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Abstract
Let G be an intersection graph of n geometric objects in the plane. We show that a
maximum matching in G can be found in O(ρ3ω/2nω/2) time with high probability,
where ρ is the density of the geometric objects and ω > 2 is a constant such that n×n
matrices can be multiplied in O(nω) time. The same result holds for any subgraph
of G, as long as a geometric representation is at hand. For this, we combine algebraic
methods, namely computing the rank of a matrix via Gaussian elimination, with the
fact that geometric intersection graphs have small separators. We also show that in
many interesting cases, the maximum matching problem in a general geometric inter-
section graph can be reduced to the case of bounded density. In particular, a maximum
matching in the intersection graph of any family of translates of a convex object in the
plane can be found in O(nω/2) time with high probability, and a maximum matching
in the intersection graph of a family of planar disks with radii in [1, �] can be found
in O(�6 log11 n + �12ωnω/2) time with high probability.
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1 Introduction

Let U be a family of (connected and compact) objects in R
2. The intersection graph

GU of U is the undirected graph with vertex set U and edge set

E(GU) = {UV | U , V ∈ U, U ∩ V �= ∅}.
If the objects in U are partitioned into two sets, one can also define the bipartite
intersection graph, a subgraph of GU, in the obvious way. Consider the particular case
when U is a set of disks. Then, we call GU a disk graph, and if all disks in U have
the same radius, a unit-disk graph. Unit disk graphs are often used to model ad-hoc
wireless communication networks and sensor networks [13, 16, 36]. Disks of varying
sizes and other shapes become relevant when different sensors cover different areas.
Moreover, general disk graphs serve as a tool to approach other problems, like the
barrier resilience problem [20].

We consider a classic optimization problem, maximum matching, in the setting of
geometric intersection graphs, and introduce two new techniques, each interesting in
its own. First, we provide an efficient algorithm to compute a maximum matching in
any subgraph of the intersection graph of geometric objects of low density. Second,
we provide a sparsification technique to reduce the maximum matching problem in a
geometric intersection graph to the case of low density. The sparsification works for
convex shapes of similar sizes for which certain range searching operations can be
done efficiently.

We use ω to denote a constant such that ω > 2 and any two n × n matrices can be
multiplied in time O(nω).1

Maximum matching in intersection graphs of geometric objects of low density We
first introduce some geometric concepts. The diameter of a set X ⊂ R

2, denoted by
diam(X), is the supremum of the distances between any two points of X . The density
ρ(U) of a family U of objects is

ρ(U) = max
X⊆R2

|{U ∈ U | diam(U ) � diam(X), U ∩ X �= ∅}|. (1)

One can also define the density by considering for X only disks. Since an object of
diameter d can be covered by O(1) disks of diameter d, this changes the resulting
parameter by only a constant. (See, for example, the book by de Berg et al. [6, Sect.
12.5] for such a definition.) The depth (ply) of U is the largest number of objects that
cover a single point:

max
p∈R2

|{U ∈ U | p ∈ U }|.

For disk graphs and square graphs, the depth and the density are linearly related; see
for example Har-Peled and Quanrud [15, Lem. 2.7]. More generally, bounded depth

1 In the literature, it is more common to assume ω � 2. We adopt the stronger assumption ω > 2 because it
simplifies the bounds. If ω = 2 is allowed, then the running times that we state have additional logarithmic
factors.
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and bounded density are equivalent whenever we consider homothets of a constant
number of shapes. Density and depth are usually considered in the context of realistic
input models; see de Berg et al. [7] for a general discussion.

Let Gρ be the family of subgraphs of intersection graphs of geometric objects in
the plane with density at most ρ.2 Our goal is to compute a maximum matching in
graphs ofGρ , assuming the availability of a geometric representation of the graph and
a few basic geometric primitives on the geometric objects. For this, we consider the
density ρ as an additional parameter. Naturally, the case ρ = O(1) of bounded density
is of particular interest.

In a general graph G = (V , E) with n vertices and m edges, the best running
time for computing a maximum matching in G depends on the ratio m/n. The classic
algorithm of Micali and Vazirani [25, 33] is based on augmenting paths, and it finds a
maximummatching in O(m

√
n) time. Mucha and Sankowski [27] use algebraic tools

to achieve running time O(nω). As we shall see, for G ∈ Gρ , we have m = O(ρn),
and this bound is asymptotically tight. Thus, for G ∈ Gρ , the running times of these
two algorithms become O(ρn3/2) and O(nω), respectively.

In general bipartite graphs, a recent algorithm byMądry [24] achieves running time
roughly O(m10/7).3 Efrat et al. [11] show how to compute the maximum matching
in bipartite unit disk graphs in O(n3/2 log n) time. Having bounded density does not
help in this algorithm; it has O(

√
n) rounds, each of which needs �(n) time. The

same approach can be used for other geometric shapes if a certain semi-dynamic data
structure is available. In particular, using the data structure of Kaplan et al. [19] for
additively-weighted nearest neighbors, finding a maximum matching in a bipartite
intersection graph of disks takes O(n3/2 polylog n) time. We are not aware of any
similar results for non-bipartite geometric intersection graphs.

We show that amaximummatching in a graphofGρ withn vertices canbe computed
in O(ρ3ω/2nω/2) = O(ρ3.56n1.19) time. The algorithm is randomized and succeeds
with high probability. It uses the algebraic approach byMucha and Sankowski [28] for
planar graphs with an extension by Yuster and Zwick [35] for H -minor-free graphs.
As noted by Alon and Yuster [4], this approach works for hereditary4 graph families
with bounded average degree and small separators. We note that the algorithm can be
used for graphs ofGρ , because we have average degree O(ρ) and balanced separators
of size O(

√
ρn) [15, 31]. However, finding the actual dependency on ρ is difficult

because it plays a role in the average degree, in the size of the separators, and because
the algorithm has a complex structure with several subroutines that must be distilled.

There are several noteworthy features in our approach. For one, we solve a geomet-
ric problem using linear algebra, namely Gaussian elimination. The use of geometry is
limited to finding separators, bounding the degree, and constructing the graph explic-
itly. Note that the role of subgraphs in the definition of Gρ is a key feature in our

2 Note that by definition, any vertex-induced subgraph of a geometric intersection graph of density at most
ρ is also a geometric intersection graph of density at most ρ. Thus, any graph inGρ is obtained by omitting
edges from some geometric intersection graph of density at most ρ with the same vertex set.
3 In a previous version of this paper, we claimed that Mądry’s algorithm also applies to general (non-
bipartite) graphs. However, this does not seem to be correct. As a consequence, we have updated the
statements of Corollary 5.12 and Theorem 5.14.
4 A graph family is called hereditary if it is closed under taking subgraphs.
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algorithm. On the one hand, we need a hereditary family of graphs, as needed to apply
the algorithm. On the other hand, it brings more generality; for example, it includes
the case of bipartite graphs defined by colored geometric objects.

Compared to the work of Efrat et al. [11], our algorithm is for arbitrary subgraphs
of geometric intersection graphs, not only bipartite ones; it works for any objects, as
it does not use advanced data structures that may depend on the shapes. On the other
hand, it needs the assumption of low density. Compared to previous algorithms for
arbitrary graphs and ignoring polylogarithmic factors, our algorithm is faster when
ρ = o(n(20−7ω)/(21ω−20)). Using the current bound ω < 2.373, this means that our
new algorithm is faster for ρ = O(n0.113).

Our matching algorithm also applies for intersection graphs of objects in 3-
dimensional space. However, in this case there is no algorithmic gain with the current
bounds on ω: one gets a running time of O(n2ω/3) when ρ = O(1), which is worse
than constructing the graph explicitly and using the algorithm of Micali and Vazirani.
Sparsification—Reducing to bounded depth Consider a family of convex geometric
objects U in the plane where each object contains a square of side length 1 and is
contained in a square of side length � � 1. Our objective is to compute a maximum
matching in the intersection graph GU.5 Our goal is to transform this problem to
finding a maximum matching in the intersection graph of a subfamily U′ ⊂ U with
bounded depth. Then we can employ our result from above forGU′ or, more generally,
any algorithm for maximum matching (taking advantage of the sparsity of the new
instance).

We describe a method that is fairly general and works under comparatively mild
assumptions and also in higher dimensions. However, for an efficient implementation,
we require that the objects under consideration support certain range searching opera-
tions efficiently.We discuss how this can be done for disks of arbitrary sizes, translates
of a fixed convex shape in the plane, axis-parallel objects in constant dimension, and
(unit) balls in constant dimension. In all these cases, we obtain a subquadratic time
algorithm for finding a maximum matching, assuming that � is small. We mostly
focus on the planar case, mentioning higher dimensions as appropriate.

As particular results to highlight, we show that a maximum matching in the
intersection graph of any family of translates of a convex object in the plane can
be found in O(nω/2) time with high probability, and a maximum matching in the
intersection graph of a family of planar disks with radii in [1, �] can be found in
O(�6 log11 n + �12ωnω/2) time with high probability. See Table 1 for a summary of
the results in this context.

Organization We begin with some general definitions and basic properties of geo-
metric intersection graphs (Sect. 2). Then, in the first part of the paper, we present the
new algorithm for finding a maximum matching in geometric intersection graphs of
low density (Sect. 3). In the second part, we present our sparsification method. This
is done in two steps. First, we describe a generic algorithm that works for general
families of shapes that have roughly the same size, assuming that certain geometric
operations can be performed quickly (Sect. 4). Second, we explain how to implement
these operations for several specific shape families, e.g., translates of a given convex

5 Note that here we do not consider subgraphs of GU; we need the whole graph GU.
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Table 1 Time complexity to compute the maximum matching in an intersection graph

Objects Time complexity Reference

Disks of radius in [1, �] in R2 O(�6n log11 n + �12ωnω/2) Theorem 5.3

Translates of O(1) convex objects in R
2 O(nω/2) Theorem 5.9

Axis-parallel rectangles in R
2 with edges in [1, �] (1 + �)O(1)nω/2 Theorem 5.11

Axis-parallel boxes in Rd with edges in [1, �] (1 + �)O(d)n3/2 Corollary 5.12

Unit balls in R3 or R4 O(n3/2) Theorem 5.14

Unit balls in Rd , d � 5 O
(
n2
d/2�/(1+
d/2�)+ε

)
Theorem 5.14

In some cases, the result is correct with high probability

objects and disks of bounded radius ratio (Sect. 5). The two parts are basically inde-
pendent, where the second part uses the result from the first part as a black box, to
state the desired running times.

2 Basics of (Geometric Intersection) Graphs

Geometric objects and computational model Several of our algorithms work under
fairly weak assumptions on the geometric input: we assume that the objects in U have
constant description complexity. This means that the boundary of each object is a
continuous closed curve whose graph is a semialgebraic set, defined by a constant
number of polynomial equalities and inequalities of constant maximum degree. For
later algorithms we restrict attention to some particular geometric objects, like disks
or squares.

To operate on U, we require that our computational model supports primitive oper-
ations that involve a constant number of objects ofU in constant time, e.g., finding the
intersection points of two boundary curves; finding the intersection points between a
boundary curve and a disk or a vertical line; testing whether a point lies inside, out-
side, or on the boundary of an object; decomposing a boundary curve into x-monotone
pieces, etc. See, e.g., [19] for a further discussion and justification of these assumptions.

We emphasize that in addition to the primitives on the input objects, we do not
require any special constant-time operations. In particular, even though our algorithms
use algebraic techniques such as fast matrix multiplication or Gaussian elimination,
we rely only on algebraic operations over Zp, where p = �(n4) is a prime. Thus, we
work only with numbers of O(log n)-bits, and assuming a standard unit-cost model
for such word-sizes, as in, e.g., the word-RAMmodel of computation, we simply need
to bound the number of arithmetic operations in our algorithms.

Geometric intersection graphs The following well-known lemma bounds |GU| in
terms of ρ, and the time to construct GU. We include a proof for completeness.

Lemma 2.1 If U has n objects and density ρ, then GU has at most (ρ − 1)n edges
(this holds in any dimension). If U consists of objects in the plane, then GU can be
constructed in O(ρn log n) time.
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Proof The bound on |E(GU)| uses a simple and well-known trick; see, e.g., [15,
Lemma 2.6]: we orient each edge in GU from the object of smaller diameter to the
object of larger diameter. Then, the out-degree of each X ∈ U is at most ρ − 1, since
by (1), there are at most ρ objects U ∈ U with diam(U ) � diam(X) that intersect X ,
with X being one of them.

Next, we describe the construction of GU in the planar case; see [18] for a similar
algorithm in the context of disk graphs. Set k = |E(GU)|. If U , V ∈ U form an edge
in E(GU), then either (i) their boundaries intersect; or (ii) one is contained inside the
other. To find the edges of type (i), we perform a plane sweep [5, 6].6 For this, we
split the boundary of each object into a constant number of x-monotone pieces. We
sweep a vertical line � across the plane, and we maintain the intersection of � with the
pieces of the boundary curves. The events are the start and end points of the pieces
of the boundary curves, as well as their pairwise intersections. There are O(n + k)
events. When we detect a boundary-boundary intersection, we add the corresponding
edge to the output. An edge can be added O(1) times, so we sort the output to remove
duplicates. Thus, it takes O((n + k) log n) time to find all edges of type (i).

To find the edges of type (ii), we perform a second plane sweep to compute the
trapezoidal decomposition of the planar arrangement defined by the objects in U [6].
The trapezoidal decomposition is obtained by shooting upward and downward vertical
rays from each x-extremal point on a boundary curve and from each intersection
between two boundary curves. The rays end once they encounter a boundary curve, or
they go into infinity. This results in a subdivision of the plane into O(n+ k) (possibly
unbounded) pseudo-trapezoids. The subdivision can be computed in O((n+ k) log n)

time. We construct the dual graph of the trapezoidal decomposition, in which the
vertices are the pseudo-trapezoids, and two pseudo-trapezoids are adjacent if and only
if their boundaries intersect in more than one point. We perform a DFS in the resulting
dual graph, keeping track of the objects inU that contain the current pseudo-trapezoid.
Whenever we enter an object U ∈ U for the first time, we generate all edges between
the objects that contain the current pseudo-trapezoid andU . This takes O(n+k) time.
We generate all edges of type (ii), and we possibly rediscover some edges of type (i).
Thus, we sort the output once more to remove duplicates. The total running time is
O((n + k) log n) = O(ρn log n).

We remark that using more sophisticated methods, such as randomized incremental
construction [29], it may be possible to improve the running time to O(ρn + n log n).
However, this will not help us, because later parts of the algorithm will dominate the
running time. �
Separators in geometric intersection graphs The classic planar separator theorem
by Lipton and Tarjan [9, 22] shows that any planar graph can be decomposed in
a balanced way by removing a small number of vertices. Even though geometric
intersection graphs can be far from planar, similar results are also available for them.
These results are usually parameterized by the depth of the arrangement or by the area
of the separator and the components [3, 12, 26]. The following recent result provides
a small separator for general intersection graphs of bounded density.

6 The original algorithm is described for line segments, but assuming appropriate geometric primitives, it
also applies to continuous, x-monotone curves in the plane.
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Fig. 1 Splitting one single vertex of Z

Theorem 2.2 [15, Lemma 2.21] Let U be a set of n objects in R
2 with density ρ.

In O(n) expected time, we can find a circle S such that S intersects at most c
√

ρn
objects of U, the exterior of S contains at most αn elements of U, and the interior
of S contains at most αn elements of U. Here 0 < c and 0 < α < 1 are universal
constants, independent of ρ and n.

The proof of Theorem 2.2 goes roughly as follows: Pick a point in each object of U,
compute the smallest circle S′ (or an approximation thereof) that contains, say, n/20
points, and then take a concentric scaled copy S of S′, with scale factor uniformly at
random in [1, 2]. With constant probability, the circle S′ has the desired property. This
can be checked easily in linear time by determining which objects of U are inside,
outside, or intersected by S. In expectation, a constant number of repetitions is needed
to obtain the desired circle.

A familyG of graphs is hereditary if for every G ∈ G, it holds that all subgraphs H
ofG are also inG. By definition, our familyGρ of subgraphs of geometric intersection
graphs with density ρ is hereditary. A graph G is δ-sparse if every subgraph H of G
has at most δ|V (H)| edges. Lemma 2.1 implies that all graphs in Gρ are ρ-sparse.

Consider a graph G and a vertex v of G. A vertex split at v consists of adding a
pendant 2-path vv′v′′, where v′ and v′′ are new vertices, and possibly replacing some
edges uv incident to v by new edges uv′′; see Fig. 1 for a sequence of splits. We note
that a vertex split may not replace any edges. In this case, we are just adding a pendant
path of length 2. Let G ′ be a graph obtained from G by a sequence of k vertex splits.
Then, the size of a maximum matching in G ′ is the size of a maximum matching
in G plus k. Furthermore, from a maximum matching in G ′, we can easily obtain a
maximum matching in G in O(|V (G)| + |E(G)| + k) time. We will use vertex splits
to ensure that the resulting graphs have bounded degree and a vertex set of a certain
cardinality. Note that if we perform a vertex split at v in a graph of Gρ , in general
we obtain a graph of Gρ+2 because we can represent it by making two new copies
of the object corresponding to v. Nevertheless, this increase in the density will not be
problematic in our algorithm.
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3 MaximumMatching in Low-Density Geometric Intersection Graphs

3.1 Separators and Separator Trees

A graph G has a (k, α)-separation if V (G) can be partitioned into three pairwise
disjoint sets X ,Y , Z such that |X ∪ Z | � α|V (G)|, |Y ∪ Z | � α|V (G)|, |Z | � k,
and such that there is no edge with one endpoint in X and one endpoint in Y . We say
that Z separates X and Y . At the cost of making the constant α larger, we can restrict
our attention to graphs of a certain minimum size.

Theorem2.2 gives a (c
√

ρn, α′)-separation for every graphofGρ , for someconstant
α′ < 1. (A separator in GU is a separator in every subgraph of GU that is obtained
by omitting edges from GU.) Furthermore, such a separation can be computed in
expected linear time, if the objects defining the graph are available.

A recursive application of separations can be represented as a binary rooted tree.
We will use so-called (weak) separator trees, where the separator does not go into
the subproblems. In such a tree, we store the separator at the root and recurse on each
side to obtain the subtrees. We want to have small separators and balanced partitions
at each level of the recursion, and we finish the recursion when we get to problems
of a certain size. This leads to the following definition. Let γ > 0, 0 < β < 1, and
0 < α < 1 be constants. We say that a graph G has a (γ, β, α)-separator tree if there
is a rooted binary full tree T with the following properties:

– Each node t ∈ T is associated with some set Zt ⊆ V (G).
– The sets Zt , t ∈ T , partition V (G), i.e.,

⋃
t∈T Zt = V (G), and Zt ∩ Zt ′ = ∅, for

distinct t, t ′ ∈ T .
– For each node t ∈ T , let Vt = ⋃

s Zs , where s ranges over the descendants of t
(including t). Note that if t is an internal node with children u and v, then Vt is the
disjoint union of Zt , Vu , and Vv . If t is a leaf, then Vt = Zt .

– For each internal node t ∈ T with children u and v, (Vu, Vv, Zt ) is a (γmβ, α)-
separation for G[Vt ], the subgraph of G induced by Vt , where m = |Vt | = |Zt | +
|Vu | + |Vv|.

– For each leaf t ∈ T , we have |Vt | = �(γ 1/(1−β)). We have chosen the size so that
Vt is a (γ |Vt |β, α)-separator for the whole induced subgraph G[Vt ].

Yuster and Zwick [35] provide an algorithm that computes a separator tree of some
split graph for a given graph from an H -minor-free family. As Alon and Yuster [4,
Lemma 2.13] point out, this algorithm actually works for any δ-sparse hereditary
graph family, as long as δ is constant. Thus, the result applies to Gρ . We revise the
construction to make the dependency on ρ explicit.

Lemma 3.1 Given a graph G of Gρ with n vertices, we can compute in O(ρn log n)

expected time a vertex-split graph G ′ of G and a separator tree T ′ for G ′ with the
following properties:

– the graph G ′ has �(ρn) vertices and edges;
– the maximum degree of G ′ is at most 4;
– T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G ′, where α < 1 is a constant
(independent of ρ and n).
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Proof We adapt the construction of Yuster and Zwick [35, Lemma 2.1], with three
main changes: First, Yuster and Zwick assume ( ·, α = 2/3)-separations, but this
specific value of α is not needed. Second, we make “dummy additions” of vertices
to obtain a more balanced separation, which we later use as a black box. (Otherwise,
we would get a ( ·, ·, O(1/ρ))-separator tree, and we would have to analyze the tree
more carefully to obtain the same final result.) Third, we work out the constants in the
analysis to understand the dependency on the density ρ.

We proceed recursively. Consider an m-vertex graph G ∈ Gρ that appears during
the recursion. Ifm � Cρ, whereC is a sufficiently large constant, wemake a sequence
of vertex splits to reduce the maximum degree to three. This may increase the number
of vertices. To ensure that this number is uniform, we add a (possibly empty) pendant
path of even length until we get the maximum possible number of�(ρ2) vertices. The
resulting separator tree T ′ consists of a single node.

Now suppose that m > Cρ. Using Theorem 2.2, we get a (c
√

ρm, α)-separation
(X ,Y , Z) of G. Thus, |Z | � c

√
ρm. Yuster and Zwick [35, Lemma 2.1] explain how

to make vertex splits at the vertices of Z and how to redefine the separation so that
the vertices of the separator have maximum degree three. See Fig. 1 for how to split
a vertex v ∈ Z . After making the vertex splits of Fig. 1 in all vertices of Z , we get a
split graph G∗ of G and a separation (X∗,Y ∗, Z∗) with

– |X | � |X∗| � |X | + |Z | � αm,
– |Y | � |Y ∗| � |Y | + |Z | � αm,
– |Z∗| � 4|Z | + 6|E(G[Z ])| � (4 + 6ρ)|Z | = O(ρ3/2m1/2) (by Lemma 2.1),
– vertices of Z∗ have degree at most 3 in G∗,
– G∗[X∗] and G∗[Y ∗] are isomorphic to subgraphs of G, i.e., G∗[X∗] is isomorphic
to G[X ∪ Z ] minus the edges of G[Z ], and G∗[Y ∗] is isomorphic to G[Y ∪ Z ]
minus the edges of G[Z ].

We recurse on G[X∗] and G[Y ∗], each of which lies in Gρ , as it is (isomorphic to) a
subgraph ofG. In particular, the density of the graphs encountered during the recursion
does not increase.

The recursive call on G∗[X∗] yields a graph G ′
X and a tree T ′

X , and the recursive
call on G∗[Y ∗] yields a graph G ′

Y and a tree T ′
Y , both with the properties given in the

theorem. Let G ′ be the graph obtained by putting together G∗[Z∗], G ′
X , and G ′

Y . If
some vertex degree gets larger than four, we can make a vertex split there. There are
at most |Z∗| such vertex splits. A separator tree T ′ for G ′ is constructed by making a
root for Z∗ and making the roots of T ′

X and T ′
Y its two children. Adding a pendant path

of even length to G∗[Z∗], if needed, we ensure that |Z∗| = �(ρ|Z |), the maximum
number of possible vertices after the splits (we again denote the resulting vertex set
by Z∗).

For a graph G withm vertices considered during the recursion, by Theorem 2.2, we
spend �(m) expected time to find the separation (X ,Y , Z). Then, we construct the
induced graph G[Z ] in O(ρ |Z |) = O(ρ3/2m1/2) time. The transformation from G to
G∗ can be done in O(ρ|Z |) = O(ρ3/2m1/2) time. Finally, when we may add vertices
to |Z∗|, we spend �(ρm) time. Standard tools to analyze recursions imply that the
expected running time is distributed evenly over the O(log n) levels of the tree. Thus,
the expected total running time is O(ρn log n).

123



Discrete & Computational Geometry (2023) 70:550–579 559

It is easy to see that the number of vertices of G ′ is �(ρm) because G ′
X has

�(ρ|X∗|) vertices, G ′
Y has �(ρ|Y ∗|) vertices, and G[Z∗] has �(ρ|Z |) vertices.

Since G ′ has bounded maximum degree, it also has �(ρm) edges. Furthermore,
(V (G ′

X ), V (G ′
Y ), Z∗) is a separation of G ′. Since G ′ has �(ρm) vertices, G ′

X has
�(ρ|X∗|) = �(ρ |X |) vertices, and (X ,Y , Z) is a separation of G, |V (G ′

X )| � α′m
for some constant α′ < 1. The same argument applies to |V (G ′

Y )|. Since

|Z∗| = �(ρ|Z |) = O(ρ
√

ρm) = �
(
ρ
√|V (G ′)|),

it follows that T ′ is a (O(ρ), β = 1/2, α′)-separator tree. �
Note that the split graph G ′ in Lemma 3.1 is not necessarily in Gρ . It is a subgraph
of an intersection graph, but since we introduce copies of geometric objects when we
split vertices, the density increases. In any case, this does not matter because G ′ will
be accessed through the separator tree T ′.

3.2 Nested Dissection

We will need to compute with matrices. The arithmetic operations take place in Zp,
where p = �(n4) is prime. Thus, we work with numbers of O(log n)-bits, and assum-
ing a standard unit-cost model, we simply need to bound the number of arithmetic
operations.

Let A be an n × n matrix. A Gaussian elimination step on row i is the following
operation: for j = i + 1, . . . , n, add an appropriate multiple of row i to row j so that
the element at position ( j, i) becomes 0. Elimination on row i can be performed if the
entry at position (i, i) is nonzero. Gaussian elimination on A consists of performing
Gaussian elimination steps on rows i = 1, . . . , n− 1. This is equivalent to computing
an LU decomposition of A, where L is a lower triangular matrix with units along
the diagonal, and U is an upper triangular matrix. Gaussian elimination is performed
without pivoting if, for all i , when we are about to do a Gaussian elimination step on
row i , the entry at position (i, i) is non-zero. If Gaussian elimination is performed
without pivoting, then the matrix is non-singular. (Pivoting is permuting the rows to
ensure that the entry at position (i, i) is non-zero.)

Let [n] = {1, . . . , n}. The representing graph G(A) of an n×n matrix A =
(ai, j )i, j∈[n] is

G(A) =
(

[n],
{
i j ∈

([n]
2

) ∣∣∣ ai, j �= 0 or a j,i �= 0

})
.

Let T be a separator tree forG(A). The roworder of A is consistentwith T if, whenever
t ′ is an ancestor of t , all the rows of Zt are before any row of Zt ′ . We may assume that
all the rows of Zt are consecutive. In particular, if the rows are ordered according to a
post-order traversal of T , then the row order of A is consistent with T . A careful but
simple revision of the nested dissection algorithm by Gilbert and Tarjan [14] leads to
the following theorem.
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Theorem 3.2 Let A be an n × n matrix such that the representing graph G(A) has
bounded degree and assume that we are given a (γ, β, α)-separator tree T for G(A),
were γ > 0, 0 < α < 1, and 1/2 � β < 1 are constants. Furthermore, assume that
the row order of A is consistent with T and that Gaussian elimination on A is done
without pivoting. We can perform Gaussian elimination (without pivoting) on A and
find a factorization A = LU of A in O(γ ωnβω) time, where L is a lower triangular
matrix with units along the diagonal and U is an upper triangular matrix.

For the proof of Theorem 3.2, we will need the following folklore lemma, whose proof
we include for completeness.

Lemma 3.3 Let A be an n × n matrix, and k � n. Suppose that Gaussian elimination
on the first k rows of A needs no pivoting. Then, we can perform Gaussian elimination
on the first k rows of A with O(n2kω−2) arithmetic operations.

Proof Computing the inverse or performing Gaussian elimination for a k×k matrix
takes O(kω) time (even if pivoting is needed), see, e.g., Bunch and Hopcroft [8], and
Ibarra et al. [17].

Assume that

A =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

A1,1 A1,2

A2,1 A2,2

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,

where A1,1 is k × k and A2,2 is (n− k)× (n− k). We want to perform Gaussian elim-
ination without pivoting for the first k rows. First, we perform Gaussian elimination
on the k × k matrix A1,1. This takes O(kω) time, and we obtain two k × k matrices
L and U such that A1,1 = LU , the matrix L is lower triangular with units along the
diagonal, and the matrixU is upper triangular. Since we use no pivoting, L andU are
non-singular. We also compute in O(kω) time the inverses (A1,1)

−1, L−1, and U−1.
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Then, we have

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

L 0k×(n−k)

A2,1U−1 I(n−k)×(n−k)

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

U L−1A1,2

0(n−k)×k A2,2−A2,1(A1,1)
−1A1,2

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

which means that the second matrix on the right-side is the result of making Gaus-
sian elimination for the first k rows of A. The products A2,1U−1, L−1A1,2, and
A2,1(A1,1)

−1A1,2 can be computed in O(n2kω−2) time by making at most O(n2/k2)
products of submatrices of size k × k. �
Proof of Theorem 3.2 We assume that the reader is familiar with some of the previous
work on nested dissection to compute elimination orders for Gaussian elimination [14,
21]. Set G = G(A). For each edge i j of G, if i ∈ Zt and j ∈ Zt ′ , then either t = t ′
or t and t ′ have an ancestor–descendant relation in T .

For each node t of T , we eliminate all rows in Zt together, using block Gaussian
eliminations. Since the row order is consistent with T , we have already eliminated all
the rows of Vt\Zt , and we have not yet eliminated any row of Zt ′ , for any ancestor
t ′ of t . For each node t of T , let Bt be the set of vertices j that belong to some Zt ′ ,
where t ′ is an ancestor of t in T , such that there is an edge from j to some vertex of Vt .
A vertex j of G(A) is affected by the elimination steps on the rows of Zt only if j
belongs to Zt or to Bt . Thus, performing Gaussian elimination steps on the rows of Zt

affects at most |Zt | + |Bt | rows and columns. Eliminating the rows of Zt affects the
rows of Bt . However, when processing node t , we do not yet perform any elimination
steps on the rows of Bt . Thus, we consider the submatrix with indices in Zt ∪ Bt , and
we perform the elimination steps only on the rows of Zt . By Lemma 3.3, this takes
O((|Zt |+|Bt |)2|Zt |ω−2) time. It follows that the running time of the whole algorithm
is

∑

t∈T
O

(
(|Zt | + |Bt |)2|Zt |ω−2) =

∑

t∈T
O(|Zt |ω) +

∑

t∈T
O(|Bt |2|Zt |ω−2). (2)

Since |Zt | � γ |Vt |β , the first sum is bounded as follows:

∑

t∈T
|Zt |ω �

∑

t∈T
γ ω|Vt |βω = γ ω

∑

t∈T
|Vt |βω = O(γ ωnβω), (3)

where in the last step we have used the assumption βω > 1.
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To bound the second sum, we first analyze  = ∑
t∈T |Bt |2. For this, we follow

Gilbert and Tarjan [14] almost verbatim. Let L� be the nodes of T at level � and define
� = ∑

t∈L�
|Bt |2. (The root is at level 0.) Fix a level � > 0. The sum� is maximized

if for each node t ′ at level �′ < �, all the edges with an endpoint in t ′ and an endpoint
at level at least � are incident to the same subgraph G[Vt ] of t ∈ L�. That is, to bound
�, we can assume that all the edges incident to Zt ′ contribute to the same Bt , t ∈ L�.
For each t ∈ L�, let s(t) be the highest node of T with an edge going to Vt . Because of
the assumption we made, the mapping t �→ s(t) (from L� to

⋃
�′�� L�′ ) is injective. If

s(t) = t0, t1, . . . , ta = t is the path in T from s(t) to t , then we have |Vti | � αi |Vs(t)|
for each i = 0, . . . , a. Using that each vertex of each Zti has bounded degree, we get

|Bt | �
a∑

i=0

O(1)|Zti | � O(1)
a∑

i=0

γ |Vti |β � O(γ )

a∑

i=0

(αi |Vs(t)|)β

� O(γ |Vs(t)|β)

a∑

i=0

(αβ)i � O

(
γ |Vs(t)|β 1

1 − αβ

)
.

Since the map t �→ s(t) is an injection (when t ∈ L�), we have

� =
∑

t∈L�

|Bt |2 �
∑

t∈L�

O

(
γ 2|Vs(t)|2β 1

(1 − αβ)2

)

�
∑

s∈⋃
�′�� L�′

O

(
γ 2|Vs |2β 1

(1 − αβ)2

)
= O

(
γ 2 1

(1 − αβ)2
�n2β

)
,

where in the last step we have used that the sets Vs , s ∈ L�′ , are pairwise disjoint
subsets of [n] for each level �′, and 2β � 1. For each � and each t ∈ L�, we have
|Vt | � α�n and therefore |Zt | � γ (α�n)β . This implies that

∑

t∈L�

|Bt |2|Zt |ω−2 �
∑

t∈L�

|Bt |2
(
γ (α�n)β

)ω−2 = γ ω−2(α�n)β(ω−2)
∑

t∈L�

|Bt |2

� γ ω−2(α�n)β(ω−2) · O
(

γ 2 1

(1 − αβ)2
�n2β

)

= O

(
γ ω 1

(1 − αβ)2
nβωα��

)
.

Since
∑

��0 α�� = α/(1 − α)2, for 0 < α < 1, we get that

∑

t∈T
|Bt |2|Zt |ω−2 =

∑

��0

∑

t∈L�

|Bt |2|Zt |ω−2 �
∑

��0

O

(
γ ω 1

(1 − αβ)2
nβωα��

)

= O

(
α

(1 − αβ)2(1 − α)2
γ ωnβω

)
.
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Combining it with (3), we get from (2) that the total running time is O((α/(1 − αβ)

(1 − α)2)γ ωnβω). The theorem follows (in the statement of our theorem, we hide α

in the O-notation, to avoid clutter and since the precise dependency is not important
in our applications). �
Remark 3.4 Mucha andSankowski [28] noted that the result holdswhenG(A) is planar
or, more generally, has recursive separators, using the approach by Lipton et al. [21]
for nested dissection. This approach is based on the strong separator tree. Alon et al.
[4, 35] showed that a similar result holds for graphs of bounded degree with recursive
separators if one instead uses the nested dissection given by Gilbert and Tarjan [14]. In
this case, we need bounded degree, but a weak separator tree suffices. Again, since we
want to make the dependency on ρ explicit and since the analysis in terms of matrix
multiplication time does not seem to be written down in detail anywhere, we revise
the method carefully.

Remark 3.5 Usually, the result is stated for symmetric positive definite matrices. Rein-
dexing a symmetric positive definite matrix gives another symmetric positive definite
matrix, and Gaussian elimination on such matrices can always be performed without
pivoting. Thus, for positive semidefinite matrices, we do not need to assume that the
row order is consistent with T because we can reorder the rows to make it consistent
with T . However, Mucha and Sankowski [28] do need the general statement in their
Sect. 4.2, and they mention this general case after their Theorem 13. Actually, they
need it over Zp, where the concept of positive definiteness is not even defined!

3.3 The Algorithm

Assume we have a graph G of Gρ with n vertices and a geometric representation,
i.e., geometric objects U of density at most ρ such that G is a subgraph of GU. We
want to compute a maximum matching for G. For this, we adapt the algorithm of
Mucha and Sankowski [28]. We provide an overview of the approach, explain the
necessary modifications, and emphasize the dependency on ρ in the different parts of
the algorithm.

Using Lemma 3.1, we get in O(ρn log n) expected time a vertex-split graph G ′ of
G and a separator tree T ′ for G ′ such that

– the graph G ′ has �(ρn) vertices and edges;
– the maximum degree of G ′ is at most 4;
– T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G ′, where α < 1 is a constant
(independent of ρ and n).

Since G ′ is obtained from G by vertex splits, it suffices to find a maximum matching
in G ′. We setm = |V (G ′)| = �(ρn), and we label the vertices of G ′ from 1 tom. We
consider the variables X = (xi j )i j∈E(G ′); i.e., each edge i j of G defines a variable xi j .
Consider the m × m symbolic matrix A[X ] = A[X ](G ′), defined as follows:

(A[X ])i, j =

⎧
⎪⎨

⎪⎩

xi j , if i j ∈ E(G ′) and i < j,

−xi j , if i j ∈ E(G ′) and j < i,

0, otherwise.
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The symbolic matrix A[X ] is usually called the Tutte matrix of G ′. It is known [30]
that the rank of A[X ] is twice the size of the maximum matching in G ′. In particular,
G ′ has a perfect matching if and only if det(A[X ]) is not identically zero. Take a prime
p = �(n4), and substitute each variable in A[X ] with a value from Zp, each chosen
independently uniformly at random. Let A be the resulting matrix. Then, with high
probability, rank(A) = rank(A[X ]), where on both sides we consider the rank over
the field Zp [30].

From maximum matching to perfect matching Let B = AAT . Then, B is symmetric,
and the rank of B equals the rank of A. Note that (B)i, j is nonzero only if i and j share
a neighbor in G ′. Since G ′ has bounded degree, from the separator tree T ′ for G ′, we
can obtain a separator tree TB for the representing graph G(B). Since T ′ was a (γ =
O(ρ), β = 1/2, α)-separator tree for G ′, TB is a (γ = O(ρ), β = 1/2, α)-separator
tree forG(B), where the constant hidden in O(ρ) is increased by themaximum degree
in G ′. Using Theorem 3.2, we obtain that Gaussian elimination can be done in B in
O(γ ωmω/2) = O(ρω(ρn)ω/2) = O(ρ3ω/2nω/2) time, assuming that pivoting is not
needed.

Mucha and Sankowski [28, Sect. 5] show how Gaussian elimination without piv-
oting can be used in B to find a collection of indices W ⊆ [m] such that the centered
matrix (B)W ,W , defined by rows and columns of B with indices in W , has the same
rank as B. It follows that rank(AW ,W ) = rank(BW ,W ) and thereforeG ′[W ] contains a
maximummatching of G ′ that is a perfect matching in G ′[W ] (with high probability).
The key insight to find suchW is that, if during Gaussian elimination in B we run into
a 0 along the diagonal, then the whole row and column are 0, which means that they
can be removed from the matrix without affecting the rank. We summarize.

Lemma 3.6 In time O(ρ3ω/2nω/2) we can find a subset W of vertices of G ′ such that,
with high probability, G ′[W ] has a perfect matching that is a maximum matching
in G ′.
From now on, we can assume that G ′ has a perfect matching. We keep denoting by
T ′ its separator tree, by A the matrix after substituting values of Zp into A[X ], and
by B the matrix AAT . (We can compute the tree T ′ anew or we can reuse the same
separator tree restricted to the subset of vertices.) Let Zr denote the set stored at the
root r of T ′. Thus, Zr is the first separator on G ′. Let Nr be the set Zr together with
its neighbors in G ′. Because G ′ has bounded degree, we have |Nr | = O(|Zr |) =
O(ρm1/2) = O(ρ3/2n1/2).

Mucha and Sankowski show how to compute with O(1) Gaussian eliminations
a matching M ′ in G ′ that covers all the vertices of Zr and is contained in some
perfect matching of G ′. There are two ingredients for this. The first ingredient is
to use Gaussian elimination on the matrix B = AAT to obtain a decomposition
AAT = LDLT , and then use (partial) Gaussian elimination on a matrix C composed
of L [m],Nr and ANr ,[m]\Nr to compute (A−1)Nr ,Nr . (Note that in general (A

−1)Nr ,Nr is
different from (ANr ,Nr )

−1.Computing the latter is simpler,while computing the former
is a major insight by Mucha and Sankowski [28, Sect. 4.2].) Interestingly, T ′ is also a
separator tree for the representing graph of thismatrixC , andGaussian elimination can
be performed without pivoting. Thus, we can obtain in O(ρωmω/2) = O(ρ3ω/2nω/2)

time the matrix (A−1)Nr ,Nr . The second ingredient is that, once we have (A−1)Nr ,Nr ,
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we can compute for any matching M ′ contained in G ′[Nr ] a maximal (with respect to
inclusion) submatching M ′ that is contained in a perfect matching of G ′. This is based
on an observation by Rabin and Vazirani [30] that shows how to find edges that belong
to some perfect matching using the inverse matrix, and Gaussian elimination on the
matrix (A−1)N ,N to identify subsets of edges that together belong to some perfect
matching. The matrix (A−1)Nr ,Nr is not necessarily represented by a graph with nice
separators, but it is of size |Nr | × |Nr |. Thus, Gaussian elimination in (A−1)Nr ,Nr

takes O(|Nr |ω) = O(ρ3ω/2nω/2) time [28, Sect. 2.4].
Since the graphG ′ has boundedmaximumdegree,makingO(1) iterations of finding

a maximal matching M ′ in G ′[Nr ], followed by finding a maximal subset M ′′ of M ′
contained in a perfect matching of G ′, and removing the vertices contained in M ′ plus
the edges of M ′ \M ′′, gives a matching M∗ that covers Zr and is contained in a perfect
matching ofG ′; see [28, Sect. 4.3]. The vertices ofM∗ can be removed, and we recurse
on both sides of G ′ − V (M∗) ⊂ G ′ − Zr using the corresponding subtrees of T ′. The
running time is T (n) = O(ρ3ω/2nω/2) + T (n1) + T (n2), where n1, n2 � αn. This
solves to T (n) = O(ρ3ω/2nω/2) because ω/2 > 1. We summarize in the following
result. If only the family U is given, first we use Lemma 2.1 to construct GU.

Theorem 3.7 Given a graph G of Gρ with n vertices together with a family U of
geometric objects with density ρ such that G is a subgraph of GU, we can find in
O(ρ3ω/2nω/2) time a matching in G that, with high probability, is maximum. In par-
ticular, for a family U of n geometric objects with density ρ, a maximum matching in
GU can be found in O(ρ3ω/2nω/2) time. The same holds for the bipartite or k-partite
version of GU.

4 Sparsification

Let U be a family of convex geometric objects in the plane such that each object of U
contains a square of side length 1 and is contained in a square of side length � � 1.
Through the discussion we will treat � as a parameter. Our objective is to reduce
the problem of computing a maximum matching in the intersection graph GU to the
problem of computing a maximum matching in GW for someW ⊆ U of small depth.

Let P = Z
2 be the points in the plane with integer coordinates. Each square of unit

side length contains at least one point of P and each square of side length � contains
at most (1 + �)2 = O(�2) points of P . In particular, each object U ∈ U contains at
least one and at most O(�2) points from P .

First we provide an overview of the idea. The objects intersected by a point p ∈ P
define a clique, and thus any even number of them defines a perfect matching. We
show that, for each p ∈ P , it suffices to keep a few objects pierced by p, and we
show how to obtain such a suitable subfamily. The actual number of objects to keep
depends on �, and whether the actual computation can be done efficiently depends
on the geometric shape of the objects.

For each object U ∈ U, we find the lexicographically smallest point in P ∩U . We
assume that we have a primitive operation to compute P ∩ U for each object U ∈ U

in O(1+ |P ∩U |) = O(�2) time. A simple manipulation of these incidences allows
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us to obtain the clusters

Up = {U ∈ U | p lexicographically minimum in P ∩U },

for all p ∈ P . Note that the clusters Up, for p ∈ P , form a partition of U. This will be
useful later. Clearly, the subgraph of GU induced by Up is a clique, for each p ∈ P .
We will use the usual notation

E(Up,Uq) = {UV | U ∈ Up, V ∈ Uq , U ∩ V �= ∅} ⊆ E(GU).

The pattern graph H = H(P, �) has vertex set P and set of edges

E(H) = {pq | ‖p − q‖∞ � 2�} ⊆
(
P

2

)
.

The use of the pattern graph is encoded in the following property: ifU ∈ Up, V ∈ Uq ,
andU ∩V �= ∅, then pq ∈ E(H). Indeed, ifU and V intersect, then the unionU ∪V
is contained in a square of side length 2�, and thus the L∞-distance between each
p ∈ P ∩U and q ∈ P ∩ V is at most 2�.

The definition of H(P, �) implies that the edge set of GU is the disjoint union
of E(Up,Uq), over all pq ∈ E(H), and the edge sets of the cliques GUp , over all
p ∈ P . Thus, whenever pq /∈ E(H), there are no edges in E(Up,Uq).

Let λ be the maximum degree of H . Note that λ = O(�2). The value of λ is an
upper bound on how many clusters Uq may interact with a single cluster Up. We will
use λ as a parameter to decide how many objects from eachUp are kept. We start with
a simple observation.

Lemma 4.1 There exists amaximummatching inGU that, for all pq ∈ E(H), contains
at most one edge of E(Up,Uq).

Proof Let M be a maximum matching in GU such that
∑

pq∈E(H) |M ∩ E(Up,Uq)|
is minimum. Suppose there is an edge p0q0 ∈ E(H) with |M ∩ E(Up0 ,Uq0)| � 2.
Then we have two edges UV and U ′V ′ in M ∩ E(Up0 ,Uq0), where U ,U ′ ∈ Up0
and V , V ′ ∈ Uq0 . Since UU ′ and VV ′ are also edges in GU, we see that M ′ =
(M \ {UV ,U ′V ′}) ∪ {UU ′, VV ′} is a maximum matching in GU. We then have

|M ′ ∩ E(Up0 ,Uq0)| = |M ∩ E(Up0 ,Uq0)| − 2,

and

|M ′ ∩ E(Up,Uq)| = |M ∩ E(Up,Uq)|,

for all pq ∈ E(H), pq �= p0q0. In this last statement, it is important that Up,
p ∈ P , is a partition of U, as otherwise UU ′ could belong to some E(Up,Uq)

or even E(Up0 ,Uq0). Hence,
∑

pq∈E(H) |M ′ ∩ E(Up,Uq)| is strictly smaller than∑
pq∈E(H) |M ∩ E(Up,Uq)|, a contradiction to our choice of M . The result follows.

�
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Algorithm Sparsify-one-edge
Input: p, q, ,Up and Uq

Output: W(p, q)
1. Ap ← Up

2. Aq ← Uq

3. (∗ compute matching M ∗)
4. M ← ∅
5. while |M | < 2λ + 1 and Ap �= ∅ do
6. U ← an arbitrary object of Ap

7. if U intersects some V ∈ Aq then
8. M ← M ∪ {UV }
9. Aq ← Aq \ {V }
10. Ap ← Ap \ {U}
11. (∗ end of computation of M ∗)
12. W ← ⋃

UV ∈M{U, V } (∗ endpoints of M ∗)
13. if |M | = 2λ + 1 then (∗ M is a large enough matching ∗)
14. return W

15. else (∗ M maximal but small; add neighbors of W to the
output ∗)

16. W′ ← W

17. for W ∈ W do
18. if W ∈ Up then
19. add to W′ min{λ, |E({W},Uq)|} elements of Uq

intersecting W
20. else (∗ W ∈ Up ∗)
21. add to W′ min{λ, |E(Up, {W})|} elements of Up

intersecting W
22. return W′

Fig. 2 Algorithm Sparsify-one-edge

Of course we do not know which object from the cluster Up will interact with another
cluster Uq . We will explain how to get a large enough subset of cluster Up.

For each pq ∈ E(H), we construct a setW(p, q) ⊆ Up ∪Uq as follows. First, we
construct a matching M = M(p, q) in E(Up,Uq) such that M has 2λ + 1 edges or
M has fewer than 2λ + 1 edges and is maximal in E(Up,Uq). For example, such a
matching can be constructed incrementally. If M has 2λ + 1 edges, we takeW(p, q)

to be the endpoints of M . Otherwise, for each endpointU ∈ Up (resp. V ∈ Uq ) of M ,
we place U (resp. V ) and λ of its neighbors from Uq (resp. Up) into W(p, q). When
U (resp. V ) has fewer than λ neighbors, we place all its neighbors in W(p, q). This
finishes the description of W(p, q); refer to Algorithm Sparsify-one-edge in Fig. 2
for pseudo-code.
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Lemma 4.2 A maximum matching in

G̃ =
⋃

pq∈E(H)

GW(p,q) ∪
⋃

p∈P

GUp .

is a maximum matching in GU

Proof By Lemma 4.1, there is a maximum matching M in GU such that for each
pq ∈ E(H), the matching M contains at most one edge from E(Up,Uq). Among all
such maximum matchings, we choose one matching M that minimizes the number of
edges pq ∈ E(H) for which M contains an edge in E(Up,Uq) that does not have
both vertices inW(p, q). If there is no such edge p0q0 ∈ E(H), then the lemma holds
because such M is contained in G̃. We show that this is the only possible case.

Suppose, for the sake of reaching a contradiction, that there exists p0q0 ∈ E(H)

such that M contains an edgeUV withU ∈ Up0 , V ∈ Uq0 , and {U , V } �⊂ W(p0, q0).
Let M ′ be the set of edges from M connecting different clusters, i.e., M ′ = M ∩⋃

pq∈E(H) E(Up,Uq). Let M(p0, q0) be the matching in E(Up0 ,Uq0) used during
the construction of W(p0, q0). We distinguish two cases:

|M(p0, q0)| = 2λ+1: Let NH (p) be the neighbors of p in H . Since M has at most
one edge from E(Up,Uq), for each pq ∈ E(H), we obtain that M ′ has
at most λ edges with an endpoint in Up0 and at most λ edges with an
endpoint in Uq0 , as λ is the maximum degree of H . Thus, M(p0, q0)
contains at least one edgeU ′V ′ whose endpoints are not touched by M ′.
We remove from M the edge UV and add the edge U ′V ′. If there was
some edge U ′U ′′ ∈ M ∩ E(Up0 ,Up0), we also replace U

′U ′′ by UU ′′
inM . If there was some edge V ′V ′′ ∈ M∩E(Uq0 ,Uq0), we also replace
V ′V ′′ by VV ′′ in M .

|M(p0, q0)| � 2λ: In this case, M(p0, q0) is a maximal matching in E(Up0 ,Uq0).
In particular, one of U or V is covered by M(p0, q0), as otherwise
we could have added UV to M(p0, q0). We consider the case when
U ∈ Up0 is covered by M(p0, q0); the other case is symmetric. Then
U ∈ W(p0, q0), V /∈ W(p0, q0), and it follows thatU has more than λ

neighbors inUq0 . Among the at least λ neighbors ofU inW(p0, q0), at
most λ − 1 are covered by edges in M ′. (Note that V is covered by M ′,
but V is not in W(p0, q0).) This means that there is some V ′ ∈ Uq0 ∩
W(p0, q0) such that V ′ is not covered by M ′ and UV ′ ∈ E(Up0 ,Uq0).
We replace in M the edge UV by UV ′. Moreover, if V ′V ′′ is an edge
of M , where necessarily V ′′ ∈ Uq0 , we replace in M the edge V ′V ′′ by
VV ′′.

In both cases, we can transform the maximum matching M into another maximum
matching that contains one edge with both endpoints in W(p0, q0), no other edges
of E(Up0 ,Uq0) \ E(GW(p0,q0)), and the intersection of M with E(Up,Uq) has not
changed, for all pq ∈ E(H)\{p0q0}. This contradicts the choice ofM , and the lemma
follows. �
Lemma 4.3 The family of objects W = ⋃

pq∈E(H) W(p, q) has depth O(�8).
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Proof EachW(p, q) has O(λ2) elements, as the matching M(p, q) used for the con-
struction ofW(p, q) has O(λ) edges, and each such edgemay add O(λ)more vertices
toW(p, q). It follows that, for each p ∈ P , the family W contains at most

∑

q∈NH (p)

|W(p, q)| � λ ·O(λ2) � O(�6)

objects from Up. In short, |W ∩ Up| = O(�6), for each p ∈ P . Fix a point z ∈ R
2.

Let s be a unit square that contains z and whose corners lie in P . For every object
U ∈ W with z ∈ U , there is a square of side length � that containsU and at least one
corner of s. Thus, each object U of W with z ∈ U belongs to Up, for some p ∈ P at
L∞-distance at most 1 + � from z. It follows that z can only be contained in objects
of Up for O(�2) points p ∈ P , so the depth of z inW is at most

∑

p∈P
‖z−p‖∞�1+�

|W ∩ Up| � O(�2) · O(�6) = O(�8).

Since z was arbitrary, the lemma follows. �
Theorem 4.4 Let U be a family of n geometric objects in the plane such that each
object of U contains a square of side length 1 and is contained in a square of side
length�. Suppose that, for anym ∈ N and for any p, q ∈ Z

2 with |Up|+|Uq | � m,we
can compute the sparsification W(p, q) as described above in time Tspars(m), where
Tspars(m) = �(m) is convex. In O(�2Tspars(n)) time we can reduce the problem of
finding a maximum matching in GU to the problem of finding a maximum matching
in GW for some W ⊆ U with maximum depth O(�8).

Proof For each pq ∈ E(H), we find the sparsification W(p, q). Note that∑
pq∈E(H)(|Up| + |Uq |) � λn, as each p contributes λ summands. Hence, the

computation of W(p, q), for all pq ∈ E(H), takes time

∑

pq∈E(H)

O(Tspars(|Up| + |Uq |)) = O(λTspars(n)) = O(�2Tspars(n)).

Consider the familyW = ⋃
pq∈E(H) W(p, q). By Lemma 4.3, the familyW has depth

O(�8). By Lemma 4.2, it suffices to find a maximum matching in

G̃ =
⋃

pq∈E(H)

GW(p,q) ∪
⋃

p∈P

GUp ,

which is a subgraph of

GW ∪
⋃

p∈P

GUp . (4)
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Since each GUp is a clique and the vertices of Up \ W are not adjacent to any vertex
outside Up (in the graph (4)), we can just take maximum matchings within each
U′

p = Up \ W. Here, we have to take care of the parity, as one vertex of U′
p may be

left unmatched in GU′
p
, but may be matched to some vertex of Up ∩ W. To handle

this, for each p ∈ P such that |U′
p| is odd, we move one element of U′

p to W. Thus,
we can assume that |U′

p| is even, for all p ∈ P . The additional elements in W may
increase the depth of W by O(�2), which is negligible. Now, a maximum matching
(4) is obtained by joining a maximum matching in GW with maximum matchings
in GU′

p
, p ∈ P . The maximum matchings in GU′

p
, p ∈ P , are trivial, because it is a

clique on an even number of vertices. The result follows. �
Our use of properties in the plane is very mild, and similar results hold in any space
with constant dimension.

Theorem 4.5 Let d � 3 be a constant. Let U be a family of n geometric objects in
R
d such that each object of U contains a cube of side length 1 and is contained in

a cube of side length �. Suppose that, for any m ∈ N and for any p, q ∈ Z
d with

|Up| + |Uq | � m, we can compute the sparsification W(p, q) as described above in
time Tspars(m), where Tspars(m) = �(m) is convex. In O(�dTspars(n)) time we can
reduce the problem of finding a maximum matching in GU to the problem of finding
a maximum matching in GW for some W ⊆ U with maximum depth (1 + �)O(d).

Proof The pattern graph H can be defined for Zd also using the L∞-metric. Such
pattern graph has maximum degree O((1 + �)d) = O(�d). Lemmas 4.1 and 4.2
hold equally in this setting. Lemma 4.3 holds with an upper bound of (1 + �)O(d).
The proof of Theorem 4.4 then applies. �
As we mentioned in the introduction, for fat objects, bounded depth implies bounded
density; see Har-Peled and Quanrud [15, Lemma 2.7]. If a convex object contains a
cube of unit side length and is contained in a cube of side length�, then it is O(1/�)-
fat; see van der Stappen et al. [32], where the parameter 1/� goes under the name
of thickness. Combining both results, one obtains that the relation between depth and
density differs by a factor of �. For fixed shapes, the depth and density differ by a
constant factor.

5 Efficient Sparsification

Now, we implement Algorithm Sparsify-one-edge (Fig. 2) efficiently. In particular, we
must perform the test in line 7 and find the neighbors in line 19 (and the symmetric
case in line 21). The shape of the geometric objects becomes relevant for this. First, we
note that it suffices to obtain an efficient semi-dynamic data structure for intersection
queries.

Lemma 5.1 Suppose there is a data structure with the following properties: for any
m ∈ N and for any p, q ∈ Z

2 with |Up| + |Uq | � m, we can maintain a setAq ⊆ Uq

under deletions so that, for any query U ∈ Up, we either find some V ∈ Aq with
U ∩ V �= ∅ or correctly report that no such V exists. Let Tcon(m) be the time to
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construct the data structure, Tque(m) an upper bound on the amortized query time,
and Tdel(m) be an upper bound on the amortized deletion time. Then, the running time
of Algorithm Sparsify-one-edge (Fig. 2) for the input (p, q,Up,Uq) is Tsparse(m) =
O(Tcon(m) + mTque(m) + λ2Tdel(m)).

Proof First, we discuss the operations in lines 5–10 in Algorithm Sparsify-one-edge
(Fig. 2). We maintainAp as a linked list andAq in the data structure from the lemma.
This takes O(Tcon(m)) time. Initially, Ap = Up and Aq = Uq . In each iteration of
the while-loop, we query with U to either obtain some V ∈ Aq intersected by U , or
correctly report that no object ofAq intersectsU . If we get some V intersected byU ,
we remove V from Aq in O(Tdel(m)) time. (Note that we have removed at most 2λ
elements of Uq to obtain the current Aq .) In either case, we remove U from Ap, in
O(1) time. The running time for this part is O(mTque(m) + λTdel(m)).

Next, we discuss how to do line 19 in Algorithm Sparsify-one-edge (Fig. 2). We
store Aq = Uq in the data structure from the lemma. For each W ∈ W ∩ Up, we
repeatedly query the data structure to find some V ∈ Aq that intersects W , and we
remove this V from Aq . We repeat this query-delete pattern in Aq with W , until we
collect λ neighbors of W or until we run out of neighbors. Thus, the query-deletion
pattern happens at most λ times, for each W . Having collected the data for W , we
reverse all the deletions in Aq , to obtain the original data structure for Aq = Uq , and
we proceed to the next object of W ∩ Up. (We do not need insertions, as it suffices
to undo the modifications that were made in the data structure.) In total, we repeat
O(|W ∩ Up|) = O(λ) times a pattern of O(λ) queries and deletions followed by a
reversal of all the operations. Thus, the running time is Tcon(m) to construct the data
and O(λ2Tque(m)+λ2Tdel(m)) to handle the operations on the data structure. We can
assume that λ2 � m, as otherwise we do not need to run the sparsification and can
take directly the whole set of objects.

Line 21 in Algorithm Sparsify-one-edge (Fig. 2) can be done in a similar way. The
rest of the algorithms are elementary steps and bookkeeping. �

5.1 Disks in the Plane

When U consists of disks in the plane, we can use the data structure of Kaplan et al.
[19], with a recent improvement by Liu [23], to sparsify an edge of the pattern graph.
This leads to the following.

Proposition 5.2 Consider a family U of n disks in the plane with radii in [1, �].
In O(�6n log4n) expected time, we can reduce the problem of finding a maximum
matching in GU to the problem of finding a maximum matching in GW for some
subfamily W ⊆ U of disks with maximum depth O(�8).

Proof Kaplan et al. [19] describe a data structure for additively weighted nearest-
neighbor queries: maintain points A = {a1, . . . , an} ⊆ R

2 in the plane, where each
point ai has a weight ωi ∈ R associated to it. The data structure can handle inser-
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tions, deletions, and closest point queries (for a given x ∈ R
2, return a point in

argminai∈A ωi + |x − ai |) in O(log4n) amortized expected time.7

This data structure can be used to dynamically maintain a set A = {D1, . . . , Dn}
of disks so that, for a query disk D, we can either report one disk of A intersected by
D or correctly report that no disk of A intersects D. Indeed, we store A as a set A of
weighted points. Each disk Di is represented by its center ai with weight equal to its
negated radius. If x is a point in the plane that lies outside the union of A, the closest
weighted point of A gives the first disk boundary that is touched by a growing disk
centered at x . If x lies inside the union of A, the closest weighted point gives the last
boundary of a disk inA that contains x and that is touched by growing a disk around x .
Thus, to answer a query for a disk D, we query for the weighted point ai ∈ A closest
to the center of D, and then check whether D intersects Di . Updates and queries take
O(log4n) amortized expected time.

Using Lemma 5.1, we conclude that Tsparse(m) = O((m + λ2) log4m) expected
time. Recall that λ2 = O(�4). Because of Theorem 4.4, we conclude that the reduc-
tion takes time O(�2(n + �4) log4n) = O(�6n log4n) expected time. �
Possibly, the method can be extended to homothets of a single object. For this one
should consider the surfaces defined by weighted distances in the approach of Kaplan
et al. [19]. Since the depth and the density of a family of disks are linearly related,
Proposition 5.2 and Theorem 3.7 with ρ = O(�8) imply the following.

Theorem 5.3 Consider a family U of n disks in the plane with radii in the interval
[1, �]. In O(�6n log4n + �12ωnω/2) expected time, we can compute a matching in
GU that, with high probability, is maximum.

5.2 Translates of a Fixed Convex Shape in the Plane

Now, supposeU consists of translates of a single convex objectwith non-empty interior
in the plane. With an affine transformation, we ensure that the object is fat: the radii of
the minimum enclosing disk and of the maximum enclosed disk are within a constant
factor. Such a transformation is standard; e.g., [1, Lem. 3.2]. Thus, we may assume
that � = O(1). We start with a standard lemma.

Lemma 5.4 Let U be a family of n translates of a convex object in the plane that are
pierced by a given point q. The union of U can be computed in O(n log n) time.

Proof The boundary of two translates of the same convex object intersect at most
twice. This means that U is a family of pseudodisks. Let q be the given point that
pierces all U ∈ U. We assume that q belongs to the interior; otherwise it is necessary
to make groups of objects and use O(1) points that intersect all the U ∈ U.

Each U ∈ U defines a function δU : [0, 2π ] → R, where δU (θ) is the length of the
longest segment inside U with origin q and angle θ with some fixed axis. Since q is
in the interior of U , the function δU ( · ) is continuous. We can extend each function
δU to the whole R by taking δU (θ) = δ(0), for θ /∈ [0, 2π ]. The family {δU |U ∈ U}
7 The running time in [19] has more logarithmic factors, but recently Liu [23] presented an improved
construction of shallow cuttings that leads to the claimed result.
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of totally defined functions is a family of pseudoparabolas: the graphs of any two of
them intersect at most twice.

The upper envelope of a family of n pseudoparabolas can be computed in O(n log n)

time with a divide-and-conquer approach. First, we note that the upper envelope of n
totally defined pseudoparabolas has at most 2n− 1 pieces. This is a standard property
from the study ofDavenport–Schinzel sequences. For the algorithm,we split the family
U into two subfamilies U1 and U2 of roughly the same size, recursively compute the
upper envelopes g1 of U1 and g2 of U2, and then compute the upper envelope of g1
and g2. If the upper envelopes are given as x-monotone curves, then the upper envelope
of g1 and g2, which is the upper envelope of U, is obtained in additional linear time.
Since the merging step takes linear time, the whole algorithm takes O(n log n) time.

The maps δU do not need to be computed explicitly and the whole algorithm can
actually be carried outwith a rotational sweep aroundq. The transformation to consider
the functions δU helps to bring it to familiar ground in computational geometry. �
We will use the following lemma to “simulate” deletions. For this, we will keep a
half-infinite interval of indices that contains the elements that are “deleted”.

Lemma 5.5 Let U = {U1, . . .Un} be a family of n translates of a convex object in the
plane that are pierced by a given point q. In O(n log2n) time, we can construct a data
structure for the following queries: given x ∈ R

2 and a value a ∈ {1, . . . , n}, find the
smallest i � a such that Ui contains x, or correctly report that x does not belong to
Ua ∪ · · · ∪Un. The query time is O(log2n).

Proof We follow the standard approach for adding range capabilities to data structures
[34]: we make a balanced binary search tree T whose leaves are 1, . . . , n, from left to
right. For each node ν of T , we define C(ν) as the set of indices stored at the leaves
of the subtree rooted at ν. The set C(ν) is a canonical subset of {1, . . . , n}.

For each node ν ∈ T , we compute the region R(ν) = ⋃
i∈C(ν) Ui . This can be done

in O(n log n) time for all nodes ν of T . Indeed, the divide-and-conquer approach from
the proof of Lemma 5.4 can be applied here. If a node ν has children ν� and νr , then
R(ν) = ⋃

i∈C(ν) Ui can be computed in O(|C(ν)|) time from R(ν�) = ⋃
i∈C(ν�)

Ui

and R(νr ) = ⋃
i∈C(νr )

Ui .
For each node ν of T , we preprocess the region R(ν) for point location queries.

This takes O(|C(ν)|) time, because we just need the description of the boundary of
R(ν) in a table. To decide whether a given point x ∈ R

2 lies in R(ν), we make a binary
search along the boundary of R(ν) for the arc of R(ν) that is intersected by the ray
from q through x . This takes O(log n) time. This finalizes the preprocessing and the
construction of the data structure.

Consider a query consisting of a point x ∈ R
2 and an index a. We may assume

that a ∈ {1, . . . , n}. The set {a, a + 1, . . . , n} can be expressed as the disjoint union
of canonical subsets C(ν1), . . . ,C(νk), where k = O(log n), indexed so that each
element of νt is smaller than each element of νt+1, for t = 1, . . . , k−1. Making point
location queries in R(ν1), R(ν2), . . . we find the first index j such that x ∈ R(ν j ).
This takes O(log2n), as wemake O(log n) point location queries. Then, we search the
subtree of T rooted at ν j for the leftmost leaf i with x ∈ Ui . This is easy: if we are at
some internal node ν with left child ν� and right child νr , we query the point location
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data structure at ν� to determine whether x ∈ R(ν�). If x ∈ R(ν�), we continue to ν�.
Otherwise, x must be in R(νr ), as x ∈ R(ν), and we go to νr . This search makes
O(log n) queries to the point location structures, and thus takes O(log2n) time. �
Lemma 5.6 Let Uq = {V1, . . . , Vn} be a family of n translates of a convex object in
the plane that are pierced by a given point q. Let U0 be a convex object. In O(n log2n)

time, we can construct a data structure for the following type of queries: given a
translate U of U0 and a value a, find the smallest i � a such that U intersects Vi , or
correctly report that U does not intersect Va ∪ · · · ∪ Vn. Each query can be answered
in O(log2n) time.

Proof Applying a translation, we may assume that U0 contains the origin. For each
Vi ∈ Uq , let Wi = Vi ⊕ U0 = {v − u | v ∈ Vi , u ∈ U0} be the Minkowski sum of
Vi and −U0. For each translation τ , we have that τ(U0) intersects Vi if and only if
τ ∈ Wi . All the sets W1, . . . ,Wn contain q because the origin belongs to U0. Thus,
we can construct the data structure of Lemma 5.5 for {W1, . . . ,Wn}. For a query U
and a, we find the translation τ such thatU = τ(U0), and then find the smallest i � a
such that τ ∈ Wi , which also tells the smallest i � a such that U intersects Vi . �
Lemma 5.6 can be used to make queries and simulate deletions.

Proposition 5.7 Consider a family U of n translates of a convex object with non-
empty interior in the plane. In O(n log2n) time, we can reduce the problem of finding
a maximum matching in GU to the problem of finding a maximum matching in GW

for some subfamily W ⊆ U with maximum depth O(1).

Proof As mentioned above, we may make an affine transformation, so that, after the
transformation,we have� = O(1) [1, Lemma3.2]. Consider an edge pq of the pattern
graph. We use the algorithm described in Lemma 5.1, but with a slight modification.
We order the objects of Uq as {V1, . . . , Vm} and use the data structure of Lemma 5.6
to store them. At the start we set a = 1. Whenever we want to query Aq with U , we
query the data structure with U and the current a. If the data structure returns Vi , we
set a = i + 1 for future queries to the data structure. In this way, each time we query
the data structure, we find a new element of Uq that has not been reported before.
Thus, we obtain the same running time as in Lemma 5.1 with Tcon(m) = O(m logm),
Tque(m) = O(log2m) and Tdel(m) = O(1). Therefore Tsparse(m) = O(m log2m),
and the result follows from Theorem 4.4. �
Combining Proposition 5.7 and Theorem 3.7 we obtain the following.

Theorem 5.8 Consider a family U of translates of a convex object with non-empty
interior in the plane. In O(nω/2) time we can find a matching in GU that, with high
probability, is maximum.

If U consists of unit disks, the sparsification can be done slightly faster using a
semi-dynamic data structure by Efrat et al. [11], which has Tcon(m) = O(m logm),
Tdel(m) = O(logm), and Tque(m) = O(logm). However, the current bottleneck is
the computation of the maximum matching after the sparsification. Thus, improving

123



Discrete & Computational Geometry (2023) 70:550–579 575

the sparsification in the particular case of unit disks does not lead to an improved final
algorithm.

Proposition 5.7 and Theorem 5.8 also holds if we have translations of O(1) different
convex objects (with nonempty interiors). Indeed, the data structure of Lemma 5.6 can
be made for each pair of different convex shapes. In this case, the constant � depends
on the shapes, namely the size of the largest square that we can place inside each of
the convex shapes and the size of the smallest square that can be used to cover each
of the convex shapes. Also, the relation between the depth and the density depends
on the shapes. However, for a fixed set of O(1) shapes, both values are constants that
depend on the shapes.

Theorem 5.9 Suppose we are given a set A of O(1) different convex objects in the
plane with non-empty interiors. Let U be a family that contains n translates of objects
from A. Then, we can find in O(nω/2) time a matching in GU that is maximum with
high probability. Here, the constant in the O-notation depends on A.

5.3 Axis-Parallel Objects

A box is the Cartesian product of intervals. Combining standard data structures for
orthogonal range searching [6, Sects. 5.4 and 10.3] one obtains the following results.

Proposition 5.10 Let d � 2 be an integral constant. Consider a family U of n boxes
in R

d such that each box of U contains a cube of side length 1 and is contained in a
cube of side length�. In O(�dn logO(d)n) time we can reduce the problem of finding
a maximum matching in GU to the problem of finding a maximum matching in GW,
for some W ⊆ U with maximum depth (1 + �)O(d).

Proof Edelsbrunner and Maurer [10] show a general approach to provide a data struc-
ture to dynamically maintain a set of boxes and handle the following queries: given
a box b, report all the boxes in the data structure that intersect b. The construction
time is O(n logd n), each update (deletion/insertion) takes O(logd n) time, and each
query takes O(k + logd n), where k is the size of the output. The data structure is a
combination of segment and range trees. Such a data structure can easily be modified
to report a single element intersecting the query box b in O(logd n) time. In fact, better
results can be obtained with more advanced techniques, but we feel that discussing
them is not relevant here. (Also, we only need deletions, which makes it simpler, as in
the relevant trees we can just mark some vertices as deleted.) Using Lemma 5.1 and
Theorem 4.5, we obtain the result. �
For d = 2, we can combine Theorem 3.7 and Proposition 5.10. Sincewe have assumed
ω > 2, the O(n logO(d)n) term is asymptotically smaller than O(nω/2), and we obtain
the following.

Theorem 5.11 Given a familyU of n boxes inR2 such that each object ofU contains a
square of side length 1 and is contained in a square of side length �, we can compute
in (1+ �)O(1)nω/2 time a matching in GU that, with high probability, is a maximum
matching.
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Consider now the case d � 3. The set W that we obtain from Proposition 5.10 has
depth and density ρ = (1 + �)O(d), and therefore the graph GW has O(ρn) edges;
see Lemma 2.1. We can thus use the algorithm of Micali and Vazirani [25, 33], which
takes O(

√
n |E(GW)|) = (1 + �)O(d)n3/2 time. We summarize.8

Corollary 5.12 Let d � 3 be an integral constant. Given a family U of n boxes in R
d

such that each object ofU contains a cube of side length 1 and is contained in a cube of
side length �, we can compute in (1+ �)O(d)n3/2 time a maximum matching in GU.

5.4 Congruent Balls in d � 3 Dimensions

Consider now the case of congruent balls inRd , for constantd � 3.Note thatλ = O(1)
in this case. We use the dynamic data structure by Agarwal and Matoušek [2] for the
sparsification. For each m with n � m � n
d/2�, the data structure maintains n points
in Rd , answers O(n) queries for closest point, and supports O(λ2) updates in

O

(
m1+ε + λ2

m1+ε

n
+ n

n log3n

m1/
d/2�

)

time. Here ε > 0, is an arbitrary constant whose choice affects to the constants hidden
in the O-notation. For d ∈ {3, 4}, this running time is

O

(
m1+ε + λ2

m1+ε

n
+ n

n log3n

m1/2

)
.

Setting m = n4/3, we get a running time of O(n4/3+ε + λ2n1/3+ε) = O(n4/3+ε)

to handle O(n) queries and O(λ2) = O(1) updates. Using this in Lemma 5.1 and
Theorem 4.5, we get the following result.

Proposition 5.13 Consider a family U of n unit balls objects in Rd , for d ∈ {3, 4}. In
O(n4/3+ε) time, we can reduce the problem of finding a maximum matching in GU to
the problem of finding a maximum matching in GW for some W ⊆ U with maximum
depth O(1).

For the resulting set W with depth O(1), it is better to use the algorithm of Micali
and Vazirani [25, 33]. Note that GW is sparse, and thus has O(n) edges. Therefore,
a maximum matching in GW can be computed in O(n3/2) time. In summary, we
spend O(n4/3+ε) for the sparsification and O(n3/2) for computing the matching in the
sparsified setting.9

8 In a previous version, we invoked Mądry’s algorithm and claimed a better running time with exponent
10/7. However, this algorithm does not seem to apply here, so we fall back on theMicali–Vazirani algorithm
to obtain an exponent of 3/2.
9 Also here, we previously claimed a better exponent of 10/7, which was based on an incorrect invocation
of Mądry’s algorithm.
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For d > 4, we set m = n2
d/2�/(1+
d/2�). The running time for the sparsification is
then

O
(
n2
d/2�/(1+
d/2�)+ε

)
. (5)

For each constant d, the resulting instance GW has O(n) edges. For d = 5, 6, the
running time of the sparsification is O(n3/2+ε). However, after the sparsification, we
have a graph with O(n) edges, and we can use the algorithm of Micali and Vazirani
[25, 33], which takes O(n3/2) time. Thus, for d � 5, the running time is dominated
by the sparsification.

Theorem 5.14 Let d � 3 be a constant. Consider a familyU of congruent balls inRd .
For d = 3, 4, we can find in O(n3/2) time a maximum matching in GU. For d � 5,
we can find in time (5) a maximum matching in GU, for each ε > 0.

6 Conclusion

We have proposed the density of a geometric intersection graph as a parameter for
the maximum matching problem, and we showed that it can be fruitful in obtaining
efficient matching algorithms. Then, we presented a sparsification method that lets us
reduce the general problem to the case of boundeddensity for several interesting classes
of geometric intersection graphs. In our sparsification method, we did not attempt to
optimize the dependency on the radius ratio�. It maywell be that this can be improved
by using more advanced grid-based techniques. Furthermore, our sparsification needs
the complete intersection graph and does not apply to the bipartite setting. Here, we
do not know of a method to reduce the general case to bounded density. In general,
the complexity of the matching problem is wide open. To the best of our knowledge,
there are no (even weak) superlinear lower bounds for the (static) matching problem
in general graphs.
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