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Abstract
In 1972, Mader showed that every graph without a 3-connected subgraph is

4-degenerate and thus 5-colorable. We show that the number 5 of colors can be
replaced by 4, which is best possible.

1 Introduction

Throughout the paper all graphs are finite and simple, and we only use standard notions
and notations. We recall that a graph is k-connected if it has at least k + 1 vertices and
no separator with at most k− 1 vertices. In 1972, Mader [1] proved the following theorem.

Theorem 1.1. For every integer k ≥ 1, every graph with average degree at least 4k contains
a (k + 1)-connected subgraph.

Focusing on the case k = 2 of Theorem 1.1, call a graph fragile if it contains no
3-connected subgraph. From Theorem 1.1, every fragile graph contains a vertex of degree
at most 7. By restricting the proof of Mader to the case k = 2, it is easy to show that all
fragile graphs G on at least 4 vertices satisfy |E(G)| ≤ 2.5|V (G)| − 5 (we supply the proof
in Section 3 for the sake of completeness). So the average degree of G is smaller than 5.
Thus every fragile graph contains a vertex of degree at most 4, and this is best possible as
shown by the graph in Figure 1. Every fragile graph is therefore 5-colorable.

Despite recent progress on related questions, there is no available proof that the number
5 of colors can be improved. Scott and Seymour announced that they have a proof that
for all m ≥ 4, every graph with chromatic number m+1 contains a 3-connected subgraph
with chromatic number m, see [2] (that also contains a thorough literature review) where
this is referred to as a personal communication. The objective of this paper is to prove the
following theorem that is a particular case of the result claimed by Scott and Seymour.

Theorem 1.2. Every graph without 3-connected subgraph is 4-colorable.

Theorem 1.2 is best possible as shown by the graph in Figure 1. The proof of Theo-
rem 1.2 is given in Section 2. Several remarks and open questions are presented in Section 3.
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Minimum degree 4 Chromatic number 4

Figure 1: Graphs with no 3-connected subgraph.

2 Proof of Theorem 1.2

To prove Theorem 1.2, we shall establish the following stronger statement. By k-coloring of
a graph G, we mean a function c that associates to each vertex of G an integer in {1, . . . , k}
and such that for all edges xy of G, c(x) ̸= c(y).

Theorem 2.1. Every fragile graph G satisfies the following four conditions.

(1) For all non-adjacent x, y ∈ V (G), G admits a 4-coloring c such that c(x) = c(y).

(2) For all distinct x, y ∈ V (G), G admits a 4-coloring c such that c(x) ̸= c(y).

(3) For all distinct x, y, z ∈ V (G), G admits a 4-coloring c such that c(x) /∈ {c(y), c(z)}.

(4) For all distinct x, y, z ∈ V (G) that are not pairwise adjacent, G admits a 4-coloring
c such that |{c(x), c(y), c(z)}| = 2.

Proof. We proceed by induction on |V (G)|. If |V (G)| ≤ 3, then G obviously satisfies
conditions (1)–(4).

For the induction step, suppose |V (G)| ≥ 4 and that the statement holds for every graph
with less vertices than G. Since G is not 3-connected, there exist two induced subgraphs
G1, G2 of G such that V (G) = V (G1)∪V (G2), E(G) = E(G1)∪E(G2), V (G1)\V (G2) ̸= ∅,
V (G2) \ V (G1) ̸= ∅, and S = V (G1) ∩ V (G2) has size at most 2. Moreover, since G is
fragile, G1 and G2 are also fragile and, as |V (G1)|, |V (G2)| < |V (G)|, we may apply the
induction hypothesis to both G1 and G2.

If S = ∅, the induction step is obvious and we omit the details. So we may set S = {u, v}
(possibly u = v). We have to prove that for any of the precoloring conditions C among
(1)–(4) on any given set X ⊆ V (G) (namely, X = {x, y} for conditions (1) and (2) and
X = {x, y, z} for conditions (3) and (4)) some appropriate 4-coloring exists. Suppose
first that X ⊆ V (G1). Then, by the induction hypothesis, G1 admits a coloring c1 that
satisfies C. By applying (1) or (2) to the vertices u and v of G2 (or trivially if u = v), and
up to a relabeling of the colors, we can force a coloring c2 of G2 such that c2(u) = c1(u)
and c2(v) = c1(v). Note that the case when uv is an edge corresponds to the usual
amalgamation of two colorings on a clique separator. Hence, c1 ∪ c2 is a coloring of G that
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Figure 2: Colorings obtained in the proof of Claim 1.

satisfies C. The proof is similar when X ⊆ V (G2). Hence, from here on, we may assume
that

X intersects both V (G1) \ V (G2) and V (G2) \ V (G1). (⋆)

We now prove four claims, from which Theorem 2.1 trivially follows. Their proofs are
easy when u = v, so we omit this case and assume u ̸= v. Note that, unless specified
otherwise, we shall make no assumption on whether u and v are adjacent.

Claim 1. The graph G satisfies (1).

Proof. By (⋆), we may assume that x ∈ V (G1) \ V (G2) and y ∈ V (G2) \ V (G1). We
build three colorings a1, b1 and c1 of G1 and three colorings a2, b2 and c2 of G2 that are
represented in Figure 2 for the reader’s convenience.

By (3) applied to x, u, v (in this order) in G1, we obtain a coloring a1 of G1 such
that a1(x) /∈ {a2(u), a2(v)}. Similarly, we obtain a coloring a2 of G2 such that a2(y) /∈
{a2(u), a2(v)}. Up to a relabeling, we may assume that a1(x) = a2(y) = 1, a1(u) =
a2(u) = 2 and a1(v), a2(v) ∈ {2, 3}. If a1(v) = a2(v), then a1 ∪ a2 is a coloring of G that
satisfies (1). Hence, up to symmetry, we may assume that a1(v) = 3 and a2(v) = 2.

By (3) applied to u, x, v in G1, we obtain a coloring b1 of G1 such that b1(u) /∈
{b1(x), b1(v)}. Similarly, we obtain a coloring b2 of G2 such that b2(u) /∈ {b2(y), b2(v)}.

3



Up to a relabeling, we may assume that b1(x) = b2(y) = 1, b1(u) = b2(u) = 2 and
b1(v), b2(v) ∈ {1, 3}. If b1(v) = b2(v), then b1 ∪ b2 is a coloring of G that satisfies (1).
Hence, we may assume that b1(v) ̸= b2(v). If b2(v) = 3, then a1 ∪ b2 is a coloring of G that
satisfies (1). Hence, we may assume that b1(v) = 3 and b2(v) = 1.

By (3) applied to v, x, u in G1, we obtain a coloring c1 of G1 such that c1(v) /∈
{c1(x), c1(u)}. Similarly, we obtain a coloring c2 of G2 such that c2(v) /∈ {c2(y), c2(u)}.
Up to a relabeling, we may assume that c1(x) = 1 and either c1(u) = 1 and c1(v) = 2 or
c1(u) = 2 and c1(v) = 3. Up to a relabeling, we may also assume that c2(y) = 1 and either
c2(u) = 1 and c2(v) = 2 or c2(u) = 2 and c2(v) = 3. If c1(u) = c2(u), then c1 ∪ c2 is a
coloring of G that satisfies (1). Hence, we may assume that c1(u) ̸= c2(u). If c2(u) = 2
(and so c2(v) = 3), then a1 ∪ c2 is a coloring of G that satisfies (1). Hence, we may assume
that c1(u) = 2, c1(v) = 3, c2(u) = 1 and c2(v) = 2.

By (4) applied to x, u, v in G1, we obtain a coloring d1 of G1 such that
|{d1(x), d1(u), d1(v)}| = 2 (note that x, u and v are not pairwise adjacent because
a2(u) = a2(v) implies uv /∈ E(G)). Up to a relabeling, we may assume that d1(x) = 1 and
{d1(x), d1(u), d1(v)} = {1, 2}. If d1(u) = 1 and d1(v) = 2, then d1 ∪ c2 satisfies (1). And
if d1(u) = 2 and d1(v) = 1, then d1 ∪ b2 satisfies (1). Finally, if d1(u) = 2 and d1(v) = 2,
then d1 ∪ a2 satisfies (1). The claim is proved.

Claim 2. The graph G satisfies (3).

Proof. If x ∈ {u, v} (say x = u up to symmetry), then by (⋆) we may assume that
y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1). By (3) applied separately to x, v and y in G1

and to x, v and z in G2, we obtain up to a relabeling a coloring a1 of G1 and a coloring
a2 of G2 such that a1(x) = a2(x) = 1, a1(v) = a2(v) = 2, a1(y) ̸= 1 and a2(z) ̸= 1. Hence,
a1 ∪ a2 is a coloring of G that satisfies (3). We may therefore assume that x /∈ {u, v}, and
so up to symmetry that x ∈ V (G1) \ V (G2).

Hence, by (⋆) and up to symmetry, we may restrict our attention to the following two
cases.

Case 1: x ∈ V (G1) \ V (G2) and y, z ∈ V (G2).
If uv ∈ E(G), then by (3) applied to x, u and v and up to a relabeling, there exists a

coloring a1 of G1 such that a1(x) = 1, a1(u) = 2, and a1(v) = 3. The graph induced by u,
v, y and z is not a complete graph on 4 vertices, because such a graph is 3-connected and
would imply that G is not fragile. Hence, either |{u, v, y, z}| ≤ 3 or there are non-adjacent
vertices among u, v, y and z. In either case, there exists a coloring a2 of G2 that requires
at most three colors for u, v, y, z (trivially if |{u, v, y, z}| ≤ 3 or by applying (1) to a
non-edge otherwise). Up to a relabeling, we may assume that a2(u) = 2, a2(v) = 3 and
{a2(y), a2(z)} ⊆ {2, 3, 4}. Hence, a1∪a2 is a coloring of G satisfying (3). We may therefore
assume from here on that uv /∈ E(G).

Suppose that there exists a coloring a1 of G1 such that a1(x) ̸= a1(u) = a1(v). So,
up to a relabeling, we may assume a1(x) = 1 and a1(u) = a1(v) = 2. Then by (1)
applied to u and v in G2, there exists a coloring a2 of G2 such that a2(u) = a2(v). Hence,
|{a2(u), a2(v), a2(y), a2(z)}| ≤ 3. So, up to a relabeling, we may assume that a2(u) =
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a2(v) = 2 and {a2(y), a2(z)} ⊆ {2, 3, 4}. So a1 ∪ a2 is a coloring of G that satisfies (3). We
may therefore assume that no coloring as a1 exists.

Hence, when applying (3) to x, u and v, up to a relabeling, we obtain a coloring b1 of G1

such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And when applying (4) to x, u and v (which
is allowed since uv /∈ E(G)), up to a relabeling and to the symmetry between u and v, we
obtain a coloring c1 of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

By (2) applied to u and v, there exists a coloring d2 of G2 such that d2(u) ̸= d2(v). If
|{d2(u), d2(v), d2(y), d2(z)}| ≤ 3, then up to a relabeling, we may assume that d2(u) = 2,
d2(v) = 3 and {d2(y), d2(z)} ⊆ {2, 3, 4}, So b1∪d2 is a coloring of G that satisfies (3). And
if |{d2(u), d2(v), d2(y), d2(z)}| = 4, then we may assume up to a relabeling that d2(u) = 1,
d2(v) = 2, d2(y) = 3 and d2(z) = 4, so c1 ∪ d2 is a coloring that satisfies (3).

Case 2: x, y ∈ V (G1) \ V (G2) and z ∈ V (G2) \ V (G1).
By (3) applied to x, y and u, up to a relabeling, we obtain a coloring a1 of G1 such

that a1(x) = 1, a1(y) = 2 and a1(u) ∈ {2, 3}. If a1(v) ̸= 1, then color 1 is not used on u
or v under a1. By (1) or (2) applied to u and v, we obtain up to a relabeling a coloring
a2 of G2 such that a2(u) = a1(u) and a2(v) = a1(v). Thus, color 1 is not used on u or v
under a2 either and so, up to a relabeling, we may assume that a2(z) ̸= 1. Hence a1 ∪ a2
is a coloring of G that satisfies (3). We may therefore assume that a1(v) = 1.

By (3) applied to v, u and z, up to a relabeling, we obtain a coloring b2 of G2 such
that b2(v) = 1, b2(u) = a1(u) and b2(z) ̸= 1. Hence a1 ∪ b2 is a coloring of G that
satisfies (3).

Claim 3. The graph G satisfies (2).

Proof. By Claim 2, we may apply (3) to x, y and any vertex of G. We obtain a coloring
of G that satisfies (2).

Claim 4. The graph G satisfies (4).

Proof. By (⋆), we may assume that x ∈ V (G1) \ V (G2) and y ∈ V (G2) \ {u} and z ∈
V (G2) \ V (G1).

Suppose that uv ∈ E(G). Then by (3) applied to x, u and v and up to a relabeling,
there exists a coloring a1 of G1 such that a1(x) = 1, a1(u) = 2 and a1(v) = 3. By (3)
applied to u, y and z (that are distinct since y ̸= u and z ∈ V (G2) \ V (G1)) and up to a
relabeling, we obtain a coloring a2 of G2 such that a1(u) = 2, a1(v) = 3 and {a2(y), a2(z)}
is either {3, 1}, {3} or {4}. In either case, a1∪a2 is a coloring of G satisfying (4). We may
therefore assume from here on that uv /∈ E(G).

Suppose that there exists a coloring a1 of G1 such that a1(x) ̸= a1(u) = a1(v). Then up
to a relabeling we may assume that a1(x) = 1 and a1(u) = a1(v) = 2. By (1) applied to u
and v in G2, there exists up to a relabeling a coloring a2 of G2 such that a2(u) = a2(v) = 2.
If a2(y) = a2(z), then up to relabeling, we may assume that a2(y) = a2(z) ̸= 1, so (4)
is satisfied by a1 ∪ a2. And if a2(y) ̸= a2(z), then up to a relabeling, we may assume
a2(y) = 1 or a2(z) = 1, and (4) is again satisfied by a1∪a2. We may therefore assume that
no coloring as a1 exists.
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Hence, when applying (3) to x, u and v, up to a relabeling, we obtain a coloring b1 of
G1 such that b1(x) = 1, b1(u) = 2 and b1(v) = 3. And when applying (4) to x, u and v
(which is allowed since uv /∈ E(G)), up to a relabeling and to the symmetry between u
and v, we obtain a coloring c1 of G1 such that c1(x) = 1, c1(u) = 1 and c1(v) = 2.

On the other hand, by (2) applied to u and v, there exists a coloring d2 of G2 such that
d2(u) ̸= d2(v). If d2(y) = d2(z), then up to a relabeling, we may assume that d2(u) = 2,
d2(v) = 3 and d2(y) ̸= 1. Thus, b1 ∪ d2 is a coloring that satisfies (4). Hence, from here
on, we may assume that d2(y) ̸= d2(z).

If |{d2(u), d2(v), d2(y), d2(z)}| ≥ 3, then we may assume up to a relabeling that
d2(u) = 2, d2(v) = 3 and 1 ∈ {d2(y), d2(z)}, so b1 ∪ d2 is a coloring that satisfies (4).
If |{d2(u), d2(v), d2(y), d2(z)}| = 2, then up to a relabeling, we may assume that d2(u) = 1,
d2(v) = 2, so that {d2(y), d2(z)} = {1, 2}. So c1∪d2 is a coloring of G that satisfies (4).

Theorem 2.1 immediately follows from Claims 1 to 4.

3 Conclusion and open questions

We collect here several remarks and open questions.

3.1 Fragile graphs have average degree less than 5

As announced in the introduction, we recall the proof that every fragile graph G on at
least 4 vertices satisfies |E(G)| ≤ 2.5|V (G)| − 5. When G has 4 vertices, the inequality
holds since the graph on 4 vertices and 6 edges is a complete graph and is 3-connected.
For the induction step, we decompose G into G1 and G2 as in the previous section. If
|V (G1)| ≤ 3, then G contains a vertex x of degree at most 2. Hence,

|E(G)| ≤ |E(G \ x)|+ 2 ≤ 2.5|V (G \ x)| − 5 + 2 = 2.5(|V (G)| − 1)− 3 ≤ 2.5|V (G)| − 5.

We may therefore assume that |V (G1)| ≥ 4 and symmetrically |V (G2)| ≥ 4. Hence the
induction hypothesis can be applied to both G1 and G2 so that the result follows from
these inequalities:

|E(G)| ≤ |E(G1)|+ |E(G2)|
≤ 2.5|V (G1)| − 5 + 2.5|V (G2)| − 5

= 2.5(|V (G1)|+ |V (G2)|)− 10

≤ 2.5(|V (G)|+ 2)− 10

= 2.5|V (G)| − 5.
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3.2 Girth conditions

It is easy to prove by induction that every fragile graph of girth at least 4 on at least 3
vertices satisfies |E(G)| ≤ 2|V (G)| − 4 (the proof is as in Section 3.1). This implies
that every fragile graph with girth at least 4 contains a vertex of degree at most 3, so is
4-colorable. We tried to improve this bound, but we instead found a fragile graph with
girth 4 and chromatic number 4, as we now present.

a

b

x x′

y1

y2

y3

y4

z1

z2 z3

z4
u

v

Figure 3: The graph G1.

Let G1 be the graph represented in Figure 3. It has girth 4 and is 2-degenerate; so
in particular it is fragile and has chromatic number at most 3. For all 3-colorings of G1,
vertices a and b receive different colors. Indeed, suppose for a contradiction that for some 3-
coloring of G1, a and b receive the same color, say color 1. Then, one of x and x′, say x up to
symmetry, must receive a color different from 1, say color 2. So, the vertices y1, . . . , y4 must
all receive the same color, say color 3. It follows that the vertices z1, . . . , z4 are colored
with color 1 and 2 alternately. Hence, u receives color 3. Now, v has three neighbors,
namely a, x and u that are colored with colors 1, 2 and 3 respectively, a contradiction.

It follows that the triangle-free graph G2 represented in Figure 4 is not 3-colorable, but
it is fragile since {a′, b′} is a separator, and G1 is 2-degenerate even if two vertices adjacent
to a and b are added. This raises the following question: Is there a finite girth that makes
fragile graphs 2-degenerate? The same question can be asked with 2-degenerate replaced
by 3-colorable. In Figure 5, a fragile graph with girth 6 and minimum degree 3 is presented.

Trivially, a graph G is fragile if and only if every subgraph H of G is either on at most 3
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a′

b′

a

b

Figure 4: The graph G2.

Figure 5: A bipartite fragile graph with girth 6 and minimum degree 3.

vertices or admits a separator of size at most 2. In fragile graphs of girth at least 4, one
can further impose the separator to be an independent set.

Lemma 3.1. A graph G with girth at least 4 is fragile if and only if every subgraph H
of G is either on at most 2 vertices or admits an independent separator of size at most 2.

Proof. We prove the statement by induction on |V (G)|. The equivalence can be checked
to hold on graphs of up to 3 vertices. If |V (G)| ≥ 4, then since G is not 3-connected, it
admits a separator S of size at most 2. Suppose that S is not independent, so S = {u, v}
and uv ∈ E(G). Let C be a connected component of G \ S. Since G has girth at least 4,
no vertex of C is adjacent to both u and v. Hence, if |C| = 1, G admits a separator of
size 1 (and therefore independent). So we may assume that |C| ≥ 2. So, by the induction
hypothesis, G[S ∪ C] admits an independent separator S ′. It is easy to check that S ′ is
also a separator of G.
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3.3 Algorithms

By subdividing twice every edge of any graph G, a fragile graph G′ is obtained. Poljak [3]
proved that α(G′) = α(G) + |E(G)|. It follows that a polynomial-time algorithm that
computes a maximum independent set for any fragile graph would yield a similar algorithm
for all graphs. This proves that computing a maximum independent set in a fragile graph
is NP-hard.

We also observe that, in G′, every edge uv becomes a path uxuvyuvv. Consider the
graph G′′ obtained from G′ by adding, for every vertex xuv, a new vertex x′

uv adjacent to
u, xuv and yuv. It is easy to check that G′′ is fragile and for all 3-colorings of G′′ and all
edges uv of G, u and v have different colors (in G′′). It follows that if G′′ is 3-colorable,
then so is G. Conversely it is easy to check that if G is 3-colorable, so is G′′. This proves
that deciding whether a fragile graph is 3-colorable is NP-complete. By the same kind of
argument, we can prove that deciding whether a graph is 3-colorable stays NP-complete
even when we restrict ourselves to triangle-free graphs. To see this, pick any graph G,
remove all edges uv, and replace them by a copy of the graph G1 with a identified to u and
b identified to v. This yields a triangle-free fragile graph that is 3-colorable if and only if
G is 3-colorable.

Our proof that every fragile graph is 4-colorable yields an algorithm that actually
computes a 4-coloring. But as far as we can see, a crude implementation of this algorithm
would run in exponential time and we do not know if a polynomial-time algorithm exists.
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