
Parameterized (in)approximability of subset problems
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Abstract

We discuss approximability and inapproximability in FPT-time for a large

class of subset problems where a feasible solution S is a subset of the input data.

We introduce the notion of intersective approximability that generalizes the one

of safe approximability introduced in (J. Guo, I. Kanj and S. Kratsch, Safe

approximation and its relation to kernelization, IPEC 2011) and show strong

parameterized inapproximability results for many of the subset problems han-

dled.
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1. Introduction

Parameterized approximation aims at bringing together two very active fields

of theoretical computer science, polynomial approximation and parameterized

computation. We say that a minimization (resp., maximization) problem Π,

together with a parameter k, is parameterized r-approximable, if there exists5

an FPT-time algorithm which computes a solution of size at most (resp., at

least) rk whenever the input instance has a solution of size at most (resp., at

least) k, otherwise, it outputs an arbitrary solution. This line of research was

initiated by three independent works [5, 3, 4]. For a very interesting overview

of older results, see [7].10
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Our goal in this paper is to study parameterized approximability of subset

problems (whose formal definition is given in Section 2), via the introduction

of a new approximability framework called intersective approximation, which is

quite natural when handling such problems.

Intersective approximability generalizes the model of safe approximability,15

introduced earlier by [6]. An approximation is said to be safe, if it produces

solutions containing an optimal solution. Safe approximation only captures

minimization problems and can be used in order to get strong inapproximability

results. For instance, it is shown in [6] that a safe c log n-approximation, for any

c > 0, for generalized min dominating set, can be turned into an exact20

FPT algorithm, contradicting FPT 6= W[2].

Intersective approximability relaxes the requirement of (complete) inclusion

of an optimal solution into the approximate solution computed, by just asking

these two solutions to have a non-empty intersection. This relaxation allows the

new model to apply non-trivially to maximization subset problems, too. We use25

intersective approximability, in order to establish meta-theorems producing as

corollaries strong negative results for subset problems.

2. Subset problems

Subset problems can be defined as follows.

Definition 1. A problem Π is called a subset problem, if the following condi-30

tions hold:

• feasible solutions for Π are subsets of elements encoding its instances that

verify some specific property;

• Π is decomposable, i.e., for any instance I and element e of the encoding

of I, there exists an instance I(e) such that if S is a solution for I(e),35

then S ∪ {e} is a solution for I.

The existence of one instance encoding for Π satisfying Definition 1 is suffi-

cient for Π to be a subset problem; thus, Definition 1 does not depend on the
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encoding.

In what follows, we give several examples of graph, set and satisfiability40

subset problems in order to clarify the notion of decomposability of the second

item in Definition 1. We use the standard notation on graphs: G[S] is the

subgraph of G induced by S, N(v) is the set of neighbors of v, N [v] = N(v) ∪

{v}, V usually denotes the set of vertices of a graph, E the set of its edges,

n = |V | and m = |E|.45

Let a graph be encoded by the set of its vertices and the set of its edges. An

independent set is a vertex-subset verifying the stability property (the induced

subgraph contains no edge). max independent set is decomposable with

G(v) = G[V \ N [v]]. Indeed, any independent set in G containing v, is an

independent set in G[V \N [v]] combined with the vertex v. A clique is a vertex-50

subset verifying the property of containing pairwise adjacent vertices. max

clique is decomposable with G(v) = G[N(v)]. Indeed, any clique containing v

has all its other vertices in N(v). A vertex cover is a vertex-subset which covers

all the edges. min vertex cover is decomposable with G(v) = G[V \ {v}].

A generalized dominating set is a vertex-subset whose members dominate an55

imposed subset of vertices V ′ ⊆ V . generalized min dominating set aims

at finding a minimum-size generalized dominating set, given a graph G and

a subset V ′ ⊆ V . min dominating set is a special case of generalized

min dominating set with V ′ = V . generalized min dominating set is

decomposable with (G,V ′)(v) = (G[V \ {v}], V ′ \ N [v]). A feedback vertex set60

is a vertex-subset S such that G[V \S] is a forest. min feedback vertex set

is decomposable with G(v) = G[V \ {v}].

Let a set system be encoded by a ground set X and a collection S of its

subsets. A set cover is a subcollection of S that covers C. min set cover

is decomposable with (S, X)(S) = ((S \ {S})|X\S , X \ S), where A|B is the65

projection to B of all the subsets in A.

Let a CNF formula φ be encoded by its variables X and its clauses C. sat is

decomposable with φ(x) = C[x← >]. Analogous formulations make that max

sat or min sat problems are subset problems. For the same reason, sat-k,
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asking for determining a truth assignment setting at most k variables to true70

and its optimization counterpart max sat-k are subset problems.

On the other hand, all problems are not subset problems. For instance,

partition problems such as min vertex coloring, min domatic number,

max achromatic number, or bin packing are not subset problems.

In what follows, we will focus mainly on optimization subset problems.75

3. Intersective approximability of subset problems

As we have already mentioned in Section 1, intersective approximability

extends the notion of safe approximability of [6], by allowing the approximate

solutions computed not to thoroughly contain an optimal solution (for the case

of minimization problems) but only to have a non-empty intersection with some80

optimal solution.

Definition 2. A ρ-approximation algorithm A is said to be intersective for a

problem Π if, when running on any instance I of Π, it computes a ρ-approximate

solution A(I) and there exists an optimal solution S0 of I such that A(I)∩S0 6= ∅.

Note that a safe approximation is a special case of an intersective approxima-85

tion. From Definition 2 and since the intersective model does not require that

the approximate solution contains an optimal solution, intersective approxima-

tion can also fit maximization problems. Therefore, the model applies to any

optimization subset problem.

In what follows, we prove that intersective approximation in FPT time is90

very unlikely for W[·]-hard subset problems, since such an approximation can

be transformed into an exact FPT algorithm. However, as we will see, there

is an important difference between minimization and maximization problems

since, for the former, this transformation can be done only if intersective FPT

approximation ratio is under a certain approximation level, while, for the latter,95

such transformation is independent on the level of the ratio.

We first prove the following more general theorem where, given an instance I

of a subset problem Π, we denote by k the optimal value of I.
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Theorem 3. Let Π be an optimization subset problem. Then:

• if Π is a minimization problem and admits an intersective r-approximation100

computed in time O(f(n, k)), for some r > 1 and some positive increasing

function f , then Π can be optimally solved in time O((rk)kf(n, k));

• if Π is a maximization problem, any intersective approximation computed

in time O(f(n, k)), for some positive increasing function f can be trans-

formed into an exact algorithm running in time O(kkf(n, k)).105

Proof. Consider some minimization problem Π, an intersective FPT approxi-

mation algorithm A for Π achieving approximation ratio r and let I be any in-

stance of Π. Compute an intersective approximation S = A(I) = {e1, . . . , e|S|}

for I. If |S| > rk, then answer that I is a NO-instance. Otherwise, branch on

the at most rk instances I(e1), . . . , I(e|S|) (since Π is decomposable, all these110

instances are well-defined). For all these instances, compute an r-approximation

and keep the recursion on. When k elements have been taken in the solution,

stop the recursion.

We claim that the best solution found at a leaf of the branching tree is an

optimal solution. Indeed, starting from the root one can, by definition of inter-115

sective approximation, move to a child which has taken an element e contained

in an optimal solution.

The branching tree has depth k since, at each step, one element is added

in the solution and arity bounded by rk. Hence, the number of its nodes is

bounded by 2(rk)k. On each node, some O(f(n, k)) computation is done. So,120

the overall complexity is O((rk)kf(n, k)).

We now handle maximization problems. Consider some maximization prob-

lem Π, an intersective approximation algorithm A for Π (achieving any ap-

proximation ratio) and let I be any instance of Π. Compute an intersective

approximation S = A(I) for I. If |S| > k, answer YES and output this solution.125

Otherwise |S| < k and the exact branching algorithm of the previous paragraph

runs in time O(kkf(n, k)). If one of the leaves of the branching tree contains a
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feasible solution, answer YES and output this solution. Otherwise, anwser NO.

Theorem 3 has the following almost immediate but important corollary.

Theorem 4. Let Π be a subset optimization problem. Then:130

• if Π is a minimization problem and admits an FPT intersective (g(k) log n)-

approximation for some function g, then Π admits an exact FPT algo-

rithm;

• if Π is a maximization problem and admits an FPT intersective approxi-

mation, then Π admits an exact FPT algorithm.135

Proof. For minimization problems just observe that, when r = g(k) log n, the

number of nodes in the branching tree is bounded by 2(kg(k))k(log n)k and,

on each node, some FPT computation is done, bounded by, say, f(k)p(n). So,

the overall complexity is 2(kg(k))kf(k)(log n)kp(n), which is FPT, considering

that (log n)k is FPT with respect to k [10].140

For maximization problems, the proof comes directly from Theorem 3 and

it can be easily seen that no specific approximation guarantee is required for

them.

Remark 1. The result of Theorem 4 for the case of minimization problems

works, in fact, even if we consider approximation ratios O(g(k)(log n)h(k)) for145

any (increasing) functions h and g. Indeed, O((g(k)(log n)h(k)k)kf(k)) (where f

is the complexity of the FPT intersective algorithm) is O(F (k)p(n)), for some

function F and polynomial p [10].

Based upon Theorem 4, the following holds for the intersective FPT approx-

imability of W[·]-hard problems.150

Corollary 5. Unless the W-hierarchy collapses at some level:

• no FPT intersective (g(k) log n)-approximation exists for W[·]-hard min-

imization problems, for any positive increasing function g;
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• no FPT intersective r-approximation (for any r) exists for W[·]-hard max-

imization problems.155

In particular:

• unless FPT = W[2], no FPT intersective (g(k) log n)-approximation ex-

ists for either min set cover, or generalized min dominating set,

for any positive increasing function g;

• unless FPT = W[1], no FPT intersective approximation exists either for160

max independent set, or for max clique.

Note that the negative result for min set cover above, transfers also to

min dominating set thanks to the classical approximability-preserving reduc-

tion from min set cover to min dominating set [9] that is also parameter-

preserving.165

The proof of Theorem 4 gives also some hints for obtaining FPT algorithms

for intersectively approximable problems. For instance:

• for min vertex cover, the classical polynomial 2-approximation maxi-

mal matching algorithm is an intersective approximation algorithm (while

not always a safe one) which, by Theorem 4 derives an FPT algorithm170

running in time O∗((2k)k);

• for max minimal vertex cover (it consists of determining a maximum-

cardinality vertex cover that is minimal for inclusion; an optimal solution

for this problem is the complement of a minimum independent dominating

set), all the (polynomial) algorithms proposed in [1], compute intersective175

approximations (in fact, any algorithm for this problem is either optimal

or intersective); so, the application of the algorithm of Theorem 3 derives

an FPT algorithm running in time O∗(kk);

• there exists a 2-approximation for max cut which produces solutions of

size greater than m/2; hence, this approximation is obviously intersective180

and application of Theorem 3 again derives an FPT algorithm running in

time O∗(kk).
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Of course, the inclusion of all of the three problems above in FPT is already

known and through faster FPT algorithms, but Theorem 4 could be helpful for

other problems of still unknown status.185

Although very interesting as approximation concept, safe approximation is

quite rare and very restrictive, since inclusion of some optimum in an approxi-

mate solution is a very strong requirement. Indeed, no safe algorithm is known

for problems other than min vertex cover (this algorithm is the immedi-

ate algorithm for min vertex cover derived by application of Nemhauser-190

Trotter’s Theorem [8] for min vertex cover) and a few restrictive versions of

some other minimization subset problems. Another drawback of the safe model,

which intersective approximation handles, is that it cannot extend to maximiza-

tion problems. For such problems, safe approximation (the computed solution

is contained in an optimal solution) can be used k times as a polynomial time195

oracle to guess one by one each element of an optimal solution; so safe approx-

imation is not likely to happen for hard maximization problems. Furthermore,

intersective approximation seems to be more realistic because it captures the

behavior of approximations algorithms that in general build solutions with both

elements inside and elements outside an optimal solution.200

Let us note that the so-called fixed-cardinality graph problems are subset

problems, too. Such problems are defined on some graph G(V,E) with two

integers k and p. Feasible solutions are subsets V ′ ⊆ V of size exactly k. The

value of their solutions is a linear combination of sizes of edge subsets and the

objective is to determine whether there exists a solution of value at least, or at205

most p. Notable representatives of such problems are max k-vertex cover

(where one looks for a set of k vertices that covers a maximum number of edges),

generalized k-densest subgraph (given a subset V ′ of V , one looks for a

superset of V ′ with k vertices inducing a subgraph of G with a maximum number

of edges) and its minimization version generalized k-lightest subgraph,210

generalized max (k, n − k)-cut (given a set V ′ of vertices, one looks for a

superset S of V ′ with k vertices with a maximum number of edges between S

and V \S) and its minimization version generalized min (k, n−k)-cut, max
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k-set cover (here one looks for a family of k subsets that covers a maximum

number of elements), etc. These problems are known to be W[1]-hard with215

respect to k [2].

An intersective approximation for fixed-cardinality problems implies that k′

elements from the solution, 0 < k′ 6 k, are common to both the optimum and

the approximate solution. Then, Theorem 4 derives the following.

Corollary 6. Unless W[1] = FPT, no intersective approximation algorithm220

can exist for any of the problems max k-vertex cover, generalized k-

densest subgraph, generalized k-lightest subgraph, generalized max

(k, n − k)-cut, generalized min (k, n − k)-cut, max k-set cover. Also,

unless W[2] = FPT, no intersective FPT approximation algorithm can exist

for max k-set cover.225

4. Final remarks

Intersective approximability, importantly relaxes and generalizes the safe ap-

proximability of [6] since (i) it is more natural and reflects the realistic behavior

of an approximation algorithm and (ii) it encompasses maximization problems.

Also, while producing strong negative results, intersective approximability may230

also produce positive approximation results.

Like safe approximability and despite the narrowness of both notions, inter-

sective approximability has the merit to give new insights in the field of parame-

terized approximation that is in its beginnings and needs several precisions and

hypotheses for stabilizing its formal framework.235

Finally, let us note that intersective approximability can be extended to

several problems that are not subset problems per se. We just sketch such an

extension to coloring problems. A solution for a k-coloring can be seen as k

sets S1, . . . , Sk where Si is the set of vertices (or edges) receiving color i. A

ρ-intersective approximation to a k-coloring problem can be defined as an h-240

coloring S′1, . . . , S
′
h such that there exists an optimal solution S1, . . . , Sk with

k > h/ρ and two integers i, j satisfying Si = S′j . Under this extended definition
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of intersective approximability, the following can be proved in a way similar to

that of Theorem 4.

Corollary 7. If a k-coloring problem Π has an FPT intersective (c log n)-245

approximation (as extended just above) for some constant c > 0, then Π admits

an exact FPT algorithm.
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