
Maximum Matchings in Geometric Intersection Graphs∗

Édouard Bonnet† Sergio Cabello‡ Wolfgang Mulzer§

August 7, 2020

Abstract

Let G be an intersection graph of n geometric objects in the plane. We show that a maximum
matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density
of the geometric objects and ω> 2 is a constant such that n× n matrices can be multiplied in
O(nω) time.

The same result holds for any subgraph of G, as long as a geometric representation is at hand.
For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian
elimination, with the fact that geometric intersection graphs have small separators.

We also show that in many interesting cases, the maximum matching problem in a general
geometric intersection graph can be reduced to the case of bounded density. In particular, a
maximum matching in the intersection graph of any family of translates of a convex object in
the plane can be found in O(nω/2) time with high probability, and a maximum matching in the
intersection graph of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6 log11 n+
Ψ12ωnω/2) time with high probability.
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1 Introduction

Let U be a family of (connected and compact) objects in R2. The intersection graph GU of U is
the undirected graph with vertex set U and edge set

E(GU ) = {UV | U , V ∈ U , U ∩ V 6= ;}.

If the objects inU are partitioned into two sets, one can also define the bipartite intersection graph, a
subgraph of GU , in the obvious way. Consider the particular case when U is a set of disks. Then, we
call GU a disk graph, and if all disks inU have the same radius, a unit-disk graph. Unit disk graphs
are often used to model ad-hoc wireless communication networks and sensor networks [13,16,35].
Disks of varying sizes and other shapes become relevant when different sensors cover different areas.
Moreover, general disk graphs serve as a tool to approach other problems, like the barrier resilience
problem [20].

We consider a classic optimization problem, maximum matching, in the setting of geometric
intersection graphs, and introduce two new techniques, each interesting in its own. First, we provide
an efficient algorithm to compute a maximum matching in any subgraph of the intersection graph
of geometric objects of low density. Second, we provide a sparsification technique to reduce the
maximum matching problem in a geometric intersection graph to the case of low density. The
sparsification works for convex shapes of similar sizes for which certain range searching operations
can be done efficiently.

In this paper, we use ω to denote a constant such that ω> 2 and any two n× n matrices can be
multiplied in time O(nω).1

Maximum matching in intersection graphs of geometric objects of low density. We first intro-
duce some geometric concepts. The diameter of a set X ⊂ R2, denoted by diam(X ), is the supremum
of the distances between any two points of X . The density ρ(U ) of a family U of objects is

ρ(U ) = max
X⊆R2

�

�{U ∈ U | diam(U)≥ diam(X ), U ∩ X 6= ;}
�

�. (1)

One can also define the density by considering for X only disks. Since an object of diameter d can be
covered by O(1) disks of diameter d, this changes the resulting parameter by only a constant. (See,
for example, the book by de Berg et al. [7, Section 12.5] for such a definition.) The depth (ply) of
U is the largest number of objects that cover a single point:

max
p∈R2

�

�{U ∈ U | p ∈ U}
�

�.

For disk graphs and square graphs, the depth and the density are linearly related; see for example
Har-Peled and Quanrud [15, Lemma 2.7]. More generally, bounded depth and bounded density are
equivalent whenever we consider homothets of a constant number of shapes. Density and depth
are usually considered in the context of realistic input models; see de Berg et al. [8] for a general
discussion.

Let Gρ be the family of subgraphs of intersection graphs of geometric objects in the plane with
density at most ρ. Our goal is to compute a maximum matching in graphs of Gρ, assuming the
availability of a geometric representation of the graph and a few basic geometric primitives on the
geometric objects. For this, we consider the density ρ as an additional parameter. Naturally, the case
ρ = O(1) of bounded density is of particular interest.

In a general graph G = (V, E) with n vertices and m edges, the best running time for computing a
maximum matching in G depends on the ratio m/n. The classic algorithm of Micali and Vazirani [24,
32] is based on augmenting paths, and it finds a maximum matching in O(

p
nm) time. Mucha and

1In the literature, it is more common to assume ω≥ 2. We adopt the stronger assumption ω> 2 because it simplifies
the bounds. If ω= 2 is allowed, then the running times that we state have additional logarithmic factors.
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Sankowski [26] use algebraic tools to achieve running time O(nω). As we shall see, for G ∈Gρ, we
have m = O(ρn), and this bound is asymptotically tight. Thus, for G ∈ Gρ, the running times of
these two algorithms become O(ρn3/2) and O(nω), respectively.

In general bipartite graphs, a recent algorithm by Mądry [23] achieves running time roughly
O(m10/7).2 For the case of certain classes of bipartite geometric intersection graphs. Efrat, Itai, and
Katz [11] show how to compute the maximum matching in bipartite unit disk graphs in O(n3/2 log n)
time. Having bounded density does not help in this algorithm; it has O(

p
n) rounds, each of which

needs Ω(n) time. The same approach can be used for other geometric shapes if a certain semi-
dynamic data structure is available. In particular, using the data structure of Kaplan et al. [19]
for additively-weighted nearest neighbors, finding a maximum matching in a bipartite intersection
graph of disks takes O(n3/2 polylog n) time. We are not aware of any similar results for non-bipartite
geometric intersection graphs.

We show that a maximum matching in a graph of Gρ with n vertices can be computed in
O(ρ3ω/2nω/2) = O(ρ3.56n1.19) time. The algorithm is randomized and succeeds with high probability.
It uses the algebraic approach by Mucha and Sankowski [27] for planar graphs with an extension
by Yuster and Zwick [34] for H-minor-free graphs. As noted by Alon and Yuster [4], this approach
works for hereditary3 graph families with bounded average degree and small separators. We note
that the algorithm can be used for graphs of Gρ, because we have average degree O(ρ) and balanced
separators of size O(pρn) [15,30]. However, finding the actual dependency on ρ is difficult because
it plays a role in the average degree, in the size of the separators, and the algorithm has a complex
structure with several subroutines that must be distilled.

There are several noteworthy features in our approach. For one, we solve a geometric problem
using linear algebra, namely Gaussian elimination. The use of geometry is limited to finding
separators, bounding the degree, and constructing the graph explicitly. Note that the role of subgraphs
in the definition of Gρ is a key feature in our algorithm. On the one hand, we need a hereditary
family of graphs, as needed to apply the algorithm. On the other hand, it brings more generality; for
example, it includes the case of bipartite graphs defined by colored geometric objects.

Compared to the work of Efrat, Itai, and Katz [11], our algorithm is for arbitrary subgraphs of
geometric intersection graphs, not only bipartite ones; it works for any objects, as it does not use
advanced data structures that may depend on the shapes. On the other hand, it needs the assumption
of low density. Compared to previous algorithms for arbitrary graphs and ignoring polylogarithmic
factors, our algorithm is faster when ρ = o(n(20−7ω)/(21ω−20)). Using the current bound ω< 2.373,
this means that our new algorithm is faster for ρ = O(n0.113).

Our matching algorithm also applies for intersection graphs of objects in 3-dimensional space.
However, in this case there is no algorithmic gain with the current bounds on ω: one gets a running
time of O(n2ω/3) when ρ = O(1), which is worse than constructing the graph explicitly and using
the algorithm of Micali and Vazirani.

Sparsification – Reducing to bounded depth. Consider a family of convex geometric objects U
in the plane where each object contains a square of side length 1 and is contained in a square of
side length Ψ ≥ 1. Our objective is to compute a maximum matching in the intersection graph GU .4

Our goal is to transform this problem to finding a maximum matching in the intersection graph of
a subfamily U ′ ⊂ U with bounded depth. Then we can employ our result from above for GU ′ or,
more generally, any algorithm for maximum matching (taking advantage of the sparsity of the new
instance).

We describe a method that is fairly general and works under comparatively mild assumptions

2In a previous version of this paper, we claimed that Mądry’s algorithm also applies to general (non-bipartite) graphs.
However, this does not seem to be correct. As a consequence, we have updated the statements of Corollary 24 and
Theorem 26.

3closed under taking subgraphs
4 Note that here we do not consider subgraphs of GU ; we need the whole subgraph GU .
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objects time complexity reference

disks of radius in [1,Ψ] in R2 O(Ψ6n log11 n+Ψ12ωnω/2) Theorem 15

translates of O(1) convex objects in R2 O(nω/2) Theorem 21

axis-parallel rectangles in R2 with edges in [1,Ψ] (1+Ψ)O(1)nω/2 Theorem 23

axis-parallel boxes in Rd with edges in [1,Ψ] (1+Ψ)O(d)n3/2 Corollary 24

unit balls in R3 or R4 O(n3/2) Theorem 26

unit balls in Rd , d ≥ 5 O(n
2dd/2e

1+dd/2e+ε) Theorem 26

Table 1: Time complexity to compute the maximum matching in an intersection graph. In some
cases, the result is correct with high probability.

and also in higher dimensions. However, for an efficient implementation, we require that the objects
under considerations support certain range searching operations efficiently. We discuss how this
can be done for disks of arbitrary sizes, translates of a fixed convex shape in the plane, axis-parallel
objects in constant dimension, and (unit) balls in constant dimension. In all these cases, we obtain a
subquadratic time algorithm for finding a maximum matching, assuming that Ψ is small. We mostly
focus on the planar case, mentioning higher dimensions as appropriate.

As particular results to highlight, we show that a maximum matching in the intersection graph
of any family of translates of a convex object in the plane can be found in O(nω/2) time with high
probability, and a maximum matching in the intersection graph of a family of planar disks with radii
in [1,Ψ] can be found in O(Ψ6 log11 n+ Ψ12ωnω/2) time with high probability. See Table 1 for a
summary of the results in this context.

Organization. We begin with some general definitions and basic properties of geometric intersec-
tion graphs (Section 2). Then, in the first part of the paper, we present the new algorithm for finding
a maximum matching in geometric intersection graphs of low density (Section 3). In the second
part, we present our sparsification method. This is done in two steps. First, we describe a generic
algorithm that works for general families of shapes that have roughly the same size, assuming that
certain geometric operations can be performed quickly. (Section 4). Second, we explain how to
implement these operations for several specific shape families, e.g., translates of a given convex
objects and disks of bounded radius ratio (Section 5). The two parts are basically independent,
where the second part uses the result from the first part as a black box, to state the desired running
times.

2 Basics of (geometric intersection) graphs

Geometric objects. Several of our algorithms work under fairly weak assumptions on the geometric
input: we assume that the objects in U have constant description complexity. This means that the
boundary of each object is a continuous closed curve whose graph is a semialgebraic set, defined by
a constant number of polynomial equalities and inequalities of constant maximum degree. For later
algorithms we restrict attention to some particular geometric objects, like disks or squares.

To operate on U , we require that our computational model supports primitive operations that
involve a constant number of objects ofU in constant time, e.g., finding the intersection points of two
boundary curves; finding the intersection points between a boundary curve and a disk or a vertical
line; testing whether a point lies inside, outside, or on the boundary of an object; decomposing a
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boundary curve into x-monotone pieces, etc. See, e.g., [19] for a further discussion and justification
of these assumptions.

We emphasize that in addition to the primitives on the input objects, we do not require any
special constant-time operations. In particular, even though our algorithms use algebraic techniques
such as fast matrix multiplication or Gaussian elimination, we rely only on algebraic operations over
Zp, where p = Θ(n4). Thus, when analyzing the running time of our algorithms, we do not need to
worry about the bit complexity of these operations.

Geometric intersection graphs. The following well-known lemma bounds |GU | in terms of ρ,
and the time to construct GU . We include a proof for completeness.

Lemma 1. If U has n objects and density ρ, then GU has at most (ρ − 1)n edges (this holds in any
dimension). If U consists of objects in the plane, then GU can be constructed in O(ρn log n) time.

Proof. The bound on |E(GU )| uses a simple and well-known trick; see, e.g., [15, Lemma 2.6]: we
orient each edge in GU from the object of smaller diameter to the object of larger diameter. Then,
the out-degree of each X ∈ U is at most ρ − 1, since by (1), there are at most ρ objects U ∈ U with
diam(U)≥ diam(X ) that intersect X , with X being one of them.

Next, we describe the construction of GU in the planar case; see [18] for a similar algorithm in
the context of disk graphs. Set k = |E(GU )|. If U , V ∈ U form an edge in E(GU ), then either (i)
their boundaries intersect; or (ii) one is contained inside the other. To find the edges of type (i), we
perform a plane sweep [5,7].5 For this, we split the boundary of each object into a constant number
of x-monotone pieces. We sweep a vertical line ` across the plane, and we maintain the intersection
of ` with the pieces of the boundary curves. The events are the start and end points of the pieces of
the boundary curves, as well as their pairwise intersections. There are O(n+ k) events. When we
detect a boundary-boundary intersection, we add the corresponding edge to the output. An edge can
be added O(1) times, so we sort the output to remove duplicates. Thus, it takes O((n+ k) log n) time
to find all edges of type (i).

To find the edges of type (ii), we perform a second plane sweep to compute the trapezoidal
decomposition of the planar arrangement defined by the objects in U [7]. The trapezoidal decompo-
sition is obtained by shooting upward and downward vertical rays from each x-extremal point on a
boundary curve and from each intersection between two boundary curves. The rays end once they
encounter a boundary curve, or they go into infinity. This results in a subdivision of the plane into
O(n+k) (possibly unbounded) pseudo-trapezoids. The subdivision can be computed in O((n+k) log n)
time. We construct the dual graph of the trapezoidal decomposition, in which the vertices are the
pseudo-trapezoids, and two pseudo-trapezoids are adjacent if and only if their boundaries intersect
in more than one point. We perform a DFS in the resulting dual graph, keeping track of the objects
in U that contain the current pseudo-trapezoid. Whenever we enter an object U ∈ U for the first
time, we generate all edges between the objects that contain the current pseudo-trapezoid and U .
This takes O(n+ k) time. We generate all edges of type (ii), and we possibly rediscover some edges
of type (i). Thus, we sort the output once more to remove duplicates. The total running time is
O((n+ k) log n) = O(ρn log n).

We remark that using more sophisticated methods, such as randomized incremental construc-
tion [28], it may be possible to improve the running time to O(ρn+ n log n). However, this will not
help us, because later parts of the algorithm will dominate the running time.

Separators in geometric intersection graphs. The classic planar separator theorem by Lipton and
Tarjan [9,22] shows that any planar graph can be decomposed in a balanced way by removing a small
number of vertices. Even though geometric intersection graphs can be far from planar, similar results

5The original algorithm is described for line segments, but assuming appropriate geometric primitives, it also applies to
continuous, x-monotone curves in the plane.
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are also available for them. These results are usually parameterized by the depth of the arrangement
or by the area of the separator and the components [3,12,25]. The following recent result provides
a small separator for general intersection graphs of bounded density.

Theorem 2 (Lemma 2.21 in [15]). Let U be a set of n objects in R2 with density ρ. In O(n) expected
time, we can find a circle S such that S intersects at most c

p
ρn objects of U , the exterior of S contains

at most αn elements of U , and the interior of S contains at most αn elements of U . Here 0 < c and
0< α < 1 are universal constants, independent of ρ and n.

The proof of Theorem 2 goes roughly as follows: Pick a point in each object of U , compute
the smallest circle S′ (or an approximation thereof) that contains, say, n/20 points, and then take
a concentric scaled copy S of S′, with scale factor uniformly at random in [1,2]. With constant
probability, the circle S′ has the desired property. This can be checked easily in linear time by
determining which objects of U are inside, outside, or intersected by S. In expectation, a constant
number of repetitions is needed to obtain the desired circle.

A family G of graphs is hereditary if for every G ∈G, it holds that all subgraphs H of G are also
in G. By definition, our family Gρ of subgraphs of geometric intersection graphs with density ρ is
hereditary. A graph G is δ-sparse if every subgraph H of G has at most δ|V (H)| edges. Lemma 1
implies that all graphs in Gρ are ρ-sparse.

Consider a graph G and a vertex v of G. A vertex split at v consists of adding a pendant 2-path
vv′v′′, where v′ and v′′ are new vertices, and possibly replacing some edges uv incident to v by new
edges uv′′; see Figure 1 for a sequence of splits. We note that a vertex split may not replace any
edges. In this case, we are just adding a pendant path of length 2.

Let G′ be a graph obtained from G by a sequence of k vertex splits. Then, the size of a maximum
matching in G′ is the size of a maximum matching in G plus k. Furthermore, from a maximum
matching in G′, we can easily obtain a maximum matching in G in O(|V (G)|+ |E(G)|+ k) time. We
will use vertex splits to ensure that the resulting graphs have bounded degree and a vertex set of
a certain cardinality. (A vertex split may change the density, but that will not be important.) Note
that if we perform a vertex split at v in a graph of Gρ, in general we obtain a graph of Gρ+2 because
we can represent it by making two new copies of the object corresponding to v. Nevertheless, this
increase in the density will not be problematic in our algorithm.

3 Maximum matching in low-density geometric intersection graphs

3.1 Separators and separator trees

A graph G has a (k,α)-separation if V (G) can be partitioned into three pairwise disjoint sets X , Y, Z
such that |X ∪ Z | ≤ α|V |, |Y ∪ Z | ≤ α|V |, |Z | ≤ k, and such that there is no edge with one endpoint
in X and one endpoint in Y . We say that Z separates X and Y . At the cost of making the constant α
larger, we can restrict our attention to graphs of a certain minimum size.

Theorem 2 gives a (cpρn,α′)-separation for every graph of Gρ, for some constant α′ < 1. (A
separator in GU is a separator in each subgraph of GU .) Furthermore, such a separation can be
computed in expected linear time, if the objects defining the graph are available.

A recursive application of separations can be represented as a binary rooted tree. We will use
so-called (weak) separator trees, where the separator does not go into the subproblems. In such a
tree, we store the separator at the root and recurse on each side to obtain the subtrees. We want
to have small separators and balanced partitions at each level of the recursion, and we finish the
recursion when we get to problems of a certain size. This leads to the following definition. Let γ > 0,
0< β < 1, and 0< α < 1 be constants. We say that a graph G has a (γ,β ,α)-separator tree if there
is a rooted binary full tree T with the following properties:

• (i) Each node t ∈ T is associated with some set Zt ⊆ V (G).
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• (ii) The sets Zt , t ∈ T , partition V (G), i.e.,
⋃

t∈T Zt = V (G), and Zt ∩ Zt ′ = ;, for distinct
t, t ′ ∈ T .

• (iii) For each node t ∈ T , let Vt =
⋃

s Zs, where s ranges over the descendants of t (including
t). Note that if t is an internal node with children u and v, then Vt is the disjoint union of Zt ,
Vu, and Vv . If t is a leaf, then Vt = Zt .

• (iv) For each internal node t ∈ T with children u and v, (Vu, Vv , Zt) is a (γmβ ,α)-separation
for G[Vt], the subgraph of G induced by Vt , where m= |Vt |= |Zt |+ |Vu|+ |Vv|.

• (v) For each leaf t ∈ T , we have |Vt | ≤ Θ(γ1/(1−β)). We have chosen the size so that Vt is a
(γ|Vt |β ,α)-separator for the whole induced subgraph G[Vt].

Yuster and Zwick [34] provide an algorithm that computes a separator tree of some split graph
for a given graph from an H-minor-free family. As Alon and Yuster [4, Lemma 2.13] point out, this
algorithm actually works for any δ-sparse hereditary graph family, as long as δ is constant. Thus,
the result applies to Gρ. We revise the construction to make the dependency on ρ explicit.

Lemma 3. Given a graph G of Gρ with n vertices, we can compute in O(ρn log n) expected time a
vertex-split graph G′ of G and a separator tree T ′ for G′ with the following properties:

• (i) the graph G′ has Θ(ρn) vertices and edges;

• (ii) the maximum degree of G′ is at most 4;

• (iii) T ′ is a (γ = O(ρ),β = 1/2,α)-separator tree for G′, where α < 1 is a constant (independent
of ρ and n).

Proof. We adapt the construction of Yuster and Zwick [34, Lemma 2.1], with three main changes:
First, Yuster and Zwick assume (·,α= 2/3)-separations, but this specific value of α is not needed.
Second, we make “dummy additions” of vertices to obtain a more balanced separation, which we
later use as a black box. (Otherwise, we would get a (·, ·, O(1/ρ))-separator tree, and we would have
to analyze the tree more carefully to obtain the same final result.) Third, we work out the constants
in the analysis to understand the dependency on the density ρ.

We proceed recursively. Consider an m-vertex graph G ∈Gρ that appears during the recursion.
If m≤ Cρ, where C is a sufficiently large constant, we make a sequence of vertex splits to reduce the
maximum degree to three. This may increase the number of vertices. To ensure that this number is
uniform, we add a (possibly empty) pendant path of even length until we get the maximum possible
number of Θ(ρ2) vertices. The resulting separator tree T ′ consists of a single node.

Now suppose that m > Cρ. Using Theorem 2, we get a (cpρm,α)-separation (X , Y, Z) of G.
Thus, |Z | ≤ c

p
ρm. Yuster and Zwick [34, Lemma 2.1] explain how to make vertex splits at the

vertices of Z and how to redefine the separation so that the vertices of the separator have maximum
degree three. See Figure 1 for how to split a vertex v ∈ Z . After making the vertex splits of Figure 1
in all vertices of Z , we get a split graph G∗ of G and a separation (X ∗, Y ∗, Z∗) with

• |X | ≤ |X ∗| ≤ |X |+ |Z | ≤ αm,

• |Y | ≤ |Y ∗| ≤ |Y |+ |Z | ≤ αm,

• |Z∗| ≤ 4 · |Z |+ 6 · |E(G[Z])| ≤ (4+ 6ρ)|Z |= O(ρ3/2m1/2) (by Lemma 1),

• vertices of Z∗ have degree at most 3 in G∗,

• G∗[X ∗] and G∗[Y ∗] are isomorphic to subgraphs of G, i.e., G∗[X ∗] is isomorphic to G[X ∪ Z]
minus the edges of G[Z], and G∗[Y ∗] is isomorphic to G[Y ∪ Z] minus the edges of G[Z].
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NG(v)∩ X
NG(v)∩ Y

NG(v)∩ Z

Y

u2 u3 u4

X

Z

u1

X ∗

vyv

Z∗

Y ∗

u2 u3 u4u1

NG∗(vy)∩ Y ∗

vx

NG∗(vx)∩ X ∗

Figure 1: Splitting one single vertex of Z .

We recurse on G[X ∗] and G[Y ∗], each of which lies in Gρ, as it is (isomorphic to) a subgraph of
G. In particular, the density of the graphs encountered during the recursion does not increase. The
recursive call on G∗[X ∗] yields a graph G′X and a tree T ′X , and the recursive call on G∗[Y ∗] yields a
graph G′Y and a tree T ′Y , both with the properties given in the theorem. Let G′ be the graph obtained
by putting together G∗[Z∗], G′X , and G′Y . If some vertex degree gets larger than four, we can make a
vertex split there. There are at most |Z∗| such vertex splits. A separator tree T ′ for G′ is constructed
by making a root for Z∗ and making the roots of T ′X and T ′Y its two children. Adding a pendant
path of even length to G∗[Z∗], if needed, we ensure that |Z∗|= Θ(ρ|Z |), the maximum number of
possible vertices after the splits (we again denote the resulting vertex set by Z∗).

For a graph G with m vertices considered during the recursion, by Theorem 2, we spend Θ(m) ex-
pected time to find the separation (X , Y, Z). Then, we construct the induced graph G[Z] in O(ρ|Z |) =
O(ρ3/2m1/2) time. The transformation from G to G∗ can be done in O(ρ|Z |) = O(ρ3/2m1/2) time.
Finally, when we may add vertices to |Z∗|, we spend Θ(ρm) time. Standard tools to analyze recur-
sions imply that the expected running time is distributed evenly over the O(log n) levels of the tree.
Thus, the expected total running time is O(ρn log n).

It is easy to see that the number of vertices of G′ is Θ(ρm) because G′X has Θ(ρ|X ∗|) vertices, G′Y
has Θ(ρ|Y ∗|) vertices, and G[Z∗] has Θ(ρ|Z |) vertices. Since G′ has bounded maximum degree, it
also has Θ(ρm) edges. Furthermore, (V (G′X ), V (G′Y ), Z∗) is a separation of G′. Since G′ has Θ(ρm)
vertices, G′X has Θ(ρ|X ∗|) = Θ(ρ|X |) vertices, and (X , Y, Z) is separation of G, |V (G′X )| ≤ α

′m for
some constant α′ < 1. The same argument applies to |V (G′Y )|. Since

|Z∗|= Θ(ρ|Z |) = O(ρ
p
ρm) = Θ(ρ

Æ

|V (G′)|),

it follows that T ′ is a (O(ρ),β = 1/2,α′)-separator tree.

Note that the split graph G′ in Lemma 3 is not necessarily inGρ. It is a subgraph of an intersection
graph, but since we introduce copies of geometric objects when we split vertices, the density increases.
In any case, this does not matter because G′ will be accessed through the separator tree T ′.

3.2 Nested dissection

We will need to compute with matrices. The arithmetic operations take place in Zp, where p = Θ(n4)
is prime. Thus, we work with numbers of O(log n)-bits, and we simply need to bound the number of
arithmetic operations. Using a word-RAM model of computation, each arithmetic operation needs
constant time.

Let A be an n× n matrix. A Gaussian elimination step on row i is the following operation: for
j = i + 1, . . . , n, add an appropriate multiple of row i to row j so that the element at position ( j, i)
becomes 0. Elimination on row i can be performed if the entry at position (i, i) is nonzero. Gaussian
elimination on A consists of performing Gaussian elimination steps on rows i = 1, . . . , n− 1. This is

7



equivalent to computing an LU decomposition of A, where L is a lower triangular matrix with units
along the diagonal, and U is an upper triangular matrix. Gaussian elimination is performed without
pivoting if, for all i, when we are about to do a Gaussian elimination step on row i, the entry at
position (i, i) is non-zero. If Gaussian elimination is performed without pivoting, then the matrix is
non-singular. (Pivoting is permuting the rows to ensure that the entry at position (i, i) is non-zero.)

Let [n] = {1, . . . , n}. The representing graph G(A) of an n× n matrix A= (ai, j)i, j∈[n] is

G(A) =
�

[n],
§

i j ∈
�

[n]
2

�

�

�ai, j 6= 0 or a j,i 6= 0
ª�

.

Let T be a separator tree for G(A). The row order of A is consistent with T if, whenever t ′ is an
ancestor of t, all the rows of Zt are before any row of Zt ′ . We may assume that all the rows of Zt are
consecutive. In particular, if the rows are ordered according to a post-order traversal of T , then the
row order of A is consistent with T . A careful but simple revision of the nested dissection algorithm
by Gilbert and Tarjan [14] leads to the following theorem.

Theorem 4. Let A be an n× n matrix such that the representing graph G(A) has bounded degree and
assume that we are given a (γ,β ,α)-separator tree T for G(A), were γ > 0, 0< α < 1, and 1/2< β < 1
are constants. Furthermore, assume that the row order of A is consistent with T and that Gaussian
elimination on A is done without pivoting. We can perform Gaussian elimination (without pivoting) on
A and find a factorization A= LU of A in O(γωnβω) time, where L is a lower triangular matrix with
units along the diagonal and U is an upper triangular matrix.

For the proof of Theorem 4, we will need the following folklore lemma, whose proof we include
for completeness.

Lemma 5. Let A be an n × n matrix, and k ≤ n. Suppose that Gaussian elimination on the first k
rows of A needs no pivoting. Then, we can perform Gaussian elimination on the first k rows of A with
O(n2kω−2) arithmetic operations.

Proof. Computing the inverse or performing Gaussian elimination for a k × k matrix takes O(kω)
time (even if pivoting is needed), see, e.g., Bunch and Hopcroft [6], and Ibarra, Moran, and Hui [17].
Assume that

A =

































A1,1 A1,2

A2,1 A2,2

































,

where A1,1 is k× k and A2,2 is (n− k)× (n− k). We want to perform Gaussian elimination without
pivoting for the first k rows.

First, we perform Gaussian elimination on the k× k matrix A1,1. This takes O(kω) time, and we
obtain two k× k matrices L and U such that A1,1 = LU , the matrix L is lower triangular with units
along the diagonal, and the matrix U is upper triangular. Since we use no pivoting, L and U are
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non-singular. We also compute in O(kω) time the inverses (A1,1)−1, L−1, and U−1. Then, we have

A =

































L 0k×(n−k)

A2,1U−1 I(n−k)×(n−k)

































































U L−1A1,2

0(n−k)×k A2,2−A2,1(A1,1)−1A1,2

































,

which means that the second matrix on the right side is the result of making Gaussian elimination
for the first k rows of A. The products A2,1U−1, L−1A1,2, and A2,1(A1,1)−1A1,2 can be computed in
O(n2kω−2) time by making at most O(n2/k2) products of submatrices of size k× k.

Proof of Theorem 4. We assume that the reader is familiar with some of the previous work on nested
dissection to compute elimination orders for Gaussian elimination [14,21]. Set G = G(A). For each
edge i j of G, if i ∈ Zt and j ∈ Zt ′ , then either t = t ′ or t and t ′ have an ancestor-descendant relation
in T .

For each node t of T , we eliminate all rows in Zt together, using block Gaussian eliminations.
Since the row order is consistent with T , we have already eliminated all the rows of Vt \ Zt , and we
have not yet eliminated any row of Zt ′ , for any ancestor t ′ of t.

For each node t of T , let Bt be the set of vertices j that belong to some Zt ′ , where t ′ is an ancestor
of t in T , such that there is an edge from j to some vertex of Vt . A vertex j of G(A) is affected by
the elimination steps on the rows of Zt only if j belongs to Zt or to Bt . Thus, performing Gaussian
elimination steps on the rows of Zt affects at most |Zt |+ |Bt | rows and columns. Eliminating the
rows of Zt affects the rows of Bt . However, when processing node t, we do not yet perform any
elimination steps on the rows of Bt . Thus, we consider the submatrix with indices in Zt ∪ Bt , and we
perform the elimination steps only on the rows of Zt . By Lemma 5, this takes O((|Zt |+ |Bt |)2|Zt |ω−2)
time. It follows that the running time of the whole algorithm is

∑

t∈T

O
�

(|Zt |+ |Bt |)2|Zt |ω−2
�

=
∑

t∈T

O(|Zt |ω) +
∑

t∈T

O(|Bt |2|Zt |ω−2). (2)

Since |Zt | ≤ γ|Vt |β , the first sum is bounded as follows:
∑

t∈T

|Zt |ω ≤
∑

t∈T

γω|Vt |βω = γω ·
∑

t∈T

|Vt |βω = O(γω · nβω), (3)

where in the last step we have used the assumption βω > 1.
To bound the second sum, we first analyze Σ =

∑

t∈T |Bt |2. For this, we follow Gilbert and
Tarjan [14] almost verbatim. Let L` be the nodes of T at level ` and define Σ` =

∑

t∈L`
|Bt |2. (The

root is at level 0.) Fix a level ` > 0. The sum Σ` is maximized if for each node t ′ at level `′ < `,
all the edges with an endpoint in t ′ and an endpoint at level at least ` are incident to the same
subgraph G[Vt] of t ∈ L`. That is, to bound Σ`, we can assume that all the edges incident to Zt ′

contribute to the same Bt , t ∈ L`. For each t ∈ L`, let s(t) be the highest node of T with an edge
going to Vt . Because of the assumption we made, the mapping t 7→ s(t) (from L` to ∪`′≤`L`′) is
injective. If s(t) = t0, t1, . . . , ta = t is the path in T from s(t) to t, then we have |Vt i

| ≤ αi|Vs(t)| for
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each i = 0, . . . , a. Using that each vertex of each Zt i
has bounded degree, we get

|Bt | ≤
a
∑

i=0

O(1) · |Zt i
| ≤ O(1) ·

a
∑

i=0

γ|Vt i
|β ≤ O(γ) ·

a
∑

i=0

(αi|Vs(t)|)β

≤ O(γ · |Vs(t)|β) ·
a
∑

i=0

(αβ)i ≤ O(γ · |Vs(t)|β) ·O(1) ≤ O(γ · |Vs(t)|β).

Since the map t 7→ s(t) is an injection (when t ∈ L`), we have

Σ` =
∑

t∈L`

|Bt |2 ≤
∑

t∈L`

O
�

γ2 · |Vs(t)|2β
�

≤
∑

s∈∪`′≤`L`′
O
�

γ2 · |Vs|2β
�

= O(γ2 · ` · n2β),

where in the last step we have used that the sets Vs, s ∈ L`′ , are pairwise disjoint subsets of [n] for each
level `′, and 2β ≥ 1. For each ` and each t ∈ L`, we have |Vt | ≤ α`n and therefore |Zt | ≤ γ(α`n)β .
This implies that

∑

t∈L`

|Bt |2|Zt |ω−2 ≤
∑

t∈L`

|Bt |2
�

γ
�

α`n
�β
�ω−2

= γω−2 · (α`n)β(ω−2) ·
∑

t∈L`

|Bt |2

≤ γω−2 · (α`n)β(ω−2) ·O(γ2 · ` · n2β) = O(γω · nβω ·α``).

Since
∑

`≥0α
`` converges because 0< α < 1, we get that

∑

t∈T

|Bt |2|Zt |ω−2 =
∑

`≥0

∑

t∈L`

|Bt |2|Zt |ω−2 ≤
∑

`≥0

O(γω · nβω ·α``) = O(γω · nβω).

Combining it with (3), we get from (2) that the total running time is O(γω · nβω).

Remark 1: Mucha and Sankowski [27] noted that the result holds when G(A) is planar or, more
generally, has recursive separators, using the approach by Lipton, Rose, and Tarjan [21] for nested
dissection. This approach is based on the strong separator tree. Alon, Yuster, and Zwick [4, 34]
showed that a similar result holds for graphs of bounded degree with recursive separators if one
instead uses the nested dissection given by Gilbert and Tarjan [14]. In this case, we need bounded
degree, but a weak separator tree suffices. Again, since we want to make the dependency on ρ
explicit and since the analysis in terms of matrix multiplication time does not seem to be written
down in detail anywhere, we revise the method carefully.
Remark 2: Usually, the result is stated for symmetric positive definite matrices. Reindexing a symmet-
ric positive definite matrix gives another symmetric positive definite matrix, and Gaussian elimination
on such matrices can always be performed without pivoting. Thus, for positive semidefinite matrices,
we do not need to assume that the row order is consistent with T because we can reorder the rows
to make it consistent with T . However, Mucha and Sankowski [27] do need the general statement in
their Section 4.2, and they mention this general case after their Theorem 13. Actually, they need it
over Zp, where the concept of positive definiteness is not even defined!

3.3 The algorithm

Assume we have a graph G of Gρ with n vertices and a geometric representation, i.e., geometric
objects U of density at most ρ such that G is a subgraph of GU . We want to compute a maximum
matching for G. For this, we adapt the algorithm of Mucha and Sankowski [27]. We provide an
overview of the approach, explain the necessary modifications, and emphasize the dependency on ρ
in the different parts of the algorithm.

Using Lemma 3, we get in O(ρn log n) expected time a vertex-split graph G′ of G and a separator
tree T ′ for G′ such that
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• (i) the graph G′ has Θ(ρn) vertices and edges;

• (ii) the maximum degree of G′ is at most 4;

• (iii) T ′ is a (γ = O(ρ),β = 1/2,α)-separator tree for G′, where α < 1 is a constant (independent
of ρ and n).

Since G′ is obtained from G by vertex splits, it suffices to find a maximum matching in G′. We
set m = |V (G′)| = Θ(ρn), and we label the vertices of G′ from 1 to m. We consider the variables
X = (x i j)i j∈E(G′); i.e., each edge i j of G defines a variable x i j . Consider the m×m symbolic matrix
A[X ] = A[X ](G′), defined as follows:

(A[X ])i, j =











x i j , if i j ∈ E(G′) and i < j,

−x i j , if i j ∈ E(G′) and j < i,

0 otherwise.

The symbolic matrix A[X ] is usually called the Tutte matrix of G′. It is known [29] that the rank of
A[X ] is twice the size of the maximum matching in G′. In particular, G′ has a perfect matching if
and only if det(A[X ]) is not identically zero. Take a prime p = Θ(n4), and substitute each variable in
A[X ] with a value from Zp, each chosen independently uniformly at random. Let A be the resulting
matrix. Then, with high probability, rank(A) = rank(A[X ]), where on both sides we consider the
rank over the field Zp.

From maximum matching to perfect matching. Let B = AAT . Then, B is symmetric, and the rank
of B equals the rank of A. Note that (B)i, j is nonzero only if i and j share a neighbor in G′. Since
G′ has bounded degree, from the separator tree T ′ for G′, we can obtain a separator tree TB for
the representing graph G(B). Since T ′ was a (γ = O(ρ),β = 1/2,α)-separator tree for G′, TB is a
(γ= O(ρ),β = 1/2,α)-separator tree for G(B), where the constant hidden in O(ρ) is increased by
the maximum degree in G′. Using Theorem 4, we obtain that Gaussian elimination can be done in B
in O(γωmω/2) = O(ρω(ρn)ω/2) = O(ρ3ω/2nω/2) time, assuming that pivoting is not needed.

Mucha and Sankowski [27, Section 5] show how Gaussian elimination without pivoting can be
used in B to find a collection of indices W ⊆ [m] such that the centered matrix (B)W,W , defined by rows
and columns of B with indices in W , has the same rank as B. It follows that rank(AW,W ) = rank(BW,W )
and therefore G′[W ] contains a maximum matching of G′ that is a perfect matching in G′[W ] (with
high probability). The key insight to find such W is that, if during Gaussian elimination in B we run
into a 0 along the diagonal, then the whole row and column are 0, which means that they can be
removed from the matrix without affecting the rank. We summarize.

Lemma 6. In time O(ρ3ω/2nω/2)we can find a subset W of vertices of G′ such that, with high probability,
G′[W ] has a perfect matching that is a maximum matching in G′.

From now on, we can assume that G′ has a perfect matching. We keep denoting by T ′ its
separator tree, by A the matrix after substituting values of Zp into A[X ], and by B the matrix AAT .
(We can compute the tree T ′ anew or we can reuse the same separator tree restricted to the subset
of vertices.) Let Zr denote the set stored at the root r of T ′. Thus, Zr is the first separator on G′.
Let Nr be the set Zr together with its neighbors in G′. Because G′ has bounded degree, we have
|Nr |= O(|Zr |) = O(ρm1/2) = O(ρ3/2n1/2).

Mucha and Sankowski show how to compute with O(1) Gaussian eliminations a matching M ′

in G′ that covers all the vertices of Zr and is contained in some perfect matching of G′. There are
two ingredients for this. The first ingredient is to use Gaussian elimination on the matrix B = AAT

to obtain a decomposition AAT = LDLT , and then use (partial) Gaussian elimination on a matrix C
composed of L[m],Nr

and ANr ,[m]\Nr
to compute (A−1)Nr ,Nr

. (Note that in general (A−1)Nr ,Nr
is different

from (ANr ,Nr
)−1. Computing the latter is simpler, while computing the former is a major insight by
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Mucha and Sankowski [27, Section 4.2].) Interestingly, T ′ is also a separator tree for the representing
graph of this matrix C , and Gaussian elimination can be performed without pivoting. Thus, we
can obtain in O(ρωmω/2) = O(ρ3ω/2nω/2) time the matrix (A−1)Nr ,Nr

. The second ingredient is
that, once we have (A−1)Nr ,Nr

, we can compute for any matching M ′ contained in G′[Nr] a maximal
(with respect to inclusion) submatching M ′ that is contained in a perfect matching of G′. This is
based on an observation by Rabin and Vazirani [29] that shows how to find edges that belong to
some perfect matching using the inverse matrix, and Gaussian elimination on the matrix (A−1)N ,N to
identify subsets of edges that together belong to some perfect matching. The matrix (A−1)Nr ,Nr

is not
necessarily represented by a graph with nice separators, but it is of size |Nr | × |Nr |. Thus, Gaussian
elimination in (A−1)Nr ,Nr

takes O(|Nr |ω) = O(ρ3ω/2nω/2) time [27, Section 2.4].
Since the graph G′ has bounded maximum degree, making O(1) iterations of finding a maximal

matching M ′ in G′[Nr], followed by finding a maximal subset M ′′ of M ′ contained in a perfect
matching of G′, and removing the vertices contained in M ′ plus the edges of M ′ \ M ′′, gives a
matching M∗ that covers Zr and is contained in a perfect matching of G′; see [27, Section 4.3]. The
vertices of M∗ can be removed, and we recurse on both sides of G′ − V (M∗) ⊂ G′ − Zr using the
corresponding subtrees of T ′. The running time is T(n) = O(ρ3ω/2nω/2) + T(n1) + T(n2), where
n1, n2 ≤ αn. This solves to T (n) = O(ρ3ω/2nω/2) because ω/2> 1. We summarize in the following
result. If only the family U is given, first we use Lemma 1 to construct GU .

Theorem 7. Given a graph G of Gρ with n vertices together with a family U of geometric objects with
density ρ such that G is a subgraph of GU , we can find in O(ρ3ω/2nω/2) time a matching in G that,
with high probability, is maximum. In particular, for a family U of n geometric objects with density ρ,
a maximum matching in GU can be found in O(ρ3ω/2nω/2) time. The same holds for the bipartite or
k-partite version of GU .

4 Sparsification

Let U be a family of convex geometric objects in the plane such that each object of U contains a
square of side length 1 and is contained in a square of side length Ψ ≥ 1. Through the discussion
we will treat Ψ as a parameter. Our objective is to reduce the problem of computing a maximum
matching in the intersection graph GU to the problem of computing a maximum matching in GW for
some W ⊆U of small depth.

Let P = Z2 be the points in the plane with integer coordinates. Each square of unit side length
contains at least one point of P and each square of side length Ψ contains at most (1+Ψ)2 = O(Ψ2)
points of P. In particular, each object U ∈ U contains at least one and at most O(Ψ2) points from P.

First we provide an overview of the idea. The objects intersected by a point p ∈ P define a clique,
and thus any even number of them defines a perfect matching. We show that, for each p ∈ P, it
suffices to keep a few objects pierced by p, and we show how to obtain such a suitable subfamily.
The actual number of objects to keep depends on Ψ, and whether the actual computation can be
done efficiently depends on the geometric shape of the objects.

For each object U ∈ U , we find the lexicographically smallest point in P ∩U . We assume that we
have a primitive operation to compute P ∩ U for each object U ∈ U in O(1+ |P ∩ U |) = O(Ψ2) time.
A simple manipulation of these incidences allows us to obtain the clusters

Up = {U ∈ U | p lexicographically minimum in P ∩ U}, for all p ∈ P.

Note that the clusters Up, for p ∈ P, form a partition of U . This will be useful later. Clearly, the
subgraph of GU induced by Up is a clique, for each p ∈ P.

We will use the usual notation

E(Up,Uq) = {UV | U ∈ Up, V ∈ Uq, U ∩ V 6= ;} ⊆ E(GU ).
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The pattern graph H = H(P,Ψ) has vertex set P and set of edges

E(H) = {pq | ‖p− q‖∞ ≤ 2Ψ} ⊆
�

P
2

�

.

The use of the pattern graph is encoded in the following property: if U ∈ Up, V ∈ Uq and U ∩ V 6= ;,
then pq ∈ E(H). Indeed, if U and V intersect, then the union U ∪ V is contained in a square of side
length 2Ψ, and thus the L∞-distance between each p ∈ P ∩ U and q ∈ P ∩ V is at most 2Ψ.

The definition of H(P,Ψ) implies that the edge set of GU is the disjoint union of E(Up,Uq), over
all pq ∈ E(H), and the edge sets of the cliques GUp

, over all p ∈ P. Thus, whenever pq /∈ E(H), there
are no edges in E(Up,Uq).

Let λ be the maximum degree of H. Note that λ= O(Ψ2). The value of λ is an upper bound on
how many clusters Uq may interact with a single cluster Up. We will use λ as a parameter to decide
how many objects from each Up are kept. We start with a simple observation.

Lemma 8. There exists a maximum matching in GU that, for all pq ∈ E(H), contains at most one edge
of E(Up,Uq).

Proof. Let M be a maximum matching in GU such that
∑

pq∈E(H) |M ∩ E(Up,Uq)| is minimum.
Suppose there is an edge p0q0 ∈ E(H) with |M ∩ E(Up0

,Uq0
)| ≥ 2. Then we have two edges UV and

U ′V ′ in M ∩ E(Up0
,Uq0

), where U , U ′ ∈ Up0
and V, V ′ ∈ Uq0

. Since UU ′ and V V ′ are also edges in
GU , we see that M ′ =

�

M \ {UV, U ′V ′}
�

∪ {UU ′, V V ′} is a maximum matching in GU . We then have

|M ′ ∩ E(Up0
,Uq0

)| = |M ∩ E(Up0
,Uq0

)| − 2,

and
|M ′ ∩ E(Up,Uq)| = |M ∩ E(Up,Uq)|, for all pq ∈ E(H), pq 6= p0q0.

In this last statement, it is important that Up, p ∈ P, is a partition of U , as otherwise UU ′ could
belong to some E(Up,Uq) or even E(Up0

,Uq0
). Hence,

∑

pq∈E(H) |M
′ ∩ E(Up,Uq)| is strictly smaller

than
∑

pq∈E(H) |M ∩ E(Up,Uq)|, a contradiction to our choice of M . The result follows.

Of course we do not know which object from the cluster Up will interact with another cluster
Uq. We will explain how to get a large enough subset of cluster Up.

For each pq ∈ E(H), we construct a set W (p, q) ⊆ Up ∪Uq as follows. First, we construct a
matching M = M(p, q) in E(Up,Uq) such that M has 2λ+1 edges or M has fewer than 2λ+1 edges
and is maximal in E(Up,Uq). For example, such a matching can be constructed incrementally. If M
has 2λ+ 1 edges, we take W (p, q) to be the endpoints of M . Otherwise, for each endpoint U ∈ Up
(resp. V ∈ Uq) of M , we place U (resp. V ) and λ of its neighbors from Uq (resp. Up) into W (p, q).
When U (resp. V ) has fewer than λ neighbors, we place all its neighbors in W (p, q). This finishes
the description of W (p, q); refer to Algorithm Sparsify-one-edge in Figure 2 for pseudo-code.

Lemma 9. A maximum matching in

G̃ =

 

⋃

pq∈E(H)

GW (p,q)

!

∪

�

⋃

p∈P
GUp

�

.

is a maximum matching in GU .

Proof. By Lemma 8, there is a maximum matching M in GU such that for each pq ∈ E(H), the
matching M contains at most one edge from E(Up,Uq). Among all such maximum matchings, we
choose one matching M that minimizes the number of edges pq ∈ E(H) for which M contains an
edge in E(Up,Uq) that does not have both vertices in W (p, q). If there is no such edge p0q0 ∈ E(H),
then the lemma holds because such M is contained in G̃. We show that this is the only possible case.

Suppose, for the sake of reaching a contradiction, that there exists p0q0 ∈ E(H) such that M
contains an edge UV with U ∈ Up0

, V ∈ Uq0
, and {U , V} 6⊂ W (p0, q0). Let M ′ be the set of edges

from M connecting different clusters, i.e., M ′ = M ∩
�

∪pq∈E(H)E(Up,Uq)
�

. Let M(p0, q0) be the
matching in E(Up0

,Uq0
) used during the construction of W (p0, q0). We distinguish two cases:
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Algorithm Sparsify-one-edge
Input: p, q, Up and Uq
Output: W (p, q)
1. Ap←Up
2. Aq←Uq
3. (∗ compute matching M ∗)
4. M ← ;
5. while |M |< 2λ+ 1 andAp 6= ; do
6. U ← an arbitrary object ofAp
7. if U intersects some V ∈Aq then
8. M ← M ∪ {UV}
9. Aq←Aq \ {V}
10. Ap←Ap \ {U}
11. (∗ end of computation of M ∗)
12. W ←∪UV∈M{U , V} (∗ endpoints of M ∗)
13. if |M |= 2λ+ 1 then (∗ M large enough matching ∗)
14. return W
15. else (∗ M maximal but small; add neighbors of W to the output ∗)
16. W ′←W
17. for W ∈W do
18. if W ∈ Up then
19. add to W ′ min{λ, |E({W},Uq)|} elements of Uq intersecting W
20. else (∗ W ∈ Up ∗)
21. add to W ′ min{λ, |E(Up, {W})|} elements of Up intersecting W
22. return W ′

Figure 2: Algorithm Sparsify-one-edge
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• |M(p0, q0)| = 2λ+ 1. Let NH(p) be the neighbors of p in H. Since M has at most one edge
from E(Up,Uq), for each pq ∈ E(H), we obtain that M ′ has at most λ edges with an endpoint
in Up0

and at most λ edges with an endpoint in Uq0
, as λ is the maximum degree of H. Thus,

M(p0, q0) contains at least one edge U ′V ′ whose endpoints are not touched by M ′. We remove
from M the edge UV and add the edge U ′V ′. If there was some edge U ′U ′′ ∈ M ∩ E(Up0

,Up0
),

we also replace U ′U ′′ by UU ′′ in M . If there was some edge V ′V ′′ ∈ M ∩ E(Uq0
,Uq0

), we also
replace V ′V ′′ by V V ′′ in M .

• |M(p0, q0)≤ 2λ. In this case, M(p0, q0) is a maximal matching in E(Up0
,Uq0

). In particular,
one of U or V is covered by M(p0, q0), as otherwise we could have added UV to M(p0, q0).
We consider the case when U ∈ Up0

is covered by M(p0, q0); the other case is symmetric.
Then U ∈W (p0, q0), V 6∈ W (p0, q0), and it follows that U has more than λ neighbors in Uq0

.
Among the at least λ neighbors of U in W (p0, q0), at most λ− 1 are covered by edges in M ′.
(Note that V is covered by M ′, but V is not in W (p0, q0).) This means that there is some
V ′ ∈ Uq0

∩W (p0, q0) such that V ′ is not covered by M ′ and UV ′ ∈ E(Up0
,Uq0

). We replace in
M the edge UV by UV ′. Moreover, if V ′V ′′ is an edge of M , where necessarily V ′′ ∈ Uq0

, we
replace in M the edge V ′V ′′ by V V ′′.

In both cases, we can transform the maximum matching M into another maximum matching that
contains one edge with both endpoints inW (p0, q0), no other edges of E(Up0

,Uq0
)\E(GW (p0,q0)), and

the intersection of M with E(Up,Uq) has not changed, for all pq ∈ E(H) \ {p0q0}. This contradicts
the choice of M , and the lemma follows.

Lemma 10. The family of objects W = ∪pq∈E(H)W (p, q) has depth O(Ψ8).

Proof. Each W (p, q) has O(λ2) elements, as the matching M(p, q) used for the construction of
W (p, q) has O(λ) edges, and each such edge may add O(λ) more vertices to W (p, q). It follows that,
for each p ∈ P, the family W contains at most

∑

q∈NH (p)

|W (p, q)| ≤ λ ·O(λ2) ≤ O(Ψ6)

objects from Up. In short, |W ∩Up|= O(Ψ6), for each p ∈ P.
Fix a point z ∈ R2. Let s be a unit square that contains z and whose corners lie in P. For every

object U ∈W with z ∈ U , there is a square of side length Ψ that contains U and at least one corner
of s. Thus, each object U of W with z ∈ U belongs to Up, for some p ∈ P at L∞-distance at most
1+Ψ from z. It follows that z can only be contained in objects of Up for O(Ψ2) points p ∈ P, so the
depth of z in W is at most

∑

p∈P,‖z−p‖∞≤1+Ψ

|W ∩Up| ≤ O(Ψ2) ·O(Ψ6) = O(Ψ8).

Since z was arbitrary, the lemma follows.

Theorem 11. Let U be a family of n geometric objects in the plane such that each object of U contains
a square of side length 1 and is contained in a square of side length Ψ. Suppose that, for any m ∈ N
and for any p, q ∈ Z2 with |Up|+ |Uq| ≤ m, we can compute the sparsification W (p, q) as described
above in time Tspars(m), where Tspars(m) = Ω(m) is convex. In O(Ψ2 · Tspars(n)) time we can reduce the
problem of finding a maximum matching in GU to the problem of finding a maximum matching in GW
for some W ⊆U with maximum depth O(Ψ8).

Proof. For each pq ∈ E(H), we find the sparsificationW (p, q). Note that
∑

pq∈E(H)(|Up|+Uq|)≤ λn,
as each p contributes λ summands. Hence, the computation ofW (p, q), for all pq ∈ E(H), takes time

∑

pq∈E(H)

O(Tspars(|Up|+Uq|)) = O(λTspars(n)) = O(Ψ2 · Tspars(n)).
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Consider the family W = ∪pq∈E(H)W (p, q). By Lemma 10, the family W has depth O(Ψ8). By
Lemma 9, it suffices to find a maximum matching in

G̃ =

 

⋃

pq∈E(H)

GW (p,q)

!

∪

�

⋃

p∈P
GUp

�

,

which is a subgraph of

GW ∪

�

⋃

p∈P
GUp

�

. (4)

Since each GUp
is a clique and the vertices of Up \W are not adjacent to any vertex outside Up (in

the graph (4)), we can just take maximum matchings within each U ′p =Up \W . Here, we have to
take care of the parity, as one vertex of U ′p may be left unmatched in GU ′p , but may be matched to

some vertex of Up ∩W . To handle this, for each p ∈ P such that |U ′p| is odd, we move one element
ofU ′p toW . Thus, we can assume that |U ′p| is even, for all p ∈ P. The additional elements inW may

increase the depth of W by O(Ψ2), which is negligible. Now, a maximum matching (4) is obtained
by joining a maximum matching in GW with maximum matchings in GU ′p , p ∈ P. The maximum
matchings in GU ′p , p ∈ P, are trivial, because it is a clique on an even number of vertices. The result
follows.

Our use of properties in the plane is very mild, and similar results hold in any space with constant
dimension.

Theorem 12. Let d ≥ 3 be a constant. Let U be a family of n geometric objects in Rd such that each
object of U contains a cube of side length 1 and is contained in a cube of side length Ψ. Suppose that,
for any m ∈ N and for any p, q ∈ Zd with |Up|+ |Uq| ≤ m, we can compute the sparsification W (p, q)
as described above in time Tspars(m), where Tspars(m) = Ω(m) is convex. In O(Ψd · Tspars(n)) time we
can reduce the problem of finding a maximum matching in GU to the problem of finding a maximum
matching in GW for some W ⊆U with maximum depth (1+Ψ)O(d).

Proof. The pattern graph H can be defined for Zd also using the L∞-metric. Such pattern graph has
maximum degree O((1+Ψ)d) = O(Ψd). Lemmas 8 and 9 hold equally in this setting. Lemma 10
holds with an upper bound of (1+Ψ)O(d). The proof of Theorem 11 then applies.

As we mentioned in the introduction, for fat objects, bounded depth implies bounded density;
see Har-Peled and Quanrud [15, Lemma 2.7]. If a convex object contains a cube of unit side length
and is contained in a cube of side length Ψ, then it is O(1/Ψ)-fat; see van der Stappen et al. [31],
where the parameter 1/Ψ goes under the name of thickness. Combining both results, one obtains
that the relation between depth and density differs by a factor of Ψ. For fixed shapes, they depth and
density differ by a constant factor.

5 Efficient sparsification

Now, we implement Algorithm Sparsify-one-edge (Figure 2) efficiently. In particular, we must perform
the test in line 7 and find the neighbors in line 19 (and the symmetric case in line 21). The shape of
the geometric objects becomes relevant for this. First, we note that it suffices to obtain an efficient
semi-dynamic data structure for intersection queries.

Lemma 13. Suppose there is a data structure with the following properties: for any m ∈ N and for
any p, q ∈ Z2 with |Up| + |Uq| ≤ m, we can maintain a set Aq ⊆ Uq under deletions so that, for
any query U ∈ Up, we either find some V ∈ Aq with U ∩ V 6= ; or correctly report that no such
V exists. Let Tcon(m) be the time to construct the data structure, Tque(m) an upper bound on the
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amortized query time, and Tdel(m) be an upper bound on the amortized deletion time. Then, the
running time of Algorithm Sparsify-one-edge (Figure 2) for the input (p, q,Up,Uq) is Tsparse(m) =
O(Tcon(m) +mTque(m) +λ2Tdel(m)).

Proof. First, we discuss the operations in lines 5–10 in Algorithm Sparsify-one-edge (Figure 2). We
maintainAp as a linked list andAq in the data structure from the lemma. This takes O(Tcon(m))
time. Initially,Ap =Up andAq =Uq. In each iteration of the while-loop, we query with U to either
obtain some V ∈Aq intersected by U , or correctly report that no object ofAq intersects U . If we get
some V intersected by U , we remove V fromAq in O(Tdel(m)) time. (Note that we have removed at
most 2λ elements of Uq to obtain the currentAq.) In either case, we remove U fromAp, in O(1)
time. The running time for this part is O(mTque(m) +λTdel(m)).

Next, we discuss how to do line 19 in Algorithm Sparsify-one-edge (Figure 2). We storeAq =Uq
in the data structure from the lemma. For each W ∈W ∩Up, we repeatedly query the data structure
to find some V ∈Aq that intersects W , and we remove this V fromAq. We repeat this query-delete
pattern inAq with W , until we collect λ neighbors of W or until we run out of neighbors. Thus, the
query-deletion pattern happens at most λ times, for each W . Having collected the data for W , we
reverse all the deletions inAq, to obtain the original data structure forAq =Uq, and we proceed
to the next object of W ∩Up. (We do not need insertions, as it suffices to undo the modifications
that were made in the data structure.) In total, we repeat O(|W ∩Up|) = O(λ) times a pattern of
O(λ) queries and deletions followed by a reversal of all the operations. Thus, the running time is
Tcon(m) to construct the data and O(λ2Tque(m) +λ2Tdel(m)) to handle the operations on the data
structure. We can assume that λ2 ≤ m, as otherwise we do not need to run the sparsification and
can take directly the whole set of objects.

Line 21 in Algorithm Sparsify-one-edge (Figure 2) can be done in a similar way. The rest of the
algorithms are elementary steps and bookkeeping.

5.1 Disks in the plane

When U consists of disks in the plane, we can use the data structure of Kaplan et al. [19] to sparsify
an edge of the pattern graph. This leads to the following.

Proposition 14. Consider a family U of n disks in the plane with radii in [1,Ψ]. In O(Ψ6n log11 n)
expected time, we can reduce the problem of finding a maximum matching in GU to the problem of
finding a maximum matching in GW for some subfamily W ⊆U of disks with maximum depth O(Ψ8).

Proof. Kaplan et al. [19] describe a data structure for additively weighted nearest-neighbor queries:
maintain points A = {a1, . . . , an} ⊆ R2 in the plane, where each point ai has a weight ωi ∈ R
associated to it. The data structure can handle insertions, deletions, and closest point queries (for a
given x ∈ R2, return a point in argminai∈Aωi + |x − ai|) in O(log11 n) amortized expected time.6

This data structure can be used to dynamically maintain a setA = {D1, . . . , Dn} of disks so that,
for a query disk D, we can either report one disk ofA intersected D or correctly report that no disk
ofA intersects D. Indeed, we storeA as a set A of weighted points. Each disk Di is represented by
its center ai with weight equal its negated radius. For any point x in the plane, the closest weighted
point of A gives the first disk boundary that is touched by a growing disk centered at x . Thus, to
answer a query for a disk D, we query for the weighted point ai ∈ A closest to the center of D, and
then check whether D intersects Di . Updates and queries take O(log11 n) amortized expected time.

Using Lemma 13, we conclude that Tsparse(m) = O((m + λ2) log11 m) expected time. Recall
that λ2 = O(Ψ4). Because of Theorem 11, we conclude that the reduction takes time O(Ψ2(n +
Ψ4) log11 n) = O(Ψ6 · n log11 n) expected time.

6The actual running time in [19] depends on a function λ6(·), which we upper bound by λ6(m) ≤ O(m2) to get a
slightly simpler expression.
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Possibly, the method can be extended to homothets of a single object. For this one should consider
the surfaces defined by weighted distances in the approach of Kaplan et al. [19].

Since the depth and the density of a family of disks are linearly related, Proposition 14 and
Theorem 7 with ρ = O(Ψ8) imply the following.

Theorem 15. Consider a family U of n disks in the plane with radii in the interval [1,Ψ]. In
O(Ψ6n log11 n+Ψ12ωnω/2) expected time, we can compute a matching in GU that, with high probability,
is maximum.

5.2 Translates of a fixed convex shape in the plane

Now, suppose U consists of translates of a single convex object with non-empty interior in the
plane. With an affine transformation, we ensure that the object is fat: the radii of the minimum
enclosing disk and of the maximum enclosed disk are within a constant factor. Such a transformation
is standard; e.g., [1, Lemma 3.2]. Thus, we may assume that Ψ = O(1). We start with a standard
lemma.

Lemma 16. Let U be a family of n translates of a convex object in the plane that are pierced by a given
point q. The union of U can be computed in O(n log n) time.

Proof. The boundary of two translates of the same convex object intersect at most twice. This means
that U is a family of pseudodisks. Let q be the given point that pierces all U ∈ U . We assume that q
belongs to the interior; otherwise it is necessary to make groups of objects and use O(1) points that
intersect all the U ∈ U .

Each U ∈ U defines a function δU : [0,2π] → R, where δU(θ) is the length of the longest
segment inside U with origin q and angle θ with some fixed axis. Since q is in the interior of U , the
function δU(·) is continuous. We can extend each function δU to the whole R by taking δU(θ ) = δ(0),
for θ /∈ [0, 2π]. The family {δU | U ∈ U } of totally defined functions is a family of pseudoparabolas:
the graphs of any two of them intersect at most twice.

The upper envelope of a family of n pseudoparabolas can be computed in O(n log n) time
with a divide-and-conquer approach. First, we note that the upper envelope of n totally defined
pseudoparabolas has at most 2n− 1 pieces. This is a standard property from the study of Davenport-
Schinzel sequences. For the algorithm, we split the family U into two subfamilies U1 and U2 of
roughly the same size, recursively compute the upper envelopes g1 of U1 and g2 of U2, and then
compute the upper envelope of g1 and g2. If the upper envelopes are given as x-monotone curves,
then the upper envelope of g1 and g2, which is the upper envelope of U , is obtained in additional
linear time. Since the merging step takes linear time, the whole algorithm takes O(n log n) time.

The maps δU do not need to be computed explicitly and the whole algorithm can actually be
carried out with a rotational sweep around q. The transformation to consider the functions δU helps
to bring it to familiar ground in computational geometry.

We will use the following lemma to “simulate” deletions. For this, we will keep a half-infinite
interval of indices that contains the elements that are “deleted”.

Lemma 17. Let U = {U1, . . . Un} be a family of n translates of a convex object in the plane that are
pierced by a given point q. In O(n log2 n) time, we can construct a data structure for the following
queries: given x ∈ R2 and a value a ∈ {1, . . . , n}, find the smallest i ≥ a such that Ui contains x, or
correctly report that x does not belong to Ua ∪ · · · ∪ Un. The query time is O(log2 n).

Proof. We follow the standard approach for adding range capabilities to data structures [33]: we
make a balanced binary search tree T whose leaves are 1, . . . , n, from left to right. For each node
ν of T , we define C(ν) as the set of indices stored at the leaves of the subtree rooted at ν. The set
C(ν) is a canonical subset of {1, . . . , n}.
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For each node ν ∈ T , we compute the region R(ν) =
⋃

i∈C(ν) Ui. This can be done in O(n log n)
time for all nodes ν of T . Indeed, the divide-and-conquer approach from the proof of Lemma 16
can be applied here. If a node ν has children ν` and νr , then R(ν) =

⋃

i∈C(ν) Ui can be computed in
O(|C(ν)|) time from R(ν`) =

⋃

i∈C(ν`)
Ui and R(νr) =

⋃

i∈C(νr )
Ui .

For each node ν of T , we preprocess the region R(ν) for point location queries. This takes
O(|C(ν)|) time, because we just need the description of the boundary of R(ν) in a table. To decide
whether a given point x ∈ R2 lies in R(ν), we make a binary search along the boundary of R(ν)
for the arc of R(ν) that is intersected by the ray from q through x . This takes O(log n) time. This
finalizes the preprocessing and the construction of the data structure.

Consider a query consisting of a point x ∈ R2 and an index a. We may assume that a ∈ {1, . . . , n}.
The set {a, a+ 1, . . . , n} can be expressed as the disjoint union of canonical subsets C(ν1), . . . , C(νk),
where k = O(log n), indexed so that each element of νt is smaller than each element of νt+1, for
t = 1, . . . , k − 1. Making point locations in R(ν1), R(ν2), . . . we find the first index j such that
x ∈ R(ν j). This takes O(log2 n), as we make O(log n) point locations.

Then, we search the subtree of T rooted at ν j for the leftmost leaf i with x ∈ Ui . This is easy: if
we are at some internal node ν with left child ν` and right child νr , we query the point location data
structure at ν` to determine whether x ∈ R(ν`). If x ∈ R(ν`), we continue to ν`. Otherwise, x must
be in R(νr), as x ∈ R(ν), and we go to νr . This search makes O(log n) queries to the point location
structures, and thus takes O(log2 n) time.

Lemma 18. Let Uq = {V1, . . . Vn} be a family of n translates of a convex object in the plane that are
pierced by a given point q. Let U0 be a convex object. In O(n log2 n) time, we can construct a data
structure for the following type of queries: given a translate U of U0 and a value a, find the smallest
i ≥ a such that U intersects Vi, or correctly report that U does not intersect Va ∪ · · · ∪ Vn. Each query
can be answered in O(log2 n) time.

Proof. Applying a translation, we may assume that U0 contains the origin. For each Vi ∈ Uq, let
Wi = Vi ⊕ U0 = {v − u | v ∈ Vi , u ∈ U0} be the Minkowski sum of Vi and −U0. For each translation τ,
we have that τ(U0) intersects Vi if and only if τ ∈Wi .

All the sets W1, . . . , Wn contain q because the origin belongs to U0. Thus, we can construct the
data structure of Lemma 17 for {W1, . . . , Wn}. For a query U and a, we find the translation τ such
that U = τ(U0), and then find the smallest i ≥ a such that τ ∈Wi , which also tells the smallest i ≥ a
such that U intersects Vi .

Lemma 18 can be used to make queries and simulate deletions.

Proposition 19. Consider a family U of n translates of a convex object with non-empty interior in the
plane. In O(n log2 n) time, we can reduce the problem of finding a maximum matching in GU to the
problem of finding a maximum matching in GW for some subfamilyW ⊆U with maximum depth O(1).

Proof. As mentioned above, we may make an affine transformation, so that, after the transformation,
we have Ψ = O(1) [1, Lemma 3.2]. Consider an edge pq of the pattern graph. We use the algorithm
described in Lemma 13, but with a slight modification. We order the objects ofUq as {V1, . . . , Vm} and
use the data structure of Lemma 18 to store them. At the start we set a = 1. Whenever we want to
queryAq with U , we query the data structure with U and the current a. If the data structure returns
Vi , we set a = i + 1 for future queries to the data structure. In this way, each time we query the data
structure, we find a new element of Uq that has not been reported before. Thus, we obtain the same
running time as in Lemma 13 with Tcon(m) = O(m log m), Tque(m) = O(log2 m) and Tdel(m) = O(1).
Therefore Tsparse(m) = O(m log2 m), and the result follows from Theorem 11.

Combining Proposition 19 and Theorem 7 we obtain the following.

Theorem 20. Consider a familyU of translates of a convex object with non-empty interior in the plane.
In O(nω/2) time we can find matching in GU that, with high probability, is maximum.
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If U consists of unit disks,the sparsification can be done slightly faster using a semi-dynamic
data structure by Efrat, Itai, and Katz [11], which has O(Tcon(m)) = O(m log m), and O(Top(m)) =
O(log m). However the current bottleneck is the computation of the maximum matching after the
sparsification. Thus, improving the sparsification in the particular case of unit disks does not lead to
an improved final algorithm.

Proposition 19 and Theorem 20 also holds if we have translations of O(1) different convex objects
(with nonempty interiors). Indeed, the data structure of Lemma 18 can be made for each pair of
different convex shapes. In this case, the constant Ψ depends on the shapes, namely the size of the
largest square that we can place inside each of the convex shapes and the size of the smallest square
that can be used to cover each of the convex shapes. Also, the relation between the depth and the
density depends on the shapes. However, for a fixed set of O(1) shapes, both values are constants
that depend on the shapes.

Theorem 21. Consider a family U of translates of a constant number of different convex objects in the
plane with non-empty interiors. In O(nω/2) time we can find matching in GU that, with high probability,
is maximum.

5.3 Axis-parallel objects

A box is the Cartesian product of intervals. Combining standard data structures for orthogonal range
searching [7, Sections 5.4 and 10.3] one obtains the following results.

Proposition 22. Let d ≥ 2 be an integral constant. Consider a familyU of n boxes in Rd such that each
box ofU contains a cube of side length 1 and is contained in a cube of side length Ψ. In O(Ψd ·n polylog n)
time we can reduce the problem of finding a maximum matching in GU to the problem of finding a
maximum matching in GW , for some W ⊆U with maximum depth (1+Ψ)O(d).

Proof. Edelsbrunner and Maurer [10] show a general approach to provide a data structure to
dynamically maintain a set of boxes and handle the following queries: given a box b, report all
the boxes in the data structure that intersect b. The construction time is O(n logd n), each update
(deletion/insertion) takes O(logd) time, and each query takes O(k+ logd n), where k is the size of
the output. The data structure is a combination of segment and range trees. Such a data structure
can easily be modified to report a single element intersecting the query box b in O(logd n). In fact,
better results can be obtained with more advanced techniques, but we feel that discussing them is
not relevant here. (Also, we only need deletions, which makes it simpler, as in the relevant trees we
can just mark some vertices as deleted.) Using Lemma 13 and Theorem 12, we obtain the result.

For d = 2, we can combine Theorem 7 and Proposition 22. Since we have assumed ω> 2, the
O(n polylog n) term is asymptotically smaller than O(nω/2), and we obtain the following.

Theorem 23. Given a family U of n boxes in R2 such that each object of U contains a square of
side length 1 and is contained in a square of side length Ψ, we can compute in (1+Ψ)O(1)nω/2 time a
matching in GU that, with high probability, is a maximum matching.

Consider now the case d ≥ 3. The set W that we obtain from Proposition 22 has depth and
density ρ = (1+Ψ)O(d), and therefore the graph GW has O(ρn) edges; see Lemma 1. We can thus
use the algorithm of Micali and Vazirani [24,32], which takes O(

p
n|E(GW )|) = (1+Ψ)O(d)n3/2 time.

We summarize.7

Corollary 24. Let d ≥ 3 be an integral constant. Given a family U of n boxes in Rd such that each
object of U contains a cube of side length 1 and is contained in a cube of side length Ψ, we can compute
in (1+Ψ)O(d)n3/2 time a maximum matching in GU .

7In a previous version, we invoked Mądry’s algorithm and claimed a better running time with exponent 10/7. However,
this algorithm does not seem to apply here, so we fall back on the Micali-Vazirani algorithm to obtain an exponent of 3/2.
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5.4 Congruent balls in d ≥ 3 dimensions

Consider now the case of congruent balls in Rd , for constant d ≥ 3. Note that λ= O(1) in this case.
We use the dynamic data structure by Agarwal and Matoušek [2] for the sparsification. For each m
with n≤ m≤ ndd/2e, the data structure maintains n points in Rd , answers O(n) queries for closest
point and supports O(λ2) updates in

O

�

m1+ε +λ2 m1+ε

n
+ n ·

n log3 n
m1/dd/2e

�

time. Here ε > 0, is an arbitrary constant whose choice affects to the constants hidden in the
O-notation. For d ∈ {3,4}, this running time is

O

�

m1+ε +λ2 m1+ε

n
+ n ·

n log3 n
m1/2

�

.

Setting m = n4/3, we get a running time of O(n4/3+ε +λ2n1/3+ε) = O(n4/3+ε) to handle O(n) queries
and O(λ2) = O(1) updates. Using this in Lemma 13 and Theorem 12, we get the following result

Proposition 25. Consider a family U of n unit balls objects in Rd , for d ∈ {3,4}. In O(n4/3+ε) time,
we can reduce the problem of finding a maximum matching in GU to the problem of finding a maximum
matching in GW for some W ⊆U with maximum depth O(1).

For the resulting setW with depth O(1), it is better to use the algorithm of Micali and Vazirani [24,
32]. Note that GW is sparse, and thus has O(n) edges. Therefore, a maximum matching in GW can
be computed in O(n3/2) time. In summary, we spend O(n4/3+ε) for the sparsification and O(n3/2) for
computing the matching in the sparsified setting.8

For d > 4, we set m= n
2dd/2e

1+dd/2e . The running time for the sparsification is then O(n
2dd/2e

1+dd/2e+ε). For
each constant d, the resulting instance GW has O(n) edges. For d = 5,6, the running time of the
sparsification is O(n3/2+ε). However, after the sparsification, we have a graph with O(n) edges, and
we can use the algorithm of Micali and Vazirani [24,32], which takes O(n3/2) time. Thus, for d ≥ 5,
the running time is dominated by the sparsification.

Theorem 26. Let d ≥ 3 be a constant. Consider a family U of congruent balls in Rd . For d = 3, 4, we

can find in O(n3/2) time a maximum matching in GU . For d ≥ 5, we can find in O(n
2dd/2e

1+dd/2e+ε) time a
maximum matching in GU , for each ε > 0.

6 Conclusion

We have proposed the density of a geometric intersection graph as a parameter for the maximum
matching problem, and we showed that it can be fruitful in obtaining efficient matching algorithms.
Then, we presented a sparsification method that lets us reduce the general problem to the case of
bounded density for several interesting classes of geometric intersection graphs. In our sparsification
method, we did not attempt to optimize the dependency on the radius ratio Ψ. It may well be that
this can be improved by using more advanced grid-based techniques. Furthermore, our sparsification
needs the complete intersection graph and does not apply to the bipartite setting. Here, we do not
know of a method to reduce the general case to bounded density. In general, the complexity of the
matching problem is wide open. To the best of our knowledge, there are no (even weak) superlinear
lower bounds for the (static) matching problem in general graphs.

8Also here, we previously claimed a better exponent of 10/7, which was based on an incorrect invocation of Mądry’s
algorithm.
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[23] Aleksander Mądry. Navigating central path with electrical flows: From flows to matchings, and
back. In Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2013, pages 253–262, 2013. URL: https://doi.org/10.1109/FOCS.2013.35.

[24] Silvio Micali and Vijay V. Vazirani. An O(
p

|V | · |E|) algorithm for finding maximum matching
in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, FOCS 1980, pages 17–27. IEEE Computer Society, 1980. URL: https://doi.org/10.
1109/SFCS.1980.12.

[25] Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis. Separators for
sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, 1997.

[26] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In Proceed-
ings of the 45th Symposium on Foundations of Computer Science, FOCS 2004, pages 248–255.
IEEE Computer Society, 2004. URL: https://doi.org/10.1109/FOCS.2004.40.

[27] Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs via gaussian elimina-
tion. Algorithmica, 45(1):3–20, 2006. URL: https://doi.org/10.1007/s00453-005-1187-5.

[28] Ketan Mulmuley. Computational Geometry – An Introduction through Randomized Algorithms.
Prentice Hall, 1994.

[29] Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. J. Algorithms, 10(4):557–567, 1989. URL: https://doi.org/10.1016/

0196-6774(89)90005-9.

[30] Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems and applications. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS, pages
232–243, 1998.

23

http://dx.doi.org/10.1109/MILCOM.1995.483546
http://dx.doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1016/0196-6774(82)90007-4
https://doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.64
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.64
https://doi.org/10.1137/1.9781611974782.165
https://doi.org/10.1137/1.9781611974782.165
https://doi.org/10.1137/0716027
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1007/s00453-005-1187-5
https://doi.org/10.1016/0196-6774(89)90005-9
https://doi.org/10.1016/0196-6774(89)90005-9


[31] A. Frank van der Stappen, Dan Halperin, and Mark H. Overmars. The complexity of the free
space for a robot moving amidst fat obstacles. Comput. Geom., 3:353–373, 1993. URL: https:
//doi.org/10.1016/0925-7721(93)90007-S, doi:10.1016/0925-7721(93)90007-S.

[32] Vijay V. Vazirani. A simplification of the MV matching algorithm and its proof. CoRR,
abs/1210.4594, 2012. URL: http://arxiv.org/abs/1210.4594.

[33] Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM, 32(3):597–617, 1985.

[34] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pages
108–117. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283396.

[35] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Approach.
Elsevier/Morgan-Kaufmann, 2004.

24

https://doi.org/10.1016/0925-7721(93)90007-S
https://doi.org/10.1016/0925-7721(93)90007-S
http://dx.doi.org/10.1016/0925-7721(93)90007-S
http://arxiv.org/abs/1210.4594
http://dl.acm.org/citation.cfm?id=1283383.1283396

	Introduction
	Basics of (geometric intersection) graphs
	Maximum matching in low-density geometric intersection graphs
	Separators and separator trees
	Nested dissection
	The algorithm

	Sparsification
	Efficient sparsification
	Disks in the plane
	Translates of a fixed convex shape in the plane
	Axis-parallel objects
	Congruent balls in three or more dimensions

	Conclusion

