
Multi-parameter Analysis for Local Graph
Partitioning Problems: Using Greediness for

Parameterization?
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Abstract. We study the parameterized complexity of a broad class of prob-
lems called “local graph partitioning problems” that includes the classical fixed
cardinality problems as max k-vertex cover, k-densest subgraph, etc. By
developing a technique that we call “greediness-for-parameterization”, we ob-
tain fixed parameter algorithms with respect to a pair of parameters k, the
size of the solution (but not its value) and ∆, the maximum degree of the in-
put graph. In particular, greediness-for-parameterization improves asymptotic
running times for these problems upon random separation (that is a special
case of color coding) and is more intuitive and simple. Then, we show how
these results can be easily extended for getting standard-parameterization re-
sults (i.e., with parameter the value of the optimal solution) for a well known
local graph partitioning problem.

1 Introduction

A local graph partitioning problem is a problem defined on some graph G =
(V,E) with two integers k and p. Feasible solutions are subsets V ′ ⊆ V of
size exactly k. The value of their solutions is a linear combination of sizes of
edge-subsets and the objective is to determine whether there exists a solution
of value at least or at most p. Problems as max k-vertex cover, min k-
vertex cover, k-densest subgraph, k-sparsest subgraph, max (k, n−
k)-cut and min (k, n − k)-cut, also known as fixed cardinality problems,
are local graph partitioning problems. When dealing with graph problems,
several natural parameters, other than the size p of the optimum, can be of
interest, for instance, the maximum degree ∆ of the input graph, its treewidth,
etc. To these parameters, common for any graph problem, in the case of local
graph partitioning problem handled here, one more natural parameter of great
interest can be additionally considered, the size k of V ′. For instance, most
of these problems have mainly been studied in [4, 9], from a parameterized
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point of view, with respect to parameter k, and have been proven W[1]-hard.
Dealing with standard parameterization, the only problems that, to the best
of our knowledge, have not been studied yet, are the max (k, n− k)-cut and
the min (k, n− k)-cut problems.

In this paper we develop a technique for obtaining multi-parameterized
results for local graph partitioning problems. Informally, the basic idea be-
hind it is the following. Perform a branching with respect to a vertex chosen
upon some greedy criterion. For instance, this criterion could be to consider
some vertex v that maximizes the number of edges added to the solution un-
der construction. Without branching, such a greedy criterion is not optimal.
However, if at each step either the greedily chosen vertex v, or some of its
neighbors (more precisely, a vertex at bounded distance from v) are a good
choice (they are in an optimal solution), then a branching rule on neighbors
of v leads to a branching tree whose size is bounded by a function of k and ∆,
and at least one leaf of which is an optimal solution. This method, called
“greediness-for-parameterization”, is presented in Section 2 together with in-
teresting corollaries about particular local graph partitioning problems.

The results of Section 2 can sometimes be easily extended to standard
parameterization results. In Section 3 we study standard parameterization of
the two still unstudied fixed cardinality problems max and min (k, n − k)-
cut. We prove that the former is fixed parameter tractable (FPT), while,
unfortunately, the status of the latter one remains still unclear. In order to
handle max (k, n−k)-cut we first show that when p 6 k or p 6 ∆, the problem
can be solved in polynomial time. So, the only “non-trivial” case occurs when
p > k and p > ∆. That case is handled by greediness-for-parameterization.
Unfortunately, this method concludes inclusion of min (k, n− k)-cut in FPT
only for some particular cases. Note that in a very recent technical report of
Fomin et al. [12], the following problem is considered: given a graph G and
two integers k, p, determine whether there exists a set V ′ ⊂ V of size at most k
such that at most p edges have exactly one endpoint in V ′. They prove that
this problem is FPT with respect to p. Let us underline the fact that looking
for a set of size at most k seems to be radically different from looking for a set
of size exactly k (as in min (k, n− k)-cut). For instance, in the case k = n/2,
the former becomes the min cut problem that is in P, while the latter becomes
the min bisection problem that is NP-hard.

In Section 4.1, we mainly revisit the parameterization by k but we handle
it from an approximation point of view. Given a problem Π parameterized
by parameter ` and an instance I of Π, a parameterized approximation algo-
rithm with ratio g(.) for Π is an algorithm running in time f(`)|I|O(1) that
either finds an approximate solution of value at least/at most g(`)`, or reports
that there is no solution of value at least/at most `. We prove that, although
W[1]-hard for the exact computation, max (k, n−k)-cut has a parameterized
approximation schema with respect to k and min (k, n − k)-cut a random-
ized parameterized approximation schema. These results exhibit two problems
which are hard with respect to a given parameter, but which become easier

2



when we relax exact computation requirements and seek only (good) approxi-
mations. To our knowledge, the only other problem having similar behaviour is
another fixed cardinality problem, the max k-vertex cover problem, where
one has to find the subset of k vertices which cover the greatest number of
edges [17]. Note that the existence of problems having this behaviour but with
respect to the standard parameter is an open question in [17]. Let us note
that polynomial approximation of min (k, n−k)-cut has been studied in [10]
where it is proven that, if k = O(logn), then the problem admits a randomized
polynomial time approximation schema, while, if k = Ω(logn), then it admits
an approximation ratio (1 + εk

logn), for any ε > 0. Approximation of max
(k, n− k)-cut has been studied in several papers and a ratio 1/2 is achieved
in [1] (slightly improved with a randomized algorithm in [11]), for all k.

Finally, in Section 4.2, we handle parameterization of local graph parti-
tioning problems by the treewidth tw of the input graph and show, using a
standard dynamic programming technique, that they admit an O∗(2tw)-time
FPT algorithm, where the O∗(·) notation ignores polynomial factors. Let us
note that the interest of this result, except its structural aspect (many prob-
lems for the price of a single algorithm), lies also in the fact that some local
partitioning problems (this is the case, for instance, of max and min (k, n−k)-
cut) do not fit Courcelle’s Theorem [7]. Indeed, max and min bisection are
not expressible in MSO since the equality of the cardinality of two sets is
not MSO-definable. In fact, if one could express that two sets have the same
cardinality in MSO, one would be able to express in MSO the fact that a
word has the same number of a’s and b’s, on a two-letter alphabet, which
would make that the set E = {w : |w|a = |w|b} is MSO-definable. But we
know that, on words, MSO-definability is equivalent to recognizability; we
also know by the standard pumping lemma (see, for instance, [15]) that E
is not recognizable [16], a contradiction. Hence, max and min (k, n− k)-cut
are not expressible in MSO; consequently, the fact that those two problems,
parameterized by treewidth (tw) are FPT cannot be obtained by Courcelle’s
Theorem. Furthermore, even several known extended variants of MSO which
capture more problems [19], do not seem to be able to express the equality of
two sets either.

2 Greediness-for-parameterization

We first formally define the class of local graph paritioning problems. We use
the standard notation to deal with graphs. If G = (V,E) is a graph and X ⊆ V
is a subset of vertices, E(X) is the set of edges in the subgraph G[X] induced
by X, and E(X,Y ) is the set of edges having one endpoint in X and one
endpoint in Y .
Definition 1. In a local graph partitioning problem, given a graph G = (V,E)
and two integers k and p, one has to find a subset V ′ of size exactly k such
that the value of the solution val(V ′) def= α1|E(V ′)| + α2|E(V ′, V \ V ′)| > p,
(resp., 6 p for a minimization problem) where α1 and α2 are real constants.
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Note that α1 = 1, α2 = 0 corresponds to k-densest subgraph and k-
sparsest subgraph, while α1 = 0, α2 = 1 corresponds to (k, n−k)-cut, and
α1 = α2 = 1 gives k-vertex cover. As a local graph partitioning problem is
entirely defined by α1, α2 and goal ∈ {min,max} we will unambiguously de-
note by L(goal , α1, α2) the corresponding problem. For conciseness and when
no confusion is possible, we will use local problem instead. In the sequel, k
always denotes the size of feasible subset of vertices and p the standard param-
eter, i.e., the solution-size. Moreover, as a partition into k and n− k vertices,
respectively, is completely defined by the subset V ′ of size k, we will consider
it to be the solution. A partial solution T is a subset of V ′ with less than k
vertices. Similarly to the value of a solution, we define the value of a partial
solution, and denote it by val(T ).

Informally, we devise algorithms for local problems that add vertices to
an initially empty set T (for “taken” vertices) and stop when T becomes of
size k, i.e., when T itself becomes a feasible solution. A vertex introduced in T
is irrevocably introduced there and will be not removed later.

Definition 2. Given a local graph partitioning problem L(goal , α1, α2), the
contribution of a vertex v within a partial solution T (such that v ∈ T ) is
defined by δ(v, T ) = 1

2α1|E({v}, T )|+ α2|E({v}, V \ T )|.

Note that the value of any (partial) solution T satifies val(T ) = Σv∈T δ(v, T ).
One can also remark that δ(v, T ) = δ(v, T ∩ N(v)), where N(v) denotes the
(open) neighbourhood of the vertex v. Function δ is called the contribution
function or simply the contribution of the corresponding local problem. We
introduce now the notion of degrading contribution. Intuitively, a contribution
is degrading if, while vertices are added to the solution, the contribution of a
vertex already added to the solution can only decrease.

Definition 3. Given a local graph partitioning problem L(goal , α1, α2), a con-
tribution function is said to be degrading if for every v, T and T ′ such that
v ∈ T ⊆ T ′, δ(v, T ) 6 δ(v, T ′) for goal = min (resp., δ(v, T ) > δ(v, T ′) for
goal = max).

Note that it can be easily shown that for a maximization problem, a con-
tribution function is degrading if and only if α2 > α1/2 (α2 6 α1/2 for a
minimization problem). So in particular max k-vertex cover, k-sparsest
subgraph and max (k, n− k)-cut have a degrading contribution function.

Theorem 1. Every local partitioning problem having a degrading contribution
function can be solved in time O∗(∆k).

Proof. With no loss of generality, we carry out the proof for a minimization
local problem L(min, α1, α2). We recall that T will be a partial solution and
eventually a feasible solution. Consider the following algorithm DLGPP(T, k)
which branches upon the closed neighborhood N [v] of a vertex v minimizing
the greedy criterion δ(v, T ∪ {v}):

4



Algorithm 1: A description of the algorithm DLGPP.
Input: A graph G = (V,E), an integer k, and a triple goal ∈ {min,max}, α1, α2

defining a degrading local graph partioning problem L(goal, α1, α2).
Output: A set of k vertices T ⊆ V optimizing val(T ).
set T = ∅;
DLGPP(T, k):
if k > 0 then

pick the vertex v ∈ V \ T minimizing δ(v, T ∪ {v});
for each vertex w ∈ N [v] \ T do

run DLGPP(T ∪ {w},k − 1);

else
(k = 0) store the feasible solution T ;

return the best among the solutions stored;

The branching tree of DLGPP has depth k, since we add one vertex at each
recursive call, and arity at most maxv∈V |N [v]| = ∆ + 1, where N [v] denotes
the closed neighbourhood of v. Thus, the algorithm runs in O∗(∆k).

For the optimality proof, we use a classical hybridation technique between
some optimal solution and the one solution computed by DLGPP.

Consider an optimal solution V ′opt different from the solution V ′ computed
by DLGPP. A node s of the branching tree has two characteristics: the partial
solution T (s) at this node (denoted simply T if no ambiguity occurs) and the
vertex chosen by the greedy criterion v(s) (or simply v). We say that a node s
of the branching tree conforms with the optimal solution V ′opt if T (s) ⊆ V ′opt.
A node s deviates from the optimal solution V ′opt if none of its sons conforms
with V ′opt.

We start from the root of the branching tree and, while possible, we move
to a conform son of the current node. At some point we reach a node s which
deviates from V ′opt. We set T = T (s) and v = v(s). Intuitively, T corresponds
to the shared choices between the optimal solution and DLGPP made along
the branch from the root to the node s of the branching tree. Setting Vn =
V ′opt \ T , Vn does not intersect N [v], otherwise s would not be deviating.

Choose any z ∈ Vn and consider the solution induced by the set Ve =
V ′opt∪{v}\{z}. We show that this solution is also optimal. Let Vc = V ′opt \{z}.
We have val(Ve) = Σw∈Vcδ(w, Ve) + δ(v, Ve). Besides, δ(v, Ve) = δ(v, Ve ∩
N(v)) = δ(v, T ∪ {v}) since Ve \ (T ∪ {v}) = Vn \ {z} and according to
the last remark of the previous paragraph, N(v) ∩ Vn = ∅. By the choice
of v, δ(v, T ∪ {v}) 6 δ(z, T ∪ {z}), and, since δ is a degrading contribu-
tion, δ(z, T ∪ {z}) 6 δ(z, V ′opt). Summing up, we get δ(v, Ve) 6 δ(z, V ′opt)
and val(Ve) 6 Σw∈Vcδ(w, Ve) + δ(z, V ′opt). Since v is not in the neighborhood
of Vn only z can degrade the contribution of those vertices, so Σw∈Vcδ(w, Ve) 6
Σw∈Vcδ(w, V ′opt), and val(Ve) 6 Σw∈Vcδ(w, V ′opt) + δ(z, V ′opt) = val(V ′opt).

Thus, by repeating this argument at most k times, we can conclude that
the solution computed by DLGPP is as good as V ′opt. �
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Vn

T

v

z

N [v] \ T

Figure 1: Situation of the input graph at a deviating node of the branching
tree. The vertex v can substitute z since, by the hypothesis, N [v] \ T and Vn

are disjoint and the contribution of a vertex can only decrease when we later
add some of its neighbors in the solution.

• if k > 0 then:

– pick the vertex v ∈ V \ T minimizing δ(v, T ∪ {v});
– for each vertex w ∈ N [v] \ T run ALG1(T ∪ {w},k − 1);

• else (k = 0), store the feasible solution T ;

• output the best among the solutions stored.

The branching tree of ALG1 has depth k, since we add one vertex at each
recursive call, and arity at most maxv∈V |N [v]| = ∆ + 1, where N [v] denotes
the closed neighbourhood of v. Thus, the algorithm runs in O∗(∆k).

For the optimality proof, we use a classical hybridation technique between
some optimal solution and the one solution computed by ALG1.

Consider an optimal solution V ′opt different from the solution V ′ computed
by ALG1. A node s of the branching tree has two characteristics: the partial
solution T (s) at this node (denoted simply T if no ambiguity occurs) and the
vertex chosen by the greedy criterion v(s) (or simply v). We say that a node s
of the branching tree is conform to the optimal solution V ′opt if T (s) ⊆ V ′opt.
A node s deviates from the optimal solution V ′opt if none of its sons is conform
to V ′opt.

We start from the root of the branching tree and, while possible, we move
to a conform son of the current node. At some point we reach a node s which
deviates from V ′opt. We set T = T (s) and v = v(s). Intuitively, T corresponds to
the shared choices between the optimal solution and ALG1 made along the branch
from the root to the node s of the branching tree. Setting Vn = V ′opt \ T , Vn

does not intersect N [v], otherwise s would not be deviating.
Choose any z ∈ V ′opt \ T and consider the solution induced by the set

Ve = V ′opt ∪ {v} \ {z}. We show that this solution is also optimal. Let
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Fig. 1. Situation of the input graph at a deviating node of the branching tree. The vertex v
can substitute z since, by the hypothesis, N [v] \ T and Vn are disjoint and the contribution
of a vertex can only decrease when we later add some of its neighbors in the solution.

Corollary 1. max k-vertex cover, k-sparsest subgraph and max (k, n−
k)-cut can be solved in O∗(∆k).

As mentioned before, the local problems mentioned in Corollary 1 have a
degrading contribution.

Theorem 2. Every local partitioning problem can be solved in O∗((2k
√
∆)2k).

Proof. Once again, with no loss of generality, we prove the theorem in the case
of minimization, i.e., L(min, α1, α2). Consider now the following algorithm
LGPP(T, k):

Algorithm 2: A description of the algorithm LGPP.
Input: A graph G = (V,E), an integer k, and a triple goal ∈ {min,max}, α1, α2

defining any local graph partioning problem L(goal, α1, α2).
Output: A set of k vertices T ⊆ V optimizing val(T ).
set T = ∅;
LGPP(T, k):
if k > 0 then

for i← 1 to k do
find Si ⊆ V \ T minimizing val(T ∪ Si), with Si inducing a connected
component of size i;
for each v ∈ Si do

run LGPP(T ∪ {v},k − 1);

else
(k = 0) store the feasible solution T ;

return the best among the solutions stored;

The proof of Theorem 2 involves an algorithm fairly similar to DLGPP but
instead of branching on a vertex chosen greedily and its neighborhood, we
branch on sets of vertices inducing connected components (also chosen greed-
ily) and the neighborhood of those sets.
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Let us first state the following straightforward lemma that bounds the
number of induced connected components and the running time to enumerate
them.

Lemma 1. (Lemma 2 in [14]) The number of connected induced subgraphs of
size bounded above by k is bounded by n(4∆)k and they can be enumerated in
time O∗((4∆)k).

In the branching tree of LGPP, a node has at most k(k + 1)/2 6 k2 sons (i
sons for Si, i going from 1 to k). The depth of the branching tree is k.
Hence, the size of the tree is O(k2k). Computing the set Si in each node
takes time O∗((4∆)k) according to Lemma 1. Thus, the overall running-time
of the algorithm is O∗((2k

√
∆)2k).

Vn \H

S

T

H

Hc

Figure 2: Illustration of the proof, with filled vertices representing the optimal
solution V ′opt and dotted vertices representing the set S = S|H| computed by
ALG2 which can substitute H, since Vn does not interact with Hc nor with S.

not keep the corresponding branch. That way, you get for each vertex of C a
branch of size dlog ∆e, and hence there are kdlog ∆e nodes in the tree.

Recall that |Bkdlog ∆e| is given by the Catalan numbers, so |Bkdlog ∆e| =
(2kdlog ∆e)!

(kdlog ∆e)!(kdlog ∆e+1)! = O∗(4k log ∆) = O∗(∆2k). So, Σv∈V |Ck,v| = O∗(∆2k).
The proof of Lemma 8 is now completed.

Consider now the following algorithm.

Algorithm 9 (ALG2(T ,k)). set T = ∅;
ALG2(T ,k)

• if k > 0 then, for each i from 1 to k,

– find Si ∈ V \T minimizing val(T ∪Si) with Si inducing a connected
component of size i.

– for each i, for each v ∈ Si, run ALG2(T ∪ {v},k − 1);

• else (k = 0), stock the feasible solution T .

output the stocked feasible solution T minimizing val(T ).

The branching tree of ALG2 has size O(k2k). Computing the Si in each
node takes time O∗(∆2k) according to Lemma 8. Thus, the algorithm runs in
O∗((∆k)2k).

For the optimality of ALG2, we use the following lemma.
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Fig. 2. Illustration of the proof, with filled vertices representing the optimal solution V ′
opt

and dotted vertices representing the set S = S|H| computed by LGPP which can substitute
H, since Vn does not interact with Hc nor with S.

For the optimality of LGPP, we use the following lemma.

Lemma 2. Let A,B,X, and Y be pairwise disjoint sets of vertices such that
val(A ∪ X) 6 val(B ∪ X), N [A] ∩ Y = ∅ and N [B] ∩ Y = ∅, where N [X] =⋃
v∈X N [v]. Then, val(A ∪X ∪ Y ) 6 val(B ∪X ∪ Y ).

Proof. Observe that val(A∪X ∪ Y ) = val(Y ) + val(A∪X)− 2α2|E(X,Y )|+
α1|E(X,Y )| 6 val(Y ) + val(B ∪X)− 2α2|E(X,Y )|+ α1|E(X,Y )| = val(B ∪
X ∪ Y ). �

We now show that LGPP is sound, using again hybridation between an optimal
solution V ′opt and the one solution found by LGPP. We keep the same notation
as in the proof of the soundness of DLGPP. Node s is a node of the branching
tree which deviates from V ′opt, all nodes in the branch between the root and s
conform with V ′opt, the shared choices constitute the set of vertices T = T (s)
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and, for each i, set Si = Si(s) (analogously to v(s) in the previous proof, s is
now linked to the subsets Si computed at this node). Set Vn = V ′opt \ T . Take
a maximal connected (non empty) subset H of Vn. Set S = S|H| and consider
Ve = V ′opt \ H ∪ S = (T ∪ Vn) \ H ∪ S = T ∪ S ∪ (Vn \ H). Note that, by
hypothesis, N [S] ∩ Vn = ∅ since s is a deviating node. By the choice of S at
the node s, val(T ∪ S) 6 val(T ∪ H). So, val(Ve) = val(T ∪ S ∪ (Vn \ H)) 6
val(T ∪ H ∪ (Vn \ H)) = val(T ∪ Vn) = val(V ′opt) according to Lemma 2,
since by construction neither N [H] nor N [S], do intersect Vn \ H. Iterating
the argument at most k times, we get to a leaf of the branching tree of LGPP
which yields a solution as good as V ′opt. �

Corollary 2. k-densest subgraph and min (k, n−k)-cut can be solved in
time O∗((2k

√
∆)2k).

We simply observe, again, that the problems mentioned in Corollary 2 are
local graph partitioning problems.

Theorem 1 improves the O∗(2(∆+1)k((∆+ 1)k)log((∆+1)k))-time complexity
for the corresponding problems given in [5] obtained there by the random
separation technique, and Theorem 2 improves it whenever k = 2o(∆). Recall
that random separation consists of randomly guessing if a vertex is in an
optimal subset V ′ of size k (white vertices) or if it is in N(V ′) \ V ′ (black
vertices). For all other vertices the guess has no importance. As a right guess
concerns at most only k + k∆ vertices, it is done with high probability if
we repeat random guesses f(k,∆) times with a suitable function f . Given a
random guess, i.e., a random function g : V → {white,black}, a solution can
be computed in polynomial time by dynamic programming. Although random
separation (and a fortiori color coding [2]) have also been applied to other
problems than local graph partitioning ones, greediness-for-parameterization
seems to be quite general and improves both running time and easiness of
implementation since our algorithms do not need complex derandomizations.

Let us note that the greediness-for-parameterization technique can be even
more general, by enhancing the scope of Definition 1 and can be applied to
problems where the objective function takes into account not only edges but
also vertices. The value of a solution could be defined as a function val :
P(V ) → R such that val(∅) = 0, the contribution of a vertex v in a partial
solution T is δ(v, T ) = val(T ∪ v)− val(T ). Thus, for any subset T , val(T ) =
val(T \ {vk}) + δ(vk, T \ {vk}) where k is the size of T and vk is the last vertex
added to the solution. Hence, val(T ) = Σ16i6kδ(vi, {v1, . . . , vi−1}) + val(∅) =
Σ16i6kδ(vi, {v1, . . . , vi−1}). Now, the only hypothesis we need to derive the
same result as in Theorem 2 is the following: for each T ′ such that (N(T ′) \
T ) ∩ (N(v) \ T ) = ∅, δ(v, T ∪ T ′) = δ(v, T ).

Notice that under such generalization, max k-dominating set, asking for
a set V ′ of k vertices that dominate the highest number of vertices in V \ V ′
fulfills the enhancement just discussed. We therefore derive the following.

Corollary 3. max k-dominating set can be solved in O∗((2k
√
∆)2k).
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V1 V2

v′

?
?

v
Swap

(a) Vertices v ∈ V2 and v′ ∈ V1
(that has at least one neighbor in
V1) will be swapped.

V1 V2

v

?
?

v′

(b) With the swapping the cut size
increases.

Figure 1: Illustration of a swapping

2 Standard parameterization
2.1 Max (k, n− k)-cut
In the sequel, we denote by N(v) the set of neighbors of v in G = (V,E), namely {w ∈ V :
{v, w} ∈ E} and define N [v] = N(v) ∪ {v}. We also use the standard notation G[U ] for any
U ⊆ V to denote the subgraph induced by the vertices of U . In this section, we show that max
(k, n − k)-cut parameterized by the standard parameter, i.e., by the value p of the solution, is
FPT. Using an idea of bounding above the value of an optimal solution by a swapping process
(see Figure ??), we show that the non trivial case satisfies p > k. We also show that p > ∆
holds for non trivial instances and get the situation depicted by Figure ??. The rest of the proof
(see Theorem ??) shows that max (k, n− k)-cut parameterized by k + ∆ is FPT, by designing a
particular branching algorithm. This branching algorithm is based on the following intuitive idea.
Consider a vertex v of maximum degree in the graph. If an optimal solution E(V ′, V \ V ′) is such
that no vertex of N(v) is in V ′, then it is always interesting to take v in V ′ (this provides ∆ edges
to the cut, which is the best we can do). This leads to a branching rule with ∆+1 branches, where
in each branch we take in V ′ one vertex from N [v].

Lemma 1. In a graph with minimum degree r, the optimal value opt of a max (k, n − k)-cut
satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two subsets V1 and V2 of size k
and n−k, respectively. Then, for every vertex v ∈ V2, we check if v has a neighbor in V1. If not, we
try to swap v and a vertex v′ ∈ V1 which has strictly less than r neighbors in V2 (see Figure ??). If
there is no such vertex, then every vertex in V1 has at least r neighbors in V2, so determining a cut
of value at least rk. When swapping is possible, as the minimum degree is r and the neighborhood
of v is entirely contained in V2, moving v from V2 to V1 will increase the value of the cut by at
least r. On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most
r − 1. In this way, the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is possible), or every
vertex in V2 has increased the value of the cut by at least 1 (either immediately, or after a swapping
process), which results in a cut of value at least n−k, and the proof of the lemma is completed.

Corollary 2. In a graph with no isolated vertices, the optimal value for max (k, n− k)-cut is at
least min{n− k, k}.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard parameter p is FPT.
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3 Standard Parameterization for max and min (k, n − k)-cut

3.1 max (k, n − k)-cut

In the sequel, we use the standard notation G[U ] for any U ⊆ V to denote
the subgraph induced by the vertices of U . In this section, we show that max
(k, n−k)-cut parameterized by the standard parameter, i.e., by the value p of
the solution, is FPT. Using an idea of bounding above the value of an optimal
solution by a swapping process (see Figure 3), we show that the non-trivial case
satisfies p > k. We also show that p > ∆ holds for non trivial instances and
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2 Standard parameterization
2.1 Max (k, n− k)-cut
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(see Figure ??), we show that the non trivial case satisfies p > k. We also show that p > ∆
holds for non trivial instances and get the situation depicted by Figure ??. The rest of the proof
(see Theorem ??) shows that max (k, n− k)-cut parameterized by k + ∆ is FPT, by designing a
particular branching algorithm. This branching algorithm is based on the following intuitive idea.
Consider a vertex v of maximum degree in the graph. If an optimal solution E(V ′, V \ V ′) is such
that no vertex of N(v) is in V ′, then it is always interesting to take v in V ′ (this provides ∆ edges
to the cut, which is the best we can do). This leads to a branching rule with ∆+1 branches, where
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Lemma 1. In a graph with minimum degree r, the optimal value opt of a max (k, n − k)-cut
satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two subsets V1 and V2 of size k
and n−k, respectively. Then, for every vertex v ∈ V2, we check if v has a neighbor in V1. If not, we
try to swap v and a vertex v′ ∈ V1 which has strictly less than r neighbors in V2 (see Figure ??). If
there is no such vertex, then every vertex in V1 has at least r neighbors in V2, so determining a cut
of value at least rk. When swapping is possible, as the minimum degree is r and the neighborhood
of v is entirely contained in V2, moving v from V2 to V1 will increase the value of the cut by at
least r. On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most
r − 1. In this way, the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is possible), or every
vertex in V2 has increased the value of the cut by at least 1 (either immediately, or after a swapping
process), which results in a cut of value at least n−k, and the proof of the lemma is completed.

Corollary 2. In a graph with no isolated vertices, the optimal value for max (k, n− k)-cut is at
least min{n− k, k}.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard parameter p is FPT.
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Lemma 3. In a graph with minimum degree r, the optimal value opt of a
max (k, n− k)-cut satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two sub-
sets V1 and V2 of size k and n− k, respectively. Then, for every vertex v ∈ V2,
we check if v has a neighbor in V1. If not, we try to swap v and a vertex v′ ∈ V1
which has strictly less than r neighbors in V2 (see Figure 3). If there is no such
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vertex, then every vertex in V1 has at least r neighbors in V2, so determining a
cut of value at least rk. When swapping is possible, as the minimum degree is r
and the neighborhood of v is entirely contained in V2, moving v from V2 to V1
will increase the value of the cut by at least r. On the other hand, moving v′
from V1 to V2 will reduce the value of the cut by at most r − 1. In this way,
the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is
possible), or every vertex in V2 has increased the value of the cut by at least 1
(either immediately, or after a swapping process), which results in a cut of
value at least n− k. �

Corollary 4. In a graph with no isolated vertices, the optimal value for max
(k, n− k)-cut is at least min{n− k, k}.

Thus, on non-trivial instances, p is greater than k and ∆. Hence, Corollary 1
gives the following theorem.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard
parameter p is FPT.

3.2 Min (k, n − k)-cut

Unfortunately, unlike what have been done for max (k, n−k)-cut, we have not
been able to show until now that the case p < k is “trivial”. So, Algorithm LGPP
in Section 2 cannot be transformed into a standard FPT algorithm for this
problem.

However, we can prove that if p > k, then min (k, n−k)-cut parameterized
by the value p of the solution is FPT. This is an immediate corollary of the
following proposition.

Proposition 1. min (k, n− k)-cut parameterized by p+ k is FPT.

Proof. Each vertex v such that |N(v)| > k + p has to be in V \ V ′ (of size
n− k). Indeed, if one puts v in V ′ (of size k), among its k + p incident edges,
at least p + 1 leave from V ′; so, it cannot yield a feasible solution. All the
vertices v such that |N(v)| > k + p are then rejected. Let call U this set of
vertices. Thus, one can adapt the FPT algorithm in k + ∆ of Theorem 2 by
considering the k-neighborhood of a vertex v not in the whole graph G, but
in G[V \ U ]. One can easily check that the algorithm still works and since in
those subgraphs the degree is bounded by p+ k, we get an FPT algorithm in
p+ k. �

In [10], it is shown that, for any ε > 0, there exists a randomized (1 + εk
logn)-

approximation for min (k, n − k)-cut. From this result, we can easily derive
that when p < logn

k then the problem is solvable in polynomial time (by
a randomized algorithm). Indeed, fixing ε = 1, the algorithm in [10] is a
(1 + k

log(n))-approximation. This approximation ratio is strictly better than
1 + 1

p . This means that the algorithm outputs a solution of value lower than
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p + 1, hence at most p, if there exists a solution of value at most p. We now
conclude this section by proving that, when p 6 k, min (k, n− k)-cut can be
solved in time O∗(np).

Proposition 2. For p 6 k, min (k, n− k)-cut can be solved in time O∗(np).

Proof. Since p 6 k, there exist in the optimal set V ′, p′ 6 p vertices incident to
the p outgoing edges. So, the k−p′ remaining vertices of V ′ induce a subgraph
that is disconnected from G[V \ V ′].

Hence, one can enumerate all the subsets of V of size p′ 6 p, and in partic-
ular, the subsets of size p′ which disconnects the graph. For each such subset Ṽ
such that the graph G[V \ Ṽ ] is disconnected, we denote by C = {Ci}16i6|C|
the connected components of G[V \ Ṽ ] and by αi the number of edges be-
tween Ci and Ṽ . We have to pick a subset C ′ ⊂ C among these components
such that ∑Ci∈C′ |Ci| = k − p′ and maximizing ∑Ci∈C′ αi. This can be done
in polynomial time using standard dynamic programming techniques. �

4 Other Parameterizations

4.1 Parameterization by k and Approximation of (k, n − k)-cut

Recall that both max and min (k, n − k)-cut parameterized by k are W[1]-
hard [9, 4]. In this section, we give some approximation algorithms working in
FPT time with respect to parameter k.

Proposition 3. When parameterized by k:

– max (k, n− k)-cut admits a fixed-parameter approximation scheme;
– min (k, n− k)-cut has a randomized fixed-parameter approximation sche-

me.

Proof. We first handle max (k, n−k)-cut. Fix some ε > 0. Given a graph G =
(V,E), let d1 6 d2 6 . . . 6 dk be the degrees of the k largest-degree vertices
v1, v2, . . . vk in G. An optimal solution of value opt is obviously bounded from
above by B = Σk

i=1di. Now, consider solution V ′ = {v1, v2, . . . , vk}. As there
exist at most k(k− 1)/2 6 k2 inner edges (when V ′ is a k-clique), solution V ′
has a value sol at least B − k2. Hence, the approximation ratio is at least
B−k2

B = 1− k2

B . Since, obviously, B > d1 = ∆, an approximation ratio at least
1− k2

∆ is immediately derived.
If ε > k2

∆ then V ′ is a (1−ε)-approximation. Otherwise, if ε 6 k2

∆ , then ∆ 6
k2

ε . So, the branching algorithm of Theorem 3 with time-complexity O∗(∆k)
is in this case an O∗(k2k

εk )-time algorithm.
For min (k, n − k)-cut, it is proven in [10] that, for ε > 0, if k < logn,

then there exists a randomized polynomial time (1 + ε)-approximation. Else,
if k > logn, the exhaustive enumeration of the k-subsets takes time O∗(nk) =
O∗((2k)k) = O∗(2k2). �
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We conclude this paragraph by showing that an approximation ratio k2

f(k) + 1
for min (k, n − k)-cut can be achieved in time O∗(nf(k)). This, for instance,
concludes a ratio o(k2) in time O∗(no(k)).

Proposition 4. For every positive function f , min (k, n− k)-cut is approx-
imable within ratio k2

f(k) + 1 in time O∗(nf(k)).

Proof. We distinguish three cases with respect to the standard parameter p.
If p > k, then an approximation ratio at most 2k is immediately derived, since
any solution has size at most k(k + p).

Assume now p 6 k. Here, we distinguish two subcases, namely p 6 f(k)
and k > p > f(k).

In the first of the subcases, using Proposition 2, an optimal solution for
min (k, n− k)-cut can be found in time at most O∗(nf(k)).

For the second subcase, consider a solution consisting of taking the set V ′
of the k vertices of G with lowest degrees, and denote by σ the sum of these
degrees. Then, the value opt of an optimal solution is at least σ − k2, i.e.,
σ 6 opt +k2. Hence, if p < σ−k2, the algorithm answers “no”; otherwise, some
easy algebra leads to an approximation ratio bounded above by k2

f(k) + 1. �

4.2 Parameterization by Treewidth and Vertex Cover Number

When dealing with parameterization of graph problems, some classical param-
eters arise naturally. One of them, very frequently used in the fixed parameter
literature, is the treewidth of the graph.

It has already been proven that min and max (k, n − k)-cut, as well as
k-densest subgraph can be solved in time O∗(2tw) [3, 13]. We show here
that the algorithm in [3] can be adapted to handle the whole class of local
problems. A tree decomposition of a graph G(V,E) is a pair (X,T ) where T
is a tree on vertex set N(T ) the vertices of which are called nodes and X =
({Xi : i ∈ N(T )}) is a collection of subsets of V such that: (i) ∪i∈N(T )Xi = V ,
(ii) for each edge (v, w) ∈ E, there exists an i ∈ N(T ) such that {v, w} ∈ Xi,
and (iii) for each v ∈ V , the set of nodes {i : v ∈ Xi} forms a subtree of T . The
width of a tree decomposition ({Xi : i ∈ N(T )}, T ) equals maxi∈N(T ){|Xi|−1}.
The treewidth of a graph G is the minimum width over all tree decompositions
of G. We say that a tree decomposition is nice if any node of its tree that is
not the root is one of the following types:

– a leaf that contains a single vertex from the graph;
– an introduce node Xi with one child Xj such that Xi = Xj ∪{v} for some

vertex v ∈ V ;
– a forget node Xi with one child Xj such that Xj = Xi ∪ {v} for some

vertex v ∈ V ;
– a join node Xi with two children Xj and Xl such that Xi = Xj = Xl.

Assume that the local graph partitioning problem Π is a minimization prob-
lem (we want to find V ′ such that val(V ′) 6 p), the maximization case being
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similar. An algorithm that transforms in linear time an arbitrary tree decom-
position into a nice one with the same treewidth is presented in [13].
Proposition 5. Any local graph partitioning problem can be solved in time
O∗(2tw).

Proof. Consider a nice tree decomposition of G and let Ti be the subtree of T
rooted at Xi, and Gi = (Vi, Ei) be the subgraph of G induced by the vertices
in ⋃Xj∈Ti

Xj . For each node Xi = (v1, v2, . . . , v|Xi|) of the tree decomposition,
define a configuration vector c ∈ {0, 1}|Xi|; c[j] = 1⇐⇒ vj ∈ Xi belongs to the
solution. Moreover, for each node Xi, consider a table Ai of size 2|Xi|× (k+1).
Each row of Ai represents a configuration and each column represents the
number k′, 0 6 k′ 6 k, of vertices in Vi \ Xi included in the solution. The
value of an entry of this table equals the value of the best solution respecting
both the configuration vector and the number k′, and −∞ is used to define
an infeasible solution. In the sequel, we set Xi,t = {vh ∈ Xi : c(h) = 1} and
Xi,r = {vh ∈ Xi : c(h) = 0}.

The algorithm examines the nodes of T in a bottom-up way and fills in the
table Ai for each node Xi. In the initialization step, for each leaf node Xi and
each configuration c, we have Ai[c, k′] = 0 if k′ = 0; otherwise Ai[c, k′] = −∞.

If Xi is a forget node, then consider a configuration c for Xi. In Xj this
configuration is extended with the decision whether vertex v is included into
the solution or not. Hence, taking into account that v ∈ Vi \Xi we get:

Ai
[
c, k′

]
= min

{
Aj
[
c× {0}, k′] , Aj [c× {1}, k′ − 1

]}
for each configuration c and each k′, 0 6 k′ 6 k.

Assume Xi is an introduce node. Then consider a configuration c for Xj .
If v is taken in V ′, its inclusion adds the quantity δv = α1|E({v}, Xi,t)| +
α2|E({v}, Xi,r)| to the solution. The crucial point is that δv does not depend
on the k′ vertices of Vi \Xi taken in the solution. Indeed, by construction, a
vertex in Vi \Xi has its subtree entirely contained in Ti. Besides, the subtree
of v intersects Ti only in its root, since v appears in Xi, disappears from Xj

and has, by definition, a connected subtree. So, we know that there is no edge
in G between v and any vertex of Vi\Xi. Hence, Ai[c×{1}, k′] = Aj [c, k′]+δv,
since k′ counts only the vertices of the current solution in Vi \ Xi. The case
where v is discarded from the solution (not taken in V ′) is completely similar;
we just define δv according to the number of edges linking v to vertices of Ti
respectively in V ′ and not in V ′.

If Xi is a join node, then for each configuration c for Xi and each k′,
0 6 k′ 6 k, we have to find the best solution obtained by kj , 0 6 kj 6
k′, vertices in Aj plus k′ − kj vertices in Al. However, the quantity δc =
α1|E(Xi,t)| + α2|E(Xi,t, Xi,r)| is counted twice. Note that δc depends only
on Xi,t and Xi,r, since there is no edge between Vl \Xi and Vj \Xi. Hence, we
get:

Ai
[
c, k′

]
= max

06kj6k′

{
Aj [c, kj ] +Al

[
c, k′ − kj

]}− δc
and the proof of the proposition is completed. �
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Corollary 5. Restricted to trees, any local graph partitioning problem can be
solved in polynomial time.

Corollary 6. min bisection parameterized by the treewidth of the input gra-
ph is FPT.

It is worth noticing that the result easily extends to the weighted case (where
edges are weighted) and to the case of partitioning V into a constant number
of classes (with a higher running time).

Another natural parameter frequently used in the parameterized complex-
ity framework is the size τ of a minimum vertex cover of the input graph.
Since it always holds that tw 6 τ , the result of Proposition 5 immediately ap-
plies to parameterization by τ . However, the algorithm developed there needs
exponential space. In what follows, we give a parameterization by τ using
polynomial space for a large number of local partitioning problems.

Proposition 6. When parameterized by τ , max and min k-vertex cover,
k-densest subgraph and k-sparsest subgraph, max and min (k, n− k)-
cut can be solved in FPT O∗(2τ ) time and in polynomial space.

Proof. Consider the following algorithm:

– compute a minimum vertex cover C of G;
– for every subset X of C of size |X| smaller than k, complete X with

the k − |X| vertices of V \ C that maximize (resp., minimize) val (see
Definition 1);

– output the best solution.

Recall that a minimum size vertex cover can be computed in time O∗(1.2738τ )
time by means of the fixed-parameter algorithm of [6] and using polynomial
space. The operation on every subset is polynomial, so the global computation
time is at most O∗(2τ ).

The soundness follows from the fact that a complement of a vertex cover is
an independent set. Denoting by V ′ the optimal vertex-set (i.e., the k vertices
inducing an optimal solution), then V ′ ∩ C will be considered by the above
algorithm. For the problems handled, vertices from V \ C can be ordered
following a greedy criterion on their degrees and be chosen in order to complete
X = V ′ ∩ C up to a set V ′ of k vertices that optimizes val(V ′). �

5 Open Questions

Of course, the main remaining open question is the parameterized complexity
of min (k, n− k)-cut with respect to the value of the solution p.

Another problem of interest is to look for a better algorithm for local
graph partitioning problem in general. For instance, we can not rule out a
time-complexity in O∗((a∆)bk), with a and b two constants, which would be
really closer to the O∗(∆k) complexity of the degrading contribution case.
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Also, finding approximation algorithms that work in FPT time with respect
to parameter p seems to be an equally interesting question. Combining the
result of [10] and an O(log1.5(n))-approximation algorithm in [11], we can show
that the problem is O(k3/5) approximable in polynomial time by a randomized
algorithm. But, is it possible to improve this ratio when allowing FPT time
(with respect to p)?

Recent advances

We are glad to notice that, after the submission of this article and the pre-
sentation of the results at IPEC’13, two very interesting articles appeared on
the same topic, and answer two of the open questions that we asked in the
conclusion.

– In [8] it is shown that min (k, n− k)-cut, parameterized by the value p of
the solution, is solvable in time O(2O(k3)n3 log3 n). The technique used is
completely different than the approach we have developed here.

– In [18], it is shown that a time-complexity of O∗(4k+o(k)∆k) can be indeed
reached for local graph partitioning problem in general.
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