎ] 𝑏𝑢𝑏𝑣w{𝑢𝑖 ,𝑣𝑗 } . It is easy to check that

• by (W1), for every 𝑧 ∈ [𝑞] \ (𝑋 ∪ 𝑌),𝑤 (𝑧) = 0𝐵 ,

• by (W2), for every 𝑣 ∈ 𝑌 ,𝑤 (𝑣) =
∑

𝑢∈𝑋 𝑏𝑢𝑏𝑣] (𝑢) = 𝑏𝑣
∑

𝑢∈𝑋 𝑏𝑢] (𝑢) = 0𝐵 ,

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:24 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

• by (W3), for every 𝑢 ∈ 𝑋 ,𝑤 (𝑢𝑖) =
∑

𝑗 ∈[ℎ] 𝑎𝑖𝑏 𝑗] (𝑣 𝑗) = 𝑎𝑖
∑

𝑗 ∈[ℎ] 𝑏 𝑗] (𝑣 𝑗) = 0𝐵 .

Hence, we have completed the proof for the YES case.

(NO case) Suppose (𝐺, 𝑠, ℎ) is a NO instance of GapBSMD𝛾 . Let𝑊 ⊆ W be a set of vectors that

are linearly dependent. We define two vertex sets and their edge set as follows. Let

𝑋 := {𝑢 ∈ 𝐿 : there exists 𝑣 ∈ 𝑅 such that𝑤 (𝑢,𝑣) ∈𝑊 },

𝑌 := {𝑣 ∈ 𝑅 : there exists 𝑢 ∈ 𝐿 such that𝑤 (𝑢,𝑣) ∈𝑊 },
and

𝐸𝑊 := {𝑒 ∈ 𝐸 : 𝑤𝑒 ∈𝑊 }.
Note that 𝑋 and 𝑌 are not empty because𝑊 is non-empty. By (R2) and (W3), for every 𝑢 ∈ 𝑋 , there

exist at least ℎ vertices in 𝑌 that are adjacent to 𝑢, i.e. |𝑁 (𝑢) ∩ 𝑌 | ⩾ ℎ. Similarly, by (L2) and (W2),

for every 𝑣 ∈ 𝑌 , we have |𝑁 (𝑣) ∩ 𝑋 | ⩾ 𝑠 . Hence, by the guarantee in the NO case of GapBSMD𝛾 ,

we can conclude that 𝛾 · 𝑠ℎ ⩽ |𝐸𝑊 | = |𝑊 | as desired. □

4.2.1 Reducing Uncolored LDS to Colored LDS. In this section, we show a simple reduction from

the uncolored version of LDS to the colored version of LDS. As is usual in such a reduction, we will

need the definition of perfect hash families and an efficient construction stated below.

Definition 4.6. An (𝑛, 𝑘)-perfect hash family is a collection F of functions from [𝑛] to [𝑘] such
that, for every subset 𝑆 ⊆ [𝑛] of size 𝑘 , there exists 𝑓 ∈ F that maps every 𝑆 to distinct elements in

[𝑘], i.e., 𝑓 (𝑆) = [𝑘].

Theorem 4.7 ([46]). There exists an algorithm that, for any 𝑛, 𝑘 ∈ N, constructs an (𝑛, 𝑘)-perfect
hash family in time 2

𝑂 (𝑘)𝑝𝑜𝑙𝑦 (𝑛).

We can use perfect hash families to reduceGapLDS toGapLDS
col

in a straightforwadmanner via a

Turing reduction, i.e., we will produce multiple instances ofGapLDS
col
. Nevertheless we show below

that we can obtain a standard Karp reduction from GapLDS to GapLDS
col
. Our observation here is

that these instances can be “merged” into a single instance by shifting the vectors appropriately so

that the coordinates of vectors from different instances do not overlap.

Lemma 4.8. There exists an algorithm reduction that takes inW ⊆ F𝑚𝑞 and an integer 𝑘 , runs in

2
𝑂 (𝑘)𝑝𝑜𝑙𝑦 (𝑚, |W|) time, and outputsW ′ ⊆ F𝑚′

𝑞 and a coloring 𝑐 : W ′ → [𝑘] such that

• (YES) if (W, 𝑘) is a YES instace of GapLDS𝛾 , then (W ′, 𝑘, 𝑐) is a YES instace of GapLDScol𝛾 ;

• (NO) if (W, 𝑘) is a NO instace of GapLDS𝛾 , then (W ′, 𝑘, 𝑐) is a NO instace of GapLDS
col

𝛾 ;

Proof. Let (W, 𝑘) be any instance of GapLDS𝛾 , and let 𝑛 denote |W|. We use Theorem 4.7 to

construct an (𝑛, 𝑘)-perfect hash family F = {𝑓1, . . . , 𝑓𝑅} where 𝑅 = 2
𝑂 (𝑘)𝑝𝑜𝑙𝑦 (𝑛). For everyw ∈ W

and 𝑗 ∈ [𝑅], we add a vector 0𝑚 (𝑗−1) ◦ w ◦ 0𝑚 (𝑅−𝑗) ∈ F𝑚𝑅
2

to W ′
and color this vector by 𝑓𝑗 (w).

Finally, 𝑘 remains the same as before.

It is obvious that the reduction runs in 2
𝑂 (𝑘)𝑝𝑜𝑙𝑦 (𝑛) time. We now argue its correctness.

(YES Case) Suppose that (W, 𝑘) is a YES instance of GapLDS𝛾 , i.e., there exist 𝑎1, . . . , 𝑎𝑘 ∈
F𝑞 \ {0} such that 𝑎1w1 + · · · + 𝑎𝑘w𝑘 = 0. Since F is a perfect hash family, there exists 𝑗 ∈ [𝑅]
such that 𝑓𝑗 ({w1, . . . ,w𝑘 }) = [𝑘]. In this case, we have

∑
𝑖∈[𝑘] 𝑎𝑖 (0𝑚 (𝑗−1) ◦w𝑖 ◦ 0𝑚 (𝑅−𝑗)) = 0 and

that the vectors 0𝑚 (𝑗−1) ◦ w1 ◦ 0𝑚 (𝑅−𝑗) , . . . , 0𝑚 (𝑗−1) ◦ w𝑘 ◦ 0𝑚 (𝑅−𝑗) are of different colors. Hence,
(W ′, 𝑘, 𝑐) is a YES instance of GapLDScol𝛾 .

(NO Case) Suppose that (W, 𝑘) is a NO instance of GapLDS𝛾 . Consider any𝑊
′ ⊆ W ′

such

that the vectors in𝑊 ′
are linearly dependent; we may pick such a set that is minimum, i.e., for

every w′ ∈𝑊 ′
, there exists a coefficient 𝑎w′ so that

∑
w′∈𝑊 ′ 𝑎w′w′ = 0.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:25

Consider any element of𝑊 ′
; suppose that it is of the form 0𝑚 (𝑗−1) ◦w∗ ◦0𝑚 (𝑅−𝑗) for some 𝑗 ∈ [𝑅].

Let𝑊 be {w ∈ W : 0𝑚 (𝑗−1) ◦ w ◦ 0𝑚 (𝑅−𝑗) ∈𝑊 ′}. By restricting the equation

∑
w′∈𝑊 ′ 𝑎w′w′ = 0

only to the coordinates𝑚(𝑗 − 1) + 1, . . . ,𝑚 𝑗 , we can conclude that the vectors in𝑊 are linearly

dependent. Hence, we must have |𝑊 ′ | ⩾ |𝑊 | > 𝛾𝑘 ; that is, (W, 𝑘, 𝑐) is a NO instance of GapLDS
col

𝛾

as desired. □

Combining Theorem 4.5 and Lemma 4.8, we can get the following theorem, which implies the

W[1]-hardness of GapLDS
col

𝛾 .

Theorem 4.9. Let 𝛾 ⩾ 1 be any constant. There is a polynomial time algorithm that, given an

instance (𝐺, 𝑠, ℎ) of GapBSMD𝛾 where 𝐺 contains 𝑛 vertices and any prime power 𝑞 > 𝑛, produces an

instance (W ⊆ F𝑚𝑞 , 𝑘 = ℎ𝑠, 𝑐) of GapLDScol𝛾 such that

• (YES) If (𝐺, 𝑠, ℎ) is a YES instance of GapBSMD𝛾 , then (W, 𝑘, 𝑐) is a YES instance of GapLDScol𝛾 .

• (NO) If (𝐺, 𝑠, ℎ) is a NO instance of GapBSMD𝛾 , then (W, 𝑘, 𝑐) is a NO instance of GapLDS
col

𝛾 .

5 PARAMETERIZED INAPPROXIMABILITY OF MAXIMUM LIKELIHOOD DECODING

In this section, we will show the parameterized intractability of GapMLD as stated below.

Theorem 5.1. For every 𝛾 ⩾ 1 and any prime number 𝑝 , GapMLD𝛾,𝑝 isW[1]-hard.

We will divide the section into two parts. In the first part, we will give a simpler proof that only

yields a hardness of approximation with factor 3 − Y for any Y > 0, and we only focus on the case

𝑝 = 2 for simplicity. We note that this already suffices for proving hardness for Even Set problem.

(In fact, any inapproximability result with factor greater than two suffices; see Lemma 6.5.)

Next, in the second part, we add an additional step in the proof that allows us to prove hardness

of approximation with any constant factor and every prime field. We note here that, while this

additional step is not used in proving hardness of Even Set, the technique not only gives the better

inapproximability factor for GapMLD but is also crucial in proving the hardness of the Nearest

Vector Problem, and consequently the Shortest Vector Problem (see Section 7.1).

5.1 (3 − Y) Factor Inapproximability of Maximum Likelihood Decoding

In this subsection, we will show the inapproximability of MLD over F2 for any constant factor less

than three. More formally, we show the following:

Theorem 5.2. For any constant Y > 0, GapMLD3−Y is W[1]-hard.

Proof. We will reduce from GapBSMD3, which is W[1]-hard due to Theorem 4.2. Let (𝐺 =

(𝐿 ¤∪𝑅, 𝐸), 𝑠, ℎ) be an instance of GapBSMD3. We first run the reduction in Theorem 4.9 with 𝑞 =

2
⌈log(|𝐿 |+ |𝑅 |) ⌉

. This gives us an instance (W ⊆ F𝑚
2
𝑑
, 𝑘, 𝑐) of GapLDScol

3
. We use 𝑛 to denote |W|.

We now describe how we construct the instance (A ∈ F𝑚′×𝑛′
2

, y ∈ F𝑚′
2
, 𝑘) of GapMLD3−Y where

𝑚′ = 𝑚𝑑 + 𝑘 and 𝑛′ = (2𝑑 − 1)𝑛. First, the parameter 𝑘 remains the same from the GapBSMD
col

3
.

Second, y is the 𝑚′
-dimensional vector whose first 𝑘 coordinates are ones and the remaining

coordinates are zeros, i.e., y = 1𝑘 ◦ 0𝑚𝑑 .

To define A, we need to introduce some notation. First, recall that the elements of the field F
2
𝑑

can be viewed as 𝑑-dimensional F2-vectors. In other words, there is a map 𝑓 : F
2
𝑑 → F𝑑

2
such

that 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) for all 𝑥,𝑦 ∈ F
2
𝑑 , and 𝑓 (𝑥) = 0𝑑 iff 𝑥 = 0. We additionally define

𝐹 : F𝑚
2
𝑑
→ F𝑚𝑑

2
by 𝐹 (v) = 𝑓 (v[1]) ◦ · · · ◦ 𝑓 (v[𝑚]). Again, we have 𝐹 (u + v) = 𝐹 (u) + 𝐹 (v) for all

u, v ∈ F𝑚
2
𝑑
, and 𝐹 (v) = 0𝑚𝑑 iff v = 0𝑚 .

Moreover, for every 𝑖 ∈ [𝑘], let e𝑖 be the 𝑘-dimensional vector with one at the 𝑖-th coordinate

and zero elsewhere. We identify the column indices of A by W × (F
2
𝑑 \ {0}). Then, we construct

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:26 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

A by letting its (w, 𝑎)-column be

A[(w, 𝑎)] := e𝑐 (w) ◦ 𝐹 (𝑎 ·w).
This completes our reduction description. It is simple to verify that the reduction runs in polynomial

time. We now move on to prove the correctness of the reduction.

(YES Case) Suppose that (𝐺, 𝑠, ℎ) is a YES instance of GapBSMD3. From Theorem 4.9, there exist

w1, . . . ,w𝑘 ∈ W all of different colors and non-zero 𝑎1, . . . , 𝑎𝑘 ∈ F
2
𝑑 \{0} such that

∑
𝑖∈[𝑘] 𝑎𝑖 ·w𝑖 = 0.

Let x ∈ F𝑛′
2
such that x[(w𝑖 , 𝑎𝑖)] = 1 for all 𝑖 ∈ [𝑘] and all other coordinates of x are zero. Clearly,

∥x∥0 = 𝑘 and

Ax =
∑
𝑖∈[𝑘]

A[(w𝑖 , 𝑎𝑖)] =
∑
𝑖∈[𝑘]

e𝑐 (w) ◦ 𝐹 (𝑎𝑖 ·w𝑖) = 1𝑘 ◦ 𝐹
©«
∑
𝑖∈[𝑘]

𝑎𝑖 ·w𝑖
ª®¬ = 1𝑘 ◦ 𝐹 (0) = 1𝑘 ◦ 0𝑚𝑑 = y,

which means that (A, y, 𝑘) is indeed a YES instance.

(NO Case) Suppose that (𝐺, 𝑠, ℎ) is a NO instance of GapBSMD3. From Theorem 4.9, (W, 𝑘, 𝑐)
is a NO instance of GapLDS

col

3
. Suppose for the sake of contradiction that (A, y, 𝑘) is not a NO

instance of GapMLD3−Y . That is, there exists x ∈ F𝑛′
2
such that Ax = y and ∥x∥0 ⩽ (3 − Y)𝑘 < 3𝑘 .

For every 𝑖 ∈ [𝑘], let us define 𝑋𝑖 as

𝑋𝑖 := {(w, 𝑎) ∈ W × (F
2
𝑑 \ {0}) : x[(w, 𝑎)] = 1}.

We can write Ax as

Ax =
∑
𝑖∈[𝑘]

∑
(w,𝑎) ∈𝑋𝑖

e𝑖 ◦ 𝐹 (𝑎 ·w) = ©«
∑
𝑖∈[𝑘]

|𝑋𝑖 |e𝑖
ª®¬ ◦ 𝐹 ©«

∑
𝑖∈[𝑘]

∑
(w,𝑎) ∈𝑋𝑖

𝑎 ·wª®¬ .
Since Ax = y, we must have |𝑋𝑖 | ≡ 1 (mod 2) for all 𝑖 ∈ [𝑘] and∑

𝑖∈[𝑘]

∑
(w,𝑎) ∈𝑋𝑖

𝑎 ·w = 0𝑚 . (4)

Moreover, observe that ∥x∥0 =
∑

𝑖∈[𝑘] |𝑋𝑖 |. Since ∥x∥0 < 3𝑘 and |𝑋𝑖 | ≡ 1 (mod 2) for all 𝑖 ∈ [𝑘],
there must be 𝑖∗ ∈ [𝑘] such that |𝑋𝑖∗ | = 1. Let (w∗, 𝑎∗) be the unique element of 𝑋𝑖∗ . Notice that w∗

appears only once in the left hand side of (4) with coefficient 𝑎∗ ≠ 0; as a result, this is a non-empty

linear combination of less than 3𝑘 vectors inW. Hence, there are less than 3𝑘 vectors inW that

are linearly dependent, which contradicts the fact that (W, 𝑘, 𝑐) is a NO instance of GapLDS
col

3
.

Thus, (W, 𝑘, 𝑐) must be a NO instance of GapMLD3−Y as desired. □

5.2 Every Constant Factor Inapproximability of Maximum Likelihood Decoding

In this section, we will prove our main result of this section, i.e., Theorem 5.1.

To demonstrate the main additional idea, let us recall why the proof in the previous section

fails to give us the hardness of factor three. The reason is as follows: when 𝑑 > 2, we can pick

three non-zero elements 𝑎, 𝑏, 𝑐 ∈ F
2
𝑑 whose sum is zero. We can then select any w1, . . . ,w𝑘 of

different colors, and set x[(w𝑖 , 𝑎)], x[(w𝑖 , 𝑏)], x[(w𝑖 , 𝑐)] to be ones for all 𝑖 ∈ [𝑘], and set the rest

of coordinates of x to be zero. Clearly, ∥x∥0 = 3𝑘 and this gives

Ax = 1𝑘 ◦ 𝐹
©«
∑
𝑖∈[𝑘]

(𝑎 + 𝑏 + 𝑐)w𝑖
ª®¬ = 1𝑘 ◦ 0𝑚𝑑 = y.

That is, the fact that 𝑎+𝑏 +𝑐 = 0 allows us to zero out the coefficient of eachw𝑖 . Our fix to overcome

this issue is rather straightforward. First, observe that we can write F𝑑
2
\{0} = 𝐶1∪· · ·∪𝐶𝑑 such that

no such “problematic” tuples (𝑎, 𝑏, 𝑐) appears in𝐶𝑖 , where𝐶𝑖 is defined as {𝑎 ∈ F𝑞\{0} : 𝑓 (𝑎) [𝑖] = 1}

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:27

(where 𝑓 is as defined in Theorem 5.2). In fact, this guarantees not only that any triplet in 𝐶𝑖 sums

to non-zero, but also that any odd number of elements in 𝐶𝑖 sums to non-zero.

Now, themodification is very simple: instead of creating columns for (w, 𝑎) for all𝑎 ∈ F
2
𝑑 \{0}, we

will only create columns for (w, 𝑎) for 𝑎 ∈ 𝐶𝑔 [𝑐 (w)] where 𝑔 ∈ [𝑑]𝑘 , i.e., we restrict the coefficients

to only 𝐶𝑔 [𝑗] for each color 𝑗 . This helps us avoid “problematic” coefficients as described above. In

particular, we can construct a instance A𝑔 for every choice of 𝑐 . As in the reduction to GapLDS
col
,

we can merge the various instances corresponding to different choices of 𝑔 into a single instance

using the shifting trick employed in the proof of Lemma 4.8.

For a general prime 𝑝 , we can write F𝑝𝑑 similarly as above into a union of subsets, such that each

subset does not contain “problematic” tuples of elements, as stated below. Note that the definition

of “problematic” is slightly more complicated for general 𝑝 . Now, the tuple (𝑎1, . . . , 𝑎𝑡) ∈ F𝑡
𝑝𝑑

is “problematic” if we can find 𝑏𝑎1 , . . . , 𝑏𝑎𝑡 ∈ F𝑝 such that 𝑏𝑎1 + · · · + 𝑏𝑎𝑡 ≠ 0 (over F𝑝) but
𝑏𝑎1 · 𝑎1 + · · ·𝑏𝑎𝑡 · 𝑎𝑡 = 0 (over F𝑝𝑑).

Definition 5.3. For 𝑞 = 𝑝𝑑 where 𝑑 ∈ N and 𝑝 is a prime, let 𝑓 : F𝑞 → F𝑑𝑝 be the isomorphism

between F+𝑞 and the F𝑝 -vector space F
𝑑
𝑝 . For every 𝑖 ∈ [𝑑] and 𝛼 ∈ F𝑝 \ {0}, we define 𝐶 (𝑖,𝛼) := {𝑎 ∈

F𝑞 \ {0} : 𝑓 (𝑎) [𝑖] = 1}. Observe that
(i) F𝑞 \ {0} =

⋃
𝑖∈[𝑑],𝛼 ∈F𝑝\{0}𝐶 (𝑖,𝛼)

(ii) for any 𝑖 ∈ [𝑑], 𝛼 ∈ F𝑝 \ {0} and any (𝑏𝑎)𝑎∈𝐶 (𝑖,𝛼) ∈ (F𝑝)𝐶 (𝑖,𝛼) such that
∑

𝑎∈𝐶 (𝑖,𝛼) 𝑏𝑎 ≠ 0, we have∑
𝑎∈𝐶 (𝑖,𝛼) 𝑏𝑎 · 𝑎 ≠ 0.

With this definition, we can easily generalize the (sketched) reduction from F2 to F𝑝 . The
properties of the reduction are summarized and proved below.

Theorem 5.4. Given an instance (W ⊆ F𝑚
𝑝𝑑
, 𝑘, 𝑐) of GapLDScol𝛾 where 𝑝 is a prime, we can create

an instance of GapMLD𝛾,𝑝 (with the same parameter 𝑘) in𝑂 ((𝑑𝑝)𝑘 ·𝑝𝑜𝑙𝑦 (|W|,𝑚, 𝑝𝑑)) time such that

• (YES) If (W, 𝑘, 𝑐) is a YES instance of GapLDScol𝛾 , then the GapMLD𝛾,𝑝 is a YES instance.

• (NO) If (W, 𝑘, 𝑐) is a NO instance of GapLDS
col

𝛾 , then the GapMLD𝛾,𝑝 is a NO instance.

Proof. Let (W ⊆ F𝑚
𝑝𝑑
, 𝑘, 𝑐) be an instance of GapLDS

col

𝛾 . Let 𝑛 = |W|, and 𝑓 : F𝑞 → F𝑑𝑝 be the

isomorphism between F+𝑞 and the F𝑝 -vector space F
𝑑
𝑝 . Furthermore, let 𝐹 : F𝑚

𝑝𝑑
→ F𝑚𝑑

𝑝 be defined

by 𝐹 (v) = 𝑓 (v[1]) ◦ · · · ◦ 𝑓 (v[𝑚]). We will also find it convenient to define ℓ = 𝑑𝑘 (𝑝 − 1)𝑘 , which
is the total number of distinct choices of 𝑔.

For every 𝑔 ∈ [ℓ], we construct a matrix A𝑔 ∈ F𝑚′×𝑚𝑑
2

where𝑚′ = 𝑘 + ℓ𝑚𝑑 . As before, we index

the columns of A𝑔 with the set 𝐼𝑔 = ∪w∈W{w} × 𝐶𝑔 [𝑐 (w)] . Here, for any [w, 𝑎] ∈ 𝐼𝑔, we let the

corresponding column be

A𝑔 [w, 𝑎] := e𝑐−1 (w) ◦
(
0𝑚𝑑 (𝑖−1) ◦ 𝐹 (𝑎 ·w) ◦ 0𝑚𝑑 (ℓ−𝑖)

)
(5)

Finally, we define the matrix A = [A𝑔]𝑔∈[ℓ] ∈ F𝑚′×𝑛′
𝑝 to be the concatenation of all the A𝑔 matrices,

where 𝑛′ = ℓ𝑛. Note that the above construction ensures that for any distinct pair of 𝑔,𝑔′ ∈ [ℓ], the
column supports of the sub-matrices A𝑔 and A𝑔′ do not intersect in the coordinates [𝑘 + 1, 𝑛′]. We

also define the target vector y = 1𝑘 ◦ 0𝑚𝑑ℓ . We set (A, y, 𝑘) to be the GapMLD𝛾,𝑝 instance output

by the reduction. Clearly, the reduction runs in 𝑂 ((𝑑𝑝)𝑘 · 𝑝𝑜𝑙𝑦 (𝑛,𝑚, 𝑝𝑑)) time. We next argue its

correctness.

(YES Case) Suppose there existw1, . . . ,w𝑘 ∈ W all of different colors and non-zero 𝑎1, . . . , 𝑎𝑘 ∈
F𝑝𝑑 \ {0} such that

∑
𝑖∈[𝑘] 𝑎𝑖 · w𝑖 = 0. We claim that (A, y, 𝑘) is a YES instance of GapMLD𝛾,𝑝 .

To see this, consider 𝑔∗ where 𝑎𝑖 belongs to 𝐶𝑔∗ [𝑖] for all 𝑖 ∈ [𝑘]. . Also let x ∈ F𝑛′𝑝 be such that

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:28 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

x𝑔∗ [(w𝑖 , 𝑎𝑖)] = 1 for all 𝑖 ∈ [𝑘], where x𝑔∗ is the vector x restricted to coordinates corresponding to

the sub-matrix A𝑔∗ . We set all other coordinates of x to zero. (Note that the column (w𝑖 , 𝑎𝑖) exists
in A𝑔∗ because 𝑎𝑖 ∈ 𝐶𝑔∗ [𝑖] .) Clearly, x is a {0, 1}-vector with ∥x∥0 = 𝑘 and

Ax = A𝑔∗x𝑔∗ =
∑
𝑖∈[𝑘]

A𝑔∗ [(w𝑖 , 𝑎𝑖)] =
∑
𝑖∈[𝑘]

e𝑐 (w𝑖) ◦ 𝐹 (𝑎𝑖 ·w𝑖) = 1𝑘 ◦ 𝐹
©«
∑
𝑖∈[𝑘]

𝑎𝑖 ·w𝑖
ª®¬ = 1𝑘 ◦ 𝐹 (0) = y,

which means that (A, y, 𝑘) is indeed a YES instance of GapMLD𝛾,𝑝 .

(NO Case) Suppose that (W, 𝑘, 𝑐) is a NO instance of GapLDS
col

𝛾 . Consider any x ∈ F𝑛′𝑝 such

that Ax = y. Recall that for any 𝑔 ∈ [ℓ], x𝑔 is the sub-vector of x which acts on the sub-matrix A𝑔.

Let us rewrite Ax as follows:

Ax =
©«
∑
𝑖∈[𝑘]

©«
∑
𝑔∈[ℓ]

∑
w∈𝑐−1 (𝑖),𝑎∈𝐶𝑔 [𝑖]

x𝑔 [(w, 𝑎)]
ª®¬ e𝑖ª®¬ ◦ v1 ◦ v2 ◦ · · · ◦ vℓ

where for any 𝑔 ∈ [ℓ], the vector v𝑔 is the sub-vector of A𝑔x𝑔 which can be formally expressed as

v𝑔 = 𝐹
©«
∑
w∈W

©«
∑

𝑎∈𝐶𝑔 [𝑐 (w)]

x𝑔 [(w, 𝑎)] · 𝑎
ª®¬ ·wª®¬

In other words, it is the block resulting from A𝑔x𝑔 in the coordinates 𝑘 + 1, 𝑘 + 2, . . . ,𝑚′
. Since

Ax = y, we must have∑
𝑔∈[ℓ]

∑
w∈𝑐−1 (𝑖),𝑎∈𝐶𝑔 [𝑖]

x𝑔 [(w, 𝑎)] = 1 ∀𝑖 ∈ [𝑑] (6)

and for every 𝑔 ∈ [ℓ], ∑
w∈W

©«
∑

𝑎∈𝐶𝑔 [𝑐 (w)]

x𝑔 [(w, 𝑎)] · 𝑎
ª®¬ ·w = 0𝑚 . (7)

From (6) with 𝑖 = 1, there must be 𝑔∗ ∈ [ℓ] such that∑
w∈𝑐−1 (𝑖),𝑎∈𝐶𝑔∗ [1]

x𝑔∗ [(w, 𝑎)] ≠ 0

which in turn implies that there exists w∗
of color 1 such that

∑
𝑎∈𝐶𝑔∗ [1] x𝑔∗ [(w

∗, 𝑎)] ≠ 0. From

this and observation (ii) in Definition 5.3, we have

∑
𝑎∈𝐶𝑔∗ [1] x𝑔∗ [(w

∗, 𝑎)] · 𝑎 ≠ 0. This means that

the left hand side of (7) instantiated with 𝑔∗ is a non-zero linear combination of at most ∥x𝑔∗ ∥0
vectors from W. Since (W, 𝑘, 𝑐) is a NO instance of GapLDS

col

𝛾 , we can conclude that ∥x𝑔∗ ∥0 (and
consequently ∥x∥0) must be larger than 𝛾 · 𝑘 . Hence, (A, y, 𝑘) is a NO instance for GapMLD𝛾,𝑝 . □

Finally, we note that the above theorem together with Theorems 4.2 and 4.9 imply the main

result of this section (Theorem 5.1). In particular, by selecting 𝑑 = ⌈log𝑝 (|𝐿 | + |𝑅 |)⌉ in Theorem 4.9

and applying Theorem 5.4 afterwards, we get a reduction from GapBSMD𝛾 to GapMLD𝛾,𝑝 that

runs in time

𝑂 ((𝑝𝑑)𝑘 · poly(|𝐿 | + |𝑅 |)) ⩽ 𝑂

((
(𝑝𝑑)

√
𝑝𝑑 + (𝑘2)𝑘)

)
· poly(|𝐿 | + |𝑅 |)

)
= 𝑘𝑂 (𝑘) · poly(|𝐿 | + |𝑅 |),

which is FPT. From this and from W[1]-hardness of GapBSMD𝛾 (Theorem 4.2), we arrive at

Theorem 5.1.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:29

6 PARAMETERIZED INTRACTABILITY OF MINIMUM DISTANCE PROBLEM

Next, we will prove our main theorem regarding parameterized intractability of GapMDP:

Theorem 6.1. GapMDP𝛾 for any 𝛾 ⩾ 1 isW[1]-hard under randomized reductions.

This again proceeds in two steps. First, we give a simple reduction from GapMLD to GapSNC in

Section 6.1. Then, we reduce the latter to GapMDP in Section 6.2.

6.1 Parameterized Inapproximability of Sparse Nearest Codeword Problem

We start with a simple approximation-preserving reduction from GapMLD to GapSNC.

Theorem 6.2. GapSNC𝛾 for any 𝛾 ⩾ 1 isW[1]-hard under randomized reductions.

Proof. We reduce from GapMLD𝛾 , which isW[1]-hard from Theorem 5.1. Let (B, z, 𝑘) be the
input for GapMLD𝛾 where B ∈ F𝑛×𝑚

2
, y ∈ F𝑛

2
, and 𝑡 is the parameter. Let 𝑎 = ⌈𝛾𝑘 + 1⌉. We produce

an instance (A, y, 𝑘) for GapSNC𝛾 by letting

A =

B
...

B

 𝑎 copies , y =

z
...

z

 𝑎 copies

The reduction clearly runs in polynomial time, we are only left to argue that it appropriately

maps YES and NO cases from GapMLD𝛾 to those in GapSNC𝛾 .

(YES Case) Suppose that (B, z, 𝑘) is a YES instance of GapMLD𝛾 , i.e., there exists x ∈ B𝑞 (0, 𝑘)
such that Bx = z. This implies that ∥Ax − y∥0 + ∥x∥0 = ∥x∥0 ⩽ 𝑘 as desired.

(NO Case) Suppose that (B, z, 𝑘) is a NO instance of GapMLD𝛾 , i.e., for all x ∈ B𝑚 (0, 𝛾𝑘), we
have Bx ≠ z. Now, let us consider two cases, based on whether x ∈ B𝑚 (0, 𝛾𝑘). First, if x ∈ B(0, 𝛾𝑘),
then we have ∥Ax − y∥0 + ∥x∥0 ⩾ 𝑎∥Bx − z∥0 ⩾ 𝑎 > 𝛾𝑘 . On the other hand, if x ∉ B𝑚 (0, 𝛾𝑘), then
∥Ax − y∥0 + ∥x∥0 ⩾ ∥x∥0 > 𝛾𝑘 .

Thus, in both cases, ∥Ax − y∥0 + ∥x∥0 > 𝛾𝑘 and (A, y, 𝑘) is a NO instance of GapSNC𝛾 . □

We remark that with some care, the above theorem can be extended to hold even over non-

binary fields (using the same proof ideas), but we skip proving the more general theorem (i.e., over

non-binary fields) since we only use the hardness over F2 for the subsequent reductions.

6.2 Reducing GapSNC to GapMDP

In order to reduce GapSNC to GapMDP, we need to formalize the definition of Locally Suffix Dense

Codes (LSDC) and prove their existence; these are done in in Section 6.2.1. Finally, we show how to

use them in the reduction in Section 6.2.2.

6.2.1 Locally Suffix Dense Codes. Before we formalize the notion of Locally Suffix Dense Codes

(LSDC), let us give an intuitive explanation of LSDC: informally, LSDC is a linear code C ⊆ Fℎ
2

where, given any short prefix x ∈ F𝑞
2
where 𝑞 ≪ ℎ and a random suffix s ∈ Fℎ−𝑞

2
, we can, with

non-negligible probability, find a codeword that shares the prefix x and has a suffix that is “close”

in Hamming distance to s. More formally, LSDC can be defined as follows.

Definition 6.3. A Locally Suffix Dense Code (LSDC) over F2 with parameters
14 (𝑚,𝑞,𝑑, 𝑟, 𝛿) an

𝑚-dimensional systematic linear code with minimum distance (at least) 𝑑 given by its generator matrix

14
We remark that the parameter ℎ is implicit in specifying LSDC.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:30 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

L ∈ Fℎ×𝑚
2

such that for any x ∈ F𝑞
2
, the following holds:

Pr

s∼Fℎ−𝑞
2

[
∃z ∈ Bℎ−𝑞 (s, 𝑟) : (x ◦ z) ∈ L(F𝑚

2
)
]
⩾ 𝛿. (8)

We note that our notion of Locally Suffix Dense Codes is closely related and inspired by the

notion of Locally Dense Codes (LDC) of Dumer et al. [23]. Essentially speaking, the key differences

in the two definitions are that (i) Locally Dense Codes are for the case of 𝑞 = 0, i.e., there is no

prefix involved, and (ii) s in LDC is not chosen at random from Fℎ
2
but rather from Bℎ (0, 𝑟). Note

that, apart from these, there are other subtle additional requirements in Locally Dense Codes that

we do not need in our reduction, such as the requirements that the “center” s is close to not just

one but many codewords; however, these are not important and we will not discuss them further.

Unfortunately, the proof of Dumer et al. does not directly give us the desired LSDC; the main

issue is that, when there is no prefix, the set of codewords is a linear subspace, and their proof relies

heavily on the linear structure of the set (which is also why s is randomly chosen from Bℎ (0, 𝑟)
instead of Fℎ

2
). However, the set of our interest is

{
z ∈ Fℎ−𝑞

���x ◦ z ∈ L(F𝑚
2
)
}
, which is not a linear

subspace but rather an affine subspace; Dumer et al.’s argument (specifically Lemma 13 in [23])

does not apply in the affine subspace case.

Below, we provide a different proof than Dumer et al. for the construction of LSDC. Our bound

is more related to the Sphere Packing (aka Hamming) bound for codes. In particular, we show below

that BCH codes, which “near” the Sphere Packing bound gives us LSDC with certain parameters. It

should be noted however that the probability guarantee 𝛿 that we have is quite poor, i.e. 𝛿 ⩾ 𝑑−Θ(𝑑)
,

but this works for us since 𝑑 is bounded by a function of the parameter of our problem. On the

other hand, this would not work in NP-hardness reductions of [23] (and, on top of this, our codes

may not satisfy other additional properties required in LDC).

Lemma 6.4. For any 𝑞, 𝑑 ∈ N such that 𝑑 is an odd number larger than one, there exist ℎ,𝑚 ∈ N
and L ∈ Fℎ×𝑚

2
which is a LSDC with parameters

(
𝑚,𝑞,𝑑, 𝑑−1

2
, 1

𝑑𝑑/2

)
. Additionally, the following holds:

• ℎ,𝑚 ⩽ poly(𝑞, 𝑑) and𝑚 ⩾ 𝑞,

• L can be computed in poly(𝑞, 𝑑) time.

Proof. Let ℎ be the smallest integer such that ℎ + 1 is a power of two and that ℎ ⩾

max{2𝑞, 10𝑑 log𝑑}, and let𝑚 = ℎ −
(
𝑑−1
2

)
log(ℎ + 1). Clearly, ℎ and𝑚 satisfy the first condition.

Let L be the generator matrix of the [ℎ,𝑚,𝑑]2 linear code as given by Theorem 3.8. Without loss

of generality, we assume that the code is systematic on the first𝑚 coordinates. From Theorem 3.8,

L can be computed in poly(ℎ) = poly(𝑞, 𝑑) time.

It remains to show that for our choice of L, (8) holds for any fixed choice of x ∈ F𝑞
2
. Fix a vector

x ∈ F𝑞
2
and define the set C =

{
z ∈ Fℎ−𝑞

2

���x◦ z ∈ L(F𝑚
2
)
}
. Since the code generated by L is systematic

on the first𝑚 ⩾ 𝑞 coordinates, we have that |C| ⩾ 2
𝑚−𝑞

.

Moreover, since the code generated by L has distance 𝑑 , every distinct z1, z2 ∈ C are at least

𝑑-far from each other (i.e. ∥z1 − z2∥0 ⩾ 𝑑). Therefore, for any distinct pair of vectors z1, z2 ∈ C,
the sets Bℎ−𝑞 (z1, 𝑑−1

2
) and Bℎ−𝑞 (z2, 𝑑−1

2
) are disjoint. Hence the number of vectors in the union of(

𝑑−1
2

)
-radius Hamming balls around every z ∈ C is at least

2
𝑚−𝑞

����Bℎ−𝑞

(
0,
𝑑 − 1

2

)���� ⩾ 2
𝑚−𝑞

(
ℎ − 𝑞

𝑑−1
2

)
⩾ 2

𝑚−𝑞
(
ℎ/2
𝑑−1
2

)
⩾ 2

𝑚−𝑞
(ℎ

𝑑 − 1

) 𝑑−1
2

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:31

On the other hand, |Fℎ−𝑞
2

| = 2
ℎ−𝑞 = 2

𝑚−𝑞 (ℎ+1) 𝑑−1
2 . Hence, with probability at least

(
ℎ

(𝑑−1) (ℎ+1)

) 𝑑−1
2

⩾

1

𝑑𝑑/2
, a vector s sampled uniformly from F

ℎ−𝑞
2

lies in Bℎ−𝑞
(
z, 𝑑−1

2

)
for some vector z ∈ C. This is

indeed the desired condition in (8), which completes our proof. □

6.2.2 The Reduction. In this subsection, we state and prove the FPT reduction from the GapSNC

problem to the GapMDP problem. It is inspired by the reduction from [23], which is then modified

(and simplified) to work in combination with LSDC instead of LDC.

Lemma 6.5. There is a randomized FPT reduction from GapSNC2.5 to GapMDP1.01.

Proof. Let (B, y, 𝑡) be the input for GapSNC𝛾 ′ where B ∈ F𝑛×𝑞
2

, y ∈ F𝑛
2
, and 𝑡 is the parameter.

We may assume without loss of generality that 𝑡 ⩾ 1000. Let 𝑑 be the smallest odd integer greater

than 2.5𝑡 . Let ℎ,𝑚 ∈ N, L ∈ Fℎ×𝑚
2

be as in Lemma 6.4.

We produce an instance (A, 𝑘) for GapMDP𝛾 by first sampling a random s ∼ Fℎ−𝑞
2

. Then, we set

𝑘 = 𝑡 + (𝑑 − 1)/2, s′ = 0𝑞 ◦ −s and

A =

[
B 0𝑛×(𝑚−𝑞) y
L s′

]
∈ F(𝑛+ℎ)×(𝑚+1)

2
.

Notice that the zeros are padded onto the right of B so that the number of rows is the same as that

of L.
Since 𝑘 = 𝑡 + (𝑑 − 1)/2 = 𝑂𝛾 ′ (𝑡) and the reduction clearly runs in polynomial time, we are only

left to argue that it appropriately maps YES and NO cases from GapSNC𝛾 ′ to those in GapMDP𝛾 .

(YES Case) Suppose that (B, y, 𝑡) is a YES instance ofGapSNC𝛾 ′ , i.e., there exists x ∈ F𝑞
2
such that

∥Bx−y∥0+∥x∥0 ⩽ 𝑡 . From Lemma 6.4, with probability at least 1/𝑑𝑑/2, there exists u ∈ Bℎ−𝑞
(
s, 𝑑−1

2

)
such that x ◦ u ∈ L(F𝑚

2
). From this and from systematicity of L, there exists z′ ∈ F𝑚−𝑞

2
such that

L(x ◦ z′) = x ◦ u. Conditioned on this, we can pick z = x ◦ z′ ◦ 1 ∈ F𝑚+1
2

, which yields

∥Az∥0 = ∥Bx − y∥0 + ∥x∥0 + ∥u − s∥0 ⩽ 𝑡 + 𝑑 − 1

2

= 𝑘.

In other words, with probability at least 1/𝑑𝑑/2, (A, 𝑘) is a YES instance of GapMDP𝛾 as desired.

(NO Case) Suppose that (B, y, 𝑡) is a NO instance of GapSNC𝛾 ′ . We will show that, for all non-

zero z ∈ F𝑚+1
2

, ∥Az∥0 > 2.5𝑡 ; with our choice of parameters and our assumption on 𝑡 , it is simple to

check that 2.5𝑡 > 1.01𝑘 . Hence, this implies that (A, 𝑘) is a NO instance of GapMDP𝛾 .

To show that ∥Az∥0 > 𝛾 ′𝑡 for all z ∈ F𝑚+1
2

\ {0}, let us consider two cases, based on the last

coordinate z[𝑚+1] of z. For convenience, we write z as x◦z′◦z[𝑚+1], where x ∈ F𝑞
2
and z′ ∈ F𝑚−𝑞

2
.

If z[𝑚 + 1] = 0, then ∥Az∥0 = ∥Bx∥0 + ∥L(x ◦ z′)∥0 ⩾ ∥L(x ◦ z′)∥0 ⩾ 𝑑 , where the last inequality

comes from the fact that L is a generator matrix of a code of distance 𝑑 (and that z ≠ 0). Finally,
recall that we select 𝑑 > 2.5𝑡 , which yields the desired result for this case.

On the other hand, if z𝑚+1 = 1, then ∥Az∥0 ⩾ ∥Bx − y∥0 + ∥x∥0 ⩾ 2.5𝑡 , where the second

inequality comes from the assumption that (B, y, 𝑡) is a NO instance of GapSNC2.5.

In conclusion, ∥Az∥0 > 2.5𝑡 in all cases considered, which completes our proof. □

Gap Amplification. Finally, the above gap hardness result can be boosted to any constant gap

using the now standard technique of tensoring the code (c.f. [23],[6]) which is stated formally in

the following proposition:

Proposition 6.6 (E.g. [23]). Given two linear codes 𝐶1 ⊆ F𝑚2 and 𝐶2 ⊆ F𝑛2 , let 𝐶1 ⊗ 𝐶2 ⊆ F𝑚×𝑛
be

the tensor product of 𝐶1 and 𝐶2. Then 𝑑 (𝐶1 ⊗ 𝐶2) = 𝑑 (𝐶1)𝑑 (𝐶2).

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:32 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

We briefly show how the above proposition can be used to amplify the gap. Consider a GapMDP𝛾

instance (A, 𝑘) where A ∈ F𝑚×𝑛
2

. Let 𝐶 ⊆ F𝑚
2
be the linear code generated by it. Let 𝐶⊗2 =

𝐶 ⊗ 𝐶 be the tensor product of the code with itself, and let A⊗2
be its generator matrix. By the

above proposition, if (A, 𝑘) is a YES instance, then 𝑑 (𝐶⊗2) ⩽ 𝑘2. Conversely, if (A, 𝑘) is a NO

instance, then 𝑑 (𝐶⊗2) ⩾ 𝛾2𝑘2. Therefore (A⊗2, 𝑘2) is a GapMDP𝛾2 instance. Hence, for any 𝛼 ∈ R+,
repeating this argument ⌈log𝛾 𝛼⌉-number of times gives us an FPT reduction from 𝑘-GapMDP𝛾 to

𝑘
2 ⌈log𝛾 𝛼 ⌉

-GapMDP𝛼 . We have thereby completed our proof of Theorem 6.1.

7 PARAMETERIZED INTRACTABILITY OF SHORTEST VECTOR PROBLEM

The main result of this section is the parameterized inapproximability of GapSVP, as stated below.

Theorem 7.1 (FPT Inapproximability of GapSVP). For any 𝑝 > 1, there exists constant 𝛾𝑝 > 1

(where 𝛾𝑝 depends on 𝑝), such that there GapSVP𝑝,𝛾𝑝 isW[1]-hard (under randomized reductions).

Similar to the Minimum Distance Problem, the proof of Theorem 7.1 goes through two steps.

First, we show that the non-homogeneous variant, the Nearest Vector Problem is W[1]-hard. Then,

in the second step, we reduce it to the Shortest Vector Problem.

7.1 FPT Inapproximability of Nearest Vector Problem

In this section, we prove the inapproximability of Nearest Vector Problem, as stated more formally

below. The proof is via a simple reduction from Maximum Likelihood Decoding over a large field.

Theorem 7.2 (FPT Inapproximability of GapNVP). For any [, 𝑝 ⩾ 1, GapNVP[,𝑝 is W[1]-hard.

Proof. Let 𝑞 be the smallest prime number such that 𝑞 > 2[. We will reduce from GapMLD2[,𝑞 ,

which is W[1]-hard from Theorem 5.1. Let (A ∈ F𝑛×𝑚𝑞 , y ∈ F𝑛𝑞 , 𝑘) be an instance of GapMLD2[,𝑞 .

We create an instance of (A′, y′, 𝑘 ′) of GapNVP[,𝑝 as follows. First, we set 𝑘 ′ = 2𝑘 and let

A′ =

1𝑎 ⊗ A 1𝑎 ⊗ (𝑞 · Id𝑛)
Id𝑛 0𝑛×𝑛
0𝑘×𝑘 0𝑘×𝑘

 ∈ Z𝑛′×𝑚′
, and, y′ =

1𝑎 ⊗ y
0𝑛
1𝑘

 ∈ Z𝑛′,

where 𝑎 = ⌈2[𝑘 + 2⌉, 𝑛′ = 𝑎𝑛 + 𝑘 and 𝑘 ′ =𝑚 + 𝑛. Clearly, the reduction runs in polynomial time.

We next argue its correctness.

(YES Case) Suppose that (A, y, 𝑘) is a YES instance of GapMLD2[,𝑞 , i.e., that there exists x ∈
{0, 1}𝑛 with ∥x∥0 ⩽ 𝑘 such that Ax = y when operations are over F𝑞 . This means that, when view

operations over Z, we have Ax = y + 𝑞 · z for some z ∈ Z𝑛 . Let x′ = x ◦ (−z) ∈ Z𝑚′
. Then, we have

(over Z)

∥A′x′∥𝑝𝑝 = ∥0𝑎 ◦ x ◦ 1𝑘 ∥𝑝𝑝 ⩽ 2𝑘 = 𝑘 ′.

In other words, (A′, y′, 𝑘 ′) is a YES instance of GapNVP[,𝑝 as desired.

(NO Case) Suppose that (A, y, 𝑘) is a NO instance of GapMLD2[,𝑞 . Consider any x′ ∈ Z𝑚′
and

any𝑤 ∈ Z \ {0}. We would like to show that ∥A′x′ −𝑤 · y′∥𝑝𝑝 > [· 𝑘 ′ = 2[𝑘 . To do so, let us write

x′ as x ◦ z where x ∈ Z𝑚 and z ∈ Z𝑛 . We can now rearrange ∥A′x′ −𝑤 · y′∥𝑝𝑝 as

∥A′x′ −𝑤 · y′∥𝑝𝑝 = 𝑎∥Ax + 𝑞z − y∥𝑝𝑝 + ∥x∥𝑝𝑝 + |𝑤 |𝑝𝑘.

As a result, if Ax + 𝑞z ≠ y, then ∥A′x′ −𝑤 · y′∥𝑝𝑝 ⩾ 𝑎 > 2[𝑘 . Furthermore, if |𝑤 | ⩾ 𝑞, then we also

have ∥A′x′ −𝑤 · y′∥𝑝𝑝 ⩾ |𝑤 |𝑝𝑘 ⩾ 𝑞𝑘 > 2[𝑘 . Hence, we may henceforth assume that |𝑤 | < 𝑞 and

A′x′ + 𝑞z = 𝑤 · y′. Since |𝑤 | < 𝑞, it has an inverse modulo 𝑞, i.e., there exists 𝑢 ∈ [𝑞 − 1] such that

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:33

𝑢𝑤 ≡ 1 (mod 𝑞). Now, let us consider x̃ ∈ F𝑚𝑞 where x̃[𝑖] is defined as the remainder of 𝑢 · x[𝑖]
modulo 𝑞. From Ax + 𝑞z ≠ y, we have (over F𝑞)

Ax̃ = (𝑢𝑤) · y = y.

Since (A, y, 𝑘) is a NO instance ofGapMLD2[,𝑞 , wemust have ∥x̃∥0 > 2[𝑘 . Observe that ∥x∥0 ⩾ ∥x̃∥0.
Thus, we have ∥A′x′ − 𝑤 · y′∥𝑝𝑝 ⩾ ∥x∥𝑝𝑝 ⩾ ∥x∥0 > 2[𝑘 . In other words, we can conclude that

(A′, y′, 𝑘 ′) is a NO instance of GapNVP[,𝑝 . □

7.2 Following Khot’s Reduction from NVP to SVP

We will now reduce from GapNVP to GapSVP. This step is almost the same as that of Khot [33],

with small changes in parameter selection. Despite this, we repeat the whole argument here (with

appropriate adjustments) for completeness.

The main properties of the (randomized) FPT reduction from GapNVP𝑝,[to GapSVP𝑝,𝛾 are

summarized below. For succinctness, we define a couple of additional notation: let L(A) denote
the lattice generated by the matrix A ∈ Z𝑛×𝑚 , i.e., L(A) = {Ax | x ∈ Z𝑚}, and let _𝑝 (L) denote
the length (in the ℓ𝑝 norm) of the shortest vector of the lattice L, i.e., _𝑝 (L) = min

0≠y∈L
∥y∥𝑝 .

Lemma 7.3. Fix 𝑝 > 1, and let [⩾ 1 be such that
1

2
+ 1

2
𝑝 + (2𝑝+1)

[
< 1. Let (B, y, 𝑡) be a GapNVP𝑝,[

instance, as given by Theorem 7.2. Then, there is a randomized FPT reduction from GapNVP𝑝,[instance

(B, y, 𝑡) to GapSVP𝑝,𝛾 instance (Bsvp, 𝛾
−1
𝑝 𝑙) with 𝑙 = [· 𝑡 such that

• (YES) If (B, y, 𝑡) is a YES instance, then with probability at least 0.8, _𝑝 (L(Bsvp))𝑝 ⩽ 𝛾−1𝑝 𝑙 .

• (NO) If (B, y, 𝑡) is a NO instance, then with probability at least 0.9, _𝑝 (L(Bsvp))𝑝 > 𝑙 .

Here 𝛾𝑝 := 1

1

2
+(2𝑝+1)/[+1/2𝑝 is strictly greater than 1 by our choice of [.

Combining the above lemma with Theorem 7.2 gives us Theorem 7.1.

We devote the rest of this subsection to describing the reduction (which is similar to that

from [33]) and proving Lemma 7.3. In Section 7.2.1, we define the BCH lattice, which is the key

gadget used in the reduction. Using the BCH lattice and the GapNVP𝑝,[instance, we construct the

intermediate lattice Bint in Section 7.2.2. The intermediate lattice serves to blow up the number

of “good vectors” for the YES case, while controlling the number of “bad vectors” for the NO

case. In particular, this step ensures that the number of good vectors in the YES case (Lemma 7.5)

far outnumber the number of bad vectors in the NO case (Lemma 7.6). Finally, in Section 7.2.3

we compose the intermediate lattice with a random homogeneous constraint (sampled from an

appropriate distribution), to give the final GapSVP𝑝,𝛾 instance. The additional random constraint is

used to annihilate all bad vectors in the NO case, while retaining at least one good vector in the

YES case.

For the rest of the section, we fix (B, y, 𝑡) to be a GapNVP𝑝,[instance (as given by Theorem 7.2),

and set 𝑙 := [· 𝑡 and 𝑟 :=
(
1

2
+ 1

2
𝑝 + 1

[

)
𝑙 . For simplicity of calculations, we will assume that both 𝑙

and 𝑟 are integers, and that 𝑙 is even. Furthermore, we say that a vector u is good (for the YES case)

if ∥u∥𝑝𝑝 ⩽ 𝛾−1𝑝 𝑙 , and we say that u is bad (for the NO case) if ∥u∥𝑝𝑝 ⩽ 𝑙 .

7.2.1 The BCH Lattice gadget. We begin by defining the BCH lattices which is the key gadget

used in the reduction. Given parameters 𝑙, ℎ ∈ N where ℎ + 1 is a power of 2 and 𝑙 < ℎ. Let

𝑔 = (𝑙/2) · log(ℎ + 1). Theorem 3.8 guarantees that there exists a BCH code with block length ℎ,

message length ℎ − 𝑔 and distance 𝑙 + 1. Let PBCH ∈ {0, 1}𝑔×ℎ be the parity check matrix of such

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:34 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

code. The BCH lattice is defined by

BBCH =

[
Idℎ 0ℎ×𝑔

𝑙 · PBCH 2𝑙 · Id𝑔

]
∈ Z(ℎ+𝑔)×(ℎ+𝑔) .

The following lemma, which is simply a restatement
15
of Lemma 4.3 in [33], summarizes the key

properties of BCH lattices, as defined above.

Lemma 7.4 ([33]). Let BBCH ∈ Z(ℎ+𝑔)×(ℎ+𝑔) be as above. There exists a randomized polynomial time

algorithm that, with probability at least 0.99, returns a vector s ∈ Zℎ+𝑔 such that the following holds:

there are at least
1

100
2
−𝑔 (ℎ

𝑟

)
distinct vectors z ∈ Zℎ+𝑔 such that ∥BBCHz − s

𝑝
𝑝
= 𝑟 .

7.2.2 The Intermediate Lattice. We now define the intermediate lattice. Let (B, y, 𝑡) be an instance
of GapNVP𝑝,[, where B ∈ Z𝑛×𝑞 . The intermediate lattice Bint is constructed as follows. Let 𝑙 = [𝑡 .

Let ℎ be the smallest power of 2 such that ℎ ⩾ max{2𝑛, (1010𝑙)2[}, and let BBCH be constructed as

above. Then

Bint =

[
2B 0𝑛×(ℎ+𝑔) 2y

0(ℎ+𝑔)×𝑞 BBCH s

]
∈ Z(𝑛+ℎ+𝑔)×(𝑞+ℎ+𝑔+1) .

where s ∈ Zℎ+𝑔 is the vector given by Lemma 7.4.

Bounding Good Vectors in YES Case. We now prove a lower bound on the number of good vectors

in the YES case.

Lemma 7.5. Let (B, y, 𝑡) be a YES instance, and let Bint be the corresponding intermediate lattice.

With probability at least 0.99, there are at least ℎ𝑟
(
200ℎ𝑙/2𝑙𝑙

)−1
good non-zero vectors in L(Bint).

Proof. Since (B, y, 𝑡) is a YES instance, there exists x̃ ∈ Z𝑞 such that ∥Bx̃ − y∥𝑝𝑝 ⩽ 𝑡 . From

Lemma 7.4, with probability at least 0.99, there exist at least 2
−𝑔 (ℎ

𝑟

)
/100 distinct vectors z ∈ Zℎ+𝑔

such that ∥BBCHz − s∥𝑝 = 𝑟 . For each such z, consider the vector x = x̃ ◦ z ◦ −1. It follows that
Bintx = (2Bx̃−2y) ◦ (BBCHz− s) is a non-zero vector and ∥Bintx∥𝑝𝑝 = 2

𝑝 ∥Bx̃−y∥𝑝𝑝 + ∥BBCHz− s∥𝑝𝑝 ⩽
2
𝑝𝑡 + 𝑟 = 𝛾−1𝑝 𝑙 . Since the number of such vectors x is at least the number of distinct coefficient

vectors z, it can be lower bounded by

1

100

· 2−𝑔
(
ℎ

𝑟

)
⩾

1

100

· 2− 𝑙
2
log(ℎ+1)

(
ℎ

𝑟

)
⩾

1

100

· ℎ𝑟

𝑟𝑟 (ℎ + 1)𝑙/2
⩾

1

200

· ℎ𝑟

𝑙𝑙ℎ𝑙/2
,

where the last inequality follows from 𝑟 ⩽ 𝑙 and 𝑙 < ℎ. Finally, observe that each z produces
different BBCHz and hence all Bintx’s are distinct. □

Bounding Bad Vectors in NO Case. We next bound the number of bad vectors in the NO case:

Lemma 7.6. Let (B, y, 𝑡) be a NO instance, and let Bint be the corresponding intermediate lattice.

Then the number of bad vectors in L(Bint) is at most 10
−5ℎ𝑟

(
200ℎ𝑙/2𝑙𝑙

)−1
.

At the heart of the proof is the claim that every bad vector must have even coordinates:

Claim 7.7. Let (B, y, 𝑡) be a NO instance, and let Bint be the corresponding intermediate lattice.

Then, for every bad u ∈ L(Bint), all coordinates of u must be even.

15
In fact, Lemma 7.4 is even weaker than Khot’s lemma, since we do not impose a bound on ∥z∥𝑝 .

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:35

Proof. Let u be any bad vector in L(Bint) and let x ∈ Z𝑞+ℎ+𝑔+1 be such that Bintx = u. We

write x as x1 ◦ x2 ◦ 𝑥 where x1 ∈ Z𝑞 , x2 ∈ Z𝑚+ℎ
and 𝑥 ∈ Z. Using this, we can express u as

Bintx = (2Bx1 − 2𝑥 · y) ◦ (BBCHx2 − 𝑥 · s). Recall that u is bad means that ∥u∥𝑝𝑝 ⩽ 𝑙 , which implies

that ∥Bx1 − 𝑥 · y∥ ⩽ 𝑙 = [· 𝑡 . Since (B, y, 𝑡) is a NO instance, it must be that 𝑥 = 0.

Note that we now have u = (2Bx1) ◦ (BBCHx2). Let us assume for the sake of contradiction

that u has at least one odd coordinate; it must be that (BBCHx2) has at least one odd coordinate.

Let us further write x2 as x2 = w1 ◦ w2 where w1 ∈ Z𝑚 and w2 ∈ Zℎ . Notice that BBCHx2 =

w1 ◦ (𝑙 (PBCHw1−2w2)). Since every coordinate of BBCHx2 must be less than 𝑙 in magnitude, it must

be the case that PBCHw1 − 2w2 = 0. In other words, (w1 mod 2) is a codeword of the BCH code.

However, since the code has distance 𝑙 + 1, this means that, if w1 has at least one odd coordinate, it

must have at least 𝑙 + 1 odd (non-zero) coordinates, which contradicts ∥u∥𝑝𝑝 ⩽ 𝑙 . □

Having proved Claim 7.7, we can now prove Lemma 7.6 by a simple counting argument.

Proof of Lemma 7.6. From Claim 7.7, all coordinates of u must be even. Therefore, u must have

at most 𝑙/2𝑝 non-zero coordinates, all of which have magnitude at most ⌊𝑙1/𝑝⌋ ⩽ 𝑙 − 1. Hence, we

can upper bound the total number of such vectors by(
2(𝑙 − 1) + 1

)𝑙/2𝑝 (𝑛 + ℎ + 𝑔
⌊ 𝑙
2
𝑝 ⌋

)
⩽ (2𝑙)𝑙 (𝑛 + ℎ + 𝑔)𝑙/2𝑝 ⩽ (2𝑙)𝑙 (2𝑙ℎ)𝑙/2𝑝 ⩽ (2𝑙)2𝑙ℎ𝑙/2𝑝

where the second-to-last step holds since 𝑔 ⩽ 𝑙
2
log(ℎ + 1) ⩽ 𝑙ℎ/2 and 𝑛 ⩽ ℎ/2. On the other hand,

ℎ𝑟

ℎ𝑙/2𝑙𝑙
=
ℎ

(
1

2
+ 1

[
+ 1

2
𝑝

)
𝑙

ℎ𝑙/2𝑙𝑙
= ℎ𝑙/2

𝑝 (ℎ/𝑙[)𝑙/[⩾ 10
8

(
(2𝑙)2𝑙ℎ𝑙/2𝑝

)
,

which follows from ℎ ⩾ (1010𝑙)2[. Combining the two bounds completes the proof. □

7.2.3 The GapSVP𝑝,𝛾 Instance and Proof of The Main Lemma. Finally, we construct Bsvp from

Bint by adding a random homogeneous constraint similar to [33]. For ease of notation, let 𝑁𝑔 denote

the lower bound on the number of distinct coefficient vectors guaranteed by Lemma 7.5 in the

YES case. Similarly, let 𝑁𝑎 denote the upper bound on the number of annoying vectors as given in

Lemma 7.6. Combining the two Lemmas we have 𝑁𝑔 ⩾ 10
5𝑁𝑎 , which will be used crucially in the

construction and analysis of the final lattice.

Construction of the Final Lattice. Let 𝜌 be any prime number in
16

[
10

−4𝑁𝑔, 10
−2𝑁𝑔

]
. Further-

more, let r unif∼ [0, 𝜌 − 1]𝑛+ℎ+𝑔 be a uniformly sampled lattice point. We construct Bsvp as

Bsvp =

[
Bint 0

𝑙 · r𝑇Bint 𝑙 · 𝜌

]
∈ Z(𝑛+ℎ+𝑔+1)×(𝑞+ℎ+𝑔+2) .

This can be thought of as adding a random linear constraint to the intermediate lattice. The choice

of parameters ensures that with good probability, in the YES case, at least one of the good vectors

x ∈ Z𝑞+ℎ+𝑔+1 evaluates to 0 modulo 𝜌 on the random constraint, and therefore we can pick 𝑢 ∈ Z
such that Bsvp (x ◦ 𝑢) = (Bintx) ◦ 0 still has small ℓ𝑝 norm. On the other hand, since 𝑁𝑎 ≪ 𝑁𝑔 , with

good probability, all of bad vectors evaluate to non-zeros, and hence will contribute a coordinate of

magnitude 𝑙 . This intuition is formalized below.

16
Note that the density of primes in this range is at least 1/log𝑁𝑔 = 1/𝑟 logℎ. Therefore, a random sample of size𝑂 (𝑟 logℎ)

in this range contains a prime with high probability. Since we can test primality for any 𝜌 ∈
[
10

−4𝑁𝑔, 10
−2𝑁𝑔

]
in FPT time,

this gives us an FPT algorithm to sample such a prime number efficiently .

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:36 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

Proof of Lemma 7.3. Let Bsvp be the corresponding final lattice of (B, y, 𝑡) as described above.

Observe that given the GapNVP𝑝,[-instance (B, y, 𝑡), we can construct Bsvp in poly(𝑛, 𝑞, 𝑡)-time.

Moreover, observe that L(Bsvp) is exactly equal to {u ◦ (𝑙 ·𝑤) | u ∈ L(Bint),𝑤 ≡ r𝑇u (mod 𝜌)}.
Suppose that (B, y, 𝑡) is a NO instance. Consider any u ◦ (𝑙 ·𝑤) ∈ L(Bsvp). If ∥u ◦ (𝑙 ·𝑤)∥𝑝𝑝 ⩽ 𝑙 ,

it must be that ∥u∥𝑝𝑝 ⩽ 𝑙 and 𝑤 = 0; the latter is equivalent to r𝑇u ≡ 0 (mod 𝜌). However, from
Lemma 7.6, there are only 𝑁𝑎 bad vectors u in L(Bint). For each such non-zero u, the probability
that r𝑇u ≡ 0 (mod 𝜌) is exactly 1/𝜌 . As a result, by taking union bound over all such u ≠ 0, we can
conclude that, with probability at least 1 − 𝑁𝑎/𝜌 ⩾ 0.9, we have _𝑝 (L(Bsvp))𝑝 > 𝑙 .

Next, suppose that (B, y, 𝑡) is a YES instance. We will show that, with probability at least 0.8,

_𝑝 (L(Bsvp))𝑝 ⩽ 𝛾−1𝑝 𝑙 . To do this, we first condition on the event that there exists at least 𝑁𝑔 good

vectors as guaranteed by Lemma 7.5. Consider any two good vectors u1 ≠ u2. Since each entry of u1
and u2 is of magnitude at most (𝛾−1𝑝 𝑙)1/𝑝 , they are pairwise independent modulo 𝜌 > 2𝑙 . Therefore,

instantiating Lemma 5.8 from [33] with the lower bound on the number of good vectors 𝑁𝑔, and

our choice of 𝜌 , it follows that with probability at least 0.9, there exists a good vector u such that

r𝑇u ≡ 0 (mod 𝜌), i.e., u ◦ 0 belongs to L(Bsvp). Therefore, by union bound, with probability at least

0.8 (over the randomness of Lemma 7.5 and the choice of r), there exists a good u ∈ L(Bint) such
that u ◦ 0 remains in L(Bsvp), which concludes the proof. □

8 CONCLUSION AND OPEN QUESTIONS

In this work, we have shown the parameterized inapproximability of 𝑘-Minimum Distance Problem

(𝑘-MDP) and 𝑘-Shortest Vector Problem (𝑘-SVP) in the ℓ𝑝 norm for every 𝑝 > 1 assuming W[1] ≠
FPT (and under randomized reductions).

In terms of running time lower bounds, our reductions only give ETH-based running time

lower bounds of the form 𝑛Ω (poly log𝑘)
for both 𝑘-MDP and 𝑘-SVP; this is because of the necessary

exponential blow-up of the parameter in our reduction
17

to GapLDS. A subsequent work [38]

managed to obtain the tight running time lower bound of 𝑛Ω (𝑘)
for 𝑘-MDP and 𝑘-SVP, albeit

under Gap-ETH and only for some constant factor approximation greater than one. It remains

an interesting open question to relax the assumption to ETH, and to extend it to hold for large

constant approximation ratios as well.

Another immediate open question stemming from our work is whether 𝑘-SVP in the ℓ1 norm

is in FPT. Khot’s reduction unfortunately does not work for ℓ1; indeed, in the work of Haviv and

Regev [29], they arrive at the hardness of approximating SVP in the ℓ1 norm by embedding SVP

instances in ℓ2 to instances in ℓ1 using an earlier result of Regev and Rosen [52]. The Regev-Rosen

embedding inherently does not work in the FPT regime either, as it produces non-integral lattices.

Similar issue applies to an earlier hardness result for SVP on ℓ1 of [40], whose reduction produces

irrational bases.

An additional question regarding 𝑘-SVP is whether we can prove hardness of approximation for

every constant factor for 𝑝 ≠ 2. We note here that for 𝑝 = 2, we can use the tensor product of lattices

to amplify the gap, as Khot’s construction is tailored so that the resulting lattice is “well-behaved”

under tensoring, and gap amplification is indeed possible for such instances. However, if 𝑝 ≠ 2 then

the gap amplification techniques of [29, 33] require the distance 𝑘 to be dependent on the input size

𝑛𝑚, and hence are not applicable for us. To the best of our knowledge, it is unknown whether this

dependency is necessary. If they are indeed required, it would also be interesting to see whether

other different techniques that work for our settings can be utilized for gap amplification instead

of those from [29, 33].

17
Specifically, Claim 4.4 requires ℎ to be at least 𝑠𝑠 .

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

Parameterized Intractability of Even Set and Shortest Vector Problem 00:37

Furthermore, the Minimum Distance Problem can be defined for linear codes in F𝑝 for any larger

field of size 𝑝 > 2 as well. It turns out that our result does not rule out FPT algorithms for 𝑘-MDP

over F𝑝 with 𝑝 > 2, when 𝑝 is fixed and is not part of the input. The issue here is that, in our

proof of existence of Locally Suffix Dense Codes (Lemma 6.4), we need the co-dimension of the

code to be small compared to its distance. In particular, the co-dimension ℎ −𝑚 has to be at most

(𝑑/2 +𝑂 (1)) log𝑝 ℎ where 𝑑 is the distance. While the BCH code over binary alphabet satisfies this

property, we are not aware of any linear codes that satisfy this for larger fields. It is an intriguing

open question to determine whether such codes exist, or whether the reduction can be made to

work without existence of such codes.

Since the current reductions for both 𝑘-MDP and 𝑘-SVP are randomized, it is still an intriguing

open question whether we can find deterministic reductions for these problems. As stated in the

introduction, even in the non-parameterized setting, NP-hardness of SVP through deterministic

reductions is not known. On the other hand,MDP is known to be NP-hard even to approximate

under deterministic reductions; in fact, even the Dumer et al.’s reduction [23] that we employ can

be derandomized, as long as one has a deterministic construction for Locally Dense Codes [12, 43].

In our settings, if one can deterministically construct Locally Suffix Dense Codes (i.e. derandomize

Lemma 6.4), then we would also get a deterministic reduction for 𝑘-MDP.

ACKNOWLEDGMENTS

We are grateful to Ishay Haviv for providing insights on how the gap amplification for 𝑝 ≠ 2

from [29] works. Pasin would like to thank Danupon Nanongkai for introducing him to the 𝑘-Even

Set problem and for subsequent useful discussions.

Arnab Bhattacharyya was supported by Ramanujan Fellowship DSTO 1358 and the Indo-US

Joint Center for Pseudorandomness in Computer Science while at Indian Institute of Science and

by MOE2019-T2-1-152 while at the National University of Singapore. Édouard Bonnet, László Egri,

Bingkai Lin, and Dániel Marx are supported by the European Research Council (ERC) consolidator

grant No. 725978 SYSTEMATICGRAPH. László Egri was also supported by an NSERC PDF. Suprovat

Ghoshal was supported by the Indo-US Joint Center for Pseudorandomness in Computer Science

and by a TCS Research Scholarship. Karthik C. S. was supported by Irit Dinur’s ERC-CoG grant

772839. Bingkai Lin was also supported by JSPS KAKENHI Grant (JP16H07409) and the JST ERATO

Grant (JPMJER1201) of Japan. Pasin Manurangsi was supported by the Indo-US Joint Center for

Pseudorandomness in Computer Science.

REFERENCES

[1] Divesh Aggarwal and Noah Stephens-Davidowitz. 2018. (Gap/S)ETH hardness of SVP. In STOC. 228–238. https:

//doi.org/10.1145/3188745.3188840

[2] Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems (Extended Abstract). In STOC. 99–108. https:

//doi.org/10.1145/237814.237838

[3] Miklós Ajtai. 1998. The Shortest Vector Problem in ℓ2 is NP-hard for Randomized Reductions (Extended Abstract). In

STOC. 10–19. https://doi.org/10.1145/276698.276705

[4] Miklós Ajtai and Cynthia Dwork. 1997. A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. In

STOC. 284–293. https://doi.org/10.1145/258533.258604

[5] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. 1997. The Hardness of Approximate Optima in Lattices,

Codes, and Systems of Linear Equations. J. Comput. Syst. Sci. 54, 2 (1997), 317–331. https://doi.org/10.1006/jcss.1997.1472

[6] Per Austrin and Subhash Khot. 2014. A Simple Deterministic Reduction for the Gap Minimum Distance of Code

Problem. IEEE Trans. Information Theory 60, 10 (2014), 6636–6645. https://doi.org/10.1109/TIT.2014.2340869

[7] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. 2017. On the Quantitative Hardness of CVP. In

FOCS. 13–24. https://doi.org/10.1109/FOCS.2017.11

[8] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. 1978. On the inherent intractability of certain

coding problems (Corresp.). IEEE Trans. Information Theory 24, 3 (1978), 384–386. https://doi.org/10.1109/TIT.1978.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/10.1145/3188745.3188840
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/258533.258604
https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1109/TIT.2014.2340869
https://doi.org/10.1109/FOCS.2017.11
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873

00:38 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

1055873

[9] Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. 2016. On the Hardness of Learning Sparse

Parities. In ESA. 11:1–11:17. https://doi.org/10.4230/LIPIcs.ESA.2016.11

[10] R. C. Bose and Dwijendra K. Ray-Chaudhuri. 1960. On A Class of Error Correcting Binary Group Codes. Information

and Control 3, 1 (1960), 68–79. https://doi.org/10.1016/S0019-9958(60)90287-4

[11] Jin-yi Cai and Ajay Nerurkar. 1999. Approximating the SVP to within a Factor (1 + 1/dimb) Is NP-Hard under

Randomized Reductions. J. Comput. Syst. Sci. 59, 2 (1999), 221–239. https://doi.org/10.1006/jcss.1999.1649

[12] Qi Cheng and Daqing Wan. 2012. A Deterministic Reduction for the Gap Minimum Distance Problem. IEEE Trans.

Information Theory 58, 11 (2012), 6935–6941. https://doi.org/10.1109/TIT.2012.2209198

[13] Marek Cygan, Fedor Fomin, Bart MP Jansen, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, and

Saket Saurabh. 2014. Open problems for fpt school 2014. (2014).

[14] Marek Cygan, Fedor V. Fomin, Danny Hermelin, and Magnus Wahlström. 2017. Randomization in Parameterized

Complexity (Dagstuhl Seminar 17041). Dagstuhl Reports 7, 1 (2017), 103–128. https://doi.org/10.4230/DagRep.7.1.103

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

[16] Erik D. Demaine, Gregory Gutin, Dániel Marx, and Ulrike Stege. 2007. 07281 Open Problems – Structure Theory

and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs. In Structure Theory and FPT Algorithmics for Graphs,

Digraphs and Hypergraphs, 08.07. - 13.07.2007. http://drops.dagstuhl.de/opus/volltexte/2007/1254

[17] Irit Dinur. 2002. Approximating SVP∞ to within almost-polynomial factors is NP-hard. Theor. Comput. Sci. 285, 1

(2002), 55–71. https://doi.org/10.1016/S0304-3975(01)00290-0

[18] Irit Dinur. 2016. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover. ECCC 23 (2016), 128.

http://eccc.hpi-web.de/report/2016/128

[19] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. 2003. Approximating CVP to Within Almost-Polynomial Factors is

NP-Hard. Combinatorica 23, 2 (2003), 205–243. https://doi.org/10.1007/s00493-003-0019-y

[20] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer. https://doi.org/10.1007/

978-1-4612-0515-9

[21] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer. https:

//doi.org/10.1007/978-1-4471-5559-1

[22] Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. 1999. The Parametrized Complexity

of Some Fundamental Problems in Coding Theory. SIAM J. Comput. 29, 2 (1999), 545–570. https://doi.org/10.1137/

S0097539797323571

[23] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. 2003. Hardness of approximating the minimum distance of a linear

code. IEEE Trans. Information Theory 49, 1 (2003), 22–37. https://doi.org/10.1109/TIT.2002.806118

[24] Michael R. Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. 2012. Data Reduction and Problem Kernels (Dagstuhl

Seminar 12241). Dagstuhl Reports 2, 6 (2012), 26–50. https://doi.org/10.4230/DagRep.2.6.26

[25] Fedor V. Fomin and Dániel Marx. 2012. FPT Suspects and Tough Customers: Open Problems of Downey and Fellows.

In The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His

60th Birthday (Lecture Notes in Computer Science), Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx

(Eds.), Vol. 7370. Springer, 457–468. https://doi.org/10.1007/978-3-642-30891-8_19

[26] Oded Goldreich. 2006. On Promise Problems: A Survey. In Theoretical Computer Science, Essays in Memory of Shimon

Even. 254–290. https://doi.org/10.1007/11685654_12

[27] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. 1999. Approximating Shortest Lattice

Vectors is not Harder than Approximating Closest Lattice Vectors. Inf. Process. Lett. 71, 2 (1999), 55–61. https:

//doi.org/10.1016/S0020-0190(99)00083-6

[28] Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. 2012. Parameterized complexity of generalized domination

problems. Discrete Applied Mathematics 160, 6 (2012), 780–792. https://doi.org/10.1016/j.dam.2010.11.012

[29] Ishay Haviv and Oded Regev. 2007. Tensor-based hardness of the shortest vector problem to within almost polynomial

factors. In STOC. 469–477. https://doi.org/10.1145/1250790.1250859

[30] Alexis Hocquenghem. 1959. Codes correcteurs d’erreurs. Chiffres 2 (Sept. 1959), 147–156.

[31] D. S. Johnson. 1990. Handbook of Theoretical Computer Science. Vol. A (Algorithms and Complexity). Elseveir, Chapter

2, A catalog of complexity classes, 67–161.

[32] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. 2019. On the parameterized complexity of approximating

dominating set. J. ACM 66, 5 (2019), 33:1–33:38.

[33] Subhash Khot. 2005. Hardness of approximating the shortest vector problem in lattices. J. ACM 52, 5 (2005), 789–808.

https://doi.org/10.1145/1089023.1089027

[34] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. 1982. Factoring polynomials with rational coefficients.

Math. Ann. 261, 4 (1982), 515–534.

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.4230/LIPIcs.ESA.2016.11
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1006/jcss.1999.1649
https://doi.org/10.1109/TIT.2012.2209198
https://doi.org/10.4230/DagRep.7.1.103
https://doi.org/10.1007/978-3-319-21275-3
http://drops.dagstuhl.de/opus/volltexte/2007/1254
https://doi.org/10.1016/S0304-3975(01)00290-0
http://eccc.hpi-web.de/report/2016/128
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.4230/DagRep.2.6.26
https://doi.org/10.1007/978-3-642-30891-8_19
https://doi.org/10.1007/11685654_12
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1016/j.dam.2010.11.012
https://doi.org/10.1145/1250790.1250859
https://doi.org/10.1145/1089023.1089027

Parameterized Intractability of Even Set and Shortest Vector Problem 00:39

[35] Hendrik Willem Lenstra. 1983. Integer Programming with a Fixed Number of Variables. Math. Oper. Res. 8, 4 (1983),

538–548. https://doi.org/10.1287/moor.8.4.538

[36] Bingkai Lin. 2018. The Parameterized Complexity of the k-Biclique Problem. J. ACM 65, 5 (2018), 34:1–34:23.

https://doi.org/10.1145/3212622

[37] Ruhollah Majdoddin. 2017. Parameterized Complexity of CSP for Infinite Constraint Languages. CoRR abs/1706.10153

(2017). arXiv:1706.10153 http://arxiv.org/abs/1706.10153

[38] Pasin Manurangsi. 2020. Tight Running Time Lower Bounds for Strong Inapproximability of Maximum 𝑘-Coverage,

Unique Set Cover and Related Problems (via 𝑡 -Wise Agreement Testing Theorem). In SODA. 62–81. https://doi.org/10.

1137/1.9781611975994.5

[39] Pasin Manurangsi and Prasad Raghavendra. 2016. A Birthday Repetition Theorem and Complexity of Approximating

Dense CSPs. CoRR abs/1607.02986 (2016). http://arxiv.org/abs/1607.02986

[40] Daniele Micciancio. 2000. The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant. SIAM J.

Comput. 30, 6 (2000), 2008–2035. https://doi.org/10.1137/S0097539700373039

[41] Daniele Micciancio. 2001. The hardness of the closest vector problem with preprocessing. IEEE Trans. Information

Theory 47, 3 (2001), 1212–1215. https://doi.org/10.1109/18.915688

[42] Daniele Micciancio. 2012. Inapproximability of the Shortest Vector Problem: Toward a Deterministic Reduction. Theory

of Computing 8, 1 (2012), 487–512. https://doi.org/10.4086/toc.2012.v008a022

[43] Daniele Micciancio. 2014. Locally Dense Codes. In CCC. 90–97. https://doi.org/10.1109/CCC.2014.17

[44] Daniele Micciancio and Shafi Goldwasser. 2012. Complexity of lattice problems: a cryptographic perspective. Vol. 671.

Springer Science & Business Media.

[45] Daniele Micciancio and Oded Regev. 2009. Lattice-based cryptography. In Post-quantum cryptography. Springer,

147–191.

[46] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. 1995. Splitters and Near-Optimal Derandomization. In

36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995. 182–191.

https://doi.org/10.1109/SFCS.1995.492475

[47] Phong Q. Nguyen and Brigitte Vallée (Eds.). 2010. The LLL Algorithm - Survey and Applications. Springer. https:

//doi.org/10.1007/978-3-642-02295-1

[48] Oded Regev. 2003. New lattice based cryptographic constructions. In STOC. 407–416. https://doi.org/10.1145/780542.

780603

[49] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and cryptography. In STOC. 84–93. https:

//doi.org/10.1145/1060590.1060603

[50] Oded Regev. 2006. Lattice-Based Cryptography. In CRYPTO. 131–141. https://doi.org/10.1007/11818175_8

[51] Oded Regev. 2010. The Learning with Errors Problem (Invited Survey). In CCC. 191–204. https://doi.org/10.1109/CCC.

2010.26

[52] Oded Regev and Ricky Rosen. 2006. Lattice problems and norm embeddings. In STOC. 447–456. https://doi.org/10.

1145/1132516.1132581

[53] Jacques Stern. 1993. Approximating the Number of Error Locations within a Constant Ratio is NP-complete. In AAECC.

325–331. https://doi.org/10.1007/3-540-56686-4_54

[54] Peter van Emde-Boas. 1981. Another NP-complete partition problem and the complexity of computing short vectors in a

lattice. Department, Univ. https://books.google.com/books?id=tCQiHQAACAAJ

[55] Alexander Vardy. 1997. Algorithmic Complexity in Coding Theory and the Minimum Distance Problem. In STOC.

92–109. https://doi.org/10.1145/258533.258559

[56] Alexander Vardy. 1997. The intractability of computing the minimum distance of a code. IEEE Trans. Information

Theory 43, 6 (1997), 1757–1766. https://doi.org/10.1109/18.641542

A INAPPROXIMABILITY OF ODD SET

In this section, we show how the hardness for the more general GapMLD, also implies hardness for

the Odd Set problem, which can be defined in a similar manner as GapMLD except that y is always

fixed as the all-ones vector instead of being part of the input. More formally, we define the gap

version of Odd Set below.

𝛾-Gap Odd Set Problem (GapOddSet𝛾)

Input: A matrix A ∈ F𝑛×𝑚
2

and a positive integer 𝑘 ∈ N
Parameter: 𝑘

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1145/3212622
http://arxiv.org/abs/1706.10153
http://arxiv.org/abs/1706.10153
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1137/1.9781611975994.5
http://arxiv.org/abs/1607.02986
https://doi.org/10.1137/S0097539700373039
https://doi.org/10.1109/18.915688
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.1109/CCC.2014.17
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1145/780542.780603
https://doi.org/10.1145/780542.780603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/11818175_8
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1145/1132516.1132581
https://doi.org/10.1145/1132516.1132581
https://doi.org/10.1007/3-540-56686-4_54
https://books.google.com/books?id=tCQiHQAACAAJ
https://doi.org/10.1145/258533.258559
https://doi.org/10.1109/18.641542

00:40 Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ B𝑚 (0, 𝑘) such that Ax = 1
• (NO) for all x ∈ B𝑚 (0, 𝛾𝑘), Ax ≠ 1

It is obvious that hardness for GapOddSet gives the hardness for GapMLD, by simply setting

y = 1. Belowwe show that the opposite implication is also true; note that, together with Theorem 5.1,

it implies that GapOddSet𝛾 isW[1]-hard for every 𝛾 ⩾ 1.

Proposition A.1. For every 𝛾 ′ > 𝛾 ⩾ 1, there is an FPT reduction from GapMLD𝛾 ′ to GapOddSet𝛾

Proof. Let (A, y, 𝑘) be an instance of GapMLD𝛾 ′ where A ∈ F𝑛×𝑚
2

and y ∈ F𝑛
2
. We may assume

without loss of generality that 𝑘 >
𝛾

𝛾 ′−𝛾 . The instance (A′ ∈ F(𝑛+1)×(𝑚+1)
2

, 𝑘 ′) of GapOddSet𝛾 is

defined as follows. First, we let 𝑘 ′ = 𝑘 + 1. Then, for 𝑖 ∈ [𝑚], we let the 𝑖-th column of A′
be the

𝑖-th column concatenated with zero, and we let the (𝑚 + 1)-th column be (1𝑛 + y) ◦ 1. That is,

A′ =

[
A 1𝑛 + y

01×𝑚 1

]
.

Clearly, the reduction runs in polynomial time. We next argue its correctness.

(YES Case) Suppose that (A, y, 𝑘) is a YES instance of GapMLD𝛾 ′ , i.e., there exists x ∈ F𝑛
2

with ∥x∥0 ⩽ 𝑘 such that Ax = y. Let x′ = x ◦ 1; it is simple to see that A′x′ = 1𝑚+1 and that

∥x′∥0 ⩽ 𝑘 + 1 = 𝑘 ′
. Hence, (A′, 𝑘 ′) is a YES instance of GapOddSet𝛾 .

(NOCase) Suppose that (A, y, 𝑘) is NO instance ofGapMLD𝛾 ′ . Now, let us consider any x′ ∈ F𝑛+12

such that A′x′ = 1. Notice that (A′x′) [𝑚 + 1] = x′[𝑛 + 1], which implies that x′[𝑛 + 1] = 1.

Now, consider the vector x = (x[1], . . . , x[𝑛]); it is easy to verify thatAx = y. Since (A, y, 𝑘) is NO
instance ofGapMLD𝛾 ′ , we have ∥x∥0 > 𝛾 ′𝑘 . As a result, ∥x′∥0 = 1+∥x∥0 > 1+𝛾 ′𝑘 > 𝛾 ·𝑘 ′

, where the

last inequality follows from 𝑘 ⩾
𝛾

𝛾 ′−𝛾 . Thus, (A
′, 𝑘 ′) is indeed a NO instance of GapOddSet𝛾 . □

Received July 2018; revised XX XX; accepted XX XX

Journal of the ACM, Vol. 0, No. 0, Article 00. Publication date: 2018.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Organization of the paper

	2 Proof Overview
	2.1 The Dumer-Micciancio-Sudan reduction
	2.2 Parameterized Inapproximability of k-LDS
	2.3 Parameterized Inapproximability of k-NCP
	2.4 Parameterized Inapproximability of k-MDP
	2.5 Parameterized Intractability of k-SVP

	3 Preliminaries
	3.1 Parameterized Promise Problems and (Randomized) FPT Reductions
	3.2 Bipartite Subgraph with Minimum Degrees
	3.3 Linear Dependent Set Problems
	3.4 Minimum Distance Problem
	3.5 Shortest Vector Problem and Nearest Vector Problem
	3.6 Error-Correcting Codes

	4 Parameterized Inapproximability of Linear Dependent Set
	4.1 Translating One-Sided Biclique to GapBSMD
	4.2 Reducing GapBSMD to GapLDS

	5 Parameterized Inapproximability of Maximum Likelihood Decoding
	5.1 (3 -) Factor Inapproximability of Maximum Likelihood Decoding
	5.2 Every Constant Factor Inapproximability of Maximum Likelihood Decoding

	6 Parameterized Intractability of Minimum Distance Problem
	6.1 Parameterized Inapproximability of Sparse Nearest Codeword Problem
	6.2 Reducing GapSNC to GapMDP

	7 Parameterized Intractability of Shortest Vector Problem
	7.1 FPT Inapproximability of Nearest Vector Problem
	7.2 Following Khot's Reduction from NVP to SVP

	8 Conclusion and Open Questions
	Acknowledgments
	References
	A Inapproximability of Odd Set

