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Abstract

The Graph Motif problem was introduced in 2006 in the context of biological networks.
It consists of deciding whether or not a multiset of colors occurs in a connected subgraph
of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint
of parameterized complexity. The main parameters which came into consideration were the
size of the multiset and the number of colors. In the many utilizations of Graph Motif,
however, the input graph originates from real-life applications and has structure. Motivated by
this prosaic observation, we systematically study its complexity relatively to graph structural
parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show
that the problem remains intractable. For the FPT cases, we also give some kernelization
lower bounds as well as some ETH-based lower bounds on the worst case running time.
Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter
max leaf number, which is, to the best of our knowledge, the first problem to behave this way.

1 Introduction

The Graph Motif problem has received a lot of attention during the last decade. Informally,
Graph Motif is defined as follows: given a graph with arbitrary colors on the nodes and a
multiset of colors called the motif, the goal is to decide if there exists a subset of vertices of the
graph such that (1) the subgraph induced by this subset is connected and (2) the colors on the
subset of vertices match the motif, i.e. each color appears the same number of times as in the motif.
Originally, this problem is motivated by applications in biological network analysis [33]. However,
it also proves useful in social or technical networks [4] or in the context of mass spectrometry [8].

Studying biological networks allows a better characterization of species, by determining small
recurring subnetworks, often called motifs. Such motifs can correspond to a set of nodes realizing
some function, which may have been evolutionary preserved. Thus, it is crucial to determine
these motifs to identify common elements between species and transfer the biological knowledge.
Graph Motif corresponds to topology-free queries and can be seen as a variant of a graph pattern
matching problem with the sole topological requirement of connectedness. Such queries were also
studied extensively for sequences during the last thirty years, and with the increase of knowledge
about biological networks, it is relevant to extend these queries to networks [40].

2 Preliminaries and previous work

For any two integers x < y, we set [x, y] := {x, x+ 1, . . . , y − 1, y}, and for any positive integer x,
[x] := [1, x]. If G is a graph, we denote by V (G) its set of vertices and by E(G) its set of edges. If
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G = (V,E) is a graph and S ⊆ V , EG(S) denotes the subset of edges of E having both endpoints
in S. If G = (V,E) is a graph and S ⊆ V is a subset of vertices, G[S] denotes the subgraph of G
induced by S: (S,EG(S)). For a vertex v ∈ V , the set of neighbors of v in G is denoted by NG(v),
and NG(S) := (

⋃
v∈S NG(v)) \ S. We define NG[v] := NG(v) ∪ {v} and NG[S] := NG(S) ∪ S. In

all the previous definitions, we will lose the subscript G whenever the graph G we are referring to
is either implicit or irrelevant. We say that a vertex v dominates a set of vertices S if S ⊆ N [v].
A set of vertices R dominates another set of vertices S if S ⊆ N [R]. If G = (V,E) is a graph and
V ′ ⊆ V , G − V ′ denotes the graph G[V \ V ′]. A universal vertex v, in a graph G = (V,E), is
such that NG[v] = V . A matching of a graph is a set of mutually disjoint edges. In an explicitly
bipartite graph G = (V1 ∪ V2, E), we call a matching of size min(|V1|, |V2|) a perfect matching. A
cluster graph (or simply, cluster) is a disjoint union of cliques. A co-cluster graph (or, co-cluster)
is the complement graph of a cluster graph. If C is a class of graphs, the distance to C of a graph
G is the minimum number of vertices to remove from G to get a graph in C.

If f : A → B is a function and A′ ⊆ A, f|A′ denotes the restriction of f to A′, that is
f|A′ : A′ → B such that ∀x ∈ A′, f|A′(x) := f(x). Similarly, if E is a set of edges on vertices of V
and V ′ ⊆ V , E|V ′ is the subset of edges of E having both endpoints in V ′.

Multisets. A multiset is a generalization of the notion of set where each element may appear
more than once. The multiplicity of the element x in the multiset M , denoted by mM (x), is the
number of occurrences of x in M . We adopt the natural convention that mM (x) = 0 if x does
not belong to M . The cardinality of a multiset M denoted by |M | is its number of elements
with their multiplicity : ΣxmM (x). If M and N are two multisets, M ∪ N is the multiset A
such that ∀x, mA(x) = mM (x) + mN (x), and M \ N is the multiset D such that ∀x, mD(x) =
max(0,mM (x) −mN (x)). We write M ⊆ N if and only if M \N = ∅ and M ⊂ N if and only if
M ⊆ N and M 6= N .

Example 1. Let M = {1, 2, 2, 4, 5, 5, 5} and N = {1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5}. Then, |M | = 7,
|N | = 12, M \N = ∅, N \M = {1, 1, 3, 3, 5}, and M ⊆ N .

Graph Motif . The problem is defined as follows:

Graph Motif

• Input: A triple (G, c,M), where G = (V,E) is a graph, c : V → C is a coloring of the
vertices, and M is a multiset of colors of C.
• Output: A subset R ⊆ V such that
(1) G[R] is connected and
(2) c(R) = M .

In the above definition, c(R) denotes the multiset of colors of vertices in R. We use that slight
abuse of notation for convenience. We will refer to condition (1) as the connectivity constraint
and to condition (2) as the multiset constraint.

Parameterized Complexity. A parameterized problem (I, k) is said fixed-parameter tractable
(or in the class FPT) w.r.t. (with respect to) parameter k if it can be solved in f(k) · |I|c time (in
fpt-time), where f is any computable function and c is a constant (see [20, 38, 16] for more details
about fixed-parameter tractability). The parameterized complexity hierarchy is composed of the
classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP. The class XP is the set of problems solvable in
time |I|f(k), where f is a computable function.

A W[1]-hard problem is not fixed-parameter tractable (unless FPT = W[1]) and one can prove
W[1]-hardness by means of a parameterized reduction from a W[1]-hard problem. This is a mapping
of an instance (I, k) of a problem A1 in g(k) · |I|O(1) time (for any computable function g) into an
instance (I ′, k′) for A2 such that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.

A powerful technique to design parameterized algorithms is kernelization. In short, kerneliza-
tion is a polynomial-time self-reduction algorithm that takes an instance (I, k) of a parameterized
problem P as input and computes an equivalent instance (I ′, k′) of P such that |I ′| 6 h(k) for
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some computable function h and k′ 6 k. The instance (I ′, k′) is called a kernel in this case. If the
function h is polynomial, we say that (I ′, k′) is a polynomial kernel.

It is well known that a decidable problem is in FPT if and only if it has a kernel, but this
equivalence yields super-polynomial kernels (in general). To design efficient parameterized algo-
rithms, a kernel of polynomial (or even linear) size in k is important. However, some lower bounds
on the size of the kernel can be shown under the assumption that the polynomial hierarchy is a
proper hierarchy. To show such results, we will use the cross-composition technique developed by
Bodlaender et al. [9].

Definition 2 (Polynomial equivalence relation [9]). An equivalence relation R on Σ∗ is said to
be polynomial if the following two conditions hold:
(i) There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to the
same equivalence class in time (|x|+ |y|)O(1).
(ii) For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 3 (OR-cross-composition [9]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L cross-composes into Q if there is a polynomial equivalence relation
R and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equivalence class of
R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

(i) (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 6 i 6 t; and
(ii) k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

Theorem 4 ([9]). Let L ⊆ Σ∗ be a set which is NP-hard under Karp reductions. If L cross-
composes into the parameterized problem Q, then Q has no polynomial kernel unless NP ⊆
coNP/poly.

(Strong) Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) is a
conjecture by Impagliazzo et al. [29] asserting that there is no 2o(n)-time algorithm for 3-SAT
on instances with n variables. The so-called sparsification lemma, also proved in [29], shows that
if ETH turns out to be true, then there is no 2o(n+m)-time algorithm solving 3-SAT where m
is the number of clauses. The Strong Exponential Time Hypothesis (SETH) by Impagliazzo and
Paturi [28] further asserts that, for every δ < 1, there is an integer k such that k-SAT cannot be
solved in time O(2δn). Cygan et al. showed that, assuming SETH, for any δ < 1, some problems
such as Hitting Set could not be solved in time O(2δn) either [15], where n is the number of
elements. The authors also conjectured that the same result should hold for the Set Cover
problem, and gave some supporting pieces of evidence. We will refer to the assumption that, for
any δ < 1, Set Cover instances with n elements cannot be solved in time O(2δn) as SCH (for
Set Cover-hardness). We insist on the fact that the implication SETH ⇒ SCH is not known
yet.

Previous work. Many results about the complexity of Graph Motif are known. The
problem is NP-hard even with strong restrictions. For instance, it remains NP-hard for bipartite
graphs of maximum degree 4 and motifs containing two colors only [21], or for trees of maximum
degree 3 and when the motif is colorful (that is, no color occurs more than once) [21], or for rooted
trees of depth 2 [2]. However, the problem is solvable in polynomial time when the graph is a
caterpillar [2], or when both the number of colors in the motif and the treewidth of the graph are
bounded by a constant [21].

As Graph Motif is intractable even for very restricted classes of graphs, and considering
that, in practice, the motif is supposed to be small compared to the graph, the parameterized
complexity of Graph Motif relatively to the size of the motif has been tackled. It is indeed in
FPT when parameterized by the size of the motif. At least seven different papers gave an FPT
algorithm [21, 4, 27, 32, 5, 40, 39]. The best (randomized) algorithm runs in time O∗(2k) where
the O∗ notation suppresses polynomial factors [5, 40] and works well in practice for small values of
k, even with hundreds of millions of edges [6]. The current best deterministic algorithm takes time
O∗(5.22k) [39]. However, an algorithm running in time O∗((2 − ε)k) would break the 2n barrier
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in solving Set Cover instances with n elements (that is, would disprove SCH) [5]. Besides, it is
unlikely that Graph Motif admits a polynomial kernel, even on a restricted class of trees [2].
Ganian proved that Graph Motif is in FPT when the parameter is the size of a minimum vertex
cover of the graph [24]. Actually, his algorithm is given for a smaller parameter called twin-cover.
Ganian also showed that Graph Motif can be solved in O∗(2k) for graphs with neighborhood
diversity k [25]. On the negative side, the problem is W[1]-hard with respect to the number of
colors, even for trees [21]. To deal with the huge rate of noise in the biological data, many variants
of the problem has been introduced. For example, the approach of Dondi et al. requires a solution
with a minimum number of connected components [19], while the one of Betzler et al. asks for a
2-connected solution [4]. In other variants stemming purely from bio-informatics, some colors can
be added to, substituted or subtracted from the solution [10, 19].

In light of the previous paragraphs, it is clear that the complexity of Graph Motif is well
known for different versions and constraints on the problem itself. However, only few works take
into account the structure of the input graph. We believe that this an interesting direction since
Graph Motif has applications in real-life problems, where the input is not random. For example,
some biological networks have been shown scale-free or with small diameter [1]. We will therefore
introduce a systematic study with respect to structural graph parameters [31, 22]. We believe that
this is also of theoretical interest, to understand how a given parameter influences the complexity
of the problem.

Our contribution. In Section 3, we improve the known FPT algorithms with parameter
distance to clique, vertex cover number, and edge clique cover number. We also give a parame-
terized algorithm for the parameter distance to co-cluster which nicely reuses the FPT algorithms
for both vertex cover number and distance to clique and another algorithm for parameter vertex
clique cover number. These last two algorithms are noteworthy since a bounded distance to co-
cluster or a bounded vertex clique cover number do not imply a bounded neighborhood diversity,
a parameter for which Graph Motif was already known to be in FPT. We also show that a
polynomial kernel for the aforementioned parameters is unlikely and give some ETH-based lower
bounds for the worst case running time. In Section 4, we show that Graph Motif remains hard
on graphs of constant distance to disjoint paths, or constant bandwidth, or constant distance to
cluster, or constant dominating set number. More surprisingly, we establish that Graph Motif
is W[1]-hard (but in W[P]) for the parameter max leaf number. To the best of our knowledge,
there is no previously known problem behaving similarly when parameterized by max leaf number.
Indeed, graphs with bounded max leaf number are really simple and, for instance, all the problems
studied in [22] are FPT for this parameter. These positive and negative results draw a tight line
between tractability and intractability (see Figure 1).

3 FPT algorithms, kernelization and ETH-based lower bounds

In this section, we improve or establish new FPT algorithms for several parameters. We comple-
ment those algorithms with some lower bounds under ETH, SETH, and SCH. We also give a lower
bound on the size of the kernel for all those parameters except cluster editing number. Figure 1
summarizes those results.

3.1 Cluster editing and linear neighborhood diversity

The cluster editing number of a graph is the number of edge deletions or additions required to
get a cluster graph. It can be computed in time O∗(1.62k) [7]. We will use a known result
involving another parameter called neighborhood diversity introduced by Lampis [34]. A graph
has neighborhood diversity k if there is a partition of its vertices into at most k sets such that
all the vertices in each set have the same type. And, two vertices u and v have the same type
if N(v) \ {u} = N(u) \ {v}. We say that a graph parameter κ has linear (resp. exponential)
neighborhood diversity if, for every positive integer k, all the graphs G such that κ(G) 6 k have
neighborhood diversity O(k) (resp. 2O(k)). We say that a parameter κ has unbounded neighborhood
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NP-hard
with constant parameter values

FPT but no polynomial-size kernel
unless
NP ⊆ coNP/poly

W[1]-hard, in W[P]FPT
Distance

to clique • Vertex Cover • Cluster Editing ∗ Max leaf # ♦

Min Edge
Clique Cover •

Distance to
co-cluster ♦

Distance to
cluster ♦

Distance to
disjoint paths ♦

Feedback
edge set # ∗ Bandwidth ♦

Min Vertex
Clique Cover ♦

Max Ind. Set

Distance
to co-graphs

Distance
to interval

Feedback
Vertex Set #

Pathwidth Max Degree

Min Dominating
Set ♦

Distance
to chordal

Distance
to bipartite Treewidth h-index

Diameter

Distance
to perfect

Degeneracy

Chromatic # Average Degree

Figure 1: Hasse diagram of the relationship between different parameters ([31]). Two parame-
ters are connected by a line if the parameter below can be polynomially upper-bounded in the
parameter above. For example, vertex cover is above distance to disjoint paths since deleting a
vertex cover produces an independent set, hence a set of disjoint paths. Therefore, positive results
propagate upwards, while negative results propagate downwards. Results marked by ♦ are ob-
tained in this paper, those marked with • are improvement of existing results, and those marked
with ∗ are corollaries of existing results. Parameter neighborhood diversity is not depicted since
its relations with vertex cover may be exponential. We refer to [34, Figure 1] for a diagram with
neighborhood diversity. We note that neighborhood diversity would be below vertex cover, not
comparable to feedback vertex set, patwidth or treewidth, but above cliquewidth (this last would
be below treewidth).

diversity, if there is no function f such that all graphs G with κ(G) 6 k have neighborhood
diversity f(k).

Theorem 5 ([25]). Graph Motif can be solved in O∗(2k) on graphs with neighborhood diversity
k.

The following result is a direct consequence of the fact that, restricted to connected graphs,
cluster editing has linear neighborhood diversity.

Corollary 6. Graph Motif can be solved in O∗(8k), where k is the cluster editing number.

Proof. Let (G = (V,E), c,M) be any instance of Graph Motif. We can assume that G is
connected, otherwise we run the algorithm in each connected component of G. Let X be the set
of vertices which are an endpoint of an edited edge (deleted or added) and let G′ be the cluster
graph obtained by the k edge editions. We may observe that |X| 6 2k and that the number of
maximal cliques C1, . . . , Cl in G′ is bounded by k (otherwise, G could not be connected). For
each i ∈ [l], and for each vertex v ∈ Ci \ X, N [v] = Ci. Thus the neighborhood diversity of G
is bounded by |X| + l 6 2k + k = 3k. So, we can run the algorithm for bounded neighborhood
diversity [25] and it takes time O∗(23k).

3.2 Parameters with exponential neighborhood diversity

The next three parameters that we consider are distance to clique, size of a minimum vertex
cover, and size of a minimum edge clique cover. For the first two, a value of k entails that the
neighborhood diversity is at most k + 2k; whereas, edge clique cover number k implies that the
neighborhood diversity is at most 2k. Therefore, Ganian has already given an algorithm running

in double exponential time for these parameters (O∗(2k+2k) or O∗(22
k

), see Theorem 5, [24, 25]).
We improve this bound to single exponential time 2O(k) (more precisely O∗(3k)) for distance to
clique and to 2O(k log k) for the vertex cover and edge clique cover numbers. The latter running
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time is sometimes called slightly superexponential FPT time [35]. Then, we prove that for each of
those three parameters, a polynomial kernel is unlikely.

As a preparatory lemma for the algorithm parameterized by distance to clique, we show that
a variant of Set Cover with thresholds is solvable in time O∗(2n), where n is the size of the
universe. In the problem that we call here Colored Set Cover with Thresholds, one is
given a triple (U ,S = C1 ] . . .]Cl, (a1, . . . , al)) where U is a ground set of n elements, S is a set of
subsets of U partitioned into l classes called colors and (a1, . . . , al) is a tuple of l positive integers
called threshold vector. The goal is to find a set cover T ⊆ S (not necessarily minimum) such that
for each i ∈ [l], the number of sets with color i (that is, in Ci) in T is at most ai.

Lemma 7. Colored Set Cover with Thresholds with n elements and m sets can be solved
in time O(nm2n + nm).

Proof. We order the sets of S such that sets of the same color appear consecutively, say, first
the sets of C1, then the sets of C2, and so on. The order within the sets of a same color is not
important and is chosen arbitrarily. We denote the sets resultantly ordered by S1, . . . , Sm and
function c maps the index of a set to its color. Therefore, c(j) = i means that set Sj has color i
(Sj ∈ Ci). We fill by dynamic programming the table T , where T [U, j] is meant to contain the
minimum number of sets in Cc(j) among any subset of {S1, . . . , Sj} that covers U ⊆ U and respects
the threshold vector.

As an initialization step, for each U ⊆ U , we set T [U, 1] = 1 if U ⊆ S1, and T [U, 1] = ∞
otherwise. For each j ∈ [2,m], assuming that T [U ′, j − 1] was already filled for every U ′ ⊆ U , we
distinguish two cases to fill T [U, j]. If Sj is the first set of the color class Cc(j) then:

T [U, j] =

 0 if T [U, j − 1] <∞ (* discard Sj *)
1 if T [U, j − 1] =∞ and T [U \ Sj , j − 1] <∞ (* add Sj *)
∞ otherwise

Otherwise Sj is not the first set in Cc(j) and:

T [U, j] = min

{
T [U, j − 1] (* discard Sj *)
v + 1 if v < ac(j) and ∞ otherwise (* add Sj *)

with v = T [U \ Sj , j − 1].

A standard induction shows that the instance is positive if and only if T [U ,m] 6=∞. The only
costly operation in filling one entry of table T is the set difference which can be done in O(n)
time. If we want to produce an actual solution (and not solely decide the problem), we can add
one bit in each entry T [U, j] signaling whether or not Sj should be taken. Should the instance be
positive, it then takes time O(nm) to reconstruct a solution from a filled table T . Therefore, the
running time is O(n|T |+ nm) = O(nm2n + nm).

Theorem 8. Graph Motif can be solved in O∗(3k), where k is the distance to clique.

Proof. Let (G = (V,E), c : V → C,M) be any instance of Graph Motif and assume R is a
solution, that is G[R] is connected and c(R) = M . If there is no solution, our algorithm will
detect this eventually. We first compute a set S ⊆ V of size k such that C := V \ S is a clique.
This can be done in time O∗(2k) by branching over the two endpoints of a non-edge, or even in time
O∗(1.2738k) by applying the state-of-the-art algorithm for Vertex Cover on the complementary
graph [14]. Running through all the 2k subsets of S, one can guess the subset S′ = R∩S of S which
is in the solution R. Let S1, S2, . . . , Sk′ be the k′ 6 k connected components of G[S′]. It must hold
that c(S′) ⊆ M , otherwise R would not be a solution. Now, the problem boils down to finding a
non-empty (an empty subset would mean that S′ = R which can be easily checked) subset C ′ ⊆ C
such that G[S′ ∪ C ′] is connected and c(C ′) ⊆ M \ c(S′). Then, the set S′ ∪ C ′ can be extended
into a solution by adding vertices of C \C ′ with the right colors. The graph G[S′∪C ′] is connected
if and only if each connected component Sj of G[S′] has at least one neighbor in N(C ′). We build
an equivalent instance of Colored Set Cover with Thresholds in the following way. The
ground set U is of size k′ with one element xj per connected component Sj of G[S′]. For each vertex
v in C colored by i, there is a set Sv colored by i such that xj ∈ Sv if and only if N(v)∩Sj 6= ∅. For
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each color i, the threshold ai is set to the multiplicity of i in M \ c(S′). The number of elements is
k′ and the number of sets is polynomial. So, it takes time O∗(2k

′
) to solve this instance. Therefore,

the overall running time is O∗(2k +
∑

S′:S′⊆S
2|S
′|) = O∗(2k +

∑
06k′6k

(
k
k′

)
2k
′
) = O∗(3k).

Theorem 9. Graph Motif can be solved in O∗(22k log k) on graphs with a vertex cover of size
k.

S1 S2

. . .

Sk′
S′S

. . .
RdI \ I ′ I ′I

Figure 2: The subsets of V relevant to the algorithm of Theorem 9.

Proof. We start similarly to the previous algorithm. We compute a minimum vertex cover S of G
in time O∗(2k) (or O∗(1.2738k) [14]), and then guess in time O∗(2k) the subset S′ = S ∩R, where
R is a fixed solution. Again, we denote by S1, S2, . . . , Sk′ the connected components of G[S′]. We
remove c(S′) from the motif and we remove from V the set I ′ of the vertices of the independent
set I := V \S which have no neighbor in S′ (see Figure 2). Now, by the transformation presented
in the algorithm parameterized by distance to clique, the problem could be made equivalent to a
constrained version of Colored Set Cover with Thresholds where the intersection graph
(with an edge between two sets if they have a non-empty intersection) of the solution has to be
connected. Unfortunately, it is not clear whether or not this variant can be solved in time 2O(n).
Thus, at this point, we have to do something different.

Let Rd = {r1, r2, . . . , rl} ⊆ R \ S′ be a minimal (inclusion-wise) set of vertices such that
G[S′ ∪ Rd] is connected. We can observe that l 6 k′ 6 k. We guess in time O∗(l!Bl) (where
Bl is the l-th Bell number, i.e., the number of partitions of a set of size l) an ordered partition
P := 〈A1, A2, . . . , Al〉 of the connected components {S1, . . . , Sk′} such that, for each i ∈ [l], (1)
ri has at least one neighbor in each connected component of Ai and (2) if i > 2, ri has at least
one neighbor in a connected component of

⋃
16j<iAj . Note that such an ordered partition always

exists since G[S′ ∪ Rd] is connected. Now, we build the bipartite graph B = (P ∪M ′, F ), where
M ′ = M \ c(S′) and there is an edge between Ai ∈ P and each copy of color c ∈ M ′ if and only
if there is a vertex v ∈ I colored by c in the original graph G and such that (1) v has at least
one neighbor in each connected component of Ai and (2) if i > 2, v has at least one neighbor
in a connected component of

⋃
16j<iAj . By construction, {{Ai, c(ri)} | i ∈ [l]} is a maximum

matching of size |P | = l in graph B. Thus, we compute in polynomial time a maximum matching
{{Ai, ci} | i ∈ [l]} in B. Then, we obtain a solution to the Graph Motif instance by taking,
for each i ∈ |l] any vertex vi colored by ci and having (1) at least one neighbor in each connected
component of Ai and (2) if i > 2, at least one neighbor in a connected component of

⋃
16j<iAj .

This can also be done in polynomial time and the existence of such a vi is guaranteed by the
construction of graph B. Then, we complete set S′ ∪

⋃
i∈[l]{vi} into a solution by taking any

vertices in I \ I ′ with the right colors. As l! 6 ll, Bl 6 ( l2 )l (even Bl < ( 0.792l
ln (l+1) )

l [3]), and l 6 k

the overall running time is O∗(2k + 2kk!Bk) = O∗(kkkk) = O∗(22k log k).

In the Edge Clique Cover problem, one asks, given a graph G = (V,E) and an integer k,
for k subsets C1, . . . , Ck ⊆ V , such that ∀i ∈ [k], G[Ci] is a clique, and ∀e ∈ E, e lies in a clique
Ci for some i ∈ [k]. The set {C1, . . . , Ck} is called an edge clique cover of G. The edge clique
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cover number of a graph G is the smallest k such that G has an edge clique cover of size k. Edge
Clique Cover admits a kernel of size 2k (which can be obtained in O(n4) time) [26] and, as
observed in [17], it can be solved by dynamic programming in time 2O(n+m). Therefore, it can be

solved in time 2O(2k+22k) + O(n4), that is 22
O(k)

+ O(n4). On the negative side, Edge Clique

Cover cannot be solved in time 22
o(k)

under ETH [17]. But, we may imagine that the instance
comes with an optimal or close to optimal edge clique cover, or that we have a good heuristic to
compute it (a polynomial time approximation with sufficiently good ratio is unlikely [36]).

Theorem 10. Graph Motif can be solved in time 22
O(k)

+ O(n4), where k is the edge clique
cover number, and in time O∗(22k log k+k) if an edge clique cover of size k is given as part of the
input.

Proof. Let I = (G = (V,E), c,M) be any instance of Graph Motif. If not given, we first

compute an edge clique cover {C1, . . . , Ck} of size k in G, in time 22
O(k)

+O(n4) [26, 17].
We guess in time O∗(2k) the exact subset {C ′1, . . . , C ′k′} ⊆ {C1, . . . , Ck} of cliques Ci such that

Ci ∩R is non-empty, for a fixed solution R. Now, we turn the instance into an equivalent instance
where the motif has size |M |+k′ and the graph has at most |V |+k′ vertices and a vertex cover of
size k′. The new graph is a bipartite graph B = (A∪W,F ) such that A contains one vertex v(C ′i)
per clique C ′i (so, A is a vertex cover of graph B of size k′ 6 k), W = C ′1∪ . . .∪C ′k′ ⊆ V , and there
is an edge in F between v(C ′i) ∈ A and w ∈W if and only if w ∈ C ′i. Each vertex in W keeps the
color it had in G. A fresh color γ is given to the k′ vertices of A, and color γ is added to the motif
M with multiplicity k′. This coloring is denoted by c′ and M ′ := M ∪ {γ, . . . , γ (k′ times)}. We
run on the instance I ′ = (B, c′,M ′) the algorithm parameterized by the vertex cover number of
Theorem 9. This algorithm has an overall running time of O∗(2k22k log k), if the edge clique cover

is given, and 22
O(k)

+O(n4) otherwise.
We now explain why the reduction is correct. We first claim that the set A ∪ R is a solution

for the instance I ′. The colors of A ∪ R consist of k′ occurences of γ plus the colors of M which
matches the multiset M ′. Now, we show that B[A∪R] is connected by reporting a path from any
pair x, y of vertices in A ∪ R. Let ψ : A ∪ R → R be the identity function when restricted to R
and map vertex v(C ′i) ∈ A to an arbitrary fixed vertex of C ′i ∩ R. By construction C ′i ∩ R 6= ∅,
so ψ is well-defined. As G[R] is connected there is a path between ψ(x) and ψ(y) in G[R]:
ψ(x) = u1, u2, . . . , uh = ψ(y). By definition of a clique cover, any two consecutive vertices u`
and u`+1 (` ∈ [h − 1]) along this path are in a same clique C ′i. Therefore, in B[A ∪ R] there is
a corresponding path u`, v(C ′i), u`+1. Also ψ(x) (resp. ψ(y)) is either x (resp. y) or linked by an
edge to x (resp. y). Overall, this gives a path from x to y in B[A ∪R].

Conversely, assume there is a solution S to I ′. Set S has to contain A otherwise the color γ is
not represented k′ times. So, S = A]R′. We claim that R′ is a solution for the instance I. In order
to match the colors of M ′, the colors of R′ should match the multiset constraint of M . It remains
to argue why G[R′] is connected. Let x, y be any two vertices of R′. Since B is bipartite and B[S]
is connected, there is a path in B[S]: x = u1, v(C ′i1), u2, v(C ′i2), u3, . . . , uh−1, v(C ′ih−1

), uh = y with

u` ∈ R′ for any ` ∈ [h]. As u` and u`+1 are in the same clique v(C ′i`) they are linked by an edge
in G[R′]. Thus, x = u1, u2, u3, . . . , uh = y is a path in G[R′].

The correctness of the reduction crucially relied on the fact that every edge is fully contained in
at least one clique of the cover. This would not be the case with a vertex clique cover (a partition
of the vertex set into sets inducing cliques). In Section 3.3, we give a more complicated FPT
algorithm parameterized by the vertex clique cover size (if such a cover is given in the input). It
is not surprising that the edges going from one clique to another play an important role in the
greater difficulty of the parameterized algorithm.

Ganian [24], Theorem 9 and Theorem 8 prove that Graph Motif is in FPT if the parameter
is the vertex cover number or the distance to clique. Therefore, the problem has a kernel for these
two parameters [38]. Though, this does not imply that the size of the corresponding kernels is poly-
nomial. We show that the corresponding kernels cannot be polynomial unless NP ⊆ coNP/poly.
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Theorem 11. Unless NP ⊆ coNP/poly, Graph Motif has no polynomial kernel when parame-
terized by the vertex cover number or the distance to clique, even for (i) motifs with only 3 colors
or (ii) when the motif is colorful.

Proof. We only detail the proof for (i) for parameter vertex cover. We will define an OR-cross-
composition [9] from the NP-complete X3C problem, stated as follows: given an integer q, a set
X = {x1, x2, . . . , x3q} and a collection S = {S1, . . . , S|S|} of 3-elements subsets of X, the goal is
to decide if S contains a subcollection T ⊆ S such that |T | = q and each element of X occurs in
exactly one element of T . Given t instances, (X1,S1), (X2,S2), . . . , (Xt,St), of X3C, we define our
equivalence relation R such that any strings that are not encoding valid instances are equivalent,
and (Xi,Si), (Xj ,Sj) are equivalent if and only if |Xi| = |Xj | and |Si| = |Sj |. We will build an
instance (G, c,M) of Graph Motif parameterized by the vertex cover number, where G is the
input graph, c the coloring function and M the motif, such that there is a solution for Graph
Motif if and only if there is an i ∈ [t] such that there is a solution for (Xi,Si). We will now
describe how to build such instance of Graph Motif. The graph G consists of t independent
nodes r1, r2, · · · , rt. There are also O((3q)3) nodes sx,y,z, 1 6 x < y < z 6 3q, with an edge
between ri and sx,y,z if and only if the 3-element subset {x, y, z} exists in Si. Finally, there are
|Xi| = 3q nodes xi, 1 6 i 6 3q, and there is an edge between xi and every subset sx,y,z where
xi occurs (see Figure 3). The coloration is c(ri) = 1, for all 1 6 i 6 t, c(sx,y,z) = 2 for all
1 6 x < y < z 6 3q, and c(xi) = 3, 1 6 i 6 3q. The multiset M consists of 1 occurrence of the
color 1, q occurrences of color 2 and 3q occurrences of color 3.

Color 1

Color 2

Color 3

r1 r2 . . . rt

s1,2,3 s1,2,4 . . . s1,2,3q s1,3,4 . . . s3q−2,3q−1,3q

x1 x2 . . . x3q

risx,y,z ∈ E(G)⇔ {x, y, z} ∈ Si

xsx,y,z, ysx,y,z, zsx,y,z ∈ E(G),∀1 6 x < y < z 6 3q

Figure 3: Illustration of the construction of G for parameter vertex cover. The motif consists of 1
occurrence of color 1, q of color 2 and 3q of color 3.

It is easy to see that {sx,y,z|1 6 x < y < z 6 3q} ∪ {xi|1 6 i 6 3q} is a vertex cover for G (as
its removal leaves an independent set) and that its size is polynomial in 3q and hence in the size
of the largest instance.

Let us show that there is a solution for our instance of Graph Motif if and only if at least
one of the (Xi,Si)’s has a solution of size q.

Suppose that (Xi,Si) has a solution Ti of size q. We set R = {ri} ∪ {sx,y,z | {x, y, z} ∈
Ti} ∪ {xi|1 6 i 6 3q}. One can easily check that G[R] is connected and that c(R) = M .

Conversely, suppose now that there is a solution R ⊆ V such that G[R] is connected and
c(R) = M . Due to the motif, only one of the nodes ri is in R and all nodes xi are in R. We
claim that there is then a solution Ti in (Xi,Si), where i is the index of the only node ri in R.
We add in Ti the q sets {x, y, z} such that sx,y,z ∈ R. Since R is a solution, the nodes sx,y,z in
R correspond to a partition of X; otherwise, one of the nodes xi would be disconnected. Then,
Ti covers exactly all the elements of Xi. By the connectivity constraint, the q sets added in Ti all
occur in the instance i such that ri ∈ R.

If the considered parameter is the distance to clique, one can consider the nodes r1, r2, . . . , rt
as a clique. The removal of {sx,y,z|1 6 x < y < z 6 3q}∪{xi|1 6 i 6 3q} leaves one clique and its
size is polynomial in the size of the largest instance. The correctness is the same as for parameter
vertex cover number, as only one occurrence of color 1 is in the motif.



3 FPT ALGORITHMS, KERNELIZATION AND ETH-BASED LOWER BOUNDS 10

The second item (ii) of the statement can be proven similarly following the ideas of [5, Theorem
6]. That is, the nodes sx,y,z are duplicated q times, i.e. into nodes six,y,z, 1 6 i 6 q, where

c(six,y,z) = i, forcing to have at most q of such nodes in the solution. Also, the 3q nodes xi receive
a fresh unique color (say with colors q+ 1 to q+ 1 + 3q), forcing all of them to be in any solution.
The nodes r1, r2, . . . , rt are colored with color q + 1 + 3q + 1.

3.3 Parameters with unbounded neighborhood diversity

This section disproves the idea that Graph Motif is only tractable for classes with bounded
neighborhood diversity. Indeed, we show that Graph Motif is in FPT parameterized by the size
of a vertex clique cover or by the distance to co-cluster. The former algorithm creates a win/win
based on König’s theorem applied to a bounded number of auxiliary bipartite graphs. The latter is
simpler and uses as subroutines the algorithms parameterized by vertex cover number and distance
to clique.

In the Vertex Clique Cover problem (also known as Clique Partition), one asks, given
a graph G = (V,E) and an integer k, for a partition of the vertices into k subsets C1, . . . , Ck ⊆ V ,
such that ∀i ∈ [k], G[Ci] is a clique. The set {C1, . . . , Ck} is called a vertex clique cover of G.
The vertex clique cover number of a graph G is the smallest k such that G has an vertex clique
cover of size k. This problem is equivalent to the Graph Coloring problem since a graph as
a vertex clique cover of size k if and only if its complement is k-colorable. Therefore, Vertex
Clique Cover is unlikely to be in XP. However, if a vertex clique cover comes with the input,
we show that Graph Motif is in FPT for parameter vertex clique cover number. One can notice
that Graph Motif is NP-hard in 2-colorable graphs. This is a striking example of how easier
can Graph Motif be on the denser counterpart of two complementary classes.

To realize that vertex clique cover number has unbounded neighborhood diversity, think of
the complement of a bipartite graph. The vertex clique cover is of size 2 but the neighborhood
diversity could be arbitrary; for parameter distance to co-cluster, think of the complement of a
cluster graph with an unbounded number of cliques.

Theorem 12. Graph Motif can be solved in time O∗(kO(k)) where k is the vertex clique cover
number, provided that the vertex clique cover is given as part of the input.

Proof. Let (G = (V,E), c,M) be the instance and suppose that the partition into cliques {C1, . . . , Ck}
of the graph G is given. We remove all the vertices whose color does not belong to M , since they
cannot be part of a solution. Observe also that this can only decrease the vertex clique cover
number. First, we guess in time O∗(2k) which of the cliques S = {C ′1, . . . , C ′k′} ⊆ {C1, . . . , Ck}
have a non-empty intersection with a fixed solution R, and we remove from G the cliques which
are not in S.

We denote by E(X,Y ) the set of edges of E having one endpoint in X and the other in Y . We
call transversal edge an edge in E(C ′i, C

′
j) with i 6= j ∈ [k′]. Such a transversal edge is said to have

type {i, j}. An inner edge is an edge which lies within the same clique C ′i for some i ∈ [k′]. As
G[R] is connected, one may observe that there is a set Ec ⊆ E(G[R]) of k′ − 1 transversal edges
such that between every pair of vertices u, v ∈ R, there is a path made only of edges in Ec and
inner edges. Informally, Ec is a spanning tree of the k′ cliques of S seen as vertices (see Figure 4).
More precisely, the edges of Ec form a subforest of G. We guess in time O∗(k′2(k

′−1)) the type of
each edge in Ec. We denote by Tc the corresponding set of k′ − 1 types.

One may first think of the tansversal edges of Ec as a matching. Although two edges of Ec
leaving the same clique C ′i can share the same vertex in C ′i. Actually this piece of information
will prove useful for the algorithm to work. Therefore, we also guess in time O∗(B2(k′−1)) =

O∗((2k′)2k
′
) if two edges in Ec of types {i, j} and {i, j′}, happen to have a common endpoint.

One can see it the following way: among the potentially 2(k′ − 1) endpoints of the matching Ec,
we needed to find the correct partition into the classes of the equality relation. As R is a solution,
M ⊆ c(C ′1 ∪ . . .∪C ′k′) holds. Therefore, it all boils down to finding k′− 1 transversal edges whose



3 FPT ALGORITHMS, KERNELIZATION AND ETH-BASED LOWER BOUNDS 11

a b

c a

C ′1

d a

b c d

c

C ′2

a

c
. . .

b a

a d

C ′k′

⇓

a

b

c

H1

a

b

c

d

H2

B1,2 :

Figure 4: The cliques C ′1, C
′
2, . . . , C

′
k′ , the edge interaction between C ′1 and C ′2, and the corre-

sponding auxiliary bipartite graph B1,2 when the multiset M contains a with multiplicity exactly
one and c with multiplicity at least 2 (indeed, observe that the edge cc is present in B1,2 but not
the edge aa).

set of types is precisely Tc and such that the multiset of colors of their at most 2(k′−1) endpoints
is included in M .

For each type {i, j} ∈ Tc, we build the bipartite graph Bi,j = (Hi]Hj , F ) where Hi (resp. Hj)
are all the colors of the vertices of C ′i (resp. C ′j). There is an edge in F between color c ∈ Hi and
color c′ ∈ Hj whenever there is a transversal edge of type {i, j} whose endpoint in C ′i is colored by
c and whose endpoint in C ′j is colored by c′. In the special case when c and c′ is in fact the same
color and that color appears only once in M , we remove the edge cc′ from F . We indeed know
that no solution will contain such a tranversal edge. We remove all the isolated vertices of every
Bi,j . We also remove every vertex c ∈ Hi from Bi,j if there is a j′ such that we have guessed that
the transversal edges of type {i, j} and {i, j′} share a common point and c is not in the Hi of Bi,j′

(it was an isolated vertex). The rest of the algorithm is a win/win based on the classic König’s
theorem which states that, in a bipartite graph, the size of a minimum vertex cover is equal to
the size of a maximum matching. The core idea is that either there is a large diversity of colors
for the endpoints of a transversal edge, and a suitable transversal edge can always be found at the
end, or there is only a limited choice of colors for those endpoints and one can branch over those
possibilities. By branching, we commit ourselves to find a transversal edge uv whose endpoint,
say, u has a specific color c. In that case, we say that the endpoint u has its color fixed. In a first
step, we will branch until the endpoints of all the transversal edges are fixed (or can always be
fixed). In a second step, we will build a solution respecting the fixed colors.

We distinguish two cases. Either, there is a matching Si,j in Bi,j with at least 2k′ − 3 edges.
Then, for any multiset of colors Mo ⊆ M of size at most 2k′ − 4, there is an edge {c, c′} in Si,j
such that Mo ∪ {c, c′} ⊆ M . Indeed, since |Si,j | > |Mo|, there is at least one edge of Si,j whose
endpoints are not colored by an element of Mo. Recall also that there can be an edge between
two vertices of the same color only if the multiplicity of that color in M is at least 2. Therefore,
whatever the multiset Mo ⊆M of colors at the endpoints of the k′ − 2 other transversal edges is,
one can always find a transversal edge of type {i, j} colored by c and c′ such that Mo∪{c, c′} ⊆M .
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Thus, we can forget about this particular transversal edge, and we say that the transversal edge
of type {i, j} is abundant.

Otherwise, there is a vertex cover of Bi,j with at most 2k′ − 4 vertices. Note that a vertex
c ∈ Hi (resp. Hj) in the graph Bi,j corresponds to choosing color c for the endpoint in C ′i (resp. C ′j)
of the transversal edge of type {i, j}. Therefore, we branch on those at most 2k′ − 4 possibilities
of coloring one of the endpoints of the transversal edge of type {i, j}.

This describes what we do when no endpoint of the transversal edge has its color fixed. Now,
suppose we have a transversal edge of type {i, j} such that the color of the endpoint in, say, C ′i is
fixed to color c. If the number of neighbors of vertex c ∈ Hi in the graph Bi,j is at least 2k′ − 3,
we declare this edge abundant and no longer care about this edge. Otherwise, if this number is
at most 2k′ − 4, we branch on the at most 2k′ − 4 ways of coloring the endpoint in C ′j of the
transversal edge of type {i, j}.

Note also that when we fix the color of an endpoint in C ′i of a transversal edge of type {i, j},
it also fixes the color of the endpoints in C ′i of potential transversal edges of type {i, j′} which
we have guessed to share a common endpoint (in C ′i) with the transversal edge of type {i, j}.
Although, this potential set of transversal edges might very well be empty. After a branching of
depth at most 2k′ − 2 and arity at most 2k′ − 4, we reach a situation where each transversal edge
is either abundant or both its endpoints have fixed colors. We fix the colors of the endpoints of
the abundant transversal edges (which are not fixed yet) in the following way. For each tree of the
forest Ec, we root them arbitrarily. We then consider an arbitrary parent of some deepest leaves.
We fix the colors of the endpoints corresponding to this parent and all its children. We explained
above why this is always possible. We iterate this until every vertex of this tree has its color fixed.

Now, all the endpoints of the transerval edges have their color fixed. By guessing the set Tc
of types of the transversal edges and whether or not two transversal edges are incident, we have
in fact guessed the shape of a forest that those edges constitute in the original graph G. For each
tree of this abstract forest, we have to compute the actual transversal edges. At this point, a node
in this tree is naturally labeled by a pair (clique,color) (C ′i, c). We associate a subset of vertices to
a node of this labeled tree in a bottom-up fashion. Each leaf labeled by (C ′i, c) is associated with
the subset Ji,c ⊆ C ′i of vertices colored by c (that is, ∀u ∈ C ′i, u ∈ Ji,c ⇔ c(u) = c). We associate
each inner node labeled by (C ′i, c) whose r children are associated with sets Ji1,c1 , . . . , Jir,cr with
the subset Ji,c ⊆ C ′i of vertices colored by c which have at least one neighbor in Jih,ch for each
h ∈ [r]. When the last node e of the tree gets its set J , this set is non empty if we have made all
our guesses accordingly to solution R. We define e as the root of the tree. Now, in a top-down
manner we find the corresponding transversal edges. We take in the solution an arbitrary vertex
u ∈ J . In each set associated with a child of e we take arbitrarily a neighbor of u; and so on,
up to the leaves. By construction, this is always possible. It is possible that while doing this
process on two different trees of the forest, we take ”twice” the same vertex in some C ′i. This
can only help since the goal is not to exceed the multiplicities of M . Equivalently, we could have
guessed the forest of transversal edges with the least number of connected components, to forbid
this possibility.

We summarize the algorithm.
1) Guess the shape of the forest formed by a fixed subset Ec of k′ − 1 transversal edges ensuring
the connectivity between the cliques in a fixed solution R.
2) Win/win to properly guess the colors of the endpoints of Ec: (a) either the variety of colors is
more than enough and this color can be fixed arbitrary later, or (b) the are only few choices and
one can branch.
3) For each tree of Ec, find the transversal edges: one bottom-up procedure to check if there is
indeed a solution and one top-down to select the actual vertices.
4) As R is a solution, one can complete this to a solution by taking arbitrary (since everything is
connected) vertices with the right colors.

Observe that during step 2), we first do all the branchings advocated by (b). Then we reach a
point when no further branching is possible, and we fix the colors arbitrarily as indicated by (a).

The running time of the algorithm is O∗(2kk2k−2(2k)2k(2k − 4)2k−2) = O∗((4
√

2k)6k) =
O∗(kO(k)).
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Theorem 13. Graph Motif can be solved in O∗(22k log k), where k is the distance to co-cluster.

Proof. Let (G = (V,E), c,M) be any instance of Graph Motif and let R be a solution. Let X
be a minimum subset (of size k) whose deletion makes the graph G a co-cluster. Co-cluster graphs
are exactly the P3-free graphs. A P3 graph is a path with 3 nodes (a P3 graph is its complement,
thus one node and one edge). We can apply a bounded-depth branching algorithm by finding a
P3 and branching on which of the three vertices to put into the solution. This leads to an O∗(3k)
algorithm to find X. Let S1, S2, ..., Sq be the partition of the co-cluster graph G[V \ X] into
maximal independent sets. The idea is to run the algorithm parameterized by the vertex cover
number if at most one Si is inhabited by solution R, and the one parameterized by distance to
clique otherwise. Therefore, we distinguish two cases:

(A) |{i ∈ [q] | R ∩ Si 6= ∅}| 6 1,

(B) |{i ∈ [q] | R ∩ Si 6= ∅}| > 2.

In case (A) holds, we will find a solution by solving, for each i ∈ [q], the instance (G[X ∪
Si], c|X∪Si

,M). As X is a vertex cover of size k in G[X ∪Si], this can be done in time O∗(22k log k)
by Theorem 9.

In case (B) holds, we can guess in time n2 one vertex s ∈ Si∩R and one vertex t ∈ Sj ∩R with
i 6= j ∈ [q]. Then, we will find a solution by solving (G′ = (V \ {s, t}, E′), cV \{s,t},M \ c({s, t}))
where E′ = (E ∪{{u, v} | u, v ∈ Sa, a ∈ [q]})|V \{s,t}. Indeed, if Y ⊆ V \ {s, t} induces a connected
subgraph in G′, then G[Y ∪{s, t}] is connected. As G′−X is now a clique, this can be done in time
O∗(3k) by Theorem 8. The overall running time is O∗(3k + q22k log k + n23k) = O∗(22k log k).

3.4 ETH-based lower bounds

Here, we show that a parameterized subexponential algorithm (i.e., running in O∗(2o(k))) solving
Graph Motif for the parameters k that we considered in this section, is unlikely. We get those
negative results as a corollary of the fact that, while trying out all the subsets of vertices obviously
solves Graph Motif in time O∗(2n), a subexponential time algorithm (i.e., running in 2o(n)) is
unlikely:

Theorem 14. Under ETH, Graph Motif cannot be solved in time 2o(n), even (i) on graphs
with distance 1 to cluster, and (ii) on trees.

Proof. Under ETH, Dominating Set restricted to graphs with degree 6 is not solvable in time
2o(n) where n is the number of vertices of the input graph [23]. From a degree-6 graph H and an
integer t, we build an instance I = (G = (V,E), c : V → C,M) of Graph Motif such that there
is a dominating set of size at most t in H if and only if I is a YES-instance. First we show item
(i). There are |V (H)|+ 1 different colors in C, one color cv for each vertex v of H, and one special
color c. For each vertex v in H, we introduce a clique in G of size |NH [v]| (6 8) where one vertex
is colored by the special color c, and the others are colored by each color of {cw|w ∈ NH [v]}. We
add a vertex z colored by c and link it to all the other vertices colored by c (in the cliques). The
motif M consists of c with multiplicity t+ 1 and cv (for each v ∈ V (H)) with multiplicity 1. That
ends the construction. Observe that the number of vertices of G is linear in |V (H)| (it is at most
8|V (H)| + 1), and removing z from G gives a cluster graph of |V (H)| cliques of size at most 8
each.

To obtain item (ii), G is transformed in the following way: each clique is replaced by a star
where the center is the vertex with the special color c.

Those reductions are identical to the reduction showing that Graph Motif is hard on trees of
diameter 4 [2] (for (ii)) and Theorem 21 (for (i)), and therefore the reader is referred to paper [2]
for correctness.

Corollary 15. Under ETH, for every parameter upper-bounded by n, Graph Motif cannot be
solved in time 2o(k), even on trees.
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Among the six parameters for which we gave an FPT algorithm, two are not upper-bounded
by n but by n2: cluster editing and edge clique cover numbers. Though, we can observe that the
graph built in item (i) of the proof of Theorem 14 has both a cluster editing of size n (by removing
the n edges between z and the n other vertices colored by c) and an edge clique cover of size 2n.
Therefore, for all the six parameters, a subexponential parameterized algorithm in 2o(k) would
disprove ETH.

We finally show finer lower bounds under SETH and SCH, for parameter vertex cover and
distance to clique. In particular, Theorem 17 implies that, even though there should be an
algorithm solving Graph Motif in time O∗(ck) with c < 8, and k being the distance to a clique,
(thereby, improving over Theorem 8), it is unlikely that c goes below 2.

Theorem 16. Under SETH, for any ε > 0, Graph Motif cannot be solved in time O((2− ε)k),
where k is the vertex cover number.

Proof. In the Hitting Set problem, one is given a set of sets S = {S1, . . . , Sm} over elements
X = {x1, . . . , xn}, and an integer t, and one has to find a set X ′ ⊆ X (the hitting set) of size at
most t such that ∀S ∈ S, S ∩ X ′ 6= ∅. It is known that under SETH, for any ε > 0, Hitting
Set is not solvable in time O((2 − ε)n) [15]. From any instance (X ,S, t) of Hitting Set with
n elements, we construct an equivalent instance (G = (V,E), c,M) of Graph Motif where the
graph G has a vertex cover of size n. We create one vertex v(xi) for each element xi of X and one
vertex v(Sj) for each set Sj of S. The element vertices (the v(xi)’s) are colored by 1 and form a
clique, while the set vertices (the v(Sj)’s) are colored by 2 and constitute an independent set. We
link an element vertex to a set vertex if the corresponding element is in the corresponding set;
that is, v(xi)v(Sj) ∈ E ⇔ xi ∈ Sj . Therefore, G is the adjacency split graph of the set-system
(X ,S) where the element vertices are the clique. M contains 1 with multiplicity t and 2 with
multiplicity m. Observe that the set of all the element vertices is a vertex cover of G of size n.

If X ′ = {xa1 , . . . , xat} is a solution (potentially, add arbitrary elements to get a solution
with exactly t elements) to the hitting set instance, then R :=

⋃
j∈[m] v(Sj)∪ {v(xa1), . . . , v(xat)}

(obtained by taking all the set vertices and the t element vertices corresponding to the elements of
X ′) satisfies the multiset constraint. Also, the subgraph G[R] is indeed connected by the definition
of a hitting set, and the fact that {v(xa1), . . . , v(xat)} is a clique.

Conversely, let R ⊆ V be a solution for the constructed instance of Graph Motif. By the
multiset constraint, R should contain all the vertices colored by 2:

⋃
j∈[m] v(Sj), and t vertices

colored by 1: {v(xa1), . . . , v(xat)}. We claim that X ′ := {xa1 , . . . , xat} is a hitting set (of size t).
Indeed, if a set Sj was not hit by X ′, then the set vertex v(Sj) would not be connected to the
clique {v(xa1), . . . , v(xat)}, and G[R] would have at least 2 connected components.

Theorem 17. Under SCH, for any ε > 0, Graph Motif cannot be solved in time O((2− ε)k),
where k is the distance to clique.

Proof. From an instance of Set Cover with n elements, we build an equivalent instance of
Graph Motif where the distance from the graph to a clique is n. Again, we create one vertex for
each element and one vertex for each set. The element vertices are colored by 1 and constitute an
independent set, while the set vertices are colored by 2 and form a clique. We link each element
vertex to each set vertex if the corresponding element is in the corresponding set. The graph is
the adjacency split graph where the set vertices are the clique. M contains 1 with multiplicity n
and 2 with multiplicity t. The removal of the set of all the element vertices (of size n) would leave
a clique. The correctness of the reduction is similar to the one of Theorem 16.

4 Parameters for which Graph Motif is hard

In this section, we provide several parameters for which Graph Motif is not in XP, unless
P = NP. In other words, the problem is NP-hard even for fixed values of the parameter. We also
prove that the problem remains W[1]-hard for parameter max leaf number. Figure 1 summarizes
these results.
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4.1 Deletion set numbers

We study parameters which correspond to the minimum number of vertices to remove to make
the graph belong to a restricted class. We will show that Graph Motif remains NP-hard for
constant values of those parameters. More precisely, the colorful restriction of Graph Motif
is hard even if we can obtain a set of disjoint paths by removing 1 vertex, a cluster graph by
removing 1 vertex, and an acyclic graph by removing 0 edge.

Theorem 18 ([21]). Graph Motif is NP-hard even when G is a tree of maximum degree 3 and
the motif is colorful.

Corollary 19. Graph Motif is NP-hard even for graphs with feedback edge set number 0 and
when the motif is colorful.

Theorem 20. Graph Motif is NP-hard even (i) for graphs with distance 1 to disjoint paths and
when the motif is colorful and (ii) for graphs with bandwidth 6 and when the motif is colorful.

Proof. We will detail only (i). We propose a reduction from Exact Cover by 3-Sets (X3C).
This special case of Set Cover is known to be NP-complete. Recall that X3C is stated as follows,
given a set X = {x1, x2, . . . , x3q} and a collection S = {S1, . . . , S|S|} of 3-elements subsets of X,
the goal is to decide if S contains a subcollection T ⊆ S such that each element of X occurs in
exactly one element of T . The size of X must be a multiple of three since a solution is a set of
triplets where each element of X must appear exactly once.

Let us now describe the construction of an instance I ′ = (G = (V,E), c,M) of Graph Motif
from an arbitrary instance I = (X,S) of X3C (see also Figure 5). The graph G = (V,E) is built
as follows: there is a distinct root r, for each Si ∈ S, there are two paths built from r, the first
one is made of a node a1i , three nodes representing the elements in Si and a node b1i , the other one
is made of two nodes a2i and b2i . The graph is thus a tree such that removing r gives a collection
of 2|S| paths.

The set of colors is C = {1, 2, . . . , 2|S| + 3q + 1}. The coloration of G is such that c(a1i ) =
c(a2i ) = i and c(b1i ) = c(b2i ) = |S| + i for 1 6 i 6 |S|, the 3q colors 2|S| + 1, . . . , 2|S| + 3q are
assigned to vertices corresponding to X, and c(r) = 3q+ 2|S|+ 1. The motif is equal to the set of
colors and is thus colorful. This construction is clearly done in polynomial time in regards of I.

r

a11

x1

x3

x5

b11

a21

b21

a12

x1

x2

x4

b12

a22

b22

a13

x2

x4

x6

b13

a23

b23

a14

x2

x5

x6

b14

a24

b24

Figure 5: The graph G built from X = {x1, x2, . . . , x6} (thus with q = 2) and S =
{{x1, x3, x5}, {x1, x2, x4}, {x2, x4, x6}, {x2, x5, x6}}.

Let us now prove that if there is a solution for an instance I of X3C, then there is solution
for the instance I ′ of Graph Motif. Given a solution T ⊆ S for I, a solution P for I ′ is built
as follows: take the root, for each Si ∈ T , take the whole path from a1i to b1i , and for each Si /∈ T ,
take the path a2i b

2
i . Informally speaking, for each set, either the set is in T and thus the path

with the nodes corresponding to the elements is taken, otherwise the path with only two nodes is
taken. By definition of a solution for I, each color 2|S|+ 1, . . . , 2|S|+ 3q is taken only once, and
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for each color 1, . . . , 2|S|, exactly one of the two occurrences is taken. The root is also taken and
thus the solution is connected.

Conversely, let us now prove that there is a solution for the instance I of X3C if there is a
solution for the instance I ′ of Graph Motif. First observe that the root r must be in the solution
since it is the only node with this color. Also, for each 1 6 i 6 |S|, either a1i or a2i must be in the
solution since it is the only node with color i. The same holds for b1i and b2i . Also, observe that if
a1i is in the solution, then b1i must also be in the solution, with the three element nodes along the
path. Indeed, if it is not the case, the color c(b1i ) will never be in the solution since the only other
node with this color is b2i . However, in order to add b2i in the solution, a2i must be in the solution
to respect the connectivity constraint, which is impossible since c(a1i ) = c(a2i ). Therefore, either
the three element nodes corresponding to a set Si ∈ S are entirely in the solution P , or none are.
The solution is built as follows: T = {Si : a1i ∈ P}. Since P is a solution, colors of P appear
exactly once. Therefore, each element of X appears exactly once in T .

For (ii), we slightly modify the graph G. Instead of having one vertex r linked to each aji (for
i ∈ [|S|] and j ∈ [2]), we now have a path R = r11r

2
1r

1
2r

2
2 . . . r

1
|S|r

2
|S|, and for each i ∈ [|S|] and

j ∈ [2], there is an edge between rji and aji . We call that new graph H. We may observe that H
is a comb graph whose spine is R. The set of colors is now C = [4|S| + 3q]. All the vertices in
G − r keep the same colors, and for each i ∈ [|S|] and j ∈ [2], c(rji ) = 2|S| + 3q + 2(i − 1) + j.
In other words, we give a fresh and distinct color to each vertex of R. Again, the motif M is the
entire set of colors C. The correctness is the same as for (i), since all vertices of R must be in any
solution because they are the only occurrences of their respective color. Since the maximal paths
having exactly one vertex in the spine R, called teeth, are of length at most 6, the bandwidth of
H is bounded by 6, too. Indeed, one can number the vertices increasingly tooth by tooth. A more
careful analysis shows that the bandwidth of H is actually 5.

Actually, one could also follow the reduction of [18] but start from a version of Sat where each
literal appears in at most two clauses. This variant is also NP-complete, and the graph produced
would have bandwidth 4.

Theorem 21. Graph Motif is NP-hard even for graphs with distance 1 to cluster and when the
motif is colorful.

Proof. To prove this theorem, one can use the reduction from Colorful Set Cover to Graph
Motif where the input graph is a tree of diameter at most 4 (called superstar) [2]. The idea is
just to replace each subtree representing a set Si by a clique of size |Si|+ 1. Removing the root of
the former superstar in this new graph yields a disjoint union of cliques and the rest of the proof
carries over.

4.2 Dominating set number

Being given a small dominating set of the graph cannot help in solving Graph Motif. For any
instance (G = (V,E), c,M), one may add a universal new vertex v to G, and color it with a color
which does not appear in motif M . The minimum dominating set {v} is of size 1. Vertex v cannot
be part of the solution due to its color, so answering the new problem is as hard as solving the
original instance. However, this could be considered as cheating since a vertex whose color is not
in M can immediately be discarded from the graph. We show that even when ∀v ∈ V , c(v) ∈M ,
graphs with dominating set of size 2 can be hard to solve.

Theorem 22. Graph Motif is NP-hard even for graphs with a minimum dominating set of
size 2 and when the motif is colorful.

Proof. We reduce from a rooted variant of Graph Motif, where the solution should contain a
special vertex r. This variant was proven NP-hard by Ambalath et al. [2].

We will now prove that the problem remains hard with a small dominating set. The informal
idea is to add a universal node u such that the dominating set is small, but with a gadget to
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avoid the possibility of having this universal node in a solution (making the problem easy since
any subset will be connected due to u). More formally, from any instance I = (G = (V,E), c,M),
and any fixed vertex r in V , we build the instance I ′ = (G′ = (V ∪ {u, s, t}, E′), c′,M ′), where
E′ = E ∪ {{s, t}, {t, r}} ∪ {{u,w} | w ∈ V }, c′(w) = c(w) for each w ∈ V , c′(t) = c′(u) = x,
c′(s) = y, with x and y being two distinct fresh colors, and M ′ = M ∪ {x, y}. By construction,
{u, t} is a dominating set in G′ of size 2. Let R be a solution of Graph Motif for instance I ′.
Vertex s is the only vertex with color y, so it has to be in R. But then, as the only neighbor of s
is t (and |M ′| > 2), t should also be in R. Only one vertex with color x can be in R, so u cannot
be part of the solution. Now, the problem is as hard as solving instance I rooted in r.

4.3 Max leaf number

The max leaf number of a graph G, denoted by ml(G), is the maximum number of leaves (i.e.,
vertices of degree 1) in a spanning tree of G. Therefore, if G is itself a tree, ml(G) is simply the
number of leaves of G. We will first show that Graph Motif is in XP parameterized by max leaf
number. The nO(ml(G)) running time of our algorithm relies on a simple structural lemma that we
state here:

Lemma 23. Let G = (V,E) be a connected graph and S ⊆ V be the subset of all the vertices of G
of degree at least 3. Then |S| 6 4ml(G) and G[V \S] is a disjoint union of at most 5ml(G) paths.

Proof. The first part of the lemma (|S| 6 4ml(G)) is already known [30]. Let us now prove the
second part: G[V \ S] is a disjoint union of at most 5ml(G) paths.

As G is connected, we can find s−1 paths P1, . . . , Ps−1 of G[V \S] such that G[S∪P1∪. . .∪Ps−1]
is connected, where s is the number of connected components of G[S]. Therefore, we build the
following spanning tree of G: we start by taking the edges of any spanning forest of G[S], plus
all the edges incident to at least one vertex of a path Pi (for i ∈ [s− 1]). Now, all the remaining
paths in G[V \ S] will provide (at least) one leaf each. As s 6 |S| 6 4k, if the number of paths
in G[V \ S] were larger than 5k, then we could exhibit a spanning tree with at least k + 1 leaves,
which is a contradiction to k = ml(G).

On the negative side, we will prove that Graph Motif is W[1]-hard with parameter max leaf
number, which is to the best of our knowledge, the first problem to exhibit such a behavior. In
fact, we will even prove that it is W[1]-hard on trees with parameter number of leaves in the tree
plus number of distinct colors in the motif. This strengthens the previously known result that the
problem is W[1]-hard on trees with parameter number of distinct colors in the motif [21].

Theorem 24. Graph Motif can be solved in time O∗(16kn10k) = nO(k), where k = ml(G) and
is in W[P] with respect to that parameter.

Proof. Let (G = (V,E), c,M) be any instance of Graph Motif, k = ml(G), and S the set of
vertices with degree strictly greater than 2 in G. Again, we may assume that G is connected and
also that G is not a cycle, since otherwise Graph Motif is trivially solvable in time O(n2).

It is known that |S| 6 4k (even 4k− 2) [30]. First, we can exhaustively find in time 24k = 16k

the intersection T = S ∩R, where R is a fixed solution. By definition, V \S are vertices of degree
at most 2. In particular, G[V \ S] is a disjoint union of paths (some of the paths may consist of a
single vertex). Indeed, there cannot be a cycle in G[V \S] since this cycle could not be connected
to the rest of G. By Lemma 23, the number of paths in G[V \ S] is at most 5k.

To satisfy the connectivity constraint, solution R can intersect each of the at most 5k paths of
G[V \ S] in at most n2 different ways (more precisely in at most

(
l
2

)
+ l+ 1 where l is the number

of vertices in the path). So, we can guess the intersection R ∩ (V \ S) in time (n2)5k = n10k.
Overall, we can decide Graph Motif in time O∗(16kn10k) where k is the max leaf number.

We can also show that Graph Motif parameterized by ml(G) is in W[P] with the character-
ization of this class by Turing machines with bounded non-determinism [12].

Theorem 25. Graph Motif is W[1]-hard with respect to the max leaf number plus the number
of colors, even on trees.
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Proof. We show the stronger result that Graph Motif is W[1]-hard on subdivisions of the star
K1,k with parameter k+ |C| where C is the set of colors. From any instance H = (H1] . . .]Hk, E)
of the W[1]-hard problem Multicolored k-Clique, we construct an equivalent instance (T =
(V,E′), c : V → C,M) of Graph Motif where T is a tree with k +

(
k
2

)
+ 1 leaves and C consists

of
(
k
2

)
+ 3 colors. More precisely, T is a subdivision of the star with k +

(
k
2

)
+ 1 leaves. We recall

that the Multicolored k-Clique problem asks for a k-clique in H hitting each Hi (exactly
once). By potentially adding some isolated vertices, we can assume that each Hi contains the
same number t of vertices, and Hi = {ui,1, . . . , ui,t}.

The set of colors C is {c0, cb, ce} ∪
⋃
i<j∈[k]{ij} (|C| =

(
k
2

)
+ 3). The motif M contains c0 with

multiplicity 1, both cb and ce with multiplicity s := k(t − 1) +
(
k
2

)
t2, and for any i < j ∈ [k],

color ij with multiplicity t2. We write M = {1 × c0, s × cb, s × ce} ∪
⋃
i<j∈[k]{t2 × ij}, with the

convention that mul× col means color col appears in the multiset with multiplicity mul.
The tree T is a subdivision of a star with k +

(
k
2

)
+ 1 leaves whose center v is the only vertex

colored by c0. Thus, v should necessarily be in any solution. By construction, T [V \ {v}] is a
disjoint union of k+

(
k
2

)
+1 paths. We can think those paths as oriented from the vertex neighbor

of v (the first vertex of the path) to the vertex the farther away from v (the last vertex of the
path). We will extensively call those paths oriented paths. By this, we only mean something
informal about a potential solution growing from v along those paths, and we do not mean that
the graph we build is directed. For each i ∈ [k], a path Pi will correspond to the vertices of Hi and
for any pair i < j ∈ [k], a path Pi,j will encode the edges of Ei,j := E(Hi, Hj). Additionally, we
have a path Pbe with 2s vertices alternating color cb and ce; the first vertex of the path is colored
by cb, the second by ce and so forth.

Before we describe the Pis and the Pi,js, we introduce the notion of block and indicate a useful
property that the construction will satisfy. A block is a subpath of an oriented path which starts
with a vertex colored by cb (as begin), ends with a vertex colored by ce (as end), and such that
no internal vertex in the subpath has color cb or ce. The path Pbe can be seen as s consecutive
empty blocks. We may also observe that two different blocks of the same oriented path cannot
intersect. We will construct the Pis and the Pi,js such that they are entirely spanned by blocks;
and we call that alternating property. Therefore, every vertex except v is contained in a (unique)
block. In particular, each oriented path Pi or Pi,j has its first vertex colored by cb and its last
vertex colored by ce. And, if we only consider vertices colored by cb and ce along the path, they
alternate cb − cecb − ce . . . with the extra property that there is no vertex between color ce and
cb (see Figure 6). A connected subgraph of T containing v (i.e., a potential solution) is entirely
defined by k +

(
k
2

)
+ 1 stopping points: one for each oriented path Pbe, Pi, or Pi,j . A stopping

point of an oriented path P with respect to a given (attempt of) solution R is the farthest vertex
from v lying in R ∩ P . Observe that the unique path from v to a stopping point is exactly the
intersection of the solution and the oriented path. If R∩P = ∅, by convention, the stopping point
is v. It is easy to see that, in each oriented path Pbe, Pi, or Pi,j , a stopping point relative to an
actual solution is either v or a vertex colored by ce (that is the end of a block). Put differently, if
R is a solution and B is a block, R∩B = ∅ or R∩B = B. Indeed, if it is not the case, because of
the alternating property, the chosen connected subgraph would contain at least one more vertex
colored by cb than colored by ce, and would not satisfy the multiset constraint. Therefore, within
a block, the order of the internal vertices does not matter.

We now describe the path Pi for each i ∈ [k]. The oriented path Pi consists of t − 1 copies
of the same block Bi put one after the other. The internal vertices of Bi consist of one vertex
colored by li for each l ∈ [i− 1] and t vertices colored by ij for each j ∈ [i+ 1, k] (see Figure 7).
We may recall that the order of the internal vertices of a block is irrelevant. Notice also that the
Pis depends only on the number t of vertices per Hi. As Pi is made of t − 1 blocks, there are t
stopping points, and, intuitively, the q-th stopping point corresponds to taking ui,q as part of the
multicolored clique in H. As a slight overload of notation, we will also denote by ui,q the q-th
stopping point of path Pi. By convention, ui,1 is v.

To motivate the definition of the Pi,js, we need to explain how we can think pairs of Hi ×Hj

as integers of [0, t2 − 1]. Say, the stopping point of a given solution R is ui,q+1 in Pi for some
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v c0

Pbe

k paths Pis

(
k
2

)
paths Pi,js

...

...

Figure 6: Illustration of the global construction and the alternating property. Color cb is rep-
resented in green (light gray) and ce in red (dark gray). The stopping points just precede the
vertical cuts.

Pi ij ij ij ij

t

ij ij ij ij

t

ij ij ij ij

t

Pj ij ij ij

uj,1 uj,2 uj,3 uj,4

ui,1 ui,2 ui,3 ui,4

Pi,j Di,j [1]× ij Di,j [2]× ij Di,j [3]× ij

Figure 7: The oriented paths Pi, Pj , and Pi,j . Again, color cb is represented in green (light gray)
and color ce in red (dark gray). Note that the Pis do depend only on the number t of vertices per
color class, while Pi,j actually encodes the adjacency between Hi and Hj in some flattened form.

q ∈ [0, t− 1], and uj,q′+1 in Pj for some q′ ∈ [0, t− 1] (with i < j). The number of vertices colored
by ij contained in R ∩ (Pi ∪ Pj) is tq + q′; this number corresponds to a unique pair of stopping
points. Indeed, function φ : x ∈ [0, t2 − 1] 7→ (bx/tc, x mod t) ∈ [0, t − 1] × [0, t − 1] is bijective
since bx/tc and x mod t are the quotient and the remainder of the euclidean division of x by t.

For any i < j ∈ [k], the oriented path Pi,j consists of |Ei,j | blocks whose internal vertices
are all colored by ij. We define three auxiliary lists of |Ei,j | integers each, indexed from 1 to
|Ei,j |. The third list will correspond to how many vertices colored by ij we put in the |Ei,j |
consecutive blocks. The first list Ai,j contains, in the increasing order, every integer x ∈ [0, t2− 1]
such that if φ(x) = (q, q′), it holds that ui,q+1uj,q′+1 ∈ Ei,j . Intuitively, it is the sorted list of
integers in [0, t2 − 1] which are edges of Ei,j . The second list Li,j contains, in the increasing
order, all the integers t2 − x such that x ∈ Ai,j . The easiest way to obtain Li,j from Ai,j is
to complement to t2 each integer in Ai,j which yields a list sorted in decreasing order, and to
reverse the result. The third list Di,j is defined by Di,j [1] := Li,j [1] and for every h ∈ [2, |Ei,j |],
Di,j [k] = Li,j [h] − Li,j [h − 1]. Finally, for every h ∈ [|Ei,j |], the h-th block of Pi,j gets Di,j [h]
vertices colored by ij (see Figure 7). This ends the construction of the instance of Graph Motif.

Suppose there is a multicolored clique C := {u1,q1 , . . . , uk,qk} in H. We construct a solution
R to the produced instance (T, c,M) in the following way. For each i ∈ [k], the stopping point
of R in path Pi is ui,qi . For any pair i < j ∈ [k], let yi,j := t2 − φ−1(qi − 1, qj − 1), and let hi,j
be the index such that yi,j = Li,j [hi,j ]. The stopping point of R in path Pi,j is right after its

hi,j-th block. The subtree induced by those k +
(
k
2

)
stopping points contains the same number z

of vertices colored by cb and of vertices colored by ce. As z is non-negative and cannot exceed s,
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solution R can and will stop after s− z blocks in Pbe, thereby fulfilling the multiset constraint for
colors cb and ce. By construction (from vertex v along the oriented paths), R induces a connected
subgraph.

What remains to be seen is that hi,j is well defined and that, for each i < j ∈ [k], R contains
exactly t2 vertices colored by ij. A preliminary easy observation is that vertices colored by ij
only appear in three oriented paths: Pi, Pj and Pi,j . For any pair i < j ∈ [k], as C is a clique,
ui,qiuj,qj ∈ Ei,j . Thus, the value φ−1(qi−1, qj −1) is in Ai,j , and so, yi,j = t2−φ−1(qi−1, qj −1)
is in Li,j . This means that hi,j exists. Also, by definition of φ, φ−1(qi − 1, qj − 1) corresponds
to the number of vertices colored by ij in R ∩ (Pi ∪ Pj). Therefore, yi,j is exactly the number
of vertices colored by ij we want to have in R ∩ Pi,j . As we stop R in Pi,j after hi,j blocks,
the number of vertices colored by ij in R ∩ Pi,j is Σ16r6hi,j

Di,j [r]. And, Σ16r6hi,j
Di,j [r] =

(Σ26r6hi,j
Li,j [r] − Li,j [r − 1]) + Li,j [1] = Li,j [hi,j ] = yi,j . Hence, the total number of vertices

colored by ij in R is φ−1(qi − 1, qj − 1) + yi,j = t2.
Now, suppose that there is no multicolored clique in H. We will show that there cannot be a

solution to the instance of Graph Motif. For the sake of contradiction, we assume that R is a
solution. As explained during the construction, vertex v has to be in R and the stopping points in
each oriented path Pi, Pi,j , and Pb,e should coincide with the end of blocks. In particular, in each
Pi, the stopping point of R should be a vertex ui,q. Thus, let u1,q1 , . . . , uk,qk be the stopping points
of R in P1, . . . , Pk. As there is no multicolored clique in H, there exists at least one pair i < j ∈ [k],
such that ui,qiuj,qj /∈ Ei,j . Let h be the number of blocks in R∩Pi,j ; in other words, R stops in Pi,j
after h blocks. We now show that R cannot contain exactly t2 vertices colored by ij, and hence, is
not a solution. The number of vertices colored by ij in R ∩ (Pi ∪ Pj) is φ−1(qi − 1, qj − 1) /∈ Ai,j .
As x ∈ [0, t2 − 1] 7→ t2 − x ∈ [t2] is bijective, it means that t2 − φ−1(qi − 1, qj − 1) /∈ Li,j .
Besides, the number of vertices colored by ij in R ∩ Pi,j is Σ16r6hDi,j [r]. We observed in the
previous paragraph that Li,j [h] = Σ16r6hDi,j [r]. Hence t2 − φ−1(qi − 1, qj − 1) 6= Σ16r6hDi,j [r],
so φ−1(qi − 1, qj − 1) + Σ16r6hDi,j [r] 6= t2.

As it is usually the case with FPT reductions from Multicolored k-Clique using edge
representations the parameter goes from k to Θ(k2). Thus, concerning running-time lower bounds,

the previous reduction only shows that solving Graph Motif in time no(
√

ml(G)+|C|) would also
solve Multicolored k-Clique in time no(k) which is known to disprove ETH, and even imply
that FPT = W[1] [13]. Nevertheless, we can strengthen this lower bound by performing the
same reduction from Partitioned Subgraph Isomorphism. In the Partitioned Subgraph
Isomorphism problem, one is given two graphs H and G. The vertices of graph H are partitioned
into |V (G)| classes Cv one for each vertex v of G. The goal is to find an injective mapping h :
V (G)→ V (H) such that if uv ∈ E(G), then h(u)h(v) ∈ E(H), and for each v ∈ V (G), h(v) ∈ Cv.
Under ETH, Partitioned Subgraph Isomorphism cannot be solved in time no(k/ log k) where
k is the number of edges of the smaller graph G [37]. Observe that we can ignore isolated vertices
in G (we are looking for a subgraph not an induced subgraph). Thus, the number of edges in G
is at least |V (G)|/2, and ETH even implies that Partitioned Subgraph Isomorphism cannot
be solved in time no(k/ log k) where k = |V (G)|+ |E(G)|.

The reduction from Graph Motif to Partitioned Subgraph Isomorphism encode the
graph H partitioned into the Cvs but only introduce a color ij and a path Pi,j if there is an edge
in G between the i-th and the j-th vertex. The number of leaves in T is |V (G)|+ |E(G)|+ 1 and
the number of colors of C is |E(G)| + 3. Thus, we get that, under ETH, Graph Motif cannot
be solved in no((ml(G)+|C|)/ log (ml(G)+|C|)). Therefore, our algorithm running in time nO(ml(G)) is
probably optimal up to logarithmic factors in the exponent.

The Graph Motif problem on subdivisions of stars can be reformulated as the following
problems on words: given a set of k + 1 words w1, . . . , wk, and w over an alphabet Σ, find
w′1, . . . , w

′
k, such that for each i ∈ [k], w′i is a prefix of wi, and the concatenation w′1w

′
2 . . . w

′
k is

an anagram of w. Indeed, hard instances of Graph Motif on subdivisions of stars are such that
the center of the subdivided star should necessarily be in a solution (otherwise, the whole solution
is entirely contained in an induced path, and can be computed in polynomial time). Then, letters
correspond to colors, w to the multiset M , and the wi’s to the words formed by the colors of
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the vertices in each oriented path. Therefore, Theorem 25 entails that this problem is W[1]-hard
parameterized by k+ |Σ| (number of words plus size of the alphabet). However, as far as we know,
this problem has not appeared in the literature.

We may finally observe that Graph Motif on paths is an established string problem going
by the name of jumbled pattern matching (see for instance [11]). In this problem, one has to find,
given a string and a Parikh vector (or multiset of letters), a substring whose occurences of letters
match the Parikh vector. Therefore, Graph Motif can be seen as a generalization of this string
problem to more complex structures.

5 Conclusion and open problems

Figure 1 sums up the parameterized complexity landscape of Graph Motif with respect to
structural parameters. For parameter maximum independent set the complexity status of Graph
Motif remains unknown. Even when the problem is in FPT, polynomial kernels tend to be
unlikely; be it for the natural parameter even on comb graphs [2] or for the vertex cover number
or the distance to clique (Theorem 11). Is it also the case for parameter cluster editing number?

On the one hand, we saw that our algorithm running in O∗(3k) for parameter distance to clique
is probably close to optimal, since O∗((2−ε)k) is unlikely. On the other hand, for parameter vertex
cover number, for instance, we have a larger room for improvement between the 2O(k log k)-upper
bound and the 2o(k)-lower bound under ETH. Can we improve the algorithm to time 2O(k), or, on
the contrary, show a stronger lower bound of 2o(k log k) (potentially with the framework developed
by Lokshtanov et al. [35])?

A possible future work would be to see if the FPT algorithms presented in the article can be
extended to the more general List Graph Motif, where a vertex can choose its color among a
private list of colors, without damaging too much their running time.

Finally, one could consider more restricted versions (when, for instance, the number of colors,
or the maximum multiplicity of the motif, or the maximum number of occurences of a color in
the graph, is bounded). This line of work is sometimes called multi-parameter analysis, where one
seeks for FPT algorithms with respect to subset of parameters. Let us recall, as an example, that
Graph Motif is in XP if the parameter is the treewidth of the graph plus the number of colors
in the motif [21].
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