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Abstract

We introduce the inverse Voronoi diagram problem in graphs: given a graph G with
positive edge-lengths and a collection U of subsets of vertices of V (G), decide whether U is a
Voronoi diagram in G with respect to the shortest-path metric. We show that the problem
is NP-hard, even for planar graphs where all the edges have unit length. We also study the
parameterized complexity of the problem and show that the problem is W[1]-hard when
parameterized by the number of Voronoi cells or by the pathwidth of the graph.

Keywords: distances in graphs, Voronoi diagram, inverse Voronoi problem, NP-complete,
parameterized complexity.

1 Introduction

Let (X , d) be a metric space, where d : X × X → R≥0. Let Σ be a subset of X . We refer to each
element of Σ as a site, to distinguish it from an arbitrary point of X . The Voronoi cell of each site
s ∈ Σ is then defined by

cell(X ,d)(s,Σ) = {x ∈ X | ∀s′ ∈ Σ : d(s, x)≤ d(s′, x)}.

The Voronoi diagram of Σ in (X , d) is

V(X ,d)(Σ) = {cell(X ,d)(s,Σ) | s ∈ Σ}.

It is easy to see that, for each set Σ of sites, each element of X belongs to some Voronoi cell
cell(X ,d)(s,Σ). Therefore, the sets in V(X ,d)(Σ) cover X . On the other hand, the Voronoi cells do
not need to be pairwise disjoint. In particular, when some point x ∈ X is closest to two sites, then
it is in both Voronoi cells.

In the inverse Voronoi problem, we are given a metric space (X , d) and a sequence X1, . . . , Xk
of subsets of X that cover X . The task it to decide whether {X1, . . . , Xk} is a Voronoi diagram in
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(X , d). This means that we have to decide whether there exist some sites s1, . . . , sk such that, for
each index i, we have X i = cell(X ,d)(si , {s1, . . . , sk}).

The inverse Voronoi problem is closely related to problems in classification and clustering.
In pattern recognition, a classic paradigm to classify is to use the nearest neighbor rule: given a
learning set L of objects that are already classified, each new object is classified into the same
class as its closest object from L . To reduce the size of the learning set, Hart [17] introduced the
concept of consistent subsets. A subset L ′ of the learning set L is a consistent subset if, for each
object ` from L , the object ` and its closest neighbor in L ′ are in the same class. An equivalent,
alternative perspective of this is given by Voronoi diagrams: in the Voronoi diagram of a consistent
subsetL ′, each object ` ofL belongs to a Voronoi cell defined by a site s ∈ L ′ if and only if ` and
s belong to the same class. Ritter et al. [28] introduced the problem of finding consistent subsets
of minimum size. Surveying the research in this applied area is beyond the scope of our research.
We refer to Biniaz et al. [5] and Gottlieb et al. [16] for some of the latest algorithmic results on
this topic. Considering each class as a Voronoi cell, the inverse Voronoi problem is asking precisely
whether there exists a consistent subset with one element per class. Such consistent subset has of
course to be of optimal size.

Graphic version. Let G be an undirected graph with n vertices and abstract, positive edge-
lengths λ: E(G)→ R>0. The length of a path in G is the sum of the edge-lengths along the path.
We define the (shortest-path) distance between two vertices x and y of G, denoted by dG(x , y),
as the minimum length over all paths in G from x to y .

Since (V (G), dG) is a metric space, we can consider the concepts of Voronoi cells and Voronoi
diagrams for this space. We denote them by cellG(s,Σ) and VG(Σ) respectively. Moreover, when
the graph is clear from the context, we remove the subscript and thus just talk about cell(s,Σ)
and V(Σ).

In this paper we consider computational aspects of the inverse Voronoi problem when the
metric space is the shortest-path metric in a graph. Thus, we consider the following problem.

GRAPHIC INVERSE VORONOI

Input: (G,U), where G is a graph with positive edge-lengths and U= (U1, . . . , Uk) is
a sequence of subsets of vertices of G that cover V (G).
Question: Are there sites s1, . . . , sk ∈ V (G) such that cellG(si , {s1, . . . , sk}) = Ui for
each i?

See Figure 1 for an example. As far as the existence of polynomial-time algorithms is concerned,
it is equivalent to consider a graph or a finite metric space. Indeed, for each finite metric space
we can build a graph that encodes those distances by using a complete graph with edge-lengths,
and, inversely, given a graph, we can compute the matrix of distances between all pairs of vertices
in polynomial time. However, considering special classes of graphs may be useful to get more
efficient algorithms.

Our results. First we show that the problem GRAPHIC INVERSE VORONOI is NP-hard even for
planar graphs where the candidate Voronoi cells are pairwise disjoint and each has at most 3
vertices. The reduction is from a variant of PLANAR 3-SAT. The bound on the number of vertices
per cells is tight: when each candidate Voronoi cell has 2 vertices, the problem can be solved
using 2-SAT.

Many graph decision and optimization problems admit fixed-parameter tractable (FPT) al-
gorithms with respect to additional parameters that quantify how complex is the input; see
for instance [9]. Using the framework of parameterized complexity, we provide stronger lower
bounds when parameterized by the number k of sites and the pathwidth p(G) of G. More precisely,
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Figure 1: An instance with two solutions. The edges have unit length and the larger, filled dots
represent the sites.

assuming the Exponential Time Hypothesis (ETH), we show that the problem cannot be solved in
time f (k)|V (G)|o(k/ log k) nor in time f (p(G))|V (G)|o(p(G)), for any computable function f . These
hardness results hold for graphs where all the edges have unit length.

Related work. Voronoi diagrams on graphs were first investigated by Erwig [12], who showed
that they can be efficiently computed. Subsequently, graph Voronoi diagrams have been used in a
variety of applications. For instance, Okabe and Sugihara [27] describe several applications of
graph Voronoi diagrams. More recent applications, many of them for planar graphs, can be found
in [7, 8, 13, 14, 21, 25]. Voronoi diagrams in graphs have also been considered in the context of
the so-called Voronoi game [3, 15] and in the context of topological data analysis [10].

On the other hand, the inverse Voronoi problem in the traditional, Euclidean setting has been
studied since the mid 1980s, starting with the seminal paper by Ash and Bolker [2]. We are not
aware of any previous work considering the graphic inverse Voronoi problem.

In an accompanying paper [6], we consider efficient algorithms for the problem GRAPHIC

INVERSE VORONOI when the underlying graph is a tree.

2 Basics

Sets and Graphs. For a positive integer k we use the notation [k] = {1, . . . , k}. We use the
standard graph-theoretic definitions and notations that can be found in Diestel’s book [11]. In
particular, we denote by V (G), respectively by E(G), the vertex-set, respectively the edge-set, of a
graph G. If G is a graph and S ⊆ V (G), we denote by G[S] the subgraph induced by S, and G − S
is a short-hand for G[V (G) \ S]. A graph is said planar if its vertices can be drawn as distinct
points of the real plane, its edges can be drawn as simple curves (in the plane) connecting the
points that represent its vertices, and the interior of the curves representing the edges are pairwise
non-crossing.

A vertex-separator in a graph G is a subset of its vertices S ⊆ V (G) such that G − S is a discon-
nected non-empty graph. A vertex-separator S is said balanced if all the connected components
of G − S have size at most 2|V (G)|/3. Up to constant factors, we could define the notion of
treewidth by means of repeated balanced vertex-separators. We choose not to do so, in order to
follow the usual definition and to also introduce pathwidth. We will need the notion of balanced
vertex-separators in Theorem 12 and treewidth/pathwidth in Section 5.
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Treewidth and pathwidth. A tree-decomposition of a graph G is a tree T whose nodes are
labeled by subsets of V (G), called bags, such that for each vertex v ∈ V (G), the bags containing
v induce a subtree of T , and for each edge e ∈ E(G), there is at least one bag containing both
endpoints of e. The width of a tree-decomposition is the size of its largest bag minus one. The
treewidth of a graph G is the minimum width of a tree-decomposition of G. The point of the
“minus one” in the definition is that the tree-width of trees is 1, and not 2. The pathwidth is
the same as treewidth except the tree T is now required to be a path, and hence is called a
path-decomposition. In particular pathwidth is always at least as large as treewidth. We observe
that if G has treewidth w, then it admits in particular a balanced vertex-separator of size at most
w+ 1. Indeed, any non-leaf bag is a vertex-separator. One can find one that is also balanced
by starting from the root (any node) of the tree-decomposition labeled by say, S, and iteratively
moving to a component of G − S which is larger than 2/3 of the whole graph. When this process
is no longer possible, we have our balanced vertex-separator.

In Section 5, we will need to bound the pathwidth (and therefore the treewidth) of rather
complicated graphs. Writing down the full description of a tree-decomposition or of a path-
decomposition may be a bit tedious. Kirousis and Papadimitriou [22] showed the equality
between the interval thickness number, which is equal to pathwidth plus one, and the node
searching number. To give an upper bound to the pathwidth, we only need to prove that the
number of cleaners required to win the following one-player game is bounded by a suitable
function. We imagine the edges of a graph to be contaminated by a gas. We shall move around
a team of cleaners, placed at the vertices, in order to clean all the edges. A move consists of
removing a cleaner from the graph, adding a cleaner at an unoccupied vertex, or displacing a
cleaner from a vertex to any other vertex (not necessarily adjacent). An edge is cleaned when
both its endpoints are occupied by a cleaner. After each move, all the cleaned edges admitting a
free-of-cleaners path from one of its endpoints to the endpoint of a contaminated edge are however
recontaminated. The node searching number is the minimum number of cleaners required to win
the game.

ETH and Sparsification Lemma. The Exponential-Time Hypothesis (ETH, for short) of Impagli-
azzo and Paturi [18] asserts that there is no subexponential-time algorithm solving 3-SAT. More
precisely, there is a positive real number δ > 0 such that 3-SAT cannot be solved in time 2δn

on n-variable instances. Impagliazzo et al. [19] present a subexponential-time Turing-reduction
parameterized by a positive real number ε > 0 which, given a 3-SAT-instance φ with n variables
and m clauses, produces at most 2εn 3-SAT-instances φ1, . . . ,φt such that φ⇔

∨

i∈[t]φi, each
φi having no more than n variables and Cεn clauses for some constant Cε (depending solely on ε,
and not on n and m). This important reduction is known as the Sparsification Lemma. Due to the
Sparsification Lemma, there exists a positive real number δ′ > 0 such that no algorithm can solve
3-SAT in time 2δ

′(n+m) on n-variable m-clause instances, assuming that the ETH holds.

Inverse Voronoi and compatibility. Consider an instance (G, (U1, . . . , Uk)) to the GRAPHIC

INVERSE VORONOI and a candidate solution s1, . . . , sk ∈ V (G). We say that si and s j (i 6= j) are
compatible if we have d(si , u) = d(s j , u) for each u ∈ Ui∩U j , d(si , u)< d(s j , u) for each u ∈ Ui\U j ,
and d(s j , u) < d(si , u) for each u ∈ U j \ Ui. Consider a fixed index i ∈ [k]. It is straightforward
from the definition that cellG(si , {s1, . . . , sk}) = Ui if and only if si and s j are compatible for all
j 6= i. (Here the relevant assumption is that U1 ∪ · · · ∪ Uk is V (G).)

In all cases we use G as the ground graph that defines the metric. Note that in the following
claims it is important that G has positive edge-lengths.

We have remarked before that Voronoi cells need not be disjoint. A vertex belongs to various
Voronoi cells if it is equidistant to different sites. An alternative is to define cells using strict
inequalities. More precisely, for a set Σ of sites, the open Voronoi cell of each site s ∈ Σ is then
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x1 x2 x3 x4

C1 C2 C3 C4 C5

I(V ,C ) G

v(x2)v(x2) v(x4)v(x4)

v(2, 2) v(2, 3) v(2, 4) v(3, 4) v(4, 2) v(5, 1)

∆(5)
∆(1)

Figure 2: Left: incidence graph for the POSITIVE 1-IN-3-SAT instance with V = {x1, x2, . . . , x5}
and C = {C1 = {x1, x3, x4}, C2 = {x2, x3, x4}, . . . , C5 = {x1, x2, x3}}. Right: resulting instance for
GRAPHIC INVERSE VORONOI. Each connected shaded region corresponds to one set of U.

defined by
cell<(s,Σ) = {x ∈ X | ∀s′ ∈ Σ \ {s} : d(s, x)< d(s′, x)}.

In this case, the cells are disjoint but they do not necessarily form a partition of X . The following
lemma is straightforward and we omit its proof.

Lemma 1. For each set Σ of sites and each site s ∈ Σ we have s ∈ cell<(s,Σ) and

cell<(s,Σ) = cell(s,Σ) \

�

⋃

s′ 6=s

cell(s′,Σ)

�

.

3 Hardness of the Graphic Inverse Voronoi

In this Section we show that the problem GRAPHIC INVERSE VORONOI is NP-hard, even for planar
graphs. Stronger lower bounds are derived assuming the Exponential Time Hypothesis (ETH). We
will make a reduction from a variant of the satisfiability (SAT) where each clause has 3 literals,
all the literals are positive, and we want that each clause is satisfied at exactly one literal. The
problem can be stated combinatorially as follows.

POSITIVE 1-IN-3-SAT
Input: (V ,C ), where V is a ground set and C is a family of subsets of V of size 3.
Question: Is there a subset T ⊆ V such that |C ∩ T |= 1 for each C ∈ C ?

In this combinatorial setting, V represents the variables, C represents the clauses with 3 positive
literals each, and T represents the variables that are set to true.

The incidence graph I(V ,C ) of an instance (V ,C ) has vertex set V ∪C and an edge between
v ∈ V and C ∈ C precisely when v ∈ C . The graph is bipartite.

As shown by Mulzer and Rote [26], the problem POSITIVE 1-IN-3-SAT is NP-complete even
when the incidence graph is planar.

Theorem 2. The GRAPHIC INVERSE VORONOI problem is NP-hard on planar graphs with unit
edge-lengths, even when the candidate Voronoi cells are disjoint sets of size at most 3.

Proof. We make a reduction from POSITIVE 1-IN-3-SAT with planar incidence graphs. Let (V =
{x1, . . . , xn},C = {C1, . . . , Cm}) be an instance of POSITIVE 1-IN-3-SAT with planar incidence graph.
We produce an equivalent instance (G,U) of GRAPHIC INVERSE VORONOI as follows. See Figure 2.
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• For each element x i ∈ V , we add two vertices v(x i) and v(x i) to the vertex set of G, and we
connect them by an edge. We add the set {v(x i), v(x i)} to the candidate Voronoi cells U.

• For each subset C j = {xa, xb, xc}, we add three vertices v( j, a), v( j, b), and v( j, c) to V (G),
and we connect the three pairs by edges, forming a triangle. We add the set ∆( j) =
{v( j, a), v( j, b), v( j, c)} to U.

• Finally, for each xa ∈ V and each C j ∈ C with xa ∈ C j , we link v( j, a) to v(xa) by an edge.

This finishes the construction of (G,U). We observe that the sets of U are indeed pairwise disjoint
and of size 2 or 3. The graph G is planar since it is obtained from the planar incidence graph
I(V ,C ) by adding pendant vertices and splitting each vertex representing a subset (with three
neighbors) into a triangle in which each vertex is linked to one distinct neighbor.

If there is a solution T to the instance (V ,C ), we position the sites in the following way. For
each x i ∈ V , we place the site of {v(x i), v(x i)} in v(x i) if x i ∈ T , and in v(x i), otherwise. For
each C j = {xa, xb, xc} ∈ C , we place the site of ∆( j) in v( j, z), where xz is the unique element of
C j ∩ T . We denote by Σ the obtained set of sites. We check that this placement defines the same
Voronoi cells as specified by U.

• For each v(x i) ∈ Σ, we have cellG(v(x i),Σ) ⊇ {v(x i), v(x i)}, since by construction there is
no site in v(x i). The only neighbors of {v(x i), v(x i)} are vertices v( j, i) for some values of
j ∈ [m]. However, those neighbors do not contain a site of Σ by construction. On the other,
there is always a site of Σ at distance at most 1 of v( j, i), whereas v(x i) is at distance 2 of
v( j, i). Hence, cellG(v(x i),Σ) = {v(x i), v(x i)}.

• Similarly, for each v(x i) ∈ Σ, we have cellG(v(x i),Σ) ⊇ {v(x i), v(x i)}, since by construction
there is no site in v(x i). The only neighbors of {v(x i), v(x i)} are vertices v( j, i) for some
values of j ∈ [m], but since v(x i) ∈ Σ, by construction, v( j, i) also belongs to Σ. Therefore,
cellG(v(x i),Σ) = {v(x i), v(x i)}.

• Finally, consider some v( j, z) ∈ Σ, where C j = {xa, xb, xc}. We have cellG(v( j, z),Σ) ⊇∆( j)
because v( j, z) is the only site in ∆( j). The only other neighbor of v( j, z) is v(xz), which is
in Σ. The only neighbor of v( j, z′) with z′ ∈ {a, b, c} \ {z} is v(xz′) which is at distance 2 of
v( j, z) and at distance 1 of the site v(xz′) ∈ Σ. Thus, cellG(v( j, z),Σ) =∆( j).

If there is no solution to the instance (V ,C ), we show that there is no solution to the GRAPHIC

INVERSE VORONOI instance (G,U). Fix a position of the sites. The set of sites Σ has to intersect
each {v(x i), v(x i)} exactly once. Define the set

T = {x i ∈ V | the site chosen for {v(x i), v(x i)} is v(x i)}.

As T is not a solution for the POSITIVE 1-IN-3-SAT instance, there is a set C j = {xa, xb, xc} ∈ C
such that |C j ∩ T | 6= 1. We now turn our attention to the site chosen for ∆( j). We distinguish
two cases: |C j ∩ T |= 0 and |C j ∩ T | ≥ 2. If |C j ∩ T |= 0, then, for every position of the site, say
in v( j, z) (with z ∈ {a, b, c}), cellG(v( j, z),Σ) contains v(xz), and therefore cannot be equal to
∆( j). Now if |C j ∩ T | ≥ 2, let v(xz) and v(xz′) be two sites of Σ with z 6= z′ ∈ {a, b, c}. Since ∆( j)
contains precisely one site, we have v( j, z) /∈ Σ or v( j, z′) /∈ Σ. If v( j, z) /∈ Σ, then cellG(v(xz),Σ)
contains v( j, z), and therefore cannot be equal to {v(xz), v(xz)}. Similarly, if v( j, z′) /∈ Σ, then
cellG(v(xz′),Σ) 6= {v(xz), v(xz)}. In both cases, we reach the conclusion that there cannot be a
solution for the instance (G,U).

Note that in the argument we did not use that I(V ,C ) or G are planar.

Using additional properties of the reduction from (PLANAR) 3-SAT to (PLANAR) POSITIVE

1-IN-3-SAT given by Mulzer and Rote [26] and the Sparsification Lemma, we derive the following
conditional lower bound.
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Corollary 3. Unless the Exponential Time Hypothesis fails, the problem GRAPHIC INVERSE VORONOI

cannot be solved in time 2o(n) in general graphs and in time 2o(
p

n) in planar graphs, where n is the
number of vertices, even when the potential Voronoi cells are disjoint and of size at most 3.

Proof. Applying the reduction of Mulzer and Rote [26] to a 3-SAT instance with n variables and
m clauses gives an instance to POSITIVE 1-IN-3-SAT with O(n+m) variables and O(m) clauses.
This is so because in their reduction each clause is replaced locally using O(1) new variables and
clauses. The reduction and the proof used in Theorem 2 then give an instance with O(n+m)
vertices. (The reduction also works for non-planar instances, as mentioned at the end of the
proof.) Therefore, if we could solve GRAPHIC INVERSE VORONOI in time 2o(|V (G)|), we could solve
any 3-SAT instance with n variables and m clauses in time 2o(|V (G)|) = 2o(n+m). However, the
Sparsification Lemma [20] rules out, under the Exponential Time Hypothesis, a running time
2o(n+m) for 3-SAT.

The reduction from 3-SAT to PLANAR 3-SAT given by Lichtenstein [23] increases quadratically
the number of variables and clauses. Together with the reduction of Mulzer and Rote from
(PLANAR) 3-SAT to (PLANAR) POSITIVE 1-IN-3-SAT and our reduction in the proof of Theorem 2,
we conclude that each instance of 3-SAT with n variables and m clauses becomes an instance of
GRAPHIC INVERSE VORONOI where the graph G is planar and has O((n+m)2) vertices. Again,

solving the problem in planar graphs in time 2o(
p
|V (G)|) time for planar graphs would contradict

the Sparsification Lemma.

This upper bound of 3 for the size of the potential Voronoi cells is sharp.
We show that the problem can be solved in polynomial time when each potential Voronoi cell

has at most two points not contained in other potential cells. For this, one uses a reduction to
2-SAT. Inspired by Lemma 1, we say that each U ∈ U defines the potential open Voronoi cell

U \

 

⋃

U ′∈U\{U}
U ′
!

.

Theorem 4. The GRAPHIC INVERSE VORONOI problem can be solved in polynomial time when all
the potential open Voronoi cells are of size at most 2.

Proof. We present a polynomial reduction to 2-SAT. See Figure 3 for an example. Let (G,U =
{U1, . . . , Uk}) be the GRAPHIC INVERSE VORONOI instance. We denote by U ′i the open potential
Voronoi cell of the potential Voronoi cell Ui. By assumption, |U ′i | ≤ 2. Because of Lemma 1, if
the instance has a solution, then si ∈ U ′i . For each open cell U ′i , we introduce a variable x i. We
interpret putting the site on one fixed but arbitrary vertex of U ′i to setting x i to true, and putting
the site on the other vertex (if it exists) to setting x i to false. Now, VG(Σ) = U if and only if for
each pair of sites si , s j ∈ Σ with si ∈ U ′i and s j ∈ U ′j:

• every vertex of Ui \ U j is strictly closer to si than to s j , and

• every vertex of U j \ Ui is strictly closer to s j than to si , and

• every vertex of Ui ∩ U j is equidistant to si and s j .

Therefore, one just needs to check that each pair of sites of Σ is compatible, that is, satisfies those
three conditions.

We define the following set of 2-SAT constraints. For each open cell U ′i of size 1, we add the
clause x i , which forces to set x i to true. For each pair si ∈ U ′i , s j ∈ U ′j which is not compatible we
add the clause `i ∨ ` j where `i (resp. ` j) is the opposite literal to the one chosen by placing a site
in si (resp. s j).

It is easy to check that the produced 2-SAT formula is satisfiable if and only if there is a
pairwise compatible set of sites. This is in turn equivalent to the existence of a solution for the
GRAPHIC INVERSE VORONOI instance.

7



U1

U2

U3
U4U5

U6

Figure 3: An instance satisfying the assumption of Theorem 4. The vertices of each set U ∈ U are
enclosed by dashed curve. The crosses indicate the position when the variables are true. Some of
the compatibility clauses are x5 ∨ x4, x5 ∨ x4, x5 ∨ x4, x2 ∨ x3, etc., as well as the 1-clause x3.

4 Hardness parameterized by the number of Voronoi cells

In the previous section we showed that the problem GRAPHIC INVERSE VORONOI is NP-hard.
Stronger lower bounds are derived under the assumption of the Exponential Time Hypothesis
(ETH). We will prove the following result.

Theorem 5. The GRAPHIC INVERSE VORONOI problem is W[1]-hard parameterized by the number
of candidate Voronoi cells. Furthermore, for n-vertex graphs and k subsets to be candidate Voronoi
cells, for any computable function f , there is no algorithm to solve the GRAPHIC INVERSE VORONOI

problem in f (k)no(k/ log k) time, unless the Exponential Time Hypothesis fails. The claim holds even
for graphs with unit edge-lengths.

Note that it is trivial to solve the problem in nO(k) time: just try each nk tuples of k vertices
as candidate sites and check each of them. The remaining of this section is devoted to prove
Theorem 5. We will make a reduction from the following problem.

MULTICOLORED SUBGRAPH ISOMORPHISM

Input: (H, P), where H is a graph whose vertex set V (H) is partitioned into ` pairwise
disjoint sets V1 ] · · · ] V`, and a pattern graph P with vertex set V (P) = [`].
Question: Can we select vertices vi ∈ Vi for every i ∈ [`] such that we have vi v j ∈ E(H)
for each i j ∈ E(P)?

When the answer is positive, we say that P is isomorphic to a multicolored subgraph of
H. It follows from the work of Marx [24] that, assuming the Exponential Time Hypothesis,
the MULTICOLORED SUBGRAPH ISOMORPHISM cannot be solved in time f (`)no(`/ log`) for any
computable function f , even when the pattern P has Θ(`) edges. This lower bound is made
explicit for example in [25, Corollary 5.5], where P is assumed to be 3-regular.

Consider an instance (H, P) to the MULTICOLORED SUBGRAPH ISOMORPHISM problem, where
V1, . . . , Vk are the partite classes of V (H) and P has Θ(`) edges. We assume for simplicity that
each vertex of P has degree at least 2. For each i, j ∈ [`], let EH(Vi , Vj) denote the edges of H
with one endpoint in Vi and the other endpoint in Vj. We shall assume that EH(Vi , Vj) is empty
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P 1

2

3

4

H

V4 V2

V3

V1

Figure 4: A graph H (left) and a pattern P (right) for the MULTICOLORED SUBGRAPH ISOMORPHISM.

whenever i j /∈ E(P) because those edges can be removed without affecting the instance. We build
an instance (G,U) = (G(H, P),U(H, P)) for the GRAPHIC INVERSE VORONOI problem as follows.

Figures 4 and 5 may be helpful to follow the construction.

• We start with V (G) = V (H) and E(G) = E(H).

• We subdivide each edge e of G with a new vertex, which we call w(e).

• For each i ∈ [`], we add all edges between all the vertices in Vi .

• For each i j ∈ E(P), let Wi j be the vertices w(e) used to subdivide EH(Vi , Vj). We add all
edges between all the vertices in Wi, j .

• For each i j ∈ E(P), we add Ui j =Wi j ∪ Vi ∪ Vj to U.

All the edges have unit length. This completes the construction of G = G(H, P) and U= U(H, P).
Note that U has |E(P)| = Θ(`) candidate Voronoi regions, while G has |V (H)| + |E(H)| =
Θ(|V (H)|2) vertices and

∑

i∈[`]

�

|Vi|
2

�

+
∑

i j∈E(P)

�|EH(Vi , Vj)|
2

�

+ 2|E(H)|

edges.
The next two lemmas show that the pair (G,U) is a correct reduction from MULTICOLORED

SUBGRAPH ISOMORPHISM to GRAPHIC INVERSE VORONOI. The intuition of the reduction is that
selecting the site of each Voronoi cell corresponds to selecting an edge of EH(Vi , Vj) for each
i j ∈ E(P). Moreover, the selection of the edges we make needs to have compatible endpoints in
each partite set Vi , as otherwise we do not get the correct Voronoi cells.

Lemma 6. If P is isomorphic to a multicolored subgraph of H, then G has a set Σ of sites such that
V(Σ) = U.

Proof. Assume that P is isomorphic to a multicolored subgraph of H. This means that there are
vertices vi ∈ Vi, for all i ∈ [`], such that vi v j ∈ E(H) for every i j ∈ E(P). This means that, for
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U24
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Figure 5: Example showing the construction for (H, P) of the Figure 4. Left: the graph G. The
vertices inside a connected shaded region form a clique whose edges are not shown in the drawing.
Right: three (of the five) candidate Voronoi cells of U are indicated by shaded regions of different
colors. The cliques induced by Vi and Wi j are not shown in this figure.

every i j ∈ E(P), the vertex w(vi v j) obtained when subdividing vi v j belongs to G. We define
si j = w(vi v j) for every i j ∈ E(P) and Σ= {w(vi v j) | i j ∈ E(P)}.

We claim that Σ is a set of sites in G such that cell(si j ,Σ) = Ui j, for every i j ∈ E(P). This
claim implies the lemma.

For each si j ∈ Σ and for each vertex u of G we have the following distances

dG

�

si j , u
�

=



































0 if u= si j ,

1 if u ∈Wi j \ {si j},
1 if u= vi or v = u j ,

2 if u ∈ (Vi ∪ Vj) \ {vi , v j},
≥ 2 if u ∈Wi′ j′ for some i′ j′ 6= i j,

≥ 3 if u ∈ Vt for some t 6= i, j.

Therefore, each vertex in V1 ∪ · · · ∪ V` = V (H) is at distance at most 2 from some vertex of Σ and
each vertex in

⋃

i j∈E(P)Wi j is at distance at most 1 from some vertex of Σ.
Now we note that, for each i j ∈ E(P), each vertex of Wi j is strictly closer to si j than to

any other site. Furthermore, for each i ∈ [`], each vertex of Vi has the same distance to each
site si j′ with i j′ ∈ E(P), and a larger distance to each si′ j′ with i′ j′ ∈ E(P − i). Therefore
cell(si j ,Σ) =Wi j ∪ Vi ∪ Vj = Ui j . The result follows.

Lemma 7. If G has a set Σ of sites such that V(Σ) = U, then P is isomorphic to a multicolored
subgraph of H.

Proof. Let Σ be a set of sites in G such that V(Σ) = U. For each i j ∈ E(P), let si j be the site of Σ
with cell(si j ,Σ) = Ui j .

Because of Lemma 1, each si j ∈ Σ belongs to

cell<(si j ,Σ) = cell(si j ,Σ) \

 

⋃

s∈Σ\{si j}
cell(s,Σ)

!

= Ui j \

 

⋃

i′ j′∈E(P)\{i j}
Ui′ j′

!

= Wi j .
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In the last equality we have used that each vertex of P has degree at least 2, which means that
each Vi is contained in at least 2 sets Ui j of U. We conclude that, for each i j ∈ E(P), the site si j
must be in Wi j .

Since each site si j is in Wi j, for each i j ∈ E(P), the construction of G implies that there are
unique vertices v(i, i j) ∈ Vi and v( j, i j) ∈ Vj such that si j is the vertex obtained when subdividing
the edge connecting v(i, i j) and v( j, i j). In particular, v(i, i j)v( j, i j) is an edge of E(H).

Fix the index i ∈ [`] and consider two edges i j, i j′ ∈ E(P) incident to i. We must have
v(i, i j) = v(i, i j′), as otherwise we would have dG(si j , v(i, i j)) = 1< 2= dG(si j′ , v(i, i j′)), which
would imply that Vi 6⊂ cell(si j′ ,Σ) = Ui j′ and would contradict the definition of Ui j′ = Vi∪Vj′∪Wi j′ .
Therefore, each of the (three) edges i j of E(P) defines the same vertex v(i, i j) ∈ Vi . Henceforth
we denote this vertex by vi .

We have found ` vertices v1, . . . , v` with the property that vi ∈ Vi, for each i ∈ [`], and such
that the edge vi v j = v(i, i j)v( j, i j) in E(H), for each i j ∈ E(P). This means that P is isomorphic
to the multicolored subgraph of H defined by {v1, . . . , v`}.

Proof of Theorem 5. As shown in Lemmas 6 and 7, H has a multicolored subgraph isomorphic to
P if and only if U is a valid Voronoi diagram of G. Thus, the answers to MULTICOLORED SUBGRAPH

ISOMORPHISM(H, P) and GRAPHIC INVERSE VORONOI(G,U) are the same.
Recall that U has |E(P)|= Θ(`) candidate Voronoi regions. If we could solve each instance

of the GRAPHIC INVERSE VORONOI problem with n vertices and k sites in time f (k)no(k/ log k), for
some computable function f , then we could solve the instance (G,U) in

f (|U|) · |V (G)|o(|U|/ logU|) ≤ f (Θ(`))(Θ(|V (H)|2))o(Θ(`)/ log(Θ(`))) ≤ g(`)|V (H)|o(`/ log`)

time, for some computable function g. However, this also means that we could solve the MUL-
TICOLORED SUBGRAPH ISOMORPHISM in H with pattern P in g(`)|V (H)|o(`/ log`) time, and this
contradicts the Exponential Time Hypothesis.

5 Hardness parameterized by the pathwidth and the treewidth

In this section we show that the GRAPHIC INVERSE VORONOI problem is unlikely to be fixed
parameter tractable with respect to the pathwidth of the graph. Since the pathwidth is always
smaller than the treewidth, this implies the same result for the treewidth. More precisely, in this
section we will prove the following.

Theorem 8. The GRAPHIC INVERSE VORONOI problem is W[1]-hard parameterized by the pathwidth
of the input graph. Furthermore, for n-vertex graphs with pathwidth p, there is no algorithm to solve
the GRAPHIC INVERSE VORONOI problem in time f (p)no(p) for any computable function f , unless
the Exponential Time Hypothesis fails. The claims hold even for graphs with unit edge-lengths and
disjoint candidate Voronoi cells.

In order to show that, we will reduce the following W[1]-hard problem.

MULTICOLORED INDEPENDENT SET

Input: A graph H = (V, E) whose vertex set V is partitioned into ` pairwise disjoint
sets V1 ] · · · ] V`.
Question: Is there an independent set X of size ` in H such that |X ∩Vi| = 1, ∀i ∈ [`]?

An independent set of H is said multicolored if it satisfies |X ∩ Vi|= 1, ∀i ∈ [`]. The MULTI-
COLORED INDEPENDENT SET problem is W[1]-hard with respect to ` and cannot be solved in time
f (`)no(`) for any computable function f , assuming the Exponential Time Hypothesis [9, Corollary
14.23]. The lower bounds still hold if all the partite sets Vi have the same cardinality and there
are no edges connecting any two vertices within a set Vi .
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Figure 6: A graph H whose vertex set is partitioned into ` = 3 partite sets, each with t = 4
vertices.

Let H = (V1 ] · · · ] V`, E) be an instance of MULTICOLORED INDEPENDENT SET such that
|V1|= |V2|= · · ·= |V`|= t. Let m be the number of edges in H. We build an equivalent GRAPHIC

INVERSE VORONOI instance (G,U) where the pathwidth of G is Θ(`). This instance will have unit
edge-length edges and the sets in U will be pairwise disjoint.

Our global strategy for the reduction is to propagate a vertex choice in each Vi with a path-like
structure with ` rows and m = |E| columns. In each column, we introduce a single distinct edge of
E so that the pathwidth of the built graph stays in Θ(`). Figure 7 shows the whole reduction in
the graph H of Figure 6. (Seeing the details requires zooming in.) In Figure 8 we show a part of
the construction in detail showing also the notation we employ. The detailed construction is as
follows.

• For each i ∈ [`] and j ∈ [m], we add to V (G) an independent set I(i, j) of size |Vi| = t. The
vertices of the independent set I(i, j) are denoted by v(i, j, 1) to v(i, j, t), the third index
being in one-to-one correspondence with the vertices of Vi .

• For each i ∈ [`] and j ∈ [m], we add two vertices a(i, j) and b(i, j). Furthermore, for each
h ∈ [t], we connect a(i, j) to v(i, j, h) by a private path Pa(i, j, h) of length t + h, and we
connect b(i, j) to v(i, j, h) by a private path Pb(i, j, h) of length t + h. For each i ∈ [`] and
j ∈ [m− 1], we connect b(i, j) and a(i, j + 1) by an edge.

• For each i ∈ [`] and j ∈ [m], we add three new vertices c(i, j), e(i, j) and z(i, j). For
each h ∈ [t], we add a private path Pc(i, j, h) of length t between v(i, j, h) and c(i, j).
Furthermore, we connect e(i, j) and z(i, j) with an edge and add a path Pe(i, j) of length
t with one extreme on e(i, j) and the other extreme connected through an edge to c(i, j).
(Thus e(i, j) and c(i, j) are connected with a path of length t + 1.)

• For each i ∈ [`] and j ∈ [m], we denote by U(i, j) the set of vertices comprising I(i, j) and
all the paths going from this independent set to a(i, j), b(i, j), and c(i, j), including those
three vertices. We add U(i, j), V (Pe(i, j)), and Z(i, j) = {z(i, j)} to the candidate Voronoi
cells U.

• We call the set
⋃`

i=1 U(i, j) ∪ Pe(i, j) ∪ Z(i, j) the j-th column, for a fixed j ∈ [m]. We
introduce exactly one distinct edge of E per column. Let e1, . . . , em be any ordering of the
edges of E. We put an edge gadget encoding e j in the j-th column, for every j ∈ [m].
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Figure 7: Whole graph showing the reduction used to prove Theorem 8 for the graph H in Figure 6.
Each connected gray area corresponds to one candidate Voronoi region. Figure 8 shows details
for a part of the construction.
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Figure 8: Zoom into a part of the reduction shown in Figure 7 with some notation. Each connected
gray area corresponds to one candidate Voronoi region. Some selection of sites marked with
crosses that is locally correct (but globally would have a problem). This selection corresponds to
selecting vertex 3 of V1, vertex of 2 of V2 and vertex 1 of V3.
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Assume that e j is an edge between the h-th vertex of Vi and the h′-th vertex of Vi′ where
i 6= i′. We add a path P(e j) of length 2t +2 between v(i, j, h) and v(i′, j, h′). We add a path
Q(e j) of length t between the middle vertex of P(e j) and a new vertex, denoted f ( j). (The
vertex f ( j) has degree 1 and it is at distance 2t + 1 from v(i, j, h) and from v(i′, j, h′).) We
add R( j) = V (Q(e j))∪ V (P(e j)) \ {v(i, j, h), v(i′, j, h′)} as a candidate Voronoi region to U.
The subgraph induced by R( j) is the edge gadget of e j .

That finishes the construction of G = G(H) and of U = U(H). All the edges of G have unit
length. One can observe thatU is made of pairwise disjoint sets and it contains (3`+1)m candidate
Voronoi cells. We first show that the pathwidth (and thus also the treewidth) of G is at most
2`+ 5. For that, we use the cleaning game characterization of pathwidth presented in Section 2.

Lemma 9. The pathwidth of G is at most 2`+ 5.

Proof. We present a winning strategy for cleaning G using 2`+ 6 cleaners. We make m rounds
where in the j-th round, j = 1, . . . , m, we scan completely the j-th column and the gadget for e j .

At the start of the j-th round we have 2` cleaners placed at the vertices a(i, j) and b(i, j) for
all i ∈ [`]. Assume that the edge e j ∈ E is between the h-th vertex of Vi and the h′-th vertex of Vi′ .
We place two cleaners at v(i, j, h) and v(i′, j, h′). Let X j be the set of 2`+ 2 vertices where we
have cleaners. They will stay there for most of the j-th round.

We then clean the whole j-th column plus the edge gadget of e j using the remaining four
cleaners. For every i ∈ [`], we define G (i, j) = U(i, j)∪ Pe(i, j)∪ Z(i, j), the intersection of the
j-th column with the i-th row. For every i going from 1 to `, we place a 2`+ 3-rd cleaner at
c(i, j). All the connected components of G (i, j) in G − (X j ∪ {c(i, j)}) are paths or subdivisions
of a claw (i.e., a star with three leaves). These graphs, and more generally, disjoint unions of
subdivided stars can be decontaminated with three cleaners. Place a first cleaner at the center of
the first subdivided star. This disconnects it into a disjoint union of paths, that can be cleaned
with two additional cleaners. When all the paths are cleaned, move the first cleaner to the center
of the second subdivided star and proceed similarly with the remaining connected components.
When all the paths and subdivided claws of G (i, j) have been decontaminated, we remove the
2`+3-rd cleaner (to place it at c(i+1, j) at the next iteration). We proceed similary, up to G (`, j).
Finally we observe that the edge gadget is also a subdivided claw, so it can be handled with three
additional cleaners.

At this point, the remaining toxic gas is confined to the right of the ` cleaners placed at
b(1, j), . . . , b(`, j), that is, on some edge incident to some vertex defined by j′ > j. If j = m, we
are done since there can no longer be contaminated edges. Otherwise, we move the cleaners
from a(1, j), . . . , a(`, j) to a(1, j + 1), . . . , a(`, j + 1), then the cleaners from b(1, j), . . . , b(`, j) to
b(1, j + 1), . . . , b(`, j + 1), and start the next round.

We now show the correctness of the reduction.

Lemma 10. If H has a multicolored independent set of size `, then there is a set Σ ⊆ V (G) such that
VG(Σ) = U.

Proof. Assume there is a multicolored independent set X of size ` in H. We define the set Σ of
sites as follows.

• For each i ∈ [`], we place a site on the m vertices v(i, j, hi) for all j ∈ [m], where hi is the
index of the vertex of X in the partite set Vi .

• For every i ∈ [`] and j ∈ [m], we place two sites at e(i, j) and z(i, j).

• For each edge e j of H with no endpoint in X , we place a site at s j = f ( j).
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• For each edge e j of H with exactly one endpoint in X , we place a site on the vertex s j of
R( j) adjacent to v(i, j, hi).

Note that, since X is an independent set, there cannot be an edge e j with two endpoints in X .
Therefore we have covered all cases. This finishes the placement of the sites.

For every i ∈ [`] and j ∈ [m], we have cell(z(i, j),Σ) = Z(i, j) because e(i, j), the only
neighbor of z(i, j), is also a site. It also holds that cell(e(i, j),Σ) = Pe(i, j) because c(i, j) is
at distance t + 1 from e(i, j) and at distance t from the site v(i, j, hi). For every i ∈ [`] and
j ∈ [m− 1], the vertices v(i, j, hi) and v(i, j + 1, hi) are compatible since dG(v(i, j, hi), b(i, j)) =
t+hi = dG(v(i, j+1, hi), a(i, j)) and dG(v(i, j, hi), a(i, j+1)) = t+hi+1 = dG(v(i, j+1, hi), b(i, j)).
Here it is relevant to choose the lengths of the paths Pa(i, j, h), Pb(i, j, h) and Pc(i, j, h) to ensure
that the shortest path from vertex v(i, j, h) to a(i, j) is Pa(i, j, h), instead of passing through b(i, j)
or c(i, j). (Similar statements hold for the shortest paths from v(i, j, h) to b(i, j) and to c(i, j).)

We now only need to check that the site s j in the edge gadget of e j –the edge, say, between
the h-th vertex of Vi and the h′-th vertex of Vi′– is compatible with the sites chosen in Σ for U(i, j)
and U(i′, j). The nice property that makes everything work is that, for every i ∈ [`], j ∈ [m], h 6=
h′ ∈ [t], dG(v(i, j, h), v(i, j, h′)) is always equal to 2t. Indeed the shortest path between v(i, j, h)
and v(i, j, h′) goes through c(i, j), which is at distance t of both vertices.

There are two cases: s j is on the path P(e j) or s j = f ( j). If s j ∈ P(e j), it means that one of the
endpoints of e j is in the multicolored independent set X . Without loss of generality, we assume
that it is the h-th vertex of Vi (hence, h= hi). In that case, the sites s j and v(i, j, hi) are adjacent
vertices, and therefore they are compatible. The sites s j and v(i′, j, hi′) are also compatible since
dG(s j , v(i′, j, hi′)) = 2t + 1 and dG(v(i′, j, h′), v(i′, j, hi′)) = 2t.

Now, if s j = f ( j), it means that e j does not touch any vertex of Σ. Hence, h 6= hi and h′ 6= hi′ .
Then we have dG(s j , v(i, j, hi)) = dG(s j , v(i′, j, hi′)) = 2t + 1, dG(v(i, j, h), v(i, j, hi)) = 2t and
dG(v(i′, j, h′), v(i′, j, hi′)) = 2t. It follows that also in this case the site s j is compatible with
v(i, j, hi) and v(i′, j, hi′).

Therefore, we showed that each site v(i, j, hi) ∈ Σ is compatible with every other site of Σ.
This implies that for every i ∈ [`] and j ∈ [m], we have cell(v(i, j, hi), T) = U(i, j). In turn, it
implies that cell(s j , T ) = R( j) for each j ∈ [m], and therefore VG(Σ) = U.

Lemma 11. If H has no multicolored independent set of size `, then there is no set Σ ⊆ V (G) such
that VG(Σ) = U.

Proof. A solution for the GRAPHIC INVERSE VORONOI has to put sites on every e(i, j) and z(i, j),
otherwise the Voronoi cell Z(i, j) would not appear in the set of cells. As e(i, j) is at distance t +1
of c(i, j), the site chosen for the cell U(i, j) has to be at distance exactly t of c(i, j) (otherwise,
this site would not be compatible with e(i, j)). So, the site chosen for U(i, j) has to be in I(i, j).

Then we prove that if a site is placed on v(i, j, h), a site should be placed consistently on
v(i, j + 1, h). This is immediate by construction, since the only vertex of U(i, j + 1) which has a
distance to a(i, j+1) equal to dG(v(i, j, h), b(i, j)) = t+h is v(i, j+1, h). Here we are using again
that the shortest path from v(i, j, h) to b(i, j) is indeed Pb(i, j, h), and does not detour through
a(i, j) or c(i, j). This implies that, for each i ∈ [`], all the choices of sites for the cells {U(i, j)} j∈[m]
have to be consistent to the same vertex, say of index hi in Vi . This defines a (consistent) set X of
` vertices of H.

As by assumption X cannot be an independent set, there is an edge e j with both endpoints in
X . Say those endpoints are the vertices in partite sets Vi and Vi′ . Then, the site for R( j) cannot be
closer to the two vertices of R( j) that are adjacent to v(i, j, hi) and v(i′, j, hi′). Hence there is no
Σ ⊆ V (G) such that VG(Σ) = U.

Proof of Theorem 8. Because of Lemmas 10 and 11, solving GRAPHIC INVERSE VORONOI for (G,U)
also solves MULTICOLORED INDEPENDENT SET for H. The graph G has O(m`t2) = O(|V (H)|5)
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vertices and pathwidth p ≤ 2`+ 5 because of Lemma 9. An algorithm for the GRAPHIC INVERSE

VORONOI with running time f (p)|V (G)|o(p) (for some computable function f ) would imply that

we can solve MULTICOLORED INDEPENDENT SET in time f (2`+ 5)
�

|V (H)|5
�o(2`+5)

= g(`)no(`) for
a computable function g. This would disprove the Exponential Time Hypothesis.

We show an almost matching upper bound when the potential Voronoi cells form a partition
of the vertex set.

Theorem 12. Instances (G,U) of GRAPHIC INVERSE VORONOI can be solved in time |V (G)|O(w log k),
when the k cells of U are pairwise disjoint and w is the treewidth of G.

Proof. We solve a more general problem where each potential Voronoi cell of U comes with
a prescribed subset, specifying where one can actually place its site. Let H be the graph on
k vertices obtained by contracting each cell of U into a single vertex. Contracting edges can
only decrease the treewidth (see for instance [11]). Thus the treewidth of H is at most w. We
exhaustively guess in time kw+1 a balanced vertex-separator S of size w+ 1 in the graph H. Each
connected component of H − S has thus less than 2k/3 vertices. We further guess in time at most
|V (G)|w+1 the w+ 1 corresponding sites, say, s′1, . . . , s′w+1 (for the cells of S) in a fixed solution.
For each guess, we remove the w+ 1 corresponding cells – say, their union is U – from G, and
update the prescribed subsets of the remaining cells to those placements compatible with the
sites that are already fixed. More precisely, if s is a placement of the site of U ′ (not included
in U) incompatible with a site s′i (for some i ∈ [w+ 1]), then we remove s from the prescribed
set for cell U ′. We then solve recursively each connected component of G − U . Thus, we get
k|V (G)|w+1 ≤ |V (G)|2(w+1) independent subproblems, each of them with at most 2k/3 candidate
Voronoi regions (and restricted subset of possible placements). Since the depth of the branching
tree is O(log k), the total running time is bounded by |V (G)|O(w log k).

6 Conclusions

We have introduced the inverse Voronoi problem for graphs and we have shown several different
hardness results, also within the framework of parameterized complexity. In an accompanying
paper [6], we consider the problem GRAPHIC INVERSE VORONOI when the underlying graph is a
tree.

Here we list some possible directions for further research.

• Is there an algorithm to solve the problem in nO(w) time for graphs with n vertices and
treewidth w when the candidate Voronoi cells intersect? Perhaps one can also use some
treewidth associated to the candidate Voronoi regions. In particular, for planar graphs a
running time of nO(

p
k) seems plausible but challenging when the Voronoi cells overlap.

• Considering cells defined by additively weighted sites.

• Following the analogy to problems considered in the Euclidean case [1, 4], find the smallest
set Σ such that each Ui is the union of some Voronoi cells in V(Σ). Taking Σ= V (G) gives
a feasible solution, and our hardness implies that the problem is NP-hard. Can one get
approximation algorithms?

Acknowledgments

Part of this work was done at the 21st Korean Workshop on Computational Geometry, held in
Rogla, Slovenia, in June 2018. We thank all workshop participants for their helpful comments.

17



References

[1] G. Aloupis, H. Pérez-Rosés, G. Pineda-Villavicencio, P. Taslakian, and D. Trinchet-Almaguer.
Fitting Voronoi Diagrams to Planar Tesselations. Combinatorial Algorithms - 24th Interna-
tional Workshop, IWOCA, pp. 349–361. Springer, Lecture Notes in Computer Science 8288,
2013, https://doi.org/10.1007/978-3-642-45278-9_30.

[2] P. F. Ash and E. D. Bolker. Recognizing Dirichlet tessellations. Geometriae Dedicata 19(2):175–
206, Nov 1985, http://dx.doi.org/10.1007/BF00181470.

[3] S. Bandyapadhyay, A. Banik, S. Das, and H. Sarkar. Voronoi game on graphs. Theor. Comput.
Sci. 562:270–282, 2015, https://doi.org/10.1016/j.tcs.2014.10.003.

[4] S. Banerjee, B. B. Bhattacharya, S. Das, A. Karmakar, A. Maheshwari, and S. Roy. On
the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation. Trans.
Computational Science, pp. 22–38. Springer, Lecture Notes in Computer Science 8110, 2013,
https://doi.org/10.1007/978-3-642-41905-8_3.

[5] A. Biniaz, S. Cabello, P. Carmi, J. De Carufel, A. Maheshwari, S. Mehrabi, and M. Smid.
On the minimum consistent subset problem. CoRR abs/1810.09232, 2018, http://arxiv.
org/abs/1810.09232.

[6] É. Bonnet, S. Cabello, B. Mohar, and H. Pérez-Rosés. The inverse Voronoi problem in graphs
II: trees, 2018. Manuscript. Its content is included in http://arxiv.org/abs/1811.12547.

[7] S. Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in
planar graphs. ACM Trans. Algorithms, to appear. Preliminary version presented at SODA
2017. Full version available at http://arxiv.org/abs/1702.07815.

[8] É. Colin de Verdière. Shortest cut graph of a surface with prescribed vertex set. Algorithms -
ESA 2010, 18th Annual European Symposium, Part II, pp. 100–111. Springer, Lecture Notes
in Computer Science 6347, 2010, http://dx.doi.org/10.1007/978-3-642-15781-3_9.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015, http://dx.doi.org/10.1007/
978-3-319-21275-3.

[10] T. K. Dey, F. Fan, and Y. Wang. Graph induced complex on point data. Comput. Geom.
48(8):575–588, 2015, https://doi.org/10.1016/j.comgeo.2015.04.003.

[11] R. Diestel. Graph Theory, 4th Edition. Graduate texts in mathematics 173. Springer, 2012.

[12] M. Erwig. The graph Voronoi diagram with applications. Networks 36(3):156–163, 2000,
http://dx.doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L.

[13] P. Gawrychowski, H. Kaplan, S. Mozes, M. Sharir, and O. Weimann. Voronoi diagrams
on planar graphs, and computing the diameter in deterministic õ(n5/3) time. Proc. 29th
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