
The Inverse Voronoi Problem in Graphs II: Trees1

Édouard Bonnet∗ Sergio Cabello† Bojan Mohar‡ Hebert Pérez-Rosés§
2

May 1, 20203

Abstract4

We consider the inverse Voronoi diagram problem in trees: given a tree T with positive5

edge-lengths and a collection U of subsets of vertices of V (T), decide whether U is a Voronoi6

diagram in T with respect to the shortest-path metric. We show that the problem can be7

solved in O(N + n log2 n) time, where n is the number of vertices in T and N = n+
∑

U∈U |U |8

is the size of the description of the input. We also provide a lower bound of Ω(n log n) time9

for trees with n vertices.10

Keywords: Voronoi diagram in graphs, inverse Voronoi problem, trees, applications of11

binary search trees, dynamic programming in trees, lower bounds.12

1 Introduction13

Let T be a tree with n vertices and abstract, positive edge-lengths λ: E(T)→ R>0. The length of14

a path in T is the sum of the edge-lengths along the path. The (shortest-path) distance between15

two vertices x and y of T , denoted by dT (x , y), is the length of the unique path in T from x to y .16

Let Σ be a subset of V (T). We refer to each element of Σ as a site, to distinguish it from an17

arbitrary vertex of T . The Voronoi cell of each site s ∈ Σ is then defined by18

cellT (s,Σ) = {x ∈ V (T) | ∀s′ ∈ Σ : dT (s, x)≤ dT (s
′, x)}.19

The Voronoi diagram of Σ in T is20

VT (Σ) = {cellT (s,Σ) | s ∈ Σ}.21

When the tree is clear from the context, we remove the subindex and thus just talk about d(,),22

cell(s,Σ) and V(Σ). It is easy to see that, for each set Σ of sites, each vertex of T belongs to some23

Voronoi cell. Therefore, the sets in VT (Σ) cover all vertices of T . On the other hand, the Voronoi24

cells do not need to be pairwise disjoint. In particular, when some vertex of T is closest to two25

sites, then it is in both Voronoi cells.26

∗Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France. Email address:
edouard.bonnet@ens-lyon.fr. Supported by the LABEX MILYON (ANR-10- LABX-0070) of Université de Lyon,
within the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR).

†Corresponding author. Faculty of Mathematics and Physics, University of Ljubljana, and IMFM, Slovenia. Sup-
ported by the Slovenian Research Agency, program P1-0297 and projects J1-8130, J1-8155, J1-9109, J1-1693. Email
address: sergio.cabello@fmf.uni-lj.si.

‡Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada. Email address: mohar@sfu.ca. On
leave from IMFM & FMF, Department of Mathematics, University of Ljubljana. Supported in part by the NSERC
Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of
ARRS (Slovenia).

§Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain. Partially
supported by Grant MTM2017-86767-R from the Spanish Ministry of Economy, Industry and Competitiveness.

1

In this paper we consider computational aspects of the inverse Voronoi problem in trees. This27

means that we are given a collection of candidate Voronoi cells in a tree, and we would like to28

decide whether they form indeed a Voronoi diagram. Let us describe the problem more formally.29

GRAPHIC INVERSE VORONOI IN TREES30

Input: (T,U), where T is a tree with positive edge-lengths and U= (U1, . . . , Uk) is a31

sequence of subsets of vertices of T that cover V (T).32

Question: Are there sites s1, . . . , sk ∈ V (T) such that cellT (si , {s1, . . . , sk}) = Ui for each33

i ∈ {1, . . . , k}? When the answer is positive, provide a solution: sites s1, . . . , sk ∈ V (T)34

that certify the positive answer.35

The inverse Voronoi problem can be considered also in arbitrary graphs and metric spaces. In36

the accompanying paper [1], we provide NP-hardness and W[1]-hardness for several different37

scenarios. The problem is related to questions in pattern recognition; we refer to the discussion38

therein. Most notably for our work, we use the framework of parameterized complexity to show39

that, assuming the Exponential Time Hypothesis (ETH), the inverse Voronoi problem cannot be40

solved for graphs G of pathwidth p(G) in time f (p(G))|V (G)|o(p(G)), for any computable function41

f . This result justifies considering trees as a special case.42

Our results. One has to be careful with the size of the description of the input because the size of43

the Voronoi diagram may be quadratic in the size of the tree. For example, in a star with 2n leaves44

and sites in n of the leaves, each Voronoi cell has size Θ(n), and thus an explicit description of the45

Voronoi diagram has size Θ(n2). Motivated by this, we define the description size of an instance46

I = (T, (U1, . . . , Uk)) for the GRAPHIC INVERSE VORONOI IN TREES to be N = N(I) = |V (T)|+
∑

i |Ui|.47

We use n for the number of vertices in the tree T , which is potentially smaller than N .48

We show that the problem GRAPHIC INVERSE VORONOI IN TREES can be solved in O(N+n log2 n)49

time for arbitrary trees. We also show a lower bound of Ω(n log n) in the algebraic computation50

tree model.51

One may be tempted to think that the problem is easy for trees. Our near-linear time algorithm52

for arbitrary trees is far from trivial. Of course we cannot exclude the existence of a simpler53

algorithm running in near-linear time, but we do think that the problem is more complex than it54

may seem at first glance. Figure 1 may help understanding that the interaction between different55

Voronoi cells may be more complex than it seems.56

To obtain our algorithm, we consider the following more general problem, where the input57

also specifies, for each Voronoi cell, a subset of vertices where the site has to be placed.58

GENERALIZED GRAPHIC INVERSE VORONOI IN TREES59

Input: (T,U), where T is a tree with positive edge-lengths andU =
�

(U1, S1), . . . , (Uk, Sk)
�

60

is a sequence of pairs of subsets of vertices of G.61

Question: are there sites s1, . . . , sk ∈ V (T) such that si ∈ Si and Ui = cellT (si , {s1, . . . , sk})62

for each i ∈ {1, . . . , k}? When the answer is positive, provide a solution: sites63

s1, . . . , sk ∈ V (T) that certify the positive answer.64

Following the analogy with GRAPHIC INVERSE VORONOI IN TREES, we define the description size65

of an instance I = (T, ((U1, S1), . . . , (Uk, Sk))) to be N(I) = |V (T)|+
∑

i |Ui|+
∑

i |Si|.66

Clearly, the problem GRAPHIC INVERSE VORONOI IN TREES can be reduced to the problem67

GENERALIZED GRAPHIC INVERSE VORONOI IN TREES by taking Si = Ui for all i ∈ {1, . . . , k}. This68

transformation can be done in linear time (in the size of the instance). Thus, for the rest of the69

paper our algorithms will be for the problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES.70

(The lower bound holds for the original problem.)71

In our solution we first make a reduction to the same problem in which Voronoi cells are72

disjoint, and then we make another transformation to an instance having maximum degree 3.73

2

Figure 1: An instance with two solutions. The edges have unit length and the larger, filled dots
represent the sites.

Finally, we employ a bottom-up dynamic programming procedure that, to achieve near-linear74

time, merges the information from the subproblems in time almost proportional to the smallest of75

the subproblems. For this, we employ dynamic binary search trees to manipulate sets of intervals.76

Roadmap. In Section 2 we provide some basic tools. In Section 3 we show how to reduce the77

problem to a special instance where the candidate Voronoi cells are disjoint and the tree has78

maximum degree 3. In Section 4 we describe how to solve the problem, after the transformation,79

using dynamic programming. In Section 5 we provide a lower bound.80

2 Basics81

For a positive integer k we use the notation [k] = {1, . . . , k}.82

In the following results we use T as the ground tree that defines the metric. Note that in the83

following claims it is important that T has positive edge-lengths. An alternative way to define84

cells is using strict inequalities. More precisely, for a set of sites Σ, the open Voronoi cell of each85

site s ∈ Σ is then defined by86

cell<(s,Σ) = {x ∈ X | ∀s′ ∈ Σ \ {s} : d(s, x)< d(s′, x)}.87

In this case, the cells are disjoint but they do not necessarily form a partition of V (T). The88

following two lemmas are straightforward folklore and we omit their proofs.89

Lemma 1. For each set Σ of sites and each site s ∈ Σ we have s ∈ cell<(s,Σ) and

cell<(s,Σ) = cell(s,Σ) \

�

⋃

s′ 6=s

cell(s′,Σ)

�

.

Lemma 2. For each set Σ of sites, each site s ∈ Σ, and each vertex v ∈ cell(s,Σ), the path in T from90

s to v is contained in T[cell(s,Σ)], the subgraph of T induced by cell(s,Σ). The same statement is91

true for cell<(s,Σ).92

A consequence of this Lemma is that the shortest path from s to v ∈ cell(s,Σ) \ cell<(s,Σ) has93

a part with vertices inside cell<(s,Σ) followed by a part with vertices of cell(s,Σ) \ cell<(s,Σ).94

Lemma 3. Given an instance for the problem GRAPHIC INVERSE VORONOI IN TREES or the GENER-95

ALIZED GRAPHIC INVERSE VORONOI IN TREES, and a candidate solution s1, . . . , sk, we can check in96

O(N) time whether s1, . . . , sk is indeed a solution.97

3

a a

Figure 2: Construction of Ta (left) and the directed acyclic graph Da (right).

Proof. Let T be the underlying tree defining the instance. We add a new vertex a (called the apex)98

to T and connect it to each candidate site s1, . . . , sk with edges of the same positive length. See99

the left drawing in Figure 2. The resulting graph, denoted by Ta, has treewidth 2, and thus we100

can compute shortest paths from a to all vertices in linear time [3]. Let da[v] be the distance in101

Ta from a to v.102

Next we build a digraph Da describing the shortest paths from a to all other vertices. The103

vertex set of Da is V (T) ∪ {a} = V (Ta). For each arc u→ v, where uv ∈ E(Ta), we add u→ v104

to Da if and only if da[v] = da[u] +λ(uv). With this we obtain a directed acyclic graph Da that105

contains all shortest paths from a to every v ∈ V (T) and, moreover, each directed path in Da is106

indeed a shortest path in Ta. See Figure 2 right.107

Now we label each vertex v with the indices i of those sites si , whose Voronoi cells contain v,108

as follows. We start setting L(si) = {i} for each site si . Then we consider the vertices v ∈ V (T) in109

topological order with respect to Da. For each vertex v, we set L(v) to be the union of L(u), where110

u iterates over the vertices of V (T) with arcs in D pointing to v. It is easy to see by induction that111

L(v) = {i ∈ [k] | v ∈ cellT (si , {s1, . . . , sk})}. During the process we keep a counter for
∑

v |L(v)|,112

and if at some moment we detect that the counter exceeds N , we stop and report that s1, . . . , sk is113

not a solution. Otherwise, we finish the process when we computed the sets L(v).114

Now we compute the sets Vi = {v ∈ V (T) | si ∈ L(v)} for i = 1, . . . k. This is done iterating115

over the vertices v ∈ V (T) and adding v to each site of L(v). This takes O(N +
∑

v |L(v)|) = O(N)116

time. Note that Vi = cellT (si , {s1, . . . , sk}). It remains to check that Ui = Vi for all i ∈ [k]. For this117

we add flags to V (T) that are initially set to false. Then, for each i ∈ [k], we do the following:118

check that |Ui| = |Vi|, iterate over the vertices of Ui setting the flags to true, iterate over the119

vertices of Vi checking that the flags are true, iterate over the vertices of Ui setting the flags back120

to false. The procedure takes O(N +
∑

v |L(v)|) = O(N) time and, if all the checks were correct,121

we have Ui = Vi = cellT (si , {s1, . . . , sk}) for all i ∈ [k].122

3 Arbitrary trees – Transforming to nicer instances123

In this section we provide a transformation to reduce the problem GENERALIZED GRAPHIC INVERSE124

VORONOI IN TREES to instances where the tree has maximum degree 3 and the candidate Voronoi125

regions are disjoint. First we show how to transform it into disjoint Voronoi regions, and then126

we handle the degree. In our description, we first discuss the transformation without paying127

attention to its efficiency. At the end of the section we discuss how the transformation can be128

done in linear time.129

4

3.1 Transforming to disjoint cells130

In this section we explain how to decrease the overlap between different Voronoi regions. The131

procedure is iterative: we consider one edge of the tree at a time and transform the instance.132

When there are no edges to process, we can conclude that the original instance has no solution or133

we can find a solution to the original instance.134

Consider an instance I = (T, ((U1, S1), . . . , (Uk, Sk))) for the problem GENERALIZED GRAPHIC135

INVERSE VORONOI IN TREES. See Figure 1 for an example of such an instance.136

For each index i ∈ [k] we define137

Wi = Ui \
⋃

j 6=i

U j ,138

Ei = {uv ∈ E(T) | u ∈Wi , v ∈ Ui \Wi}.139
140

The intuition is that each Wi should be the open Voronoi cell defined by the (unknown) site si ,141

that is, the vertices of T with si as unique closest site; see Lemma 1. Each Ei is then the set of142

edges with one vertex in Wi and another vertex in Ui ∩ U j for some j 6= i. The following result is143

easy to prove using Lemma 2.144

Lemma 4. Supposing that there is a solution to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES145

with input I, the following hold.146

(a) Each set Ui (i ∈ [k]) and each set Wi (i ∈ [k]) induces a connected subgraph of T .147

(a) If two sets Ui and U j (i 6= j) intersect, then Ei 6= ; and E j 6= ;.148

Proof. Consider a solution s1, . . . , sk to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES with149

input I , and define Σ = {s1, . . . , sk}. This means that, for each i ∈ [k], we have si ∈ Si and150

Ui = cellT (si ,Σ). Note that because of Lemma 1, we have151

∀i ∈ [k] : Wi = Ui \
⋃

j 6=i

U j = cellT (si ,Σ) \
⋃

j 6=i

cellT (s j ,Σ) = cell<T (si ,Σ).152

If there are distinct indices i, j ∈ [k] such that Ui and U j intersect, then Wi (Ui . Because of153

Lemma 1, we have si ∈Wi , and therefore Wi is nonempty. Because of Lemma 2, the sets Ui and154

Wi induce subtrees of T . Since Wi (Ui , it follows that T has some edge from Wi to Ui \Wi , and155

therefore Ei is nonempty.156

As a preprocessing step, we replace Si by Si ∩Wi for each i ∈ [k]. Since a site cannot belong157

to two Voronoi regions, this replacement does not reduce the set of feasible solutions for I . To158

simplify notation, we keep using I for the new instance. We check that, for each i ∈ [k], the set Si159

is nonempty and the sets Ui and Wi induce a connected subgraph of T . If any of those checks fail,160

we correctly report that there is no solution to I .161

If the sets U1, . . . , Uk are pairwise disjoint, we do not need to do anything. If at least two of162

them overlap but the sets E1, . . . , Ek are empty, then Lemma 4 implies that there is no solution. In163

the remaining case some Ei is nonempty, and we transform the instance as follows.164

In the transformations we will need “short” edges. To quantify this, we introduce the resolution165

res(I) of an instance I , defined by166

res(I) = min
�

R>0 ∩ {dT (si , u)− dT (s j , u) | u ∈ Ui ∩ U j , si ∈ Si , s j ∈ S j , i, j ∈ [k]}
�

.167

Here we take the convention that min(;) = +∞. From the definition we have the following168

property:169

∀i, j ∈ [k], u ∈ Ui ∩ U j , si ∈ Si , s j ∈ S j :

|dT (si , u)− dT (s j , u)|< res(I) =⇒ dT (si , u) = dT (s j , u).
(1)170

171

5

x

xy
y

U ′1

U ′1

Figure 3: The transformation from the instance I in Figure 1 to I ′ for two different choices of the
set U1 and x y ∈ E1. The new vertex y ′ appearing because of the subdivision is marked with a
square. The “shorter” edges in the drawing have length ε; all other edges have unit length.

Consider any value ε > 0. Fix any index i ∈ [k] such that Ei 6= ; and consider an edge x y ∈ Ei172

with x ∈Wi and y ∈ Ui \Wi. By renaming the sets, if needed, we assume henceforth that i = 1,173

that is, E1 6= ;, x ∈W1 and y ∈ U1 \W1. We build a tree T ′ with edge-lengths λ′ and a new set U ′1174

as follows. We obtain T ′ from T by subdividing x y with a new vertex y ′. We define U ′1 to be the175

subset of vertices of U1 that belong to the component of T − y that contains x , and then we also176

add y ′ into U ′1. Note that u ∈ U1 belongs to U ′1 if and only if dT (u, x) < dT (u, y). In particular,177

y /∈ U ′1. Finally, we set the edge-lengths λ′(x y ′) = λ(x y) and λ′(y y ′) = ε, and the remaining178

edges have the same length as in T . This completes the description of the transformation. Note179

that T ′ is just a subdivision of T and, effectively, the edge x y became a 2-edge path x y ′ y that is180

longer by ε. All distances in T ′ are larger or equal than in T , and the difference is at most ε.181

Let I ′ be the new instance, where we use T ′, λ′ and U ′1, instead of T , λ and U1, respectively.182

(We leave Ui unchanged for each i ∈ [k] \ {1} and Si unchanged for each i ∈ [k].) See Figure 3183

for two examples of this transformation and Figure 4 for a schematic view. We call I ′ the instance184

obtained from I by expanding the edge x y from E1 by ε. Note that y ′ is not a valid placement185

for a site in I ′, since y ′ /∈ S1.186

Our definition of res(I) is carefully chosen so that it does not decrease with the expansion of187

an edge. That is, res(I ′)≥ res(I). (This property is exploited in the proof of Lemma 8.) This is an188

important but subtle point needed to achieve efficiency. It will permit that all the short edges that189

are introduced during the transformations have the same small length ε, and we will be able to190

treat ε symbolically.191

The next two lemmas show the relation between solutions to the instances I and I ′.192

Lemma 5. Suppose that ε > 0. If Σ is a solution to GENERALIZED GRAPHIC INVERSE VORONOI IN193

TREES with input I , then Σ is also a solution to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES194

with input I ′.195

Proof. We first introduce some notation. Let Vx be the vertex set of the component of T ′− y ′ that196

contains x and let Vy be the vertex set of the component of T ′ − y ′ that contains y . See Figure 4.197

Note that x ∈ Vx and y ∈ Vy , while y ′ is neither in Vx nor in Vy . From the definition of U ′1, we198

have U ′1 = {y
′} ∪ (Vx ∩ U1) and U1 \ U ′1 = Vy ∩ U1.199

We have the following easy relations between distances in T and T ′; we will use them often200

6

U ′1

yT[Vy] T[Vx]y ′ x

Figure 4: Notation in the proof of Lemma 5.

without explicit reference.201

∀u, v ∈ Vx : dT ′(u, v) = dT (u, v)202

∀u, v ∈ Vy : dT ′(u, v) = dT (u, v)203

∀u ∈ Vx , v ∈ Vy : dT ′(u, v) = dT (u, v) + ε204

∀u ∈ Vx : dT ′(u, y ′) = dT (u, y)205

∀u ∈ Vy : dT ′(u, y ′) = dT (u, y) + ε.206
207

Consider a solution s1, . . . , sk to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES with input208

I , and define Σ = {s1, . . . , sk}. This means that, for all i ∈ [k], we have si ∈ Si and Ui = cellT (si ,Σ).209

Our objective is to show that U ′1 = cellT ′(s1,Σ) and Ui = cellT ′(si ,Σ) for all i ∈ [k] \ {1}.210

Since Ui = cellT (si ,Σ) for all i ∈ [k], Lemma 1 implies that W1 = cell<T (s1,Σ) and s1 ∈ W1.211

Since x ∈W1, y 6∈W1, and W1 induces a connected subgraph of T because of Lemma 4(a), the212

set W1 is contained in Vx . Since W1 ⊆ Vx and W1 ⊆ U1, we have W1 ⊆ Vx ∩ U1 and we conclude213

that W1 ⊆ U ′1. Furthermore, because s1 ∈ cell<T (s1,Σ) =W1 and W1 ⊆ Vx , we obtain that s1 ∈ Vx .214

For each i ∈ [k] \ {1}, we have x /∈ Ui because x ∈W1, and Lemma 4(a) implies that the set215

Ui = cellT (si ,Σ) is fully contained either in Vx or in Vy .216

Consider any index ` ∈ [k] \ {1} with the property that y ∈ U1 ∩ U`. Since U` contains y, it217

cannot be that U` ⊆ Vx , and therefore U` ⊆ Vy . In particular, s` ∈ Vy .218

We first note that the sets U ′1, U2, . . . , Uk cover V (T ′). Indeed, since y ∈ U1∩U`, the sites s1 and219

s` are closest sites to y in T , and using that s1 ∈ Vx and s` ∈ Vy , we obtain that U1\U ′1 is contained220

in U`. Further, since U1, . . . , Uk cover V (T), y ′ ∈ U ′1 by construction, and V (T ′) = V (T)∪ {y ′},221

we conclude that indeed U ′1, U2, . . . , Uk cover V (T ′).222

Next, we make the following two claims.223

Claim 5.1. y ′ ∈ cellT ′(s1,Σ) and y ′ /∈ cellT ′(si ,Σ) for any i ∈ [k] \ {1}.224

Proof. Fix any index i ∈ [k] \ {1}. Consider first the case when si ∈ Vx . In this case the path from225

si to y ′ passes through x , which is a vertex in cell<T (s1,Σ). It follows that dT (s1, x) < dT (si , x),226

which implies227

dT ′(s1, y ′) = dT (s1, y)< dT (si , y) = dT ′(si , y ′).228

Consider now the case when si ∈ Vy . Because y ∈ U1 = cell(s1,Σ), we have dT (s1, y) ≤229

dT (si , y) and we conclude that230

dT ′(si , y ′) = dT (si , y) + ε ≥ dT (s1, y) + ε = dT ′(s1, y ′) + ε > dT ′(s1, y ′).231

In each case we get dT ′(s1, y ′)< dT ′(si , y ′), and the claim follows.232

Claim 5.2. y /∈ cellT ′(s1,Σ).233

Proof. Since y belongs to U1 ∩ U`, we have dT (s1, y) = dT (s`, y). Using that U` is contained in234

Vy , and thus s` ∈ Vy , we have235

dT ′(s`, y) = dT (s`, y) = dT (s1, y) = dT ′(s1, y)− ε < dT ′(s1, y).236

We conclude that y is not an element of cellT ′(s1,Σ).237

7

Claims 5.1 and 5.2 imply that y ′ belongs only to the Voronoi region cellT ′(s1,Σ) and y does not238

belong to cellT ′(s1,Σ). This means that each vertex of Vx belongs only to some regions cellT ′(si ,Σ)239

with si ∈ Vx and each vertex of Vy belongs to some regions cellT ′(si ,Σ) with si ∈ Vy . That is,240

it cannot be that some vertex u ∈ Vx belongs to cellT ′(si ,Σ) with si ∈ Vy and it cannot be that241

some vertex u ∈ Vy belongs to cellT ′(si ,Σ) with si ∈ Vx . Effectively, this means that y ′ splits the242

Voronoi diagram VT ′(Σ) into the part within T ′[Vx] and the part within T ′[Vy], with the gluing243

property that y ′ ∈ cellT ′(s1,Σ). Since U ′1 \ {y
′} = U1 ∩ Vx and the distances within T ′[Vx] and244

within T ′[Vy] are the same as in T , the result follows.245

The converse property is more complicated. We need ε to be small enough and we also have246

to assume that I has a solution. It is this tiny technicality that makes the reduction nontrivial.247

Lemma 6. Suppose that 0< ε < res(I) and the answer to GENERALIZED GRAPHIC INVERSE VORONOI248

IN TREES with input I is “yes”. If Σ′ is a solution to GENERALIZED GRAPHIC INVERSE VORONOI249

IN TREES with input I ′, then Σ′ is also a solution to GENERALIZED GRAPHIC INVERSE VORONOI IN250

TREES with input I.251

Proof. When the instance I has some solution, then the properties discussed in Lemmas 4 and 5252

hold. We keep using the notation and the properties established earlier. In particular, each set Ui253

(i ∈ [k] \ {1}) is contained either in Vx or in Vy , and we have W1 ⊆ U ′1 ⊆ Vx ∪ {y ′}.254

Consider a solution s1, . . . , sk to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES with input255

I ′, and set Σ= {s1, . . . , sk}. This means that U ′1 = cellT ′(s1,Σ) and, for all i ∈ [k] \ {1}, we have256

Ui = cellT ′(si ,Σ). We have to show that, for all i ∈ [k], we have Ui = cellT (si ,Σ), which implies257

that Σ is a solution to input I .258

Like before, we split the proof into claims that show that Σ is a solution to GENERALIZED259

GRAPHIC INVERSE VORONOI IN TREES with input I . We start with an auxiliary property that plays260

a key role.261

Claim 6.1. For each i ∈ [k], we have y ∈ Ui if and only if y ∈ cellT (si ,Σ).262

Proof. Suppose first that y ∈ Ui and i 6= 1. Then Ui ⊆ Vy . Since y ∈ Ui = cellT ′(si ,Σ) and263

y /∈ U ′1 = cellT ′(s1,Σ), we have264

dT (si , y) = dT ′(si , y)< dT ′(s1, y) = dT (s1, y) + ε. (2)265
266

Since y ′ /∈ Ui = cellT ′(si ,Σ) and y ′ ∈ U ′1 = cellT ′(s1,Σ), we have267

dT (s1, y) = dT ′(s1, y ′)< dT ′(si , y ′) = dT (si , y) + ε. (3)268
269

Combining (2) and (3) we get270

|dT (si , y)− dT (s1, y)|< ε < res(I).271

From property (1) and since y ∈ U1 ∩Ui , we conclude that dT (s1, y) = dT (si , y). For each s j ∈ Vy272

we use that y ∈ Ui = cellT ′(si ,Σ) to obtain273

dT (s j , y) = dT ′(s j , y)≥ dT ′(si , y) = dT (si , y).274

For each s j ∈ Vx we use that the path from s j to y goes through x ∈ U ′1 = cellT ′(s1,Σ) to obtain275

dT (s j , y)≥ dT (s1, y) = dT (si , y).276

We conclude that for each j ∈ [k] we have dT (s j , y)≥ dT (si , y), and therefore y ∈ cellT (si ,Σ).277

Since dT (s1, y) = dT (si , y) whenever y ∈ U1 ∩ Ui , and y ∈ U` for some ` ∈ [k] \ {1}, we also278

obtain y ∈ cellT (s1,Σ). With this we have shown one direction of the implication.279

8

To show the other implication, consider some index i ∈ [k] such that y ∈ cellT (si ,Σ). If i = 1,280

then y ∈ U1 by construction, and the implication holds. So we consider the case when i 6= 1.281

First we show that it cannot be that si ∈ Vx . Assume, for the sake of reaching a contradiction,282

that si ∈ Vx . Because of the implication left-to-right that we showed, we have y ∈ cellT (s1,Σ).283

Since we have y ∈ cellT (si , T) and y ∈ cellT (s1,Σ), we obtain dT (si , y) = dT (s1, y). Because284

s1, si ∈ Vx , we obtain dT (si , x) = dT (s1, x) and therefore dT ′(si , x) = dT ′(s1, x). Further, since285

x ∈ U ′1 = cell′T (s1,Σ), we get x ∈ cellT ′(si ,Σ) = Ui, which implies x /∈W1. We conclude that it286

must be si /∈ Vx , and thus si ∈ Vy .287

Take an index ` ∈ [k] \ {1} such that y ∈ U`. Such an index exists because y /∈W1. We have288

U` ⊆ Vy and thus s` ∈ Vy . Because of the implication left-to-right that we showed, we have y ∈289

cellT (s`,Σ). Since we have y ∈ cellT (si , T) and y ∈ cellT (s`,Σ), we obtain dT (si , y) = dT (s`, y).290

Because si , s` ∈ Vy we then have291

dT ′(si , y) = dT (si , y) = dT (s`, y) = dT ′(s`, y).292

Since dT ′(si , y) = dT ′(s`, y) and y ∈ U` = cellT ′(s`,Σ), we conclude that y ∈ cellT ′(si ,Σ) = Ui .293

Claim 6.2. x ∈ cellT (s1,Σ) and x /∈ cellT (si ,Σ) for any i ∈ [k] \ {1}.294

Proof. Since x ∈ U ′1 = cellT ′(s1,Σ) and x /∈ Ui = cellT ′(si ,Σ) for any i ∈ [k] \ {1}, we have295

∀i ∈ [k] \ {1} : dT ′(s1, x)< dT ′(si , x).296

We then have297

∀si ∈ Vx , si 6= s1 : dT (s1, x) = dT ′(s1, x)< dT ′(si , x) = dT (si , x). (4)298
299

For each si ∈ Vy , note that the path from si to x passes through y , and y ∈ cellT (s1,Σ) because300

of Claim 6.1. Using that s1 ∈ Vx , we have301

∀si ∈ Vy : dT (s1, x)< dT (si , x). (5)302
303

Combining (4) and (5), the claim follows.304

Claim 6.3. For each u ∈ Vy , we have u ∈ U1 if and only if u ∈ cellT (s1,Σ).305

Proof. Consider some solution s∗1, . . . , s∗k to GENERALIZED GRAPHIC INVERSE VORONOI IN TREES306

with input I , and set Σ∗ = {s∗1, . . . , s∗k}. This means that Ui = cellT (s∗i ,Σ∗) for each i ∈ [k]. We also307

fix an index ` ∈ [k] \ {1} such that y ∈ U` ∩ U1. Recall that U` ⊆ Vy because x /∈ U`, and W1 ⊆ Vx308

because x ∈W1 and y /∈W1. Using Claim 6.1 and using that Σ∗ is a solution to I we have309

dT (s1, y) = dT (s`, y) and dT (s
∗
1, y) = dT (s

∗
` , y). (6)310

311

Consider some u ∈ U1∩Vy . We will show that u ∈ cellT (s1,Σ). Consider the subtree T̃ defined312

by the paths connecting the vertices s1, s∗1, s`, s∗
`
, u. See Figure 5. The path from u to s∗1 attaches to313

the path from s∗
`

to y at the vertex y . Indeed, if it attaches at another vertex a 6= y , then we would314

have dT (s∗` , a)< dT (s∗1, a) because of (6), which would imply dT (s∗` , u)< dT (s∗1, u), contradicting315

the assumption that u ∈ cellT (s∗1,Σ∗) = U1. Because W` does not contain y and W` is a connected316

subgraph of T (applying Lemma 2), W` is contained in a connected component of T − y . Further317

since W` contains s` and s∗
`
, and we replaced S` with S` ∩W` in the preprocessing step 1, s` and s∗

`
318

are in the same component of T − y . Therefore, the (u, s1)-path attaches to the (s`, y)-path at the319

vertex y .320

1 Without the replacement S` with S` ∩W`, the lemma is actually not true because it can happen that s` ∈ U1 ∩ U`.
Indeed, we could have s` ∈ S` ∩ U` ∩ U1, which is not a valid placement in I but would be a valid placement in I ′.

9

s∗1

s`

s∗
`

y x s1

u

Figure 5: Situation in the proof of Claim 6.3.

Since each path from s1, s∗1, s` and s∗
`

to u passes through y , from (6) we get321

dT (s1, u) = dT (s`, u) and dT (s
∗
1, u) = dT (s

∗
` , u). (7)322

323

Together with u ∈ U1 = cellT (s∗1,Σ∗) we conclude that u ∈ cellT (s∗` ,Σ
∗) = U`. Since u ∈ U` =324

cellT ′(s`,Σ) we have325

∀s j ∈ Vy : dT (s1, u) = dT (s`, u)≤ dT (s j , u).326

Together with the fact that each s j ∈ Vx is no closer to u than s1 because x ∈ cellT (s1,Σ), we327

conclude that u ∈ cellT (s1,Σ). This finishes the left-to-right direction of the implication.328

Consider now a vertex u ∈ Vy ∩ cellT (s1,Σ). Since y is on the path from s1 to u, we obtain329

from (6) that dT (s`, u) ≤ dT (s1, u), and therefore u ∈ cellT (s`,Σ). Because u ∈ Vy , dT ′(s`, u) =330

dT (s`, u), and distances in T ′ can only be larger than in T , we have u ∈ cellT ′(s`,Σ) = U` =331

cellT (s∗` ,Σ
∗). This means that332

∀i ∈ [k] : dT (s
∗
` , u)≤ dT (s

∗
i , u). (8)333

334

Since u ∈ cellT (s1,Σ), u ∈ cellT (s`,Σ) and dT (s1, y) = dT (s`, y), the vertex y is on the path from335

s` to u. Note that the vertices s` and s∗
`

must be contained in the same component of T − y because336

the (s`, s∗
`
)-path must be contained W` (Lemma 2 and footnote 1), but y /∈W`. This implies that y337

is also on the path from s∗
`

to u. Since y is also on the path from s∗1 to u, we get from (6) and (8)338

that339

∀i ∈ [k] : dT (s
∗
1, u) = dT (s

∗
` , u)≤ dT (s

∗
i , u).340

It follows that u ∈ cellT (s∗1,Σ∗) = U1. This finishes the proof of the claim.341

We are now ready to prove Lemma 6: for all i ∈ [k] we have Ui = cellT (si ,Σ). Consider first342

the case i = 1. Because of Claim 6.3 we have Vy ∩ U1 = Vy ∩ cellT (s1,Σ). It remains to show343

that U ′1 = Vx ∩ U1 = Vx ∩ cellT (s1,Σ). Consider any vertex u ∈ U ′1. Because of Claim 6.2 we have344

x ∈ cell<T (s1,Σ), and therefore u ∈ Vx implies345

∀s j ∈ Vy : dT (s1, u)< dT (s j , u).346

On the other hand, since u ∈ U ′1 = cellT ′(s1,Σ) we have347

∀s j ∈ Vx : dT (s1, u) = dT ′(s1, u)≤ dT ′(s j , u) = dT (s j , u).348

We conclude that dT (s1, u) ≤ dT (s j , u) for all s j ∈ Σ, and therefore u ∈ cellT (s1,Σ). This shows349

that U ′1 ⊆ Vx ∩ cellT (s1,Σ). To show the inclusion in the other direction, consider any u ∈350

Vx ∩ cellT (s1,Σ). We then have351

∀s j ∈ Σ : dT ′(s1, u) = dT (s1, u)≤ dT (s j , u)≤ dT ′(s j , u),352

which implies u ∈ cellT ′(s1,Σ) = U ′1. This finishes the proof of U1 = cellT (s1,Σ), that is, the case353

i = 1.354

10

Figure 6: A similar transformation for arbitrary graphs does not work. On the right side we have
the transformed instance with a feasible solution that does not correspond to a solution in the
original setting.

Consider now the indices i ∈ [k] \ {1} with si ∈ Vy . Recall that we have Ui = cellT ′(si ,Σ)355

and Ui ⊆ Vy . Fix an index ` ∈ [k] \ {1} such that y ∈ U` ∩ U1. Such an index exists because356

y /∈W1. We must have U` ⊆ Vy because x /∈ U`, and thus s` ∈ Vy . Because of Claim 6.1 we have357

dT (s1, y) = dT (s`, y), and using that x ∈ cell<T (s1,Σ), implied by Claim 6.2, we get358

∀u ∈ Vy , s j ∈ Vx : dT (s`, u)≤ dT (s1, u)≤ dT (s j , u).359

This implies that in T each vertex of Vy has at least one closest site (from Σ) that belongs to Vy .360

Therefore, for each si ∈ Vy , we have361

cellT (si ,Σ) = cellT[Vy](si ,Σ∩ Vy).362

A similar argument can be used for T ′: no site in Vx is the closest site to any vertex of Vy and the363

closest site to y ′ is s1. Therefore, for each si ∈ Vy , we have364

cellT ′(si ,Σ) = cellT ′[Vy](si ,Σ∩ Vy).365

Noting that T[Vy] = T ′[Vy] we obtain, for each si ∈ Vy ,366

Ui = cellT ′(si ,Σ) = cellT ′[Vy](si ,Σ∩ Vy) = cellT[Vy](si ,Σ∩ Vy) = cellT (si ,Σ).367

It remains to consider the indices i ∈ [k] \ {1} with si ∈ Vx . The approach is similar, and368

actually simpler because x ∈ cell<T (s1, T) implies that there is no influences from the sites Vy . (No369

care is needed for y ′ because it belongs to cell<T ′(s1,Σ). Therefore, for each si ∈ Vx \ {s1},370

Ui = cellT ′(si ,Σ) = cellT ′[Vx](si ,Σ∩ Vx) = cellT[Vx](si ,Σ∩ Vx) = cellT (si ,Σ).371

We have covered all the cases: si = s1, si ∈ Vy , and si ∈ Vx \ {s1}. This finishes the proof of372

the Lemma.373

It is important to note that the transformation described above only works for trees. A similar374

transformation for arbitrary graphs may have feasible solutions that do not correspond to solutions375

in the original problem. See Figure 6 for a simple example.376

Another important point is that we need the assumption that I had a solution. This means377

that, any solution Σ′ we obtain after making a sequence of expansions, has to be tested in the378

original instance. However, if Σ′ is not a valid solution in I , then I has no solution.379

We are going to make a sequence of edge expansions. The replacement of Si with Si ∩Wi (for380

i ∈ [k]) needs to be made only at the preprocessing step and it is important for correctness (see381

footnote 1). It is not needed later on because with each edge expansion the sets Wi (for i ∈ [k])382

can only increase.383

Consider an instance I = (T, ((U1, S1), . . . , (Uk, Sk))). Set I0 = I and define, for t ≥ 1,384

the instance It by transforming It−1 using an expansion of some edge. For all expansions385

we use the same parameter ε. We finish the sequence when we obtain the first instance386

11

Figure 7: The behavior of the reduction to obtain maximum degree 3. Left: part of an instance
with a tree of arbitrary degrees. Right: result after the reduction for the left instance. The edges
between different candidate Voronoi cells are shortened by δ.

Ĩ = (T̃ , ((Ũ1, S̃1), . . . , (Ũk, S̃k))) such that the sets Ũ1, . . . , Ũ` are pairwise disjoint. Note that387

this procedure stops because the number of pairs (i, j) with Ui ∩ U j 6= ; decreases with each388

expansion. This implies that the number of steps is at most
�k

2

�

. In fact, the number of steps is389

even smaller.390

Lemma 7. Ĩ is reached after at most k− 1 edge expansions.391

Proof. We prove this by induction on k. There is nothing to show if k = 1. Otherwise, note that392

the sets Ui in Vx and those in Vy (respectively) give rise to two independent subproblems with kx393

and ky sites (respectively), where kx + ky = k. By induction, the number of edge expansions is at394

most 1+ (kx − 1) + (ky − 1) = k− 1.395

The next lemma shows that using the same parameter ε for all edge expansions is a correct396

choice. This is due to our careful definition of resolution res(·).397

Lemma 8. Assume that 0< ε < res(I) and the answer to GENERALIZED GRAPHIC INVERSE VORONOI398

IN TREES with input I is “yes”. Then Σ is a solution to GENERALIZED GRAPHIC INVERSE VORONOI IN399

TREES with input I if and only if Σ is also a solution to GENERALIZED GRAPHIC INVERSE VORONOI400

IN TREES with input Ĩ .401

Proof. Note that, by construction, res(It−1)≤ res(It) for all t ≥ 1. Indeed, when we expand the402

edge x y inserting y ′, then there is no set Ui that is on both sides of T ′− y ′. This means that for all403

the parameters si , s j , ui , u j considered in the definition of res(It) we have dT ′(si , u)− dT ′(s j , u) =404

dT (si , u)− dT (s j , u). Therefore, ε < res(It) for all t. The claim now follows easily from Lemmas 5405

and 6 by induction on t.406

3.2 Transforming to maximum degree 3407

Consider an instance I = (T, ((U1, S1), . . . , (Uk, Sk))) for the problem GENERALIZED GRAPHIC408

INVERSE VORONOI IN TREES, where T is a tree and the sets U1, . . . , Uk are pairwise disjoint. We409

assume that each Ui induces a connected subgraph in T . See Figure 7 for an example of such an410

instance viewed around a vertex of degree > 3. We want to transform it into another instance411

I ′ = (T ′, ((U ′1, S′1), . . . , (U ′k, S′k))) where the maximum degree of T ′ is 3, the sets U ′1, . . . , U ′k are412

pairwise disjoint, and a solution to I ′ corresponds to a solution of I .413

In the transformations we will need “short” edges again and we will shorten some edges. We414

need another version of the resolution:415

res′(I) = min
�

R>0 ∩ {dT (v, u)− dT (v
′, u) | v, v′, u ∈ V (T)}

�

.416

12

In particular, res′(I) ≤ λ(uv) for all edges uv of T . From the definition we have the following417

property:418

∀v, v′, u ∈ V (T) : dT (v, u)< dT (v
′, u) =⇒ dT (v, u) +

res′(I)
2

< dT (v
′, u). (9)419

420

We explain how to transform the instance into one where all vertices have maximum degree 3.421

We will use T ′ and λ′ for the new graph and its edge-lengths. The construction uses two values δ422

and δ′, where423

0< δ <
res′(I)

6n
and δ′ =

δ

4n
.424

The intuition is that edges connecting different candidate Voronoi cells are shorten by δ, and425

then we split the vertices of degree larger than three using short edges of length δ′, where426

0< δ′� δ� res′(I).427

For each edge uv of T we place two vertices au,v and av,u in T ′, and connect them with an428

edge. If u and v belong to the same set Ui, then the length λ′ of such an edge au,vav,u is set429

to λ(uv). If u ∈ Ui and v ∈ U j with i 6= j, then the length λ′ of such an edge au,vav,u is set to430

λ(uv)−δ > 0. For each vertex u of T , we connect the vertices {au,v | uv ∈ E(T)} with a path. The431

length λ′ of the edges on these |V (T)| paths is set to δ′. Finally, for each i ∈ [k] we define the sets432

U ′i = {au,v | u ∈ Ui , uv ∈ E(T)},433

S′i = {au,v | u ∈ Si , uv ∈ E(T)}.434
435

Note that the sets U ′1, . . . , U ′k are pairwise disjoint. For an example of the whole process see436

Figure 7.437

To recover the solutions, we define the projection map π(au,v) = u. Thus, π sends each vertex438

of T ′ to the corresponding vertex of T that was used to create it. Note that for each i ∈ [k] we439

have π(S′i) = Si and π(U ′i) = Ui .440

The distances in T ′ and T are closely related. Using that the tree T ′ has fewer than 2n new441

short edges of length δ′ and the path connecting any two vertices of U ′i is contained in T ′[U ′i] we442

get443

∀i ∈ [k], u, v ∈ U ′i : dT (π(u),π(v))≤ dT ′(u, v)< dT (π(u),π(v)) + 2nδ′

< dT (π(u),π(v)) +δ.
(10)444

445

Using that the path between two vertices in different sets Ui and U j , i 6= j, uses at least one edge446

and at most n− 1 edges that have been shortened by δ, we get447

∀i 6= j ∈ [k], u ∈ U ′i , v ∈ U ′j : dT (π(u),π(v))− nδ < dT ′(u, v)< dT (π(u),π(v))−δ+ 2nδ′

< dT (π(u),π(v)).
(11)

448

449

Lemma 9. Suppose that 0< δ < res′(I)/6n and the sets U1, . . . , Uk are pairwise disjoint subsets of450

V (T) that induce connected subtrees of T . The answer to (T, ((U1, S1), . . . , (Uk, Sk))) is “yes” if and451

only if the answer to (T ′, ((U ′1, S′1), . . . , (U ′k, S′k))) is “yes”.452

Proof. We first show the “if” part. Suppose that the answer to I ′ is “yes”. Then, there exist453

s′1, . . . , s′k with s′i ∈ S′i and U ′i = cellT ′(s′i , {s
′
1, . . . , s′k}) for each i ∈ [k]. Set si = π(s′i) for all i ∈ [k],454

Σ′ = {s′1, . . . , s′k} and Σ= {s1, . . . , sk}.455

Consider any fixed i ∈ [k] and any vertex u ∈ Ui . There exists some vertex u′ ∈ U ′i such that456

u= π(u′). Since u′ ∈ U ′i = cellT ′(s′i ,Σ
′) and u′ /∈ U ′j = cellT ′(s′j ,Σ

′) for all j 6= i, we have457

∀ j ∈ [k] \ {i} : dT ′(s
′
i , u′)< dT ′(s

′
j , u′).458

13

For j 6= i, since u, si ∈ Ui and s j /∈ Ui we use the relations (10) and (11) to get459

∀ j ∈ [k] \ {i} : dT (si , u)≤ dT ′(s
′
i , u′)< dT ′(s

′
j , u′)< dT (s j , u).460

We conclude that u ∈ cellT (si ,Σ) and u /∈ cellT (s j ,Σ) for all j ∈ [k] \ {i}. It follows that Ui =461

cellT (si ,Σ) for all i ∈ [k], and the answer to the instance I “yes”.462

Now we turn to the “only if” part. Then, there exist s1, . . . , sk with si ∈ Si and Ui =463

cellT (si , {s1, . . . , sk}) for each i ∈ [k]. Take a vertex s′i ∈ π
−1(si) for each i ∈ [k], Σ= {s1, . . . , sk}464

and Σ′ = {s′1, . . . , s′k}.465

Consider any fixed index i ∈ [k] and any vertex u′ ∈ U ′i . Set u= π(u′) ∈ Ui. Since u ∈ Ui =466

cellT (si ,Σ) and u /∈ U j = cellT (s j ,Σ) for all j 6= i, we have467

∀ j ∈ [k] \ {i} : dT (si , u)< dT (s j , u).468

Because of property (9) we have469

∀ j ∈ [k] \ {i} : dT (si , u) +
res′(I)

2
< dT (s j , u),470

and thus471

∀ j ∈ [k] \ {i} : dT (si , u) + 3n ·δ < dT (s j , u).472

Using the relations (10) and (11) we get473

∀ j ∈ [k] \ {i} : dT ′(s
′
i , u′)< dT (si , u) + 2nδ < dT (s j , u)− nδ < dT ′(s

′
j , u′).474

This implies that u′ ∈ cellT ′(s′i ,Σ
′) and u′ /∈ cellT ′(s′j ,Σ

′) for all j ∈ [k] \ {i}. It follows that475

U ′i = cellT ′(s′i ,Σ
′). Since this holds for all i ∈ [k], it follows that the answer to the instance I ′476

“yes”.477

3.3 Algorithm to transform478

We are now ready to explain algorithmic details of the whole transformation and explain its479

efficient implementation.480

Suppose that we have an instance I = (T, (U1, . . . , Uk)) for the problem GRAPHIC INVERSE481

VORONOI IN TREES. Let us use n for the number of vertices in T and N = N(I) = |V (T)|+
∑

i |Ui|482

for the description size of I . As mentioned earlier, we can convert in O(N) time this to an483

equivalent instance (T, ((U1, S1), . . . , (Uk, Sk))) for the problem GENERALIZED GRAPHIC INVERSE484

VORONOI IN TREES. Let I ′ be this new instance and note that its description size is O(N).485

First, we root the tree T at an arbitrary vertex r and store for each vertex v of T its parent486

node pa(v). (The parent of r is set to NULL.) We add to each vertex a flag to indicate whether it487

belongs to a subset of vertices under consideration. Initially all flags are set to false. This takes488

O(|V (T)|) = O(N) time.489

With this representation of T we can check whether any given subset U of vertices of T induces490

a connected subgraph in O(|U |) time. The key observation is that the subgraph T[U] induced by491

U is connected if and only if there is exactly one vertex in U whose parent does not belong to U .492

(Here we use the convention that for the root pa(r) = NULL /∈ U .) To check this condition, we493

set the flag of the vertices of U to true, count how many vertices v ∈ U have the property that494

pa(v) /∈ U , decide the connectivity of T [U] depending on the counter, and at the end set the flags495

of vertices of U back to false.496

For each vertex v ∈ V (T) we make a list L(v) that contains the indices i ∈ [k] with v ∈ Ui.497

The lists L(v), for all v ∈ V (T), can be computed in O(N) time by scanning the sets U1, . . . , Uk:498

for each v ∈ Ui we add i to L(v). Note that a vertex v ∈ V (T) belongs to Wi if and only if i is499

14

the only index in the list L(v). Thus, for any given v ∈ Ui, we can decide in O(1) time whether500

v ∈Wi. With this we can compute the sets W1, . . . , Wk in O(
∑

i |Ui|) = O(N) time. Scanning the501

sets S1, . . . , Sk, we can replace each set Si with the set Si ∩Wi . Together we have spent O(N) time502

and we have made the preprocessing step described after Lemma 4.503

During the algorithm, as we make the edge expansions, we maintain the lists L(v) for each504

vertex v and the rooted representation of the tree.505

Now we explain how to make the expansions of the edges in batches: we iterate over the506

indices i ∈ [k] and, for each fixed i, we identify Ei and make all the edge expansions for Ei in507

O(|Ui|) time. Assume for the time being that ε is already known. We will discuss its choice below.508

Consider any fixed index i ∈ [k]. We compute Wi in O(|Ui|) time using the lists L(v) for509

v ∈ Ui. (The set Wi may have changed because of expansions for E j, j 6= i, and thus has to be510

computed again.) We also check in O(|Ui|) time that Ui and Wi induce connected subgraphs of T511

using the representation of T . (If any of them fails the test, then we correctly report that there is512

no solution.) We construct the induced tree T[Ui] explicitly and store it using adjacency lists:513

for each vertex v ∈ Ui we can find its neighbors in T[Ui] in time proportional to the number of514

neighbors. From this point, we will use the representation of T[Ui].515

Next, we compute Ei, for the fixed index i ∈ [k], in the obvious way. For each edge x y of516

T[Ui], we check whether x ∈Wi and y /∈Wi or whether y ∈Wi and x /∈Wi to decide whether517

x y ∈ Ei . This procedure to compute Ei takes O(|Ui|) time.518

We keep considering the fixed index i ∈ [k]. Now we make the expansion for each edge of Ei .519

Here it is important that the expansion of different edges of Ei are independent: each expansion520

affects to Ui in a different connected component of T −Wi. We make the expansion of an edge521

x y ∈ Ei with x ∈Wi and y ∈ Ui \Wi as follows: edit T by inserting y ′, set the new edge-lengths522

for the edges y y ′ and x y ′, remove from Ui the subset Rx y of elements of Ui that are closer to y523

than to x , and insert y ′ in Ui . The set Rx y of elements to be removed from Ui is obtained using524

the representation of T[Ui] in O(|Rx y |) time. We correct the lists L(v) by removing i from L(v)525

for each for each v ∈ Rx y . (We do not need to update T[Ui] because the sets Rx y are pairwise526

disjoint for all x y ∈ Ei.) We conclude that expanding an edge x y ∈ Ei takes O(|Rx y |). Since527

each element of Ui can be deleted at most once from Ui , and the elements y ′ we insert cannot be528

deleted because they belong only to (the new) Ui , the expansions for the edges in Ei takes O(|Ui|)529

time all together. This finishes the description of the work carried out for a fixed i ∈ [k].530

We iterate over all i ∈ [k] making the expansions for (the current) edges in Ei . Since for each531

i ∈ [k] we spend O(|Ui|) time, all the expansions required for Lemma 8 are carried out in O(N)532

time. All this was assuming that the value ε is available, which remains to be discussed. Let Ĩ be533

the resulting instance with the disjoint sets.534

Now we can make the transformation from Ĩ to an instance with maximum degree 3. Assume535

for the time being that we have the parameter δ available. Then the transformation described536

in Section 3.2 can be easily carried out in linear time. Thus, in O(N) time we obtain the final537

instance with pairwise disjoint sets U1, . . . , Uk and the tree T of maximum degree 3.538

It remains to discuss how to choose the values of ε and δ for the transformations. It is539

unclear whether ε or δ can be computed in O(N) time when the edges have arbitrary lengths.540

(If, for example, all edges have integral lengths, then we could take ε = 1/4, δ = 1/10n and541

δ′ = 1/40n2.) We will handle this using composite lengths. The length of each edge e is going to542

be described by a triple (a, b, c) that represents the number a+ bε + cδ′ for infinitesimals δ′� ε.543

(Recall that 4nδ′ = δ.) Thus the length encoded by (a, b, c) is smaller than the length encoded544

by (a′, b′, c′) if and only if (a, b, c) is lexicographically smaller than (a′, b′, c′). In the original545

graph we replace the length of each edge e by (λ(e), 0, 0). In the expansion, the new edges y y ′546

get length (0, 1, 0), and in converting the tree to maximum degree 3 we introduce new edges of547

length (0, 0, 1)≡ δ′ and we replace some edges of length (a, b, 0) by (a, b,−4n). The length of a548

path becomes a triple (a, b, c) that is obtained as the vector sum of the triples over its edges. Each549

15

comparison and addition of edge-lengths costs O(1) time. We summarize.550

Theorem 10. Suppose that we are given an instance I for the problem GRAPHIC INVERSE VORONOI551

IN TREES or for the problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES of description size552

N = N(I) over a tree T with n vertices. In O(N) time we can either detect that I has no solutions, or553

construct another instance I ′ for the problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES554

over a tree T ′ with the following properties:555

• the tree T ′ in the instance I ′ has maximum degree 3,556

• the sets in the instance I ′ are pairwise disjoint,557

• the description size of I ′ and the number of vertices in T ′ is O(n),558

• if the answer to I is “yes”, then any solution to I ′ is also a solution to I.559

Proof. It remains only to bound the size of T ′ and the description size of I ′. If k > n, then the560

instance I has no solution and we report it. Otherwise, Lemma 7 implies that we are making561

k− 1 expansions, which means that the resulting tree T ′ has n+ k− 1= O(n) vertices. The size562

of the instance I ′ is O(n) because the sets in the instance are pairwise disjoint and there are O(n)563

vertices in total.564

4 Algorithm for subcubic trees with disjoint Voronoi cells565

In this section we consider the problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES for an566

input (T,U), with the following properties:567

• T is a tree of maximum degree 3568

• U is a sequence of pairs (U1, S1), . . . , (Uk, Sk) where the sets U1, . . . , Uk are pairwise disjoint.569

Our task is to find sites s1, . . . , sk such that, for each i ∈ [k], we have Ui = cellT (si , {s1, . . . , sk})570

and si ∈ Si . We may assume that V (T) =
⋃

i∈[k] Ui , that T[Ui] is connected for each i ∈ [k], and571

that Si ⊆ Ui for each i ∈ [k], as otherwise it is clear that there is no solution. These conditions572

can easily be checked in linear time.573

First, we describe an approach to decide whether there is a solution without paying much atten-574

tion to the running time. Then, we describe its efficient implementation taking time O(N log2 N),575

where N is the description size of the instance.576

4.1 Characterization577

For each vertex v, let i(v) be the unique index such that v ∈ Ui(v). We choose a leaf r of T as a578

root and henceforth consider the tree T rooted at r. We do this so that each vertex of T has at579

most two children. For each vertex v of T , let T(v) be the subtree of T rooted at v, and define580

also581

J(v) = { j ∈ [k] | U j ∩ T (v) 6= ;}.582
583

Note that i(v) ∈ J(v). Since each U j defines a connected subset of T (v), for each j ∈ J(v), j 6= i(v),584

we have U j ⊆ T (v) and therefore it must be that s j ∈ T (v).585

Consider a fixed vertex v of T and the corresponding subtree T (v). We want to parameterize586

possible distances from v to the site si(v), that is, the site whose cell contains the vertex v, that587

provide the desired Voronoi diagram restricted to T (v). A more careful description is below. We588

distinguish possible placements of si(v) within T (v), which we refer as “below” (or on) v and for589

16

T (v)

v

vnew

length α

T+
α
(v)

Figure 8: The tree T+α (v) used to define A(v).

which we use the notation B(v), and possible placements outside T (v), which we refer as “above”590

and for which we use the notation A(v).591

First we deal with the placements where si(v) is “below” v. In this case we start defining X (v)592

as the set of tuples (s j) j∈J(v) that satisfy the following two conditions:593

∀ j ∈ J(v) : s j ∈ S j ,594

∀ j ∈ J(v) : cellT (v)(s j , {st | t ∈ J(v)})∩ T (v) = U j ∩ T (v).595
596

Note that X (v) ⊆
∏

j∈J(v) S j . Finally, we define597

B(v) =
�

dT (si(v), v) | (s j) j∈J(v) ∈ X (v)
	

.598
599

The set B(v) represents the valid distances at which we can place si(v) inside T (v) such that si(v)600

is the closest site to v, and still complete the rest of the placements of the sites to get the correct601

portion of U inside T (v).602

Now we deal with the placements “above” v. For α > 0, let T+α (v) be the tree obtained from603

T (v) by adding an edge vvnew, where vnew is a new vertex, and setting the length of vvnew to α.604

The role of vnew is the placement of the site closest to v, when it is outside T (v). See Figure 8 for605

an illustration. In the following discussion we also use Voronoi diagrams with respect to T+α (v).606

Let Yα(v) be the set of tuples (s j) j∈J(v) that satisfy all of the following conditions:607

si(v) = vnew,608

∀ j ∈ J(v) \ {i(v)} : s j ∈ S j ,609

∀ j ∈ J(v) : cellT+α (v)(s j , {st | t ∈ J(v)})∩ T (v) = U j ∩ T (v).610
611

Finally we define612

A(v) = {α ∈ R>0 | Yα(v) 6= ;} .613
614

We are interested in deciding whether B(r) is nonempty. Indeed, for the root r we have615

J(r) = [k] and T (r) = T by construction. The definition of X (v) implies that B(r) is nonempty if616

and only if there is some tuple (s1, . . . , sk) ∈ S1 × · · · × Sk such that617

∀i ∈ J(r) = [k] : cellT (si , {s1, . . . , sk}) = cellT (r)(si , {s1, . . . , sk}) = Ui ∩ T (r) = Ui .618

This is precisely the condition we have to check to solve GENERALIZED GRAPHIC INVERSE VORONOI619

IN TREES.620

17

T (v1)

v1

T (v2)

i(v) = i(v1) = i(v2) i(v) = i(v1) 6= i(v2) i(v1) 6= i(v) 6= i(v2)

Ui(v)
v

v2

Ui(v) Ui(v)

v1

v

Ui(v2)v2
Ui(v2)v2

Ui(v1)
v1

v

T (v1) T (v2) T (v1) T (v2)

Figure 9: Different cases in the computation of A(v) and B(v) when v has children v1 and v2.
(The case i(v) = i(v2) 6= i(v1) is symmetric to the case i(v) = i(v1) 6= i(v2).)

We are going to compute A(v) and B(v) in a bottom-up fashion along the tree T . If v is leaf of621

T , then J(v) = {i(v)} and clearly we have622

A(v) = R>0 and B(v) =

¨

{0} if v ∈ Si(v),

; if v /∈ Si(v).
623

Consider now a vertex v of T that has two children v1 and v2. Assume that we already have624

A(v j) and B(v j) for j = 1,2. For j = 1,2 define the sets625

A′(v j) = {x −λ(vv j) | x ∈ A(v j)},626

B′(v j) = {x +λ(vv j) | x ∈ B(v j)},627

C ′(v j) = {α | ∃x ∈ B(v j) such that x −λ(vv j)< α < x +λ(vv j)}.628
629

This is the offset we obtain when we take into account the length of the edge vv j . The set C ′(v j)630

will be relevant for the case when i(v) 6= i(v j). The following lemmas show how to compute A(v)631

and B(v) from its children. Figure 9 is useful to understand the different cases.632

Lemma 11. If the vertex v has two children v1 and v2, then633

A(v) = R>0 ∩



















A′(v1)∩ A′(v2) if i(v) = i(v1) = i(v2),
A′(v1)∩ C ′(v2) if i(v) = i(v1) 6= i(v2),
A′(v2)∩ C ′(v1) if i(v) = i(v2) 6= i(v1),
C ′(v1)∩ C ′(v2) if i(v) 6= i(v1) and i(v) 6= i(v2).

634

Proof. This is a standard proof in dynamic programming. We only point out the main insight635

showing the role of A′(v j) and C ′(v j) for j ∈ {1,2}.636

When i(v) = i(v j), placing si(v) at vnew of the tree T+α (v) is the same as placing it at vnew of637

T+
α+λ(vv j)

(v j). The valid values α for T+
α+λ(vv j)

(v j) are described by A′(v j), a shifted version of638

A(v j).639

When i(v) 6= i(v j), there has to be a compatible placement of si(v j) inside T (v j) such that v is640

closer to si(v) = vnew than to si(v j), while v j is closer to si(v j) than to si(v). That is, we must have641

dT (vnew, v)< dT (si(v j), v) and dT (si(v j), v j)< dT (vnew, v j),642

or equivalently, α must satisfy643

α < dT (si(v j), v j) +λ(vv j) and dT (si(v j), v j)< α+λ(vv j).644

Thus, each possible value x of dT (si(v j), v j), that is, each x ∈ B(v j), gives the interval
�

x −645

λ(vv j), x+λ(vv j)
�

of possible values for α. The union of these intervals over x ∈ B(v j) is precisely646

C ′(v j).647

18

To construct B(v) it is useful to have a function that tells whether v is a valid placement for648

si(v). For this matter we define the following function:649

χ(v) =



























{0} if i(v) = i(v1) = i(v2), v ∈ Si(v), 0 ∈ A′(v1) and 0 ∈ A′(v2),
{0} if i(v) = i(v1) 6= i(v2), v ∈ Si(v), 0 ∈ A′(v1) and 0 ∈ C ′(v2),
{0} if i(v) = i(v2) 6= i(v1), v ∈ Si(v), 0 ∈ A′(v2) and 0 ∈ C ′(v1),
{0} if i(v) 6= i(v1), i(v) 6= i(v2), v ∈ Si(v), 0 ∈ C ′(v1) and 0 ∈ C ′(v2),
; otherwise.

650

Lemma 12. If the vertex v has two children v1 and v2, then651

B(v) = χ(v)∪



















(B′(v1)∩ A′(v2))∪ (B′(v2)∩ A′(v1)) if i(v) = i(v1) = i(v2),
B′(v1)∩ C ′(v2) if i(v) = i(v1) 6= i(v2),
B′(v2)∩ C ′(v1) if i(v) = i(v2) 6= i(v1),
; if i(v) 6= i(v1) and i(v) 6= i(v2).

652

Proof. First we note that χ(v) = {0} if and only if v is a valid placement for si(v). Indeed, the653

formula is the same that was used for A(v), but for the value α = 0, and it takes into account654

whether v ∈ Si(v).655

The proof for the correctness of B(v) is again based in standard dynamic programming. The656

case for si(v) being placed at v is covered by χ(v). The main insight for the case when si(v) is657

placed in T (v1) is that, from the perspective of the other child, v2, the vertex is placed “above” v2.658

That is, only the distance from si(v) to v2 is relevant. Thus, we have to combine B(v1) and A(v2),659

with the appropriate shifts. More precisely, for v2 we have to use A′(v2) or C ′(v2) depending on660

whether i(v2) = i(v) or i(v2) 6= i(v).661

When v has a unique child v′, then the formulas are simpler and the argumentation is similar.662

We state them for the sake of completeness without discussing their proof.663

A(v) = R>0 ∩

¨

A′(v′) if i(v) = i(v′),
C ′(v′) if i(v) 6= i(v′).

664

665

B(v) =



















B′(v′)∪ {0} if i(v) = i(v′), v ∈ Si(v), and λ(vv′) ∈ A(v′),
B′(v′) if i(v) = i(v′) and

�

v /∈ Si(v) or λ(vv′) /∈ A(v′)
�

,

{0} if i(v) 6= i(v′), v ∈ Si(v) and 0 ∈ C ′(v′),
; if i(v) 6= i(v′) and (v /∈ Si(v) or 0 /∈ C ′(v′)).

666

667

4.2 Efficient manipulation of monotonic intervals668

The efficient algorithm that we will present is based on an efficient representation of the sets A(v)669

and B(v) using binary search trees. Here we discuss the representation that we will be using.670

We first consider how to store a set X of real values under the following operations.671

• Copy makes a copy of the data structure storing X ;672

• Report returns the elements of X sorted;673

• Insert(y) adds a new element y in X ;674

• Delete(y) removes the element y ∈ X from X ;675

19

• Succ(y) returns the successor of y in X , defined as the smallest number in X that is at least676

as large as y;677

• Pred(y) returns the predecessor of y in X , defined as the largest number in X that is smaller678

or equal than y;679

• Split(y) returns the representation for X≤ = {x ∈ X | x ≤ y} and the representation for680

X> = {x ∈ X | x > y}; the representation of X is destroyed in the process;681

• Join(X1, X2) returns the representation of X = X1∪X2 if max(X1)<min(X2), and otherwise682

it returns an error; the representations of X1 and X2 are destroyed in the process;683

• Shift(α) adds the given value α to all the elements of X .684

These operations can be done efficiently using dynamic balanced binary search tree with685

so-called augmentation, that is, with some extra information attached to the nodes. Strictly686

speaking the following result is not needed, but understanding it will be useful to understand the687

more involved data structure we eventually employ.688

Theorem 13. There is an augmented dynamic binary search tree to store sets of m real values with689

the following time guarantees:690

• the operations Copy and Report take O(m) time;691

• the operations Insert, Delete, Succ, Pred, Split, Join and Shift take O(log m) time. (For Join692

the value m is the size of the resulting set.)693

Proof. Let X be the set of values to store. We use a dynamic balanced binary search tree T where694

each node represents one element of X . For each node µ of T , let x(µ) be the value represented695

by µ. The tree T is a binary search tree with respect to the values x(µ). However, we do not696

store x(µ) explicitly at µ, but we store it in so-called difference form. At each non-root node µ697

with parent µ′, we store diff-val(µ) := x(µ)− x(µ′). At the root r we store diff-val(r) = x(r).698

(This choice is consistent with using x(NULL) = 0.) This is a standard technique already used by699

Tarjan [6]. Whenever we want to obtain x(µ) for a node µ, we have to add diff-val(µ′) for the700

nodes µ′ along the root-to-µ path. Since operations on a tree are performed always locally, that is,701

accessing a node from a neighbour, we spend O(log m) time to compute the first value x(µ), and702

from there on each value x(·) is computed in O(1) additional time from the value of its neighbor.703

Of course, the values diff-val(µ) have to be updated through the changes in the tree, including704

rotations or other balancing operations.705

With this representation it is trivial to perform the operation Shift(α) in constant time: at the706

root r of T , we just add α to diff-val(r).707

For the rest of operations, the time needed to execute them is the same as for the dynamic708

balanced search trees we employ. Brass [2, Chapter 3] explains dynamic trees with the requested709

properties; see Section 3.11 of the book for the more complex operations of split and join. (The710

same time bounds with amortized time bounds, which are sufficient for our application, can be711

obtained using the classical splay trees [5].)712

Consider now a family I of closed intervals on the real line. The family I is monotonic if no713

interval contains another interval. In a monotonic family of intervals, the left endpoints have to714

be distinct and the right endpoints also have to be distinct. Also, for such a family, sorting the715

intervals by their left endpoints or their right endpoints gives the same result. Because of this, we716

can talk about the ordering of the intervals, and we can also talk about the rightmost or leftmost717

interval in I with a certain property.718

We want to maintain a set I of monotonic intervals under the following operations.719

20

• IntCopy makes a copy of the data structure storing I.720

• IntReport returns the elements of I sorted by their left endpoint.721

• IntInsert(J) adds a new interval J in I; it assumes that the resulting family keeps being722

monotonic.723

• IntDelete(J) deletes the interval J ∈ I.724

• IntHitBy(J), for an interval J , returns whether J intersects some interval of I.725

• IntContaining(J), for an interval J , returns the representation for I′ = {I ∈ I | J ⊆ I} and726

the representation for I′′ = I \ I′. The representation of I is destroyed in the process.727

• IntClip(J), for an interval J = [x , y], returns the representation for the intervals I′ = {I ∩ J |728

I ∈ I} and for the intervals I′′ = {I ∩ (−∞, x] | I ∈ I} ∪ {I ∩ [y,+∞) | I ∈ I}. In both cases729

we remove empty intervals, and remove intervals contained in another one, so that we keep730

having monotonic families. The representation of I is destroyed in the process.731

• IntJoin(I1, I2) returns the representation of I= I1 ∪ I2 if I is a monotonic family and all the732

intervals of I1 are to the left of all the intervals of I2. Otherwise it returns an error. The733

representations of I1 and I2 are destroyed in the process.734

• IntShift(α), for a given real value α, shifts all the intervals by α; this is, each interval [a, b]735

in I is replaced by [a+α, b+α].736

• IntExtend(λ), for a given real value λ > 0, extends all the intervals by λ in both directions;737

this is, each interval [a, b] in I is replaced by [a−λ, b+λ].738

Theorem 14. There is a data structure to store monotonic families of m intervals with the following739

time guarantees:740

• the operations IntCopy and IntReport take O(m) time;741

• the operations IntInsert, IntDelete, IntHitBy, IntContaining, IntClip, IntJoin, IntShift, IntExtend742

take O(log m) time. (For IntJoin the value m is the size of the resulting set I.)743

Proof. Let I be the family of monotonic intervals to store. We use a dynamic balanced binary744

search tree T where each node represents one element of I. For the node µ of T that represents745

the interval I , let a(µ), b(µ) and `(µ) = b(µ)− a(µ) be the left endpoint, the right endpoint, and746

the length of I , respectively. Thus, if µ represents [ai , bi], we have ai = a(µ) and bi = a(µ)+`(µ).747

The tree T is a binary search tree with respect to the values a(µ). Because the family of748

intervals is monotonic, T is also a binary search tree with respect to the values b(µ). However,749

the values a(µ), b(µ) or `(µ) are not stored explicitly. Instead, the values are stored in difference750

form and implicitly. More precisely, at each node µ of T we store two values, diff-val(µ) and751

diff-len(µ), defined as follows. If µ is the root of the tree and represents the interval [a, b], then752

diff-val(µ) = a and diff-len(µ) = b− a. If µ is a non-root node of the tree representing [a, b], and753

µ′ is its parent, then diff-val(µ) = a− diff-val(µ′) and diff-len(µ) = (b− a)− diff-len(µ′).754

This is an extension of the technique employed in the proof of Theorem 13. In fact, T is just755

the tree in the proof of Theorem 13 for the left endpoints of the intervals, where additionally756

each node stores information about the length of the interval, albeit this additional information is757

stored also in difference form.758

Whenever we want to obtain a(µ) or `(µ) for a node µ, we have to add diff-val(µ′) or759

diff-len(µ′) for the nodes µ′ along the root-to-µ path, respectively. The right endpoint b(µ) is760

obtained from b(µ) = a(µ)+`(µ). Since operations in a tree always go from a node to a neighbor,761

21

we can assume that the values a(µ), b(µ) and `(µ) are available at a cost of O(1) time per node,762

after an initial cost of O(log m) time to compute the values at the first node. Of course, the values763

diff-val(µ) and diff-len(µ) have to be updated through the changes in the tree, including rotations764

or other balancing operations.765

Since T is a binary search tree with respect to the values a(·) and also with respect to the766

values b(·), we can make the usual operations that can be performed in a binary search tree,767

such as predecessor or successor, with respect to any of those two keys. For example, we can768

get in O(log m) time the rightmost interval that contains a given value y, which amounts to a769

predecessor query with y for the values a(·), or we can get the leftmost interval that contains a770

given value y , which amounts to a successor query with y for the values b(·).771

With this representation, it is trivial to perform the operations IntShift(α) or IntExtend(λ) in772

O(1) time. We just update diff-val or diff-len at the root.773

The operations IntCopy , IntReport , IntInsert and IntDelete can be carried out as normal774

operations in a dynamic binary search tree. The operation IntJoin is also just the join operation775

for trees.776

For the operation IntHitBy(J) with J = [x , y] we make a predecessor and a successor query777

with x for the values a(·). This gives the two intervals I1, I2 ∈ I such that x is between the left778

endpoint of I1 and I2. We then check whether I1 ∪ I2 intersect J , which requires constant time.779

For the operation IntContaining(J) we proceed as follows. We find the rightmost interval780

[a`, b`] ∈ I with the left endpoint outside J . We find the rightmost interval [ar , br] ∈ I with the781

right endpoint inside J . Because I is a monotonic family of intervals, the intervals contained in J782

are precisely those with the right endpoint in the half-open interval (a`, ar]. We use the operations783

Split(a`) and Split(ar) with respect to the values a(·) to obtain the representations of784

I1 = {[a, b] ∈ I | a ≤ a`},785

I2 = {[a, b] ∈ I | a` < a ≤ ar} = {I ∈ I | J ⊆ I},786

I3 = {[a, b] ∈ I | ar < a}.787
788

We then use the Join operation to merge the representations of I1 and I3.789

For the operation IntClip(J) with the interval J = [x , y] we proceed as follows. We use790

IntContaining([x , x]), IntContaining([y, y]), and IntJoin to separate I into the group I′ of intervals791

pierced by x or y , and the rest, I′′. Then we use Split(x) (with respect to a(·)) and Split(y) (with792

respect to a(·)) to split I′′ into three groups: I1 containing intervals of I contained in (−∞, x], I2793

containing intervals of I contained in [x , y], and I3 containing intervals of I contained in [y,+∞).794

In I′ we find the leftmost interval that contains x , clip it with (−∞, x], and add it to I1. Again in795

the same group, I′, we find the rightmost interval that contains x , clip it with [x , y], and add it to796

I2. We do a similar procedure for y: add to I2 the leftmost interval of I′ that contains y , clipped797

with J , and add to I3 the rightmost interval of I′ that contains y, clipped with [y,+∞). If the798

two intervals we added to I2 are the same, which means that they both are [x , y], we only add799

one of them. The procedure takes O(log m) time.800

Consider a set A ⊆ R. A representation of A if a family I of monotonic intervals such that801

A=
⋃

I∈I I . The intervals in I may intersect and the representation is not uniquely defined. See802

Figure 10 for an example. The size of the representation I is the number of (possibly non-disjoint)803

intervals in I. This is potentially larger than the minimum number of intervals that is needed804

because the intervals in I can intersect.805

Consider some set A and its representation I. If we use the data structure of Theorem 14 to806

store I, the operations reflect operations we do with A. For example, IntHitBy(J) tells whether J807

intersects A, while IntClip([x , y]) returns a representation of A∩ [x , y] and a representation of808

A∩ (−∞, x]∪ A∩ [y,+∞). The operation IntContaining(J) will be used only when I is a set of809

zero-length intervals, and in that case it returns a representation of A∩ J . When I1 and I2 are810

22

a possible monotonic family I representing A

the set A⊂ R

Figure 10: The set A at the top and one possible representation I of A. The size of this representation
is 9.

representations of A1 and A2, then IntJoin(I1, I2) returns the representation of A1 ∪ A2, assuming811

that max(A1)<min(A2).812

4.3 Algorithm813

In this section we present an efficient algorithm based on the characterization of the previous814

section. We keep using the same notation. In particular, T keeps being a rooted tree and each815

vertex has at most two children. We use n for the number of vertices of T .816

There are two main ideas used in our approach. The first one is that, for each vertex of the817

tree with two children, we want to spend time (roughly) proportional to the size of the smaller818

subtree of its children. The second idea is to use representations of A(v) and B(v) and manipulate819

them using the data structure of Theorem 14.820

The following lemma, which is folklore, shows the advantage of the first idea. For each node821

v with two children, let v1 and v2 be its two children. If v has only one child, we denote it by v1.822

For each node v, let n(v) be the number of vertices in the subtree T (v). (Thus n(r) = n.)823

Lemma 15. If V2 denotes the vertices of T with two children, then824

∑

v∈V2

min{n(v1), n(v2)}= O(n log n).825

Proof. For each vertex u of T define826

σ(u) =
∑

v∈V2∩V (T (u))

min{n(v1), n(v2)}.827

Thus, we want to bound σ(r). We show by induction on n(u) that828

σ(u) ≤ n(u) log2 n(u).829

For the base case note that, when n(u) = 1, the vertex u is a leaf and σ(u) = 0, so the statement830

holds.831

If u has one child u1, then we have V2 ∩ T (u) = V2 ∩ T (u1),832

σ(u) = σ(u1) ≤ n(u1) log2 n(u1) ≤ n(u) log2 n(u),833

and the bound holds. If u has two children u1 and u2, then we can assume without loss of834

generality that n(u1)≤ n(u2), which implies that n(u1)< n(u)/2. Using the induction hypothesis835

23

for n(u1) and n(u2), we obtain836

σ(u) =
∑

v∈V2∩V (T (u))

min{n(v1), n(v2)}837

= σ(u1) +σ(u2) + n(u1)838

≤ n(u1) log2 n(u1) + n(u2) log2 n(u2) + n(u1)839

< n(u1) log2 (n(u)/2) + n(u2) log2 n(u) + n(u1)840

= n(u1)
�

log2 n(u)− 1
�

+ n(u2) log2 n(u) + n(u1)841

=
�

n(u1) + n(u2)
�

log2 n(u)842

< n(u) log2 n(u).843
844

We manipulate the sets A(v) and B(v) using representations I(A(v)) and I(B(v)), respectively.845

In the case of B(v), since B(v) is a finite set of values, the family I(B(v)) consists of zero-length846

monotonic intervals. The reason for this artificial approach to treat B(v), as opposed to using a847

set of values, is that in our algorithm sometimes we set the lengths of intervals defined by B(v).848

Thus, there is no real difference between how we treat the representations of A(·) and B(·).849

The families of intervals I(A(v)) and I(B(v)) are stored and manipulated using the data850

structure of Theorem 14. Thus, we are using the data structure described in Theorem 14 to851

represent A(v) and B(v) implicitly, as the union of monotonic intervals. The reason for this choice852

is technical and reflected in the proof of the next lemma.853

For each vertex v of T , we use mA(v) and mB(v) to denote the sizes of I(A(v)) and I(B(v)),854

respectively. Although the value mA(v) actually depends on the family I(A(v)) of intervals that is855

used, this relaxation of the notation will not lead to confusion.856

It is clear that B(v) has at most n(v) values because each value corresponds to a vertex of857

T (v). Thus, mB(v)≤ n(v). A similar bound will hold for mA(v) by induction.858

Lemma 16. Consider a vertex v of T with two children v1 and v2, and assume that we have859

representations I(A(v1)), I(B(v1)), I(A(v2)) and I(B(v2)) of A(v1), B(v1), A(v2) and B(v2), respec-860

tively, each of them stored in the data structure of Theorem 14. Set m1 = mA(v1) +mB(v1) and861

m2 = mA(v2) +mB(v2), and assume that m1 ≤ m2. We can compute in O(m1 log m2) time families862

I(A(v)) and I(B(v)) that represent A(v) and B(v), respectively, each of them stored in the data863

structure of Theorem 14.2 Moreover, the representation I(A(v)) has size at most864

max{mA(v1) +mA(v2), mA(v1) +mB(v2), mB(v1) +mA(v2), mB(v1) +mB(v2)}.865

Proof. First we compute χ(v). To check whether 0 ∈ A′(v j), where j ∈ {1,2}, we perform the866

operation IntHitBy([λ(vv j),λ(vv j)]) in the representation I(A(v j)). To check whether 0 ∈ C ′(v j),867

where j ∈ {1,2}, we observe that 0 ∈ C ′(v j) if and only if [−λ(vv j),+λ(vv j)] contains some868

element of B(v j). This latter question is answered making the query IntHitBy([−λ(vv j),+λ(vv j)])869

in the representation I(B(v j)). We conclude, that χ(v) can be computed in O(log m2) time without870

changing any of the representations.871

Next, for each j ∈ {1,2}, we compute the representation I(A′(v j)) of A′(v j) applying the872

operation IntShift(−λ(vv j)) to I(A(v j)). Similarly, we can compute the representation I(B′(v j)) of873

B′(v j). This takes O(log m1) +O(log m2) = O(log m2) time. More importantly, with an additional874

cost of O(log m j) time we can use indistinctly the representation of B(v j) or B′(v j), whatever is875

more convenient.876

Note that we cannot afford to make copies of the representations I(A′(v2)) or I(B′(v2)) because877

this would take Θ(m2) time, which may be too much. On the other hand, we can manipulate and878

make explicit copies of I(A′(v1)) and I(B′(v1)) because it takes O(m1) time. Define the minimal879

2In the process we destroy the data structures for I(A(v2)) and I(B(v2)).

24

representation of a set A⊂ R to be the maximal intervals (with respect to inclusion) in A. From880

I(A′(v1)) we can compute the minimal representation of A′(v1) in linear time, that is, O(m1) time.881

For this we use the operation IntReport in I(A′(v1)), which returns the intervals in I(A′(v1)) sorted882

by their left endpoints, and sequentially merge adjacent intervals that intersect. Similarly, we can883

find a minimal representation of B′(v1), which is a list of the values in B′(v1). Thus, after O(m1)884

time we have the minimal representation of A′(v1) as a list of (sorted) at intervals J1, . . . , Js and885

B′(v1) as a sorted list of values y1, . . . , yt , where k+ t ≤ m1.886

Now we distinguish cases depending on the relations between i(v), i(v1) and i(v2).887

Consider the case when i(v) = i(v1) = i(v2). We have two parts.888

1. First we compute the representation I(B(v)) of B(v). Because of Lemma 12, we have889

B(v) = χ(v)∪ (B′(v1)∩ A′(v2))∪ (B′(v2)∩ A′(v1)).890

Recall that we have an explicit representation of B′(v1). For each element y in B′(v1), we891

query I(A′(v2)) using IntHitBy([y, y]) to decide whether y ∈ A′(v2). Thus, we can compute892

an explicit representation of B′(v1)∩ A′(v2) in O(m1 log m2) time.893

Recall that we also have an explicit minimal representation J1, . . . , Js of A′(v1). For each in-894

terval J in that representation, we query I(B(v2))with IntClip(J) to obtain the representation895

of J ∩B′(v2). Since the sets J1, . . . , Js are pairwise disjoint, we indeed obtain representations896

of the sets J1∩B′(v2), . . . , Js ∩B′(v2). We then merge them using IntJoin. Since the intervals897

J1, . . . , Jt are pairwise disjoint, the operation IntJoin can be indeed performed. In total we898

have used t ≤ m1 times the operations IntClip and IntJoin, and thus we spent O(m1 log m2)899

time in total. Inserting in this representation the values (as zero-length intervals) of900

B′(v1)∩ A′(v2), we finally obtain a representation of (B′(v1)∩ A′(v2))∪ (B′(v2)∩ A′(v1)). If901

χ(v) is nonempty, we also insert the interval [0,0] in the representation. The final result902

is a representation I(B(v)) of B(v) Note that in this computation we have destroyed the903

representation of I(B′(v2)) because of the operations IntClip.904

2. Next we compute the representation I(A(v)) of A(v). Because of Lemma 11 we have905

that A(v) = R>0 ∩ A′(v1)∩ A′(v2). Recall that we have an explicit minimal representation906

J1, . . . , Js of A′(v1). For each interval Ji in the minimal representation of A′(v1), we extract907

from I(A′(v2)) a representation of Ji ∩ A′(v2) using IntClip(Ji). Then we compute a rep-908

resentation of
⋃

i∈[s] Ji ∩ A′(v2) = A′(v1) ∩ A′(v2) using s − 1 times the operation IntJoin.909

In both cases it is important that the intervals J1, . . . , Js are pairwise disjoint. This takes910

O(s log m2) = O(m1 log m2) time. To obtain I(A(v)) we apply IntClip(R>0). (Strictly speak-911

ing, in Theorem 14 we were assuming closed intervals, but this is not an important feature912

and we can maintain arbitrary intervals.) Note that in this computation we have destroyed913

the representation I(A′(v2)) of A′(v2), because of the IntClip operations, and therefore this914

step has to be made after the computation of B(v), which is also using the representation915

I(A′(v2)), but not changing it.916

Consider now the case when i(v) = i(v1) 6= i(v2). We proceed as follows.917

1. First we compute the representation I(B(v)) of B(v). Because of Lemma 12 we have918

B(v) = χ(v)∪ (B′(v1)∩C ′(v2)). Note that, for each y ∈ R, we have y ∈ C ′(v2) if and only if919

the interval [y−λ(vv2), y+λ(vv2)] contains some element of B(v2). Recall that we have an920

explicit description y1, . . . , yt of B′(v1). Therefore, for each element y ∈ B′(v1), we use the921

operation IntHitBy([y−λ(vv2), y +λ(vv2)]) in I(B(v2)) to detect whether y ∈ C ′(v2). With922

this we computed B′(v1)∩C ′(v2) explicitly in O(m1 log m2) time and we did not change the923

representation I(B(v2)). Finally, we build the data structure for the representation I(B(v))924

of B(v) by inserting the intervals [y, y] with y ∈ B′(v1)∩ C ′(v2) and, if χ(v) is nonempty,925

we also insert [0, 0] in the data structure.926

25

2. Next we compute the representation I(A(v)) of A(v). Because of Lemma 11 we have927

A(v) = R>0 ∩ A′(v1) ∩ C ′(v2). Note that we cannot compute C ′(v2) explicitly, since that928

would take Θ(m2) time. Recall that we have an explicit minimal representation J1, . . . , Js of929

A′(v1). For each interval Ji = [x i , yi] in the minimal representation of A′(v1), we use the930

operation IntClip([x i −λ(vv2), yi +λ(vv2)]) in the representation I(B′(v2)). Note that the931

intervals [x i − λ(vv2), yi + λ(vv2)] over J1, . . . , Js may be intersecting, and therefore for932

index i we are actually obtaining the representation of933

B′(v2)∩

�

[x i −λ(vv2), yi +λ(vv2)] \
⋃

j<i

[x j −λ(vv2), y j +λ(vv2)]

�

.934

Nevertheless, using IntJoin over the representations reported we obtain the representation935

of the set (of zero-length intervals)936

X := B′(v2)∩
⋃

i∈[s]
[x i −λ(vv2), yi +λ(vv2)].937

We then have938

A′(v1)∩ C ′(v2) =
⋃

x∈X
[x −λ(vv2), x +λ(vv2)],939

which means that we obtain a representation of A′(v1)∩C ′(v2) from the representation of X940

using the operation IntExtend(λ(vv2)). To obtain I(A(v)) we apply IntClip(R>0). Since we941

are making O(m1) operations, we spend O(m1 log m2) time. Note that in this computation942

we have destroyed the representation of I(B′(v2)), and thus this step has to be made after943

the computation of I(B(v)), which is also using I(B′(v2)) (or the equivalent representation944

I(B(v2)).945

Consider now the case when i(v) = i(v2) 6= i(v1). We proceed as follows.946

1. First we compute the representation I(B(v)) of B(v). Because of Lemma 12 we have947

B(v) = χ(v)∪(B′(v2)∩C ′(v1)). We compute explicitly the minimal representation of C ′(v1).948

Then, for each interval I in that representation we query for the elements I ∩ B′(v2) using949

IntClip(I) in I(B′(v2)) and join the answers using IntJoin over all intervals I . This takes950

O(m1 log m2) time and changes the data structure of the representation I(B′(v2)). Finally, if951

χ(v) is nonempty, we also insert [0,0] in the result. The total time is O(m1 log m2).952

2. Next we compute the representation I(A(v)) of A(v). Because of Lemma 11 we have953

A(v) = R>0 ∩ A′(v2)∩ C ′(v1). Again, we compute explicitly the minimal representation of954

C ′(v1). For each interval I in the minimal representation of C ′(v1) we use the operation955

IntClip(I) in I(A′(v2)) to obtain a representation of I ∩ A′(v2), and then use IntJoin to join956

all the answers. With this we obtain a representation of A′(v2)∩ C ′(v1), to which we apply957

IntClip(R>0). This procedure takes O(m1 log m2) time and changes the representation of958

I(A′(v2)).959

Consider now the remaining case, when i(v) 6= i(v1) and i(v) 6= i(v2). We proceed as follows.960

1. The computation of B(v) is trivial, since B(v) = χ(v) by Lemma 12.961

2. The computation of the representation of A(v) = C ′(v1)∩ C ′(v2) is similar to the case when962

i(v) = i(v1) 6= i(v2). We compute explicitly the minimal representation of C ′(v1), and use it963

as it was done there (for I(A′(v1))). This takes O(m1 log m2) time.964

In each case we spent O(m1 log m2) time, and the time bound follows. For the upper bound on965

the representation I(A(v)) of A(v), we note that each left endpoint of each interval in I(A(v)) gives966

rise to at most one interval in the representation of A(v). The four terms correspond to the four967

possible cases we considered for the indices i(v), i(v1) and i(v2).968

26

Lemma 17. The problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES for an input (T,U)969

where T is an n-vertex tree of maximum degree 3 and the candidate Voronoi cells are pairwise disjoint,970

can be solved in O(n log2 n) time.971

Proof. We root T at a leaf so that each node has at most two descendants. For each vertex v972

of T , we compute a representation I(A(v)) and I(B(v)) of the sets A(v) and B(v), respectively.973

The computation is bottom-up: we compute I(A(v)) and I(B(v)) when this has been computed974

for all the children of v. If v has two children, we use Lemma 16. If v has one child, then the975

computation can be done in O(log mA(v) + log mB(v)) time in a straightforward manner. When976

we arrive to the root r, we just have to check whether B(r) is nonempty.977

We can see by induction that, for each vertex v of T , mA(v)≤ n(v). (We already mentioned978

earlier that B(v) has at most n(v) values, one per vertex of T(v).) This is clear for the leaves979

because A(·) has only one interval. For the internal nodes v that have one child u it follows because980

the representation I(A(v)) of A(v) is obtained from the representation of I(A(u)) by a shift. For981

the internal nodes v with two children v1 and v2, the bound on mA(v) follows by induction from982

the bound in Lemma 16. In particular, we have O(log mA(v)+ log mB(v)) = O(log n) at each node983

v of T .984

For each vertex with one child we spend O(log n) time. For each vertex v with two children v1985

and v2 we spend O(min{n(v1), n(v2)} log n) time. Thus, if V1 and V2 denote the vertices with one986

and two children, respectively, we spend987

O(n) +
∑

v∈V1

O(log n)+
∑

v∈V2

O(min{n(v1), n(v2)} log n)988

= O(n log n) + O(log n)
∑

v∈V2

O(min{n(v1), n(v2)})989

990

time. Using Lemma 15, this time is O(n log2 n).991

Standard (but non-trivial) adaptations can be used to recover an actual solution. One option992

is to use persistent data structures for the search trees that store families I of monotonic intervals.993

A persistent data structure allows to make queries to any version of the tree in the past. Thus, it994

stores implicitly copies of the trees that existed at any time. Sarnak and Tarjan [4] explain how to995

make red-black tree persistent (and how the Join and Split operations can also be done). Since996

we have access to the past versions of the tree, we can recover how the solution was obtained.997

Each operation in the past takes O(log m) time, where m is the sum of operations that were998

performed. In our case this is O(log(n log2 n)) = O(log n) time per operation/query in the tree,999

and the running time is not modified. Another, conceptually simpler option is to store through1000

the algorithm information on how to undo each operation. Then, at the end of the algorithm, we1001

can run the whole algorithm backwards and recover the solutions.1002

Theorem 18. The problem GENERALIZED GRAPHIC INVERSE VORONOI IN TREES for instances1003

I = (T, ((U1, S1), . . . , (Uk, Sk))) can be solved in time O(N + n log2 n), where T is a tree with n1004

vertices and N = |V (T)|+
∑

i(|Ui|+ |Si|).1005

Proof. Because of Theorem 10, we can transform in O(N) time the instance I to another instance1006

I ′ = (T ′, ((U ′1, S′1), . . . , (U ′k, S′k))), where T ′ has maximum degree 3, the sets U ′1, . . . , U ′k are pairwise1007

disjoint, and T ′ has O(n) vertices. We can compute a solution to instance I ′ in O(n log2 n) time1008

using Lemma 17. Then, we have to check whether this solution is actually a solution for I . For1009

this we use Lemma 3.1010

Corollary 19. The problem GRAPHIC INVERSE VORONOI IN TREES for instances I = (T, (U1, . . . , Uk)),1011

can be solved in time O(N + n log2 n), where T is a tree with n vertices and N = |V (T)|+
∑

i |Ui|.1012

27

x1

x2

x3

xn

y1 + 1

y2 + 1

y3 + 1

yn + 1

1 2

U2 U1

Figure 11: Construction to show the lower bound in Theorem 20.

5 Lower bound for trees1013

We can show the following lower bound on any algorithm based on algebraic operations on the1014

lengths of the edges.1015

Theorem 20. In the algebraic computation tree model, solving GRAPHIC INVERSE VORONOI IN TREES1016

with n vertices takes Ω(n log n) operations, even when the lengths are integers.1017

Proof. Consider an instance X , Y for the decision problem SET INTERSECTION, where X =1018

{x1, . . . , xn} and Y = {y1, . . . , yn} are sets of integers. The task is to decide whether X ∩ Y1019

is nonempty. This problem has a lower bound of Ω(n log n) in the algebraic computation tree1020

model [7]. (In particular, this implies the same lower bound for the bounded-degree algebraic1021

decision tree model.) Adding a common value to all the numbers, we may assume that X and Y1022

contain only positive integers.1023

We construct an instance to the GRAPHIC INVERSE VORONOI IN TREES problem, as follows. See1024

Figure 11. We construct a star SX with n+1 leaves. The edges of SX have lengths x1, . . . , xn, 2. We1025

construct also a star SY with n+ 1 leaves whose edges have lengths y1 + 1, . . . , yn + 1, 1. Finally,1026

we identify the leaf of SX incident to the edge of length 2 and the leaf of SY incident to the edge1027

of length 1. Let T be the resulting tree. We take the sets U1 and U2 to be the vertex sets of SX1028

and SY , respectively. Note that T has 2n+ 3 vertices. The reduction makes O(n) operations.1029

Since placing the sites on the center of the stars does not produce a solution, it is straightfor-1030

ward to see that the answers to SET INTERSECTION(X , Y) and to GRAPHIC INVERSE VORONOI IN1031

TREES(T, (U1, U2)) are the same. Thus, solving GRAPHIC INVERSE VORONOI IN TREES(T, (U1, U2))1032

in o(n log n) time would provide a solution to SET INTERSECTION(X , Y) in o(n log n) time, and1033

contradict the lower bound.1034

The lower bound also extends to the problem GENERALIZED GRAPHIC INVERSE VORONOI IN1035

TREES with disjoint regions because we can apply the transformation to make the cells disjoint.1036

6 Conclusions1037

We have provided an algorithm for the inverse Voronoi problem in trees and a lower bound in a1038

standard computation model. Since the upper bound of our algorithm and the lower bound differ,1039

the main open question is closing this gap. Considering trees with unit edge lengths may also be1040

interesting. Our lower bound does not apply for such instances.1041

28

Acknowledgments1042

We are very grateful to the anonymous reviewers for pointing out an error in the previous version1043

of Section 3.2 and several other useful corrections.1044

Part of this work was done at the 21st Korean Workshop on Computational Geometry, held in1045

Rogla, Slovenia, in June 2018. We thank all workshop participants for their helpful comments.1046

References1047

[1] É. Bonnet, S. Cabello, B. Mohar, and H. Pérez-Rosés. The inverse Voronoi problem in graphs I:1048

hardness, 2018. Manuscript. Its content is included in http://arxiv.org/abs/1811.12547.1049

[2] P. Brass. Advanced Data Structures. Cambridge University Press, 2008, https://doi.org/10.1050

1017/CBO9780511800191.1051

[3] S. Chaudhuri and C. D. Zaroliagis. Shortest paths in digraphs of small treewidth. part1052

I: sequential algorithms. Algorithmica 27(3):212–226, 2000, https://doi.org/10.1007/1053

s004530010016.1054

[4] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun.1055

ACM 29(7):669–679, 1986, https://doi.org/10.1145/6138.6151.1056

[5] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM 32(3):652–686,1057

1985, http://doi.acm.org/10.1145/3828.3835.1058

[6] R. E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex1059

algorithm. Math. Program. 77:169–177, 1997, https://doi.org/10.1007/BF02614369.1060

[7] A. C. Yao. Lower bounds for algebraic computation trees with integer inputs. SIAM J. Comput.1061

20(4):655–668, 1991, https://doi.org/10.1137/0220041.1062

29

http://arxiv.org/abs/1811.12547
https://doi.org/10.1017/CBO9780511800191
https://doi.org/10.1017/CBO9780511800191
https://doi.org/10.1017/CBO9780511800191
https://doi.org/10.1007/s004530010016
https://doi.org/10.1007/s004530010016
https://doi.org/10.1007/s004530010016
https://doi.org/10.1145/6138.6151
http://doi.acm.org/10.1145/3828.3835
https://doi.org/10.1007/BF02614369
https://doi.org/10.1137/0220041

	Introduction
	Basics
	Arbitrary trees – Transforming to nicer instances
	Transforming to disjoint cells
	Transforming to maximum degree 3
	Algorithm to transform

	Algorithm for subcubic trees with disjoint Voronoi cells
	Characterization
	Efficient manipulation of monotonic intervals
	Algorithm

	Lower bound for trees
	Conclusions

