
On Subexponential and FPT-time
Inapproximability?

Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos??

PSL Research University, Université Paris-Dauphine, LAMSADE, CNRS UMR 7243
{escoffier,eun-jung.kim,paschos}@lamsade.dauphine.fr

Abstract. Fixed-parameter algorithms, approximation algorithms and
moderately exponential algorithms are three major approaches to algo-
rithms design. While each of them being very active in its own, there is
an increasing attention to the connection between these different frame-
works. In particular, whether Independent Set would be better approx-
imable once endowed with subexponential-time or FPT-time is a central
question. In this article, we provide new insights to this question using
two complementary approaches; the former makes a strong link between
the linear PCP conjecture and inapproximability; the latter builds a class
of equivalent problems under approximation in subexponential time.

1 Introduction

Fixed-parameter algorithms, approximation algorithms and moderately expo-
nential/subexponential algorithms are major approaches for efficiently solving
NP-hard problems. These three areas, each of them being very active in its own,
have been considered as foreign to each other until recently. Polynomial-time
approximation algorithm produces a solution whose quality is guaranteed to lie
within a certain range from the optimum. One illustrative problem indicating
the development of this area is Independent Set. The approximability of In-
dependent Set within constant ratios has remained as the most important
open problems for a long time in the field. It was only after the novel char-
acterization of the NP by PCP theorem [1] that such inapproximability was
proven assuming P 6= NP. Subsequent improvements of the original PCP the-
orem led to much stronger result for Independent Set: it is inapproximable
within ratios Ω(nε−1) for any ε > 0, unless P = NP [2].

The design of moderately exponential (subexponential, respectively) algo-
rithms allows exponential (subexponential, respectively) running time for the
sake of optimality. In this case, the endeavor lies in making the growth of the
running time function as slow as possible. Parameterized complexity provides
an alternative framework to analyze the running time in a more refined way [3].
Given an instance with a parameter k, the aim is to get an O(f(k) ·nc)-time (or
? Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010

?? Also, Institut Universitaire de France

1

equivalently, FPT-time) algorithm for some constant c, where the constant c is
independent of k. As these two research programs offer a generous running time
when compared to that of classic approximation algorithms, a growing amount
of attention is paid to them as a way to cope with hardness in approximability.
The first one yields moderately exponential approximation. In moderately expo-
nential approximation, the core question is whether a problem is approximable
in moderately exponential time while such approximation is impossible in poly-
nomial time. Suppose a problem is solvable in time O∗(γn), but it is NP-hard
to approximate within ratio r. Then, we seek for r-approximation algorithms of
running time significantly faster than O∗(γn). This issue has been considered for
several problems [4–6, 12, 16].

The second research program handles approximation by fixed parameter al-
gorithms. We say that a minimization (maximization, respecitvely) problem Π,
together with a parameter k, is parameterized r-approximable if there exists an
FPT-time algorithm which computes a solution of size at most (at least, re-
spectively) rk whenever the input instance has a solution of size at most (at
least, respectively) k. This line of research was initiated by three independent
works [14, 8, 10]. For an excellent overview, see [21]. In what follows, parameter-
ization means “standard parameterization”, i.e., where problems are parameter-
ized by the cost of the optimal solution.

Several natural questions can be asked dealing with these two programs. In
particular, the following ones have been asked several times [21, 14, 16, 6].
Q1: can a problem, which is highly inapproximable in polynomial time, be well-
approximated in subexponential time?
Q2: does a problem, which is highly inapproximable in polynomial time, become
well-approximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results
can be directly obtained by gap-reductions for certain problems. For instance,
Coloring is not approximable within ratio 4/3 − ε since this would allow to
determine whether a graph is 3-colorable or not in subexponential time. This
contradicts a widely-acknowledge computational assumption [18]:

Exponential Time Hypothesis (ETH): There exists an ε > 0 such that no
algorithm solves 3Sat in time 2εn, where n is the number of variables.

Regarding Q2, [14] shows that assuming FPT 6= W[2], for any r the Indepen-
dent Dominating Set problem is not r-approximable1 in FPT-time.

Among interesting problems for which Q1 and Q2 are worth being asked are
Independent Set, Coloring and Dominating Set. They fit in the frame of
both Q1 and Q2 above: they are hard to approximate in polynomial time while
their approximability in subexponential or in parameterized time is still open.

In this paper, we study parameterized and subexponential (in)approximabi-
lity of natural optimization problems. In particular, we follow two guidelines:
(i) getting inapproximability results under some conjecture and (ii) establishing
1 Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for
any function g.

2

classes of uniformly inapproximable problems under approximability preserving
reductions.

Following the first direction, we establish a link between a major conjecture
in PCP theorem and inapproximability in subexponential-time and in FPT-time,
assuming ETH. Just below, we state this conjecture while the definition of PCP
is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP1,β [log |φ|+D,E] for some
β ∈ (0, 1), where |φ| is the size of the 3Sat instance (sum of lengths of
clauses), D and E are constant.

Unlike ETH which is conjectured to be true, LPC is a wide open question. In
Lemma 1 stated in Section 2, we claim that if LPC turns out to hold, it implies
that one of the most interesting questions in subexponential and parameterized
approximation is answered in the negative. In particular, the following hold for
Independent Set on n vertices, for any constant 0 < r < 1 assuming ETH:
(i) There is no r-approximation algorithm in time O(2n

1−δ
) for any δ > 0.

(ii) There is no r-approximation algorithm in time O(2o(n)), if LPC holds.
(iii) There is no r-approximation algorithm in time O(f(k)nO(1)), if LPC holds.

Let us note that (i) is not conditional upon LPC. In fact, this is an immediate
consequence of near-linear PCP construction achieved in [13]. Note that similar
inapproximability results under ETH for Max-3Sat and Max-3Lin for some
subexponential running time have been obtained in [23].

Following the second direction, we show that a number of problems are equiv-
alent with respect to approximability in subexponential time. Designing a fam-
ily of equivalent problems is a common way to provide an evidence in favor of
hardness of these problems. One prominent example is the family of problems
complete under SERF-reducibility [18] which leads to equivalent formulations
of ETH. More precisely, for a given problem Π, let us formulate the following
hypothesis, which can be seen as the approximate counterpart of ETH.

Hypothesis 1 (APETH(Π)) There exist two constants ε > 0 and r (r <
1 if Π is a maximization problem, r > 1, otherwise), such that Π is not r-
approximable in time O(2εn).

We prove that several well-known problems are equivalent with respect to the
APETH (APETH-equivalent), in the sense that verification or not of the AP-
ETH by one of them, implies the same fact for the other ones. To this end, a
notion called the approximation preserving sparsification is proposed. A recipe to
prove that two problems A and B are APETH-equivalent consists of two steps.
The first is to reduce an instance of A into a family of instances in "bounded"
version (bounded degree for graph problems, bounded occurrence for satisfiabil-
ity problems), which are equivalent with respect to approximability. This step
is where the proposed notion comes into play. The second is to use standard
approximability preserving reductions to derive equivalences between bounded
versions of A and B. In this paper, we consider L-reductions [24] for this pur-
pose. Furthermore, we show that if APETH fails for one of these problems,

3

then any problem in MaxSNP would be approximable for any constant ratio in
subexponential FPT-time 2o(k). This result can be viewed as an extension of [9],
which states that none of MaxSNP hard problems allows 2o(k)-time algorithm
under ETH. Also, it could be considered as an evidence toward the validity of
APETH

Some preliminaries and notation are given in Section 2. Results derived from
PCP and LPC are given in Section 3. The second direction on equivalences
between problems is described in Section 4.

2 Preliminaries and notation

We denote by PCPα,β [q, p] (see for instance [1] for more on PCP systems) the
set of problems for which there exists a PCP verifier which uses q random bits,
reads at most p bits in the proof and is such that: (1) if the instance is positive,
then there exists a proof such that V(erifier) accepts with probability at least α;
(2) if the instance is negative, then for any proof V accepts with probability at
most β. The following theorem is proved in [13] (see also Theorem 7 in [23]),
presenting a further refinement of the characterization of NP.

Theorem 1. [13] For every ε > 0,

3Sat ∈ PCP1,ε[(1 + o(1)) log n+O(log(1/ε)), O(log(1/ε))]

A recent improvement [23] of Theorem 1 (a PCP Theorem with two-query projec-
tion tests, sub-constant error and almost-linear size) has some important corol-
laries in polynomial approximation. In particular:

Corollary 1. [23] Under ETH, for every ε > 0, and δ > 0, it is impossible
to distinguish between instances of Max-3Sat with m clauses where at least
(1− ε)m are satisfiable from instances where at most (7/8 + ε)m are satisfiable,
in time O(2m

1−δ
).

Under LPC, a stronger version of this result follows from standard argument2.

Lemma 1. If LPC3 and ETH hold, then there exists r < 1 such that for every
ε > 0 it is impossible to distinguish between instances of Max-3Sat with m
clauses where at least (1 − ε)m are satisfiable from instances where at most
(r + ε)m are satisfiable, in time 2o(m).

This (conditional) hardness result of approximating Max-3Sat will be the basis
of the negative results of parameterized approximation in Section 3.1.

Let us now present two useful gap amplification results for Independent
Set. First, as noted in [15], the so-called self-improvement property [17] can be
proven for Independent Set also in the case of parameterized approximation.
2 All missing proofs can be found in appendix.
3 Note that LPC as expressed here implies validity of the lemma even with replacing
(1 − ε)m by m. However, we stick with this lighter statement (1 − ε)m in order, in
particular, to emphasize the fact that perfect completeness is not required in the
LPC conjecture.

4

Lemma 2. [15] If there exists a parameterized r-approximation algorithm for
some r ∈ (0, 1) for Independent Set, then this is true for any r ∈ (0, 1).

It is also well known that the very powerful tool of expander graphs allows to
derive the following gap amplification for Independent Set (see Appendix A).

Theorem 2. Let G be a graph on n vertices (for a sufficiently large n) and
a > b be two positive real numbers. Then for any real r > 0 one can build in
polynomial time a graph Gr and specify constants ar and br such that: (i) Gr
has N 6 Cn vertices, where C is some constant independent of G (but may
depend on r); (ii) if ω(G) 6 bn then ω(Gr) 6 brN ; (iii) if ω(G) > an then
ω(Gr) > arN ; (iv) br/ar 6 r.

Finally, we will use in the sequel the well known sparsification lemma [18]. Intu-
itively, this lemma allows to work with 3-SAT formula with linear lengths (the
sum of the lengths of clauses is linearly bounded in the number of variables).

Lemma 3. [18] For all ε > 0, a 3-SAT formula φ on n variables can be written
as the disjunction of at most 2εn 3-SAT formulæ φi on (at most) n variables
such that φi contains each variable in at most cε clauses for some constant cε.
Moreover, this reduction takes at most p(n)2εn time.

3 Some consequences of (almost-)linear size PCP system

3.1 Parameterized inapproximability bounds

It is shown in [11] that, under ETH, for any function f no algorithm running in
time f(k)no(k) can determine whether there exists an independent set of size k,
or not (in a graph with n vertices). A challenging question is to obtain a similar
result for approximation algorithms for Independent Set. In the sequel, we
propose a reduction from Max-3Sat to Independent Set that, based upon
the negative result of Corollary 1, only gives a negative result for some function f
(because Corollary 1 only avoids some subexponential running times). However,
this reduction gives the inapproximability result sought, if the consequence of
LPC given in Lemma 1 (which strengthens Corollary 1 and seems to be a much
weaker assumption than LPC) is used instead. We emphasize the fact that the
results in this section are valid as soon as a hardness result for Max-3Sat as
that in Lemma 1 holds.

The proof of the following theorem essentially combines the parameterized
reduction in [11] and a classic gap-preserving reduction.

Theorem 3. Under LPC and ETH, there exists r < 1 such that, no fixed
parameter approximation algorithm for Independent Set running in time
f(k)no(k) can achieve approximation ratio r in graphs of order n.

The following result follows from Lemma 2 and Theorem 3.

Corollary 2. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approxi-
mation parameterized algorithm for Independent Set (i.e., an algorithm that
runs in time f(k)p(n) for some function f and some polynomial p).

5

Let us now consider Dominating Set which is known to be W[2]-hard [3].
The existence of parameterized approximation algorithms for this problem is
open [14]. Here, we present an approximation preserving reduction (fitting the
parameterized framework) which, given a graph G(V,E) on n vertices where V
is a set of K cliques C1, · · · , CK , builds a graph G′(V ′, E′) such that G has an
independent set of size α if and only if G′ has a dominating set of size 2K − α.
Using the fact that the graphs produced in the proof of Theorem 3 are of this
form (vertex set partitioned into cliques), this reduction will allow us to obtain
a lower bound (based on the same hypothesis) for the approximation of min
dominating set from Theorem 3.

The graph G′ is built as follows. For each clique Ci in G, add a clique C ′i
of the same size in G′. Add also: an independent set Si of size 3K, each vertex
in Si being adjacent to all vertices in C ′i and a special vertex ti adjacent to all
the vertices in C ′i. For each edge e = (u, v) with u and v not in the same clique
in G, add an independent set We of size 3K. Suppose that u ∈ Ci and v ∈ Cj .
Then, each vertex in We is linked to ti and to all vertices in C ′i but u, and tj
and all vertices in C ′j but v.

Informally, the reduction works as follows. The set Si ensures that we have
to take at least one vertex in each C ′i, the fact that |We| = 3K ensures that it
is never interesting to take a vertex in We. If we take ti in a dominating set,
this will mean that we do not take any vertex in the set Ci in the corresponding
independent set in G. If we take one vertex in C ′i (but not ti), this vertex will be
in the independent set in G. Let us state this property in the following lemma.

Lemma 4. G has an independent set of size α if and only if G′ has a dominating
set of size 2K − α.

Theorem 4. Under LPC and ETH, there exists an r > 1 such that there is
no r-approximation algorithm for Dominating Set running in time f(k)no(k)
where n is the order of the graph.

Such a lower bound immediately transfers to Set Cover since a graph on n ver-
tices for Dominating Set can be easily transformed into an equivalent instance
of Set Cover with ground set and set system both of size n.

Corollary 3. Under LPC and ETH, there exists r > 1 such that there is no r-
approximation algorithm for Set Cover running in time f(k)mo(k) in instances
with m sets.

3.2 On the approximability of Independent Set and related
problems in subexponential time

As mentioned in Section 2, an almost-linear size PCP construction [23] for 3Sat
allows to get the negative result stated in Corollary 1. In this section, we present
further consequences of Theorem 1, based upon a combination of known reduc-
tions with (almost) linear size amplifications of the instance.

6

First, Theorem 1 combined with the reduction in [1] showing inapproximabil-
ity results for Independent Set in polynomial time and the gap amplification
of Theorem 2, leads to the following result.

Theorem 5. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set running in time O(2n

1−δ
), whe-

re n is the order of the input graph.

Since (for k 6 n), nk
1−δ

= O(2n
1−δ′

), for some δ′ < δ, the following holds.

Corollary 4. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for Independent Set (parameterized by k) running
in time O(nk

1−δ
), where n is the order of the input graph.

The results of Theorem 5 and Corollary 4 can be immediately extended to prob-
lems that are linked to Independent Set by approximability preserving reduc-
tions (that preserve at least constant ratios) that have linear amplifications of
the sizes of the instances, as in the following proposition.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-
approximation algorithm for either Set Packing or Bipartite Subgraph
running in time O(2n

1−δ
) in a graph of order n.

Dealing with minimization problems, Theorem 5 and Corollary 4 can be extended
to Coloring, using the reduction given in [20]. Note that this reduction uses
the particular structure of graphs produced in the inapproximability result in [1]
(as in Theorem 5). Hence, the following result can be derived.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-
approximation algorithm for Coloring running in time O(2n

1−δ
) in a graph of

order n.

Concerning the approximability of Vertex Cover and Min-Sat in subexpo-
nential time, the following holds.

Proposition 3. Under ETH, for any ε > 0 and any δ > 0, there is no (7/6−
ε)-approximation algorithm for Vertex Cover running in time O(2n

1−δ
) in

graphs of order n, nor for Min-Sat running in time 2m
1−δ

in CNF formulæ
with m clauses.

All the results given in this section are valid under ETH and rule out some ratios
in subexponential time of the form 2n

1−δ
. It is worth noticing that if LPC holds,

then all these results would hold for any subexponential time. Note that this is in
some sense optimal since it is easy to see that, for any increasing and unbounded
function r(n), Independent Set is approximable within ratio 1/r(n) in subex-
ponential time (simply consider all the subsets of V of size at most n/r(n) and
return the largest independent set among these sets).

Corollary 5. If LPC holds, under ETH the negative results of Theorem 5 and
Propositions 1, 2 and 3 hold for any time complexity 2o(n).

7

4 Subexponential approximation preserving reducibility

In this section, we study subexponential approximation preserving reducibility.
Recall that APETH(Π) (Hypothesis 1) states that it is hard to approximate in
subexponential time problem Π, within some constant ratio r. We exhibit that
a set of problems are APETH-equivalent using the notion of approximation
preserving sparsification. We then link APETH with approximation in subexpo-
nential FPT-time.

4.1 Approximation preserving sparsification and APETH
equivalences

Recall that the sparsification lemma for 3Sat reduces a formula φ to a set
of formulae φi with bounded occurrences of variables such that solving the in-
stances φi would allow to solve φ. We attempt to build an analogous construction
for subexponential approximation using the notion of approximation preserving
sparsification. Given an optimization problem Π and some parameter of the in-
stance, Π-B denotes the problem restricted to instances where the parameter is
at most B. In what follows, we prescribe the maximum degree of a graph or the
maximum number of literal occurrences as the parameter. Then Π-B would be
the problems restricted to instances with the parameter bounded by B.

Definition 1. An approximation preserving sparsification from a problem Π to
a bounded parameter version Π-B of Π is a pair (f, g) of functions such that,
given any ε > 0 and any instance I of Π:

1. f maps I into a set f(I, ε) = (I1, I2, . . . , It) of instances of Π, where t 6 2εn

and ni = |Ii| 6 n; moreover, there exists a constant Bε (independent on I)
such that any Ii has parameter at most Bε;

2. for any i 6 t, g maps a solution Si of an instance Ii (in f(I, ε)) into a
solution S of I;

3. there exists an index i 6 t such that if a solution Si is an r-approximation
in Ii, then S = g(I, ε, Ii, Si) is an r-approximation in I;

4. f is computable in time O∗(2εn), and g is polynomial with respect to |I|.

With a slight abuse of notation, let us APETH(Π-B) denote the hypothesis:
∃B such that APETH(Π-B), meaning that Π is hard to approximate in subex-
ponential time even for some bounded parameter family of instances. Then the
following holds4.

Theorem 6. If there exists an approximation preserving sparsification from Π
to Π-B, then APETH(Π) if and only if APETH(Π-B).
4 Note that we could consider a more general definition, leading to the same theorem,
by allowing (1) a slight amplification of the size of Ii (ni 6 αn for some fixed α in
item 1), (2) an expansion of the ratio in item 3 (if Si is r-approximate S is h(r)
approximate where h(r) goes to one when r goes to one) and (3) a computation
time O∗(2εn) for g in item 4. But the simpler version of Definition 1 is sufficient to
to guarantee validity of or results.

8

We now illustrate this technique on some problems. It is worth noticing that
the sparsification lemma for 3Sat in [18] is not approximation preserving5; one
cannot use it to argue that approximating Max-3Sat (in subexponential time)
is equivalent to approximating Max-3Sat with bounded occurrences.

Proposition 4. There exists an approximation preserving sparsification from
Independent Set to Independent Set-B and one from Vertex Cover to
Vertex Cover-B.

Proof. Let ε > 0. It is well known that the positive root of 1 = x−1 + x−1−B

goes to one when B goes to infinity. Then, consider a Bε such that this root is
at most 2ε. Our sparsification is obtained via a branching tree: the leaves of this
tree will be the set of instances Ii; f consists of building this tree; a solution of
an instance in the leaf corresponds, via the branching path leading to this leaf,
to a solution of the root instance, and that is what g makes.

More precisely, for Independent Set, consider the following usual branch-
ing tree, starting from the initial graph G: as long as the maximum degree is at
least Bε, consider a vertex v of degree at least Bε, and branch on it: either take v
in the independent set (and remove N [v]), or do not take it. The branching stops
when the maximum degree of the graph induced by the unfixed vertices is at
most Bε−1. When branching, at least Bε+1 vertices are removed when taking v,
and one when not taking v; thus the number of leaves is t 6 2ε (by the choice
of Bε). Then, f and g satisfy items 1 and 2 of the definition. For item 3, it is
sufficient to note that g maps Si in S by adding adequate vertices. Then, if we
consider the path in the tree corresponding to an optimal solution S∗, leading
to a particular leaf Gi, we have that |S∗| = |S∗ ∩ Gi| + k for some k > 0, and
the solution S computed by g is of size |S| = |Si| + k. So, |S||S∗| >

|Si|
|S∗∩Gi| > r

if Si is an r-approximation for Gi. The same argument holds also for Vertex
Cover. ut

Analogous arguments apply more generally to any problem where we have
a “sufficiently good” branching rule when the parameter is large. Indeed, sup-
pose we can ensure the decrease in instance size by g(B) for nondecreasing and
unbounded function g in all (possibly except for one) branches. Then such a
branching rule can be utilized to yield an approximation preserving sparsifica-
tion as in Proposition 4.

We give another approximation preserving sparsification, where there is no
direct branching rule allowing to remove a sufficiently large number of vertices.
Let Generalized Dominating Set be defined as follows: given a graph G =
(V,E) where V is partitioned into V1, V2, V3, we ask for a minimum size set of
vertices V ′ ⊆ V1 ∪ V2 which dominates all vertices in V2 ∪ V3. Of course, the
case V2 = V corresponds to the usual Dominating Set problem. Note that
Generalized Dominating Set is also a generalization of Set Cover, with
V2 = ∅, V3 being the ground set and V1 being the set system.
5 One of the reasons is that when a clause C is contained in a clause C′, a reduction rule
removes C′, that is safe for the satisfiability of the formula, but not when considering
approximation.

9

Proposition 5. There exists an approximation preserving sparsification from
Generalized Dominating Set to Generalized Dominating Set-B.

Combining Proposition 5 with some reductions, the following can be shown.

Lemma 5. APETH(Dominating Set) implies APETH(Independent Set-
B).

Note that similarly, APETH(Set Cover) implies APETH(Independent Set-
B), when the complexity of Set Cover is measured by n+m. Then, we have
the following set of equivalent problems.

Theorem 7. Set Cover, Independent Set, Independent Set-B, Ver-
tex Cover, Vertex Cover-B, Dominating Set, Dominating Set-B, Max
Cut-B, 3Sat-B, Max-kSat-B (for any k > 2) are APETH-equivalent.

Proof. The equivalences between Vertex Cover-B, Independent Set-B,
Max Cut-B, 3Sat-B, Max-2Sat-B, Dominating Set-B follow immediately
from [24]. Indeed, for these problems [24] provides L-reductions with linear
size amplification. The equivalence between Max-kSat-B problems is also well
known (just replace a clause of size k by k − 1 clauses of size 3).

The equivalence between Independent Set and Independent Set-B,
Vertex Cover and Vertex Cover-B follows from Proposition 4. Finally,
Lemma 5 allows us to conclude for Dominating Set.

4.2 APETH and parameterized approximation

The equivalence drawn in Theorem 7 gives a first intuition that the corresponding
problems should be hard to approximate in subexponential time for some ratio.
In this section we show another argument towards this hypothesis: if it fails, then
any MaxSNP problem admits for any r < 1 a parameterized r-approximation
algorithm in subexponential time 2o(k), which would be quite surprising. The
following theorem can be construed as an extension of [9].

Theorem 8. The following statements are equivalent:

(i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 7;
(ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a constant

ε > 0 such that there is no parameterized r-approximation algorithm for Π
with running time O(2εkpoly(|I|));

(iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an
ε > 0 such that there is no parameterized r-approximation algorithm for Π
with running time O(2εkpoly(|I|)).

As an interesting complement of the above theorem, we show that trade-offs
between (exponential) running time and approximation ratio do exist for any
MaxSNP problem. In [7], it is shown that every MaxSNP problem Π is fixed-
parameter tractable in time 2O(k) for the standard parameterization, while in [24]
it is shown that Π is approximable in polynomial time within a constant ratio

10

ρΠ . We prove here that there exists a family of parameterized approximation
algorithms achieving ratio ρΠ + ε, for any ε > 0, and running in time 2O(εk).
This is obtained as a consequence of a result in [19].

Proposition 6. Let Π be a standard parameterization of a MaxSNP-complete
problem. For any ε > 0, there exists a parameterized (ρΠ + ε)-approximation
algorithm for Π running in time γεk · poly(|I|) for some constant γ.

5 Conclusion

More interesting questions remain untouched in the junction of approximation
and (sub)exponential-time/FPT-time computations. This paper is only a first
step in this direction and we wish to motivate further research. Among a range
of problems to be tackled, we propose the followings.

– Our inapproximability results are conditional upon Linear PCP Conjecture.
Is it possible to relax the condition to a more plausible one?

– Or, we dare ask whether (certain) inapproximability results in FPT-time
imply strong improvement in PCP theorem. For example, would the converse
of Lemma 1 hold?

– Can we design approximation preserving sparsifications for problems like
Max Cut or Max-3Sat? It seems to be difficult to design a sparsifier based
on branching rules, so a novel idea is needed.

Note that we have considered in this article constant approximation ratios. As
noted earlier, ratio 1/r(n) is achievable in subexponential time for any increasing
and unbounded function r. However, dealing with parameterized approximation
algorithms, achieving a non-constant ratio is also an open question. More pre-
cisely, finding in FPT-time an independent set of size g(k) when there exists
an independent set of size k is not known for any unbounded and increasing
function g.

Finally, let us note that, in the same vein of the first part of our work, Math-
ieson [22] recently studied a proof checking view of parameterized complexity.
Possible links between these two approaches are worth being investigated in
future works.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
intractability of approximation problems. J. ACM 45 (1998) 501–555

2. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proc. STOC’06. (2006) 681–690

3. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39 (2009) 546–563

11

5. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of min col-
oring by moderately exponential algorithms. Inform. Process. Lett. 109 (2009)
950–954

6. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent
set, min vertex cover and related problems by moderately exponential algo-
rithms. Discrete Appl. Math. 159 (2011) 1954–1970

7. Cai, L., Chen, J.: On fixed-parameter tractability and approximability of np opti-
mization problems. J. Comput. System Sci. 54 (1997) 465–474

8. Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and
approximability results. In Proc. IWPEC’06. LNCS 4169, 96–108

9. L. Cai and D. W. Juedes. On the existence of subexponential parameterized algo-
rithms. J. Comput. Syst. Sci., 67(4): 789-807, 2003.

10. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In Proc.
IWPEC’06. LNCS 4169, 109–120

11. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. J. Comput. System Sci. 72 (2006) 1346–1367

12. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411 (2010) 3701–3713

13. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54 (2007)
14. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation prob-

lems. In Proc. IWPEC’06. LNCS 4169, 121–129
15. Escoffier, B., Paschos, V.T., Tourniaire, E.: Moderately exponential and parame-

terized approximation: some structural results. (Unpublished manuscript)
16. Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An exponential time 2-approxima-

tion algorithm for bandwidth. In Proc. IWPEC’09, LNCS 5917, 173–184
17. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory

of NP-completeness. W. H. Freeman, San Francisco (1979)
18. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? J. Comput. System Sci. 63 (2001) 512–530
19. Kim, E.J., Williams, R.: Improved parameterized algorithms for above average

constraint satisfaction. In Proc. IPEC’11. LNCS 7112, 118–131
20. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-

lems. J. Assoc. Comput. Mach. 41 (1994) 960–981
21. Marx, D.: Parameterized complexity and approximation algorithms. The Com-

puter Journal 51 (2008) 60–78
22. Mathieson, L.: A proof checking view of parameterized complexity. CoRR abs/

1206.2436 (2012)
23. Moshkovitz, D., Raz, R.: Two query pcp with sub-constant error. In: Proc.

FOCS’08. (2008) 314–323
24. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complex-

ity classes. J. Comput. System Sci. 43 (1991) 425–440
25. Vazirani, V.: Approximation algorithms. Springer, Berlin (2001)

12

A Gap amplification

Let us first recall the definition of an expander graph.

Definition 2. A graph G is a (n, d, α)-expander graph if (i) G has n vertices,
(ii) G is d-regular, (iii) all the eigenvalues λ of G but the largest one is such
that |λ| 6 αd.

Fact 1. For any k ∈ N∗ and any α > 0 there exists d and a (k2, d, α)-expander
graph. Moreover, d depends only on α, and this graph can be computed in poly-
nomial time for every fixed α.

This fact follows from the following lemmata.

Lemma 6. (O. Gabber and Z. Galil, Explicit constructions of linear-sized su-
perconcentrators, J. Comput. System Sci., 22(3):407–420, 1981, or Th. 8.1 in
S. Hoory, N. Linial and A. Widgerson, Expander graphs and their applications,
Bulletin of the AMS. 43 (4), 439–561, 2006)
For every positive integer k, there exists a (k2, 8, 5

√
2/8)-expander graph, com-

putable in polynomial time.

If G is a graph with adjacency matrix M , let us denote Gk the graph with
adjacency matrix Mk.

Lemma 7. (Fact 1.2 in O. Reingold, S. P. Vadhan and A. Wigderson, En-
tropy waves, the zig-zag graph product, and new constant-degree expanders and
extractors, Electronic Colloquium on Computational Complexity (ECCC) 8(18):
(2001))
If G is a (n, d, α)-expander graph, then Gk is a (n, dk, αk)-expander graph.

Proof. Gk is obviously dk regular, and the eigenvalues of Gk are the eigenvalues
of G to the power of k.
Proof of Fact 1. Take α > 0 and let p be the smallest integer such that (5

√
2/8)p 6

α. Graph Gp is as required. The proof of Fact 1 is complete.

Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t
be a positive integer. We build the graph G′t on N = ndt−1 vertices: each vertex
corresponds to a (t − 1)-random walk x = (x1, · · · , xt) on H (meaning that x1
is chosen at random, and xi+1 is chosen randomly in the set of neighbors of xi),
and two vertices x = (x1, · · · , xt) and y = (y1, · · · , yt) in G′t are adjacent iff
{x1, · · · , xt, y1, · · · , yt} is a clique in G.

Theorem 9. (Claims 3.15 and 3.16 in S. Hoory, N. Linial and A. Widgerson,
Expander graphs and their applications, Bulletin of the AMS, 43 (4), 439–561,
2006)
Let G be a graph on n vertices and H be a (n, d, α)-expander graph. If b > 6α,
then:

– If ω(G) 6 bn then ω(G′t) 6 (b+ 2α)tN ;
– If ω(G) > bn then ω(G′t) > (b− 2α)tN .

13

We are now able to prove the gap amplification with linear size amplification
claimed in Theorem 2.
Proof of Theorem 2. Let k = d

√
ne. We modify G by adding k2 − n dummy

(isolated) vertices. Let G′ be the new graph. It has n′ = k2 vertices. Note that
n′ 6 (

√
n+ 1)2 = n+ 2

√
n+ 1 = n+ o(n). Let n be such that 1− ε 6 n/n′ 6 1

for a small ε. Thanks to Fact 1, we consider a (k2, d, α)-expander graph H
for a sufficiently small α (the value of which will be fixed later). According to
Theorem 9 (applied on G′) we build in polynomial time a graph G′t on N = n′dt

vertices such that (choosing α < b/6):

– If ω(G) 6 bn then ω(G′) = ω(G) 6 bn′, hence ω(G′t) 6 (b+ 2α)tN ;
– If ω(G) > an then ω(G′) = ω(G) 6 an′(1 − ε), hence ω(G′t) > (a(1 − ε) −

2α)tN .

We choose ε and α such that a(1 − ε) − 2α > b + 2α, and then t such that
(a(1− ε)−2α)t/(b+2α)t 6 r. The number of vertices of G′t is clearly linear in n
(first point of the theorem). Then, br = (b+2α)t and ar = (a(1− ε)− 2α)t fulfil
items 2, 3 and 4.

B Deferred proofs

Proof of Lemma 1. Suppose that 3Sat ∈ PCP1,β [log |φ| +D,E], where β ∈
(0, 1), |φ| is the sum of the lengths of clauses in the 3Sat instance, D and E are
constants.

Given an ε > 0, let ε′ such that 0 < ε′ < ε. Given an instance φ of 3 sat on n
variables, we apply the sparsification lemma (with ε′) to get 2ε

′n instances φi
on at most n variables. Since each variable appears at most cε′ times in φi, the
global size of φi is |φi| 6 cε′n.

Then for each formula φi we use the previous PCP assumption. The size of
the proof is at most E2|R| = c′|φi| 6 cn for some constants c′, c that depend
on ε′ (where |R| = log n + D is the number of random bits) since E2|R| is the
total number of bits that we read in the proof. Take one variable for each bit in
the proof: x1, · · · , xcn. For each random string R: take all the 2E possibilities for
the E variables read, and write a CNF formula which is satisfied if and only if
the verifier accepts. This can be done with a formula with a constant number of
clauses, say C1, each clause having a constant number of variables, say C2 (C1

and C2 depends on E).
If we consider the CNF formed by all theses CNF for all the random clauses,

we get a CNF with C12
|R| clauses on variables x1, · · · , xcn. The clauses are on C2

variables but by adding a constant number of variables we can replace a clause
on C2 variables by an equivalent set of clauses on 3 variables. This way we get a
3-CNF formula and multiply the number of variables and the number of clauses
by a constant, so they are still linear in n. For each R you have a set of say C ′1
clauses.

Suppose that we start from a satisfiable formula φi. Then there exists a proof
for which the verifier always accepts. By taking the corresponding values for the

14

variables xi, and extending it properly to the new variables y, all the clauses are
satisfied.

Suppose that we start from a non satisfiable formula φi. Then for any proof
(i.e., any truth values of variables), the verifier rejects for a proportion of at
least (1− β) of the random strings. If the verifier rejects for a random string R,
then in the set of clauses corresponding to this variable at least one clause is not
satisfied. It means that among the C ′12|R| clauses (total number of clauses), at
least (1− β) · 2|R| are not satisfied, i.e., a fraction (1− β)/C ′1 of the clauses.

Then eitherm = C ′12
|R| = O(n) clauses are satisfiable, or at leastm(1−β)/C ′1

clauses are not satisfied by each assignment. Distinguishing between these sets in
time 2o(m) would determine whether φi is satisfiable or not in 2o(n). Doing this
for each φi would solve 3Sat in time p(n)2ε

′n + 2ε
′nO(2o(n)) = O(2εn) (where p

is a polynomial). This is valid for any ε > 0 so it would contradicting ETH.

Proof of Theorem 3. In the proof we will denote by N the number of vertices
in a graph (to avoid confusion with the number of variables in a formula). We
will show that the existence of such an algorithm for any r′ < 1 would con-
tradict the hardness result for Max-3Sat in Lemma 1, hence ETH or LPC.
Consider a constant r < 1. Let 0 < ε < 1 − r. We show that the existence
of an (r + ε)-approximation algorithm for Independent Set running in time
f(k)No(k) would allow to distinguishing in time 2o(m) between instances of Max-
3Sat where (1−ε′)m clauses are satisfiable and instances where at most (r+ε′)m
clauses are satisfiable, for some ε′ > 0. W.l.o.g., we can assume that f is increas-
ing, and that f(k) > 2k.

Take an instance I of Max-3Sat, let K be an integer that will be fixed
later. We build a graph GI as follows: Partition the m clauses into K groups
H1, · · · , HK each of them containing, roughly,m/K clauses each. Each group Hi

involves a number si 6 3m/K of variables. For all possible values of these
variables, add a vertex in the graph GI if these values satisfy at least λm/K
clauses inHi (the value of λ will also be fixed later). Finally, add an edge between
two vertices if they have one contradicting variable. In particular the vertices
corresponding to the same group of clauses form a clique. It is easy to see that
the so-constructed graph contains N 6 K23m/K vertices.

The following easy claim holds.

Claim. If a variable assignment satisfies at least λm/K clauses in at most s
groups, then it satisfies at most λm+ s(1− λ)m/K clauses.

Proof of claim. An assignment as the in the claim’s statement satisfies at
most m/K clauses in at most s groups, and at most λm/K in the other K − s
groups, so in total at most sm/K + (K − s)λm/K = λm+ s(1− λ)m/K, that
completes the proof of the claim. 3

Now, let us go back to the proof of the theorem. Assume an independent set
of size at least t in GI . Then one can achieve a partial solution that satisfies
at least λm/K clauses in at least t groups. So, at least tλm/K clauses are
satisfiable. In other words, if at most (r + ε′)m clauses are satisfiable, then a
maximum independent set in GI has size at most K r+ε′

λ . Suppose that at least

15

(1 − ε′)m clauses are satisfiable. Then, using the claim, there exists a solution
satisfying at least λm/K clauses in at least 1−ε′−λ

1−λ K groups; otherwise, it should
be λm+ s(1−λ)m/K < (1− ε′)m. Then, there exists an independent set of size
1−ε′−λ
1−λ K in GI .
Now, set K = df−1(m)/(1 − ε2)e. Set also λ = 1 − ε, and ε′ = ε3. Run

the assumed (r + ε)-approximation parameterized algorithm for Independent
Set in GI with parameter k = (1 − ε2)K. Then, if at least (1 − ε′)m clauses
are satisfiable, there exists an independent set of size at least 1−ε′−λ

1−λ K = (1 −
ε3/ε)K = (1−ε2)K = k; so, the algorithm must output an independent set of size
at least (r+ε)k. Otherwise, if at most (r+ε′)m clauses are satisfiable, the size of
an independent set is at most K r+ε′

λ = K r+ε3

1−ε = k r+ε3

(1−ε)(1−ε2) = k(r+ rε+ o(ε)).
So, for ε sufficiently small, the algorithm allows to distinguish between the

two cases of Max-3Sat (for ε′), i.e., whether at least (1 − ε′)m clauses are
satisfiable, or at most (r + ε)m clauses.

The running time of the yielded algorithm is f(k)No(k), but f(k) = f((1 −
ε2)K) = m, andNo(k) = Nk/ψ(k) for some increasing and unbounded function ψ,
and No(k) = (K23m/K)k/ψ(k) = 2o(m).

Proof of Lemma 4. Suppose that G has an independent set S of size α. Then, S
has one vertex in α sets Ci, and no vertex in the other K − α sets. We build a
dominating set T in G′ as follows: for each vertex in S we take its copy in G′. For
each clique Ci without vertices in S, we take ti and one (anyone) vertex in C ′i.
The dominating set T has size α+ 2(K − α) = 2K − α. For each C ′i, one of its
vertices in in T ; so, vertices in C ′i, ti and vertices in Si are dominated. Now take
a vertex in We with e = (u, v), u ∈ Ci and v ∈ Cj . If Ci ∩S = ∅ (or Cj ∩S = ∅),
then ti ∈ T (or tj ∈ T) and, by construction, ti is adjacent to all vertices in We.
Otherwise, there exist w ∈ S∩Ci and x ∈ S∩Cj . Since S is an independent set,
either w 6= u or x 6= v. If w 6= u, by construction w (its copy in C ′i) is adjacent
to all vertices in We and, similarly, for x if x 6= v. So, T is a dominating set.

Conversely, suppose that T is a dominating set of size 2K−α. Since Si is an
independent set of size 3K, we can assume that T ∩Si = ∅ and the same occurs
with We. In particular, there exists at least one vertex in T in each Ci. Now,
suppose that T has two different vertices u and v in the same Ci. Then we can
replace v by ti getting a dominating set (vertices in Si are still dominated by u,
and any vertex in some We which is adjacent to v is adjacent to ti). So, we can
assume that T has the following form: exactly one vertex in each Ci, and K −α
vertices ti. Hence, there are α cliques C ′i, where ti is not in T . We consider in G
the set S constituted by the α vertices in T in these α sets. Take two vertices u
and v in S with, say, u ∈ C ′i and v ∈ C ′j (with ti 6∈ T and tj 6∈ T). If there were
an edge e = (u, v) in G, neither u nor v would have dominated a vertex in We

(by construction). Since neither ti nor tj is in T , this set would not have been a
dominating set, a contradiction. So S is an independent set.

Proof of Theorem 4. In the proof of Theorem 3, we produce a graph GI which
is made of K cliques and such that: if at least (1 − ε)m clauses are satisfiable

16

in I, then there exists an independent set of size (1−O(ε))K; otherwise (at most
(r + ε)m clauses are satisfiable in I), the maximum independent set has size at
most (r + O(ε))K. The previous reduction transforms GI in a graph G′I such
that, applying Lemma 4, in the first case there exists a dominating set of size
at most 2K − (1 − O(ε))K = K(1 + O(ε)) while, in the second case, the size
of a dominating set is at least 2K − (r + O(ε))K = K(2 − r − O(ε)). Thus, we
get a gap with parameter k′ = K(1 + O(ε)). Note that the number of vertices
in G′I is n′ = n + K + 3K + 3K|EI | = O(n3) (where EI is the set of edges
in GI). If we were able to distinguish between these two sets of instances in time
f(k′)n′o(k

′), this would allow to distinguish the corresponding independent set
instances in time f(k′)n′o(k

′) = g(k)no(k) since k′ = K(1 +O(ε)) = k(1 +O(ε))
(k = K(1− ε3) being the parameter chosen for the graph GI).

Proof of Theorem 5 Again, to avoid confusion we denote in this proof by N
the number of vertices in a graph. Given an ε > 0, let ε′ such that 0 < ε′ < ε.
Given an instance φ of 3 sat on n variables, we first apply the sparsification
lemma (with ε′) to get 2ε

′n instances φi on at most n variables. Since each
variable appears at most cε′ times in φi, the global size of φi is |φi| 6 cε′n.

Consider a particular φi, r > 0 and δ > 0. We use the fact that 3Sat∈
PCP1,r[(1+ o(1)) log |φ|+Dr, Er] (where Dr and Er are constants that depend
only on r), in order to build the following graph Gφi (see also [1]). For any
random string R, and any possible value of the Er bits read by V, add a vertex
in the graph if V accepts. If two vertices are such that they have at least one
contradicting bit (they read the same bit which is 1 for one of them and 0 for
the other one), add an edge between them. In particular, the set of vertices
corresponding to the same random string is a clique.

Assume that φi is satisfiable. Then there exists a proof for which the verifier
accepts for any random string R. Take for each random string R the vertex
in Gφi corresponding to this proof. There is no conflict (no edge) between any
of these 2|R| vertices, hence α(Gφi) = 2|R| (where, in a graph G, α(G) denotes
the size of a maximum independent set).

If φi is not satisfiable, then α(Gφi) 6 r2|R|. Indeed, suppose that there is
an independent set of size α > r2|R|. This independent set corresponds to a set
of bits with no conflict, defining part of a proof that we can arbitrarily extend
to a proof Π. The independent set has α vertices corresponding to α random
strings (for which V accepts), meaning that the probability of acceptance for this
proof Π is at least α/2|R| > r, a contradiction with the property of the verifier.

Furthermore, Gφi has N 6 2|R|2Er 6 C ′|φi|1+o(1) = Cn1+o(1) vertices (for
some constants C,C ′ that depend on ε′) since |φi| 6 cε′n. Then, one can see that,
for any r′ > r, an r′-approximation algorithm for Independent Set running
in time O(2N

1−δ
) would allow to decide whether φi is satisfiable or not in time

O(2n
1−δ′

) for some δ′ < δ. Doing this for each of the formula φi would allow to
decide whether φ is satisfiable or not in time p(n)2ε

′n + 2ε
′nO(2n

1−δ′

) = O(2εn)
(where p is a polynomial). This is valid for any ε > 0 so it would contradicting
ETH.

17

Combining this reduction with the gap amplification of Theorem 2 allows to
create a gap with any constant in (0, 1). Since the reduction in this amplification
is linear with respect to the number of vertices, we get the claimed result.

Proof of Proposition 1. Consider the following reduction from Indepen-
dent Set to Bipartite Subgraph (H. U. Simon, On approximate solutions
for combinatorial optimization problems, SIAM J. Disc. Math., 3(2):294–310,
1990). Let G(V,E) be an instance of Independent Set of order n. Construct
a graph G′(V ′, E′) for Bipartite Subgraph by taking two distinct copies of G
(denote them by G1 and G2, respectively) and adding the following edges: a
vertex vi1 of copy G1 is linked with a vertex vj2 of G2, if and only if either
i = j or (vi, vj) ∈ E. G′ has 2n vertices. Let now S be an independent set
of G. Then, obviously, taking the two copies of S in G1 and G2 induces a bi-
partite graph of size 2|S|. Conversely, consider an induced bipartite graph in G′
of size t, and take the largest among the two color classes. By construction it
corresponds to an independent set in G, whose size is at least t/2 (note that it
cannot contain 2 copies of the same vertex). So, any r-approximate solution for
Bipartite Subgraph in G′ can be transformed into an r-approximate solution
for Independent Set in G. Observe finally that the size of G′ is two times the
size of G.

Proof of Proposition 2. In [20] the following reduction is built. Given a
graph G whose vertex set is partitioned into K cliques each of size S, and given
a prime number q > S, a graph Hq having the following properties can be built
in polynomial time: (i) the vertex set of Hq is partitioned into q2K cliques, each
of size q3; (ii) α(Hq) 6 max{q2α(G); q2(α(G)− 1) +K; qK}; (iii) if α(G) = K,
then χ(Hq) = q3.

Fix a ratio r > 1, and let rIS > 0 be such that rIS + r2IS 6 1/r. Start from
the graph Gφi produced in the proof of Theorem 5 for ratio rIS . The vertex set
of Gφi is partitioned into K = 2|R| cliques, each of size at most 2Er . By adding
dummy vertices (a linear number, since Er is a fixed constant), we can assume
that each clique has the same size S = 2Er , so the number of vertices in Gφi is
N = KS = 2|R|2Er .

Let q > max{S, 1/rIS} be a prime number, and consider the graph Hq pro-
duced from Gφi by the reduction in [20] mentioned above. If φi is satisfiable,
α(Gφi) = K and then by the third property of the graph Hq, χ(Hq) = q3. Oth-
erwise, by the second property α(Hq) 6 max{q2α(Gφ); q2(α(Gφ)− 1)+K; qK}.
Formula φi being not satisfiable, α(Gφi) 6 rISK. By the choice of q, qK 6
q2rISK, so α(Hq) 6 q2rISK +K = (q2rIS + 1)K. Since the number of vertices
in Hq is Kq5, we get that χ(Hq) > q5/(q2rIS + 1). The gap created for the
chromatic number in the two cases is then at least:

q5

(q2rIS + 1)q3
=

1

rIS + 1/q2
>

1

rIS + r2IS
> r

18

The result follows since Hq has Kq5 vertices and q is a constant (that depends
only on the ratio r and on the constant number of bits p read by V), so the size
of Hq is linear in the size of Gφi .

Proof of Proposition 3. We combine the following theorem with a well known
reduction.

Theorem 10. [23] Under ETH, for every ε > 0, and δ > 0, it is impossible
to distinguish between instances of max 3-lin with m equations where at least
(1− ε)m are satisfiable from instances where at most (1/2 + ε)m are satisfiable,
in time O(2m

1−δ
).

Consider an instance I of max 3-lin on m equations. Build the following
graph GI :

– for any equation and any of the eight possible values of the 3 variables in it,
add a vertex in the graph if the equation is satisfied;

– if two vertices are such that they have one contradicting variable (the same
variable has value 1 for one vertex and 0 for the other one), then add an
edge between them.

In particular, the set of vertices corresponding to the same equation is a clique.
Note that each equation is satisfied by exactly 4 values of the variables in it.
Then, the number of vertices in the graph is N = 4m. Consider an independent
set S in the graph GI . Since there is no conflict, it corresponds to a partial
assignment that can be arbitrarily completed into an assignment τ for the whole
system. Each vertex in S corresponds to an equation satisfied by τ (and S has at
most one vertex per equation), so τ satisfies (at least) |S| equations. Reciprocally,
if an assignment τ satisfies α clauses, there is obviously an independent set
of size α in GI . Hence, if (1 − ε)m equations are satisfiable, there exists an
independent set of size at least (1 − ε)m, i.e., a vertex cover of size at most
N − (1 − ε)m = N(3/4 + ε/4). If at most (1/2 + ε)m equations are satisfiable,
then each vertex cover has size at least N − (1/2 + ε)m = N(7/8− ε/4).

We now handle Min-Sat problem via the following reduction (see also M.
V. Marathe and S. S. Ravi, On Approximation algorithms for the minimum
satisfiability problem, Inf. Process. Lett. 58(1): 23-29, 1996). Given a graph G,
build the following instance on Min-Sat. For each edge (vi, vj) add a variable xij .
For each vertex vi add a clause ci. Variable xij appears positively in ci and
negatively in cj . Then, take a vertex cover V ∗ of size k; for any xij fix the
variable to true if vi ∈ V ∗, to false otherwise. Consider a clause cj with vj 6∈
V ∗. If xij is in cj then vi is in V ∗ hence xij is true; if xji is in cj then, by
construction, xji is false. So cj is not satisfied, and the assignment satisfies at
most k clauses. Conversely, consider a truth assignment that satisfies k clauses
ci1 , · · · , cik . Consider the vertex set V ∗ = {vi1 , · · · , vik}. For an edge (vi, vj),
if xij is set to true then ci is satisfied and vi is in V ∗, otherwise cj is satisfied
and vj is in V ∗, so V ∗ is a vertex cover of size k. Since the number of clauses
in the reduction equals the number of vertices in the initial graph, the result is
concluded.

19

Proof of Corollary 5. Using LPC, the same proof as in Theorem 5 creates
for each φi a graph on N = O(n) variables with either an independent set of
size αN (if φi is satisfiable) or a maximum independent set of size at most α/2N
(if φi is not satisfiable). Then using expander graphs, usual arguments allows
to amplify this gap from 1/2 to any constant r > 0 while preserving the linear
size of the instance (see Theorem 2). Results for the other problems immediately
follow from the same arguments as above.

Proof of Theorem 6. Obviously, APETH(Π) is implied by APETH(Π-B).
Now, suppose that APETH(Π) holds, for some ratio r. We show that APETH(Π-B)
holds for the same ratio. Let ε > 0, ε′ = ε/2, and suppose that Π-B is r-
approximable in time O∗(2ε

′n). Then given an instance I of Π, compute f(I, ε′)
(in time O∗(2ε

′n)). For each of the t instances Ii, compute an r-approximate
solution Si in time O∗(2ε

′ni) = O∗(2ε
′n), and use g to transform Si into a so-

lution S for I. Let S∗ be the best of these solutions. We obtain S∗ in time
O∗(2ε

′n2ε
′n) = O∗(2εn). By item 3 of Definition 1, S∗ is an r-approximation

of I. We can do this for any ε, leading to a contradiction.

Proof of Proposition 5. Let ε > 0, and consider the following branching
algorithm, where B′ > 4 will be precised later (as a function of ε):

1. remove all edges between two vertices in V1, as well as all edges between two
vertices in V3;

2. if there exists a vertex v ∈ V1 of degree at least B′, branch on it;
3. otherwise, if there exists a vertex v ∈ V2 of degree at least B′2, branch on it;
4. otherwise, if there exists a vertex v ∈ V3 of degree at least B′3, branch on a

neighbor of v.

Note that branching on a vertex v in V1 or V2 means that if v is taken, then v
is removed from the graph, its neighbors in V2 are transferred to V1 (they are
already dominated), while its neighbors in V3 are removed from the graph. If v
is not taken, if it is in V1 then it is removed from the graph, and if it is in V2
then it is transferred to V3 (we still need to dominate it).

By principle, in a leaf of the tree, each vertex in V1 has degree at most B′,
while each vertex in V2 has degree at most B′2, and each vertex of V3 has degree
at most B′3. Then the graph has bounded maximum degree B = B′3.

However, when branching it might be the case that only at most one vertex is
removed from the graph in each branch. To show that the number of leaves in the
tree is indeed sufficiently small, we change the branching measure by introducing
appropriate weights on the vertices of the graph. Let w1 = min{ 12 ,

1
4 + d(v)

4B′ } be
the weights of vertices in V1, w2 = min{1, 34 +

d(v)
4B′ } and w3 = 1/2 be the weights

of vertices in V2 and V3 respectively. Then the global weight of G is W (G) 6 n.
Consider a branching step on a vertex v ∈ V1 corresponding to item 2 of

the algorithm: if v is taken, the weight of the instance is reduced by at least
1/2 + B′/4 (1/2 for v, and at least 1/4 for each of its neighbors). If v is not
taken, then the weight is reduced by 1/2.

20

In a branching step on a vertex v ∈ V2 corresponding to item 3 of the
algorithm, if v is taken, the weight of the instance is reduced by at least 1 +
B′2/B′ = 1 + B′. Indeed, there is a weight-reduction of 1/2 for v, and of at
least 1/B′ for each of its neighbors, since we know that every vertex in V1 has
degree at most B′ − 1. If v is not taken, the weight reduces by at least 1/4.

In a branching step on a vertex w ∈ V1 ∪ V2 neighbor of v corresponding
to item 4, when w is taken v is removed, so the degree of at least B′3 vertices
decreases by 1. Since vertices in V1 and V2 have degree at most B′−1 and B′2−1
respectively, the total weight is reduced by at least B′3/B′2 = B′. When w is
not taken, the weight is reduced by at least 1/4.

Then, it suffices to choose B′ sufficiently large such that the branching factor
of these three branchings is at most 2ε.

The fact that an approximate solution on a leaf can be transferred to an
approximate solution to the root is completely similar to the case of independent
set.

Proof of Lemma 5. Using Proposition 5, it holds that:

APETH(Dominating Set)⇒ APETH(Generalized Dominating Set)
⇒ APETH(Generalized Dominating Set-B)

Consider an instance G = (V1, V2, V3, E) of Generalized Dominating Set-B,
and use the following reduction (adapted from [24] to this generalized version).
Build a graph G′ = (V ′, E′) where:

– for each vertex v in V2∪V3, consider a clique Cv of size |N [v]∩(V1∪V2)|, where
each vertex of Cv corresponds to one vertex in N [v] ∩ (V1 ∪ V2) (note that
cliques are disjoint; if a vertex is in the neighborhood of two such vertices,
there will be two different vertices in G′). Such vertices will be informally
refered to as vertices in the cliques;

– for each vertex v in V1 ∪ V2, add a vertex v′ in G′, and link v′ to all its
homologous vertices in the cliques (there is at most one per clique); hence,
if v ∈ V1 ∪ V2 has t neighbors in V2 ∪ V3, v′ will be linked to t vertices.
Such vertices v′ will be informally refered to as vertices not in the cliques or
vertices outside the cliques.

Note that the size of each clique Cv is at most B, so there is at most Bn
vertices in all the cliques. There are |V1| 6 n vertices v′, so |V ′| 6 (B +1)n, the
reduction has linear size (with respect to n). Each vertex in a clique has degree
at most (B − 1) + 1 = B, and each vertex v′ has degree at most B, so G′ has
degree at most B.

Let D be a generalized dominating set of G. For each vertex v in V2∪V3, there
exists a vertex w ∈ D dominating it. We select the corresponding vertex in G′
in the clique Cv. This adds up to |V2 ∪ V3| vertices. Moreover, for each vertex v
in V1 ∪ V2 which is not in D, we select the corresponding vertex v′; hence, we
select |V1∪V2|− |D| more vertices. By construction, this is an independent set S
in G′ of size |S| = |V1|+ 2|V2|+ |V3| − |D|.

21

Conversely, take an independent set S of G′. Suppose that S contains no
vertex from a clique Cu. Then we can add a vertex from Cu to S, and (possibly)
remove the vertex v′ which were adjacent to it. We get an independent set of at
least the same size. By repeating the argument, we can assume that S takes one
vertex from each clique Cu. Consider in G the set D of vertices that corresponds
to vertices v′ (which are not in cliques) in G′ that are not in S. S is made of
|V2|+ |V3| vertices in the cliques and |V1|+ |V2|− |D| vertices outside the cliques.
So, we have |D| = |V1|+ 2|V2|+ |V3| − |S|. Consider now a vertex v in V2 ∪ V3.
There is a vertex w ∈ S in the clique Cv, so the vertex v′ adjacent to this vertex
w is not in S, hence its corresponding vertex is in D. Then D is a generalized
dominating set.

Suppose that we have an r-approximate solution S in G′: S > rα(G′), we can
build a solutionD of size |D| 6 |V1|+2|V2|+|V3|−rα(G′) = rγ(G)+(1−r)(|V1|+
2|V2|+ |V3|) where γ(G) is the size of a constrained dominating set in G. Since
vertices in V1 and V2 have degree at most B, we know that γ(G) > |V2|+|V3|

B .
Note that each vertex in V1 has at least one neighbor (otherwise, it can be
removed from the graph), so that there are at most |V1| 6 B(|V2|+ |V3|). Then
|V1|+ 2|V2|+ |V3| 6 (B + 2)(|V2|+ |V3|) 6 B(B + 2)γ(G). Putting all the above
together, we get |D| 6 γ(G)(r + (1− r)B(B + 2)).

Proof of Theorem 8. (i) ⇒ (ii): We show it for Π =Independent Set-
B, which is MaxSNP-complete. Suppose that for any r and any ε there is a
parameterized r-approximation algorithm A in time O(2εk). Given an instance G
of Independent Set-B, we run A on the instance (G, k) for k = 1 up to k = n.
Consider the largest k for which an independent set is given: it has size at
least ρ · k, while the optimum is at most k since no solution is output for k + 1.
Since k 6 n, the overall iteration takes n · 2o(n)-time.

(ii) ⇒ (iii): suppose that (iii) is false, and consider a MaxSNP-complete
problem Π2 which admits for every ε′ > 0 and every r′ < 1 a parameterized
r-approximation algorithm running in time O∗(2εk). Then this is true for any
MaxSNP problem, contradicting (ii).

Indeed, let Π1 be a MaxSNP problem. There exists an L-reduction from Π1

to Π2, let α, β be the constants of the L-reduction. Let (I1, k) be an instance
of Π1 and let (I2, α · k) be the instance of Π2, where I2 := f(I1) defined by
the L-reduction. Let r ∈ (0, 1) and ε > 0, and let A be a parameterized r′-
approximation of Π2 which runs in time O∗(2ε

′k) where r′ = 1− (1− r)/(αβ) <
1 and ε′ = ε/α. We present an algorithm which uses A as a subroutine and
produces in timeO∗(2εk) a solution ofΠ1 of size at least rk whenever opt(I1) > k.

Let us suppose that opt(I1) > k. We iterately run A over the instances
(I2, αk), (I2, αk − 1), · · · by decreasing the parameter. Let lb > αk be the first
integer for which that A returns a solution, let us call it sol2, of size at least r′lb
upon (I2, lb). Let sol1 := g(sol2), where g is defined by the L-reduction. Note
that if opt(I2) > αk then sol2 > αr′k; if opt(I2) 6 αk, then lb > opt(I2) hence
sol2 > r′opt(I2).

Now, from the property of L-reduction, we have opt(I1)− sol1 6 β(opt(I2)−
sol2), or equivalently sol1 > opt(I1)− β(opt(I2)− sol2). By considering the two

22

previous cases, and the fact that opt(I2) 6 αopt(I1) we easily get that whenever
opt(I1) > k, the iterative applications of A combined with the algorithm g
returns a solution sol1 of size at least (1−αβ(1− r′))k = rk. It is easily verified
that the overall algorithms takes up O(2εk · poly(|I1|)) steps.

(iii) ⇒ (i): Suppose that for any r and any ε there is an r-approximation
algorithm for Independent Set-B with running time O(2εn). Given a graph G
and an integer k, if k 6 n/(B +1) we output an independent set of size n/(B +
1) (any maximal independent set). Otherwise, we compute an r-approximate
solution S in time O(2ε

′n) = O(2εk) for ε′ = ε/(B + 1). If |S| > rk we output
it, otherwise ropt(G) 6 |S| < rk, hence opt(G) < k. This contradicts (iii) for
Independent Set-B.

Proof of Proposition 6. Given a parameter k and a set of constraints with at
most c variables per constraint, the problem Max-c-Csp Above Average asks
if there is a variable assignment that satisfies at least ρ ·m+k constraints. Here ρ
is the expected fraction of constraints satisfied by a uniform random assignment.
In [19], the following theorem is proved.

Theorem 11. ([19]) For every c > 2, Max-c-Csp Above Average can be
solved in O(γk ·m) time, where γ is a constant depending only on c.

Let Π be a problem in the class MaxSNP, defined in the standard way by
maxS |{x : φ(x,G, S)}|. As shown in [24], for each of the (polynomially many)
possible values xi of x, consider the corresponding formula φi(G,S) = φ(xi, G, S).
Since φ is fixed, this is a fixed size formula involving (at most) a fixed number t
of variables (corresponding to the predicate S). The goal is then to find S sat-
isfying the largest number of formulae φi. Let ρΠ be the expected fraction of
constraints satisfied by a uniform random assignment. It is easy to find deter-
ministically an assignment satisfying as many formulae as a random one, so Π
is ρΠ -approximable in polynomial time. Note that Π can be interpreted as a
Max-c-Csp parameterized by the number of satisfied constraints.

To get the claimed (ρΠ + ε)-approximation algorithm for 0 6 ε 6 1− ρΠ , we
run the algorithm A given in Theorem 11 on the instance ({φi : 1 6 i 6 m}, k′)
(wherem is the number of formulas φi). We take k′ so that it satisfies ρΠ ·m+k′ =
k(ρΠ + ε). If k formulae are satisfiable, then, clearly, k(ρΠ + ε) folmulae are also
satisfiable, so the algorithm will output an assignment satisfying at least this
number of constraints (formulae). The running time is γk

′
p(n). The claim holds

since k′ = εk − ρΠ(m− k) and k 6 m.

23

