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a b s t r a c t

We study the polynomial time approximation of the NP-hard max k-vertex
cover problem in bipartite graphs and propose purely combinatorial approximation
algorithms. The main result of the paper is a simple combinatorial algorithm
and a computer-assisted analysis of its approximation guarantee giving strong
evidence that the worst approximation ratio achieved is bounded below by 0.821.
We also study two simpler strategies with provable approximation ratios of 2/3
and 34/47 ≈ 0.72 respectively that already beat the only such known algorithm,
namely the greedy approach which guarantees ratio (1 − 1/e) ≈ 0.632. Our principal
motivation is to bring a satisfactory answer in the following question: to what extent
combinatorial methods for max k-vertex cover compete with linear programming
ones?

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In max k-vertex cover problem, a simple, non-directed graph G = (V,E) is given together with a
positive integer k ⩽ n. As usual, let |V | = n and |E| = m. The goal is to find a subset K ⊆ V with k vertices
such that the total number of edges covered by K is maximized. We say that an edge e = {u, v} is covered
by a subset of vertices K if K ∩ e ̸= ∅. In the weighted version of max k-vertex cover, positive weights
are assigned to the edges and the objective becomes to determine k vertices that maximize the total weight
of the edges covered by them. max k-vertex cover is NP-hard in general graphs (as a generalization of
min vertex cover) and the NP-completeness in bipartite graphs has been only recently established [1,2].

✩ An extended abstract of the paper has been presented in LATIN 2016.
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max k-vertex cover is a well-known restriction of max k-set cover problem where we are given
a family of subsets S over a set of elements C and an integer k and the objective is to determine a
subfamily S ′ ⊆ S of cardinality k, covering a maximum number of elements from C. Analogously, in
the weighted version of max k-set cover, the elements of C are provided with positive weights and the
objective becomes to determine k sets that maximize the total weight of the covered elements.

Both max k-set cover and max k-vertex cover are well-known problems met in many real-world
applications since they model several very natural facility location problems. In particular max k-vertex
cover is used for modeling problems in areas such as databases, social networks, sensor placement,
information retrieval, etc. A non-exhaustive list of references to such applications can be found in [3].

To the best of our knowledge, the approximation of the former has been studied for the first time in the
late seventies by Cornuejols et al. [4], where an approximation ratio 1 − (1/e) (≈0.632) is proved for the
natural greedy algorithm, consisting of iteratively choosing the currently largest-cardinality set, until k sets
are included in the solution. Obviously, since max k-vertex cover is a restriction of max k-set cover
the same ratio is achieved for the former problem also. This ratio is tight in (weighted) bipartite graphs [3].
A more systematic study of the greedy approximation of max k-vertex cover can be found in [5]. More
recently, it has been proved in [6] that the greedy algorithm also achieves ratio k/n. In the same paper, a
very simple randomized algorithm is presented, that achieves approximation ratio 2(k/n) − (k/n)2. Using a
sophisticated linear programming method, the approximation ratio for max k-vertex cover, in general
graphs was improved to 3/4 [7]. A direct reduction from min vertex cover shows that the general max
k-vertex cover cannot admit a polynomial time approximation schema (PTAS), unless P = NP [8]. The
best approximation ratio in bipartite graphs is now 8/9 and is based on highly non-trivial linear programming
approaches [2]. This improves over the 4/5-approximation algorithm, based again on LP techniques, from [9].
max k-vertex cover is shown to be polynomial time solvable in line graphs [10]. This is a remarkable
result because it shows that line graphs are instances where both the classical min vertex cover and
the max k-vertex cover problems are solvable in polynomial time. Finally we note that max k-vertex
cover rather specializes to the dual of max k-set cover, namely, where sets are stars of vertices.

We note that it is easy to observe that unweighted max k-vertex cover is easy on semiregular bipartite
graphs (where all the vertices of each color class have the same degree). Indeed, any k vertices in the color
class of maximum degree yield an optimal solution. Obviously, if this color class contains less than k vertices,
then one can cover all the edges.

The principal question motivating this paper is:

to what extent combinatorial methods for this problem can compete with linear programming ones. In
other words, what is the ratio that a purely combinatorial algorithm can guarantee for max k-vertex
cover in bipartite graphs?

Such research direction is barely a new phenomenon and similar questions for other problems have also
motivated several more or less recent research works. Probably the most remarkable and well-known result
towards this direction is [11] where a 0.531-ratio combinatorial algorithm is given for the max cut problem.
Although a 0.878-approximation guarantee exists due to Goemans–Williamson SDP [12], it was a major
open problem if, and how, purely combinatorial methods could potentially achieve something better than
1/2 in polynomial time. Also very recently, in [13] a similar issue is presented for the Steiner forest problem
which is very well understood from LP point of view but not from combinatorial side. For an example to the
opposite direction we mention [14] where approximation of the max k-dimensional matching is handled
for k ⩾ 3 and it is shown that linear programming methods do not succeed in producing approximation
factors achievable by combinatorial methods (based upon local search for the particular problem family).
The latter is considered to be a specific part of a much more deep question [15]: “are LP/SDP techniques
capable of simulating local search heuristics, even in quasi-polynomial time?” The answer is not known but,
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as the two previous publications suggest, this is an intensive area of current research going very well beyond
the scope of simple LP/SDP programs.

In any case, as it is apparent, comparison of different classes of methods with respect to their abilities
to solve problems seems to be a very interesting research issue. This may bring new insights to both on
the problems handled and the methods themselves. Furthermore, such studies may exhibit interesting and
intriguing mathematical problems.

From a practical point of view, the value of combinatorial methods should be obvious: they are in general
much more compact, easier to handle and to program and do not depend on manually constructing an LP,
by adding all underlying constraints, for each particular instance we would like to solve in practice. But there
is probably an even greater value on combinatorial methods: it is not uncommon that such combinatorial
insights on a particular problem pave the way for designing even better approximation guarantees. The most
famous example to that direction is the SteinerTree problem where the purely combinatorial algorithmic
insights [16] were translated into genuine LP arguments [17] to device new approximation guarantees not
achievable with prior pure LP or pure combinatorial methods.

Our contribution. As mentioned just above, the main motivation of this paper is to explore the efficiency
of combinatorial methods for approximating the weighted max k-vertex cover in bipartite graphs. Our
main contribution consists of a purely combinatorial approximation algorithm which computes six distinct
and simple solutions and returns the best among them.

Although the algorithm (consisting of 6 greedy solutions) is quite simple and natural, there is a major
difficulty in analyzing the performance guarantee of such an algorithm. Indeed, it seems that there is no
easy way to compare different solutions and argue globally over all of them. This difficulty motivates us to
provide analytic expressions for all the solutions produced, a task that involves a number of cases per each
of them and a large number of variables (in all 48 variables are used for the several solution-expressions).

By setting up a suitable non-linear (in fact not even convex) program and solving it, we give a computer
assisted analysis of a 0.821-approximation guarantee for max k-vertex cover in bipartite graphs. We
remark that, due to the complicated nature of the non-convex program, our solution is not guaranteed
to be optimal. On the other hand, several successive executions with different initial configurations did not
provide smaller value for the approximation guarantee. This gives high evidence that the true approximation
guarantee is indeed (extremely close to) 0.821. See also the discussion at the end of the corresponding section
that provides also further evidence of the possible optimality of our result. Even if this ratio is dominated by
the 8/9-ratio of [2] within a factor of about 8%, it is obtained using only greedy-like combinatorial solutions
on the contrary of the latter that is obtained by highly non-trivial linear programming arguments, and
already dominates the 4/5-ratio also linear programming-based approximation algorithm of [9].

We note that similar situations, where a solution could not easily be extracted by the mathematical
formulas involved, were faced, for example, in [18] where the authors gave a 0.921 approximation guarantee
for max cut of maximal degree 3 (and an improved 0.924 for 3-regular graphs) by a computer assisted
analysis of the quantities generated by theoretically analyzing a particular semi-definite relaxation of the
problem at hand and also, more recently, in [19] for the max bisection problem.

Finally, we devise a simple greedy like algorithm already achieving 2/3 approximation guarantee and a
more involved one achieving approximation ratio at least 34/47 ≈ 0.7234. This result is proven analytically,
in contrast with the computer assisted proof of our main result. This should be seen as a restriction of our
more involved analytical expressions that they can actually be mathematically manipulated.

Structure of the manuscript. In the next section we provide all the preliminaries needed for the sequels.
We group and provide all the necessary definitions and all other concepts needed in our analysis. We give
the main block of our algorithm, and we set up the bipartite abstraction by partitioning the set of edges
into each possible region. Then, we provide some expressions involving these sets of edges. Intuitively, each
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set of edges should correspond to a [0, 1] variable and all the relationships and expressions between these
set of edges should provide us with the constraints. In Section 3 we provide the 6 solutions that are part of
our algorithm and using the results of Section 2 we provide analytical expressions about their value. The
purpose of Sections 4 and 5 is to provide the results and all the details, respectively, of the non-convex
program that arises by all these expressions obtained in Section 3. We finish the paper with providing two
simpler algorithms: a 2/3- and a 34/77 ≈ 0.7234-ratio algorithm. The latter can be seen as a simpler restriction
of the main algorithm of this paper so any result for this immediately carries over the main algorithm.

2. Preliminaries

Here we will provide all the necessary definitions and concepts and we will also define our bipartite
abstraction model. We will prove all the properties needed for the sequel.

Consider an edge-weighted bipartite graph G = (V1, V2, E,w), where w is weight-vector of dimension |E|
and an optimal solution O (i.e., a vertex-set on k vertices covering a maximum weight of edges in E). Denote
by O1 and O2 the subsets of O lying in the color-classes V1 and V2, respectively and suppose that |O1| = k1
and |O2| = k2 (k1 + k2 = k). Without loss of generality suppose that k1 ⩽ k2. Let weighted degree of a
vertex v denote the quantity:

δ(v) =
∑

e incident v

w(e)

i.e., the sum of the weights of the edges incident to v. Analogously, we will denote by δ(V ′), V ′ ⊆ V , the
total weight of the edges covered by V ′.

For the rest of the paper, we define and call “best” vertices to be a set of vertices that cover the largest
total weight of uncovered edges in G. For instance, saying, for some vertex set S (suppose that S ⊂ V1)
“we take S plus the χ best vertices in V2”, this means that we first take S and then χ vertices of highest
weighted degree in G[(V1 \ S), V2].

Now we define the following sets of vertices that we will be using repeatedly in the rest of the paper.

Definition 1 (Sets Si, Xi). For i ∈ {1, 2} let Si be the set of the q first vertices in Vi after we have sorted the
vertices in Vi in a decreasing order according to their weighted degree, for some positive integer q. According
to the same ordering in Vi, let now Xi be the set of the q best vertices in the subgraph G[V \ Si].

For a fixed q ∈ [k], Si would contain the “best” q vertices from Vi with respect to the sum of the weights
of the edges they cover (this sum being called sometimes “coverage potential”) and Xi would contain the
“second best” disjoint set of vertices with respect to their coverage potential.

2.1. Basic algorithmic idea

The algorithm we are considering for max k-vertex cover (called k-VC ALGORITHM in the sequel) is the
following:

1. order the vertices of both V1 and V2 in decreasing order of weighted degree;
2. for any pair (χ1, χ2) such that χ1 + χ2 = k do:

(a) take the sets Si of the χi first vertices in Vi, i = 1, 2;
(b) “guess” the cardinalities χ′

i of the intersections Si ∩Oi, i = 1, 2;
(c) for i = 1, 2 compute the sets Xi of the χi − χ′

i best vertices from Vi in the graphs G[(V \ S1), V2]
and G[V1, (V2 \ S2)], respectively;

3. choose the best among six solutions built as described in Section 3.
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In step 2(a), the set Si is obviously a set of the χi largest weighted degree vertices in Vi (breaking ties
arbitrarily). The guessing step in 2(b) can be done, as usual, by an exhaustive search over all possible values
χ′

i = 1, 2, . . . |Si|. This takes of course polynomial time.
Obviously, since the above outlined algorithm is executed for any pair (χ1, χ2) of values such that

χ1 +χ2 = k, it will be executed for the particular pair corresponding to χ1 = k1 and χ2 = k2. Furthermore,
since at the end the best among the solutions computed is retained, this solution will be at least as good as
the one corresponding to pair (k1, k2). So, in what follows and for simplicity, we will reason with respect to
the solution corresponding to this pair and we will use ki and k′

i instead of χi and χ′
i, i ∈ {1, 2}.

In the last step of the algorithm, 6 distinct and “greedy”-like solutions are computed and the one with
the maximum value among them is considered. This is the topic of the corresponding section, but the idea
is to define 6 different solutions that intuitively will behave different with respect to bad instances in a
complementary way (so in total there would not exist a bad instance that is bad for each of the 6 solutions
at the same time).

2.2. Bipartite abstraction model

In this section we will provide our abstraction of the bipartite graph. The idea is that the six sets Si, Xi, Oi

form natural sets of vertices in the bipartite graph. Indeed, the sets Si, Xi and Oi separate each color-class
in 6 regions, namely:

1. Si ∩Oi,
2. Si \Oi,
3. Xi ∩Oi,
4. Xi \Oi,
5. Oi \ (Si ∪Xi) (denoted by Ōi, in what follows) and
6. Vi \ (Si ∪Xi ∪Oi).

So, there exist in total 36 groups of edges (cuts) among them (each group on one side can be connected to
each of the 6 groups of the other side), the group (V1 \ (S1 ∪X1 ∪O1), V2 \ (S2 ∪X2 ∪O2)) being irrelevant
since these edges are neither part of the optimal solution O, nor of any solution built by k-VC ALGORITHM.
So they will not appear in any ratio and can be ignored.

We will use the following notations to refer to the values of the 35 relevant cuts:

B: the total weight of the cut (S1 \O1, S2 ∩O2);
C: the total weight of the cut (S2 \O2, S1 ∩O1);
F1, F2, F3: the total weight of the cuts (S1 \O1, X2 \O2), (S1 \O1, O2 \ (X2 ∪S2)) and (S1 \O1, O2 ∩X2),

respectively;
H1, H2: the total weight of the cuts (S1 ∩O1, X2 \O2) and (S1 ∩O1, V2 \ (S2 ∪X2 ∪O2)), respectively;
{Ii}i∈[6]: the total weight of the cuts (X1\O1, X2\O2), (X1\O1, V2\(S2∪X2∪O2)), (O1\(S1∪X1), X2\O2),

(O1 \ (S1 ∪X1), V2 \ (S2 ∪X2 ∪O2)), (X1 ∩O1, X2 \O2) and (X1 ∩O1, V2 \ (S2 ∪X2 ∪O2)), respectively;
J1, J2, J3: the total weight of the cuts (S2 \O2, X1 \O1), (S2 \O2, O1 \ (S1 ∪X1)) and (S2 \O2, O1 ∩X1),

respectively;
{Li}i∈[9]: the total weight of the cuts (S1 ∩ O1, S2 ∩ O2), (S1 ∩ O1, X2 ∩ O2), (S1 ∩ O1, O2 \ (S2 ∪ X2)),

(X1 ∩ O1, S2 ∩ O2), (X1 ∩ O1, X2 ∩ O2), (X1 ∩ O1, O2 \ (S2 ∪ X2)), (O1 \ (S1 ∪ X1), S2 ∩ O2),
(O1 \ (S1 ∪X1), X2 ∩O2), and (O1 \ (S1 ∪X1), O2 \ (S2 ∪X2)), respectively;

N1, N2: the total weight of the cuts (S2 ∩O2, X1 \O1) and (S2 ∩O2, V1 \ (S1 ∪X1 ∪O1)), respectively;
{Pi}i∈[5]: the total weight of the cuts (X2 \ O2, V1 \ (S1 ∪ X1 ∪ O1)), (O2 \ (S2 ∪ X2), X1 \ O1),

(O2 \ (S2 ∪X2), V1 \ (S1 ∪X1 ∪O1)), (X2 ∩O2, X1 \O1), and (X2 ∩O2, V1 \ (S1 ∪X1 ∪O1)), respectively;
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Fig. 1. The cuts between (S1 \ O1), V2.

Fig. 2. The cuts between (S1 ∩ O1), V2.

U1, U2, U3: the total weight of the cuts, (S1 \O1, S2 \O2), (S1 \O1, V2 \ (S2 ∪X2 ∪O2)) and (S2 \O2, V1 \
(S1 ∪X1 ∪O1)), respectively.

All the relevant sets of edges are depicted in Figs. 1–6, while Fig. 8 on page 30 of the paper is a summary
of all these cuts into the whole graph. The description of the above sets of edges is as follows: Fix a positive
integer χ1 as in the description of the pseudocode k-VC ALGORITHM. Fig. 1 corresponds to the set of edges
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Fig. 3. The cuts between (X1 ∩ O1), V2.

Fig. 4. The cuts between (X1 \ O1), V2.

in S1 \ O1, i.e., the edges that are incident to the best χ1 vertices in V1 (called S1) that are not part of
the vertices in the optimal solution segment O1 in V1. Fig. 2 depicts the set of edges from that are incident
to vertices in O1 that are among the best χ1 vertices defined by S1. Fig. 3 shows all the edges incident to
vertices that are in Xi ∩Oi i.e., vertices in the optimal solution that are among the χ1 −χ′

1 best vertices in
V1 \ S1. Fig. 4 has the edges incident to vertices in X1 but do not belong in the optimal solution part O1.
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Fig. 5. The cuts between (O1 \ {S1 ∪ X1}), V2.

Fig. 6. The cuts between (V1 \ {S1 ∪ X1 ∪ O1}), V2.

Fig. 5 depicts the edges that are incident to vertices in the optimal solution part of V1, denoted by O1, that
do not belong in the first |S1| + |X1| = 2χ1 − χ′

1 best vertices of V1. Similarly, Fig. 6 depicts the rest of the
edges.

Based upon the notations above and denoting by opt(G) the value of an optimal solution (i.e., the total
weight covered) for max k-vertex cover in the input graph G, the following holds (see also Figs. 1–6):
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δ (S1) = B + C + F1 + F2 + F3 +H1 +H2 + L1 + L2 + L3 + U1 + U2 (1)

δ (S2) = B + C + J1 + J2 + J3 + L1 + L4 + L7 +N1 +N2 + U1 + U3 (2)

δ (X1) = I1 + I2 + I5 + I6 + J1 + J3 +
6∑

i=4
Li +N1 + P2 + P4 (3)

δ (X2) = F1 + F3 +H1 + I1 + I3 + I5 + L2 + L5 + L8 + P1 + P4 + P5 (4)

δ (O1) = C +H1 +H2 + I3 + I4 + I5 + I6 + J2 + J3 +
9∑

i=1
Li (5)

δ (O2) = B + F2 + F3 +
9∑

i=1
Li +N1 +N2 +

5∑
i=2

Pi (6)

opt(B) = B + C +
3∑

i=2
Fi +

2∑
i=1

Hi +
6∑

i=3
Ii +

3∑
i=2

Ji +
9∑

i=1
Li

+
2∑

i=1
Ni +

5∑
i=2

Pi. (7)

As mentioned above, we assume k1 ⩽ k2 and so we set:

– k1 = µk2 (µ ⩽ 1); in other words:

k = (1 + µ) · k2 (8)

– k′
1 = |S1 ∩O1| = νk1 (0 ⩽ ν ⩽ 1);

– k′
2 = |S2 ∩O2| = ξk2 (0 ⩽ ξ ⩽ 1).

Let us note that, since k′
i vertices lie in the intersections Si ∩ Oi, the following inequalities hold for

Ōi = Oi \ (Si ∪Xi), i = 1, 2:⏐⏐Ō1
⏐⏐ = |O1 \ (S1 ∪X1)| ⩽ |O1 \ S1| = (1 − ν)k1 = (1 − ν)µk2 (9)⏐⏐Ō2
⏐⏐ = |O2 \ (S2 ∪X2)| ⩽ |O2 \ S2| = (1 − ξ)k2. (10)

From the definitions of the cuts and using (1) to (6) and the expressions for |Ō1| and |Ō2| in (9) and (10),
simple average arguments and the assumptions for k1, k2, k′

1 and k′
2 just above, the following lemma holds.

Lemma 1. The following inequalities hold:

δ (S1) ⩾ δ (O1)
δ (S2) ⩾ δ (O2)
δ (X1) + C +H1 +H2 + L1 + L2 + L3 ⩾ δ (O1)
δ (X2) +B +N1 +N2 + L1 + L4 + L7 ⩾ δ (O2)

δ (S1) ⩾

(
1

1 − ν

)
· δ (X1)

δ (S2) ⩾

(
1

1 − ξ

)
· δ (X2)

δ (S1) + δ (X1) ⩾

(
2 − ν

1 − ν

)
· (I3 + I4 + J2 + L7 + L8 + L9)

δ (S2) + δ (X2) ⩾

(
2 − ξ

1 − ξ

)
· (F2 + L3 + L6 + L9 + P2 + P3)

B + F1 + F2 + F3 + U1 + U2 ⩾ δ (X1)
C + J1 + J2 + J3 + U1 + U3 ⩾ δ (X2) .

(11)
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Proof. For i = 1, 2, the two first inequalities in (11) hold because Si is the set of ki highest weighted-degree
vertices in Vi.

The third and fourth ones because the left-hand side quantities are the total weights of edges covered by
Xi ∪ (Si ∩Oi); each of these sets has cardinality ki and obviously covers more weight than Oi.

The fifth and sixth inequalities because the average weighted degree of Si is at least the average weighted
degree of Xi and |X1| = (1 − ν)k1 and |X2| = (1 − ξ)k2.

Seventh and eighth ones because the average weighted degree of vertices in Si ∪Xi is at least the average
weighted degree of vertices in Oi \ (Si ∪Xi).

Finally, for the last two inequalities the sum of weighted degrees of the ki − k′
i vertices in Si \ Oi is at

least the sum of weighted degrees of the ki − k′
i vertices of Xi. □

Given a solution SOLq(G), we denote by solq(G) its value. For the quantities implied in the ratios
corresponding to these solutions, one can be referred to Figs. 1–6 and to expressions (1)–(7).

Observe that, when k ⩾ min{|V1|, |V2|}, then min{|V1|, |V2|} is an optimal solution since it covers the
whole of E. This easy remark will be useful for some solutions presented in Section 3, for example in the
completion of solution SOL5(G).

3. Six solutions for the bipartite max k-vertex cover

In this section we provide the 6 simple greedy solutions that constitute the main ingredient of the “block”
algorithm k-VC ALGORITHM described in previous section. For simplicity, as it has been discussed in Section 2,
we only present its execution for the values (χ1, χ2, χ

′
1, χ

′
2) = (k1, k2, k

′
1, k

′
2) that corresponds to step (3) of

the main algorithm of the previous section.
Compute sets Si of ki best vertices in Vi, i = 1, 2 and Xi of ki − k′

i best vertices in Vi \ Si, i = 1, 2 and
build the following max k-vertex cover-solutions:

– SOL1(G) and SOL2(G) take, respectively, S1 plus the k2 remaining best vertices from V2, and S2

plus the k1 remaining best vertices from V1;
– SOL3(G) takes first S1 ∪X1 in the solution and completes it with the (1 − µ(1 − ν))k2 best vertices

from V2;
– SOL4(G) takes S2 and completes it either with vertices from V2, or with vertices from both V1 and V2;
– SOL5(G) takes a π-fraction of the best vertices in S1 and X1, π ∈ (0, 1/2]; then, solution is completed

with the k1 + k2 − π(2k1 − k′
1) best vertices in V2;

– SOL6(G) takes a λ-fraction of the best vertices in S2 and X2, λ ∈ (0, (1+µ)/(2−ξ)]; then solution is
completed with the k1 + k2 − λ(2k2 − k′

2) best vertices in V1.

Let us note that the values of λ and π are parameters that we can fix taking values in [0, 1]. Let us also note
that the algorithm above, since it runs for any value of χ1 and χ2, it will run for χ1 = k and χ2 = k. So,
it is optimal for the instances of [3], where the greedy algorithm attains the ratio (e−1)/e. Let us also note
that, besides their apparent simplicity, one can actually program these solutions in parallel and then simply
compare their solutions.

In what follows, we analyze solutions SOL1(G) . . . SOL6(G) computed by k-VC ALGORITHM and give
analytical expressions for their ratios.
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3.1. Solution SOL1(G)

The best k2 vertices in V2, provided that S1 has already been chosen, cover at least the maximum of the
following quantities:

A1 = J1 + J2 + J3 + L4 + L7 +N1 +N2 + U3 by S2
A2 = I1 + I3 + I5 + L5 + L8 + P1 + P4 + P5 by X2
A3 = L4 + L5 + L6 + L7 + L8 + L9 +N1 +N2 + P2 + P3 + P4 + P5 by O2.

So, the approximation ratio for SOL1(G) satisfies:

r1 =
δ (S1) + max

{
A1,A2,A3

}
opt(G) . (12)

3.2. Solution SOL2(G)

Analogously, the best k1 vertices in V1, provided that S2 has already been chosen, cover at least the
maximum of the following quantities:

B1 = H1 +H2 + F1 + F2 + F3 + L2 + L3 + U2 by S1
B2 = I1 + I2 + I5 + I6 + L5 + L6 + P2 + P4 by X1
B3 = H1 +H2 + I3 + I4 + I5 + I6 + L2 + L3 + L5 + L6 + L8 + L9 by O1.

So, the approximation ratio for SOL2(G) satisfies:

r2 =
δ (S2) + max

{
B1,B2,B3

}
opt(G) . (13)

3.3. Solution SOL3(G)

Taking first S1 ∪X1 in the solution, k−(k1 +k1 −k′
1) = k1 +k2 −2k1 +k′

1 = k2 −(k1 −k′
1) = (1−µ(1−ν))k2

vertices remain to be taken in V2. The best such vertices will cover at least the maximum of the following
quantities:

C1 =(1 − µ(1 − ν)) (J2 +N2 + L7 + U3) (14)

C2 =1 − µ(1 − ν)
2 − ξ

(I3 + J2 + L7 + L8 +N2 + P1 + P5 + U3) (15)

C3 =1 − µ(1 − ν)
3 − 2ξ (I3 + J2 + L7 + L8 + L9 +N2 + P1 + P3 + P5 + U3) (16)

where (14) corresponds to a completion by the (1 − µ(1 − ν))k2 best vertices of S2, (15) corresponds to a
completion by the (1 − µ(1 − ν))k2 best vertices of S2 ∪X2, while (16) corresponds to a completion by the
(1 − µ(1 − ν))k2 best vertices of S2 ∪X2 ∪ Ō2. The denominator 3 − 2ξ in (16) is due to the fact that, using
the expression for Ō2, |S2 ∪X2 ∪ (O2 \ (S2 ∪X2))| ⩽ (3 − 2ξ)k2. So, the approximation ratio for SOL3(G) is:

r3 =
δ (S1) + δ (X1) + max

{
C1, C2, C3

}
opt(G) . (17)
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3.4. Solution SOL4(G)

Once S2 is taken in the solution, k1 = µk2 are still to be taken. Completion can be done in the following
ways:

1. if k1 ⩽ k2 − k′
2, i.e., µ ⩽ 1 − ξ, the best vertices taken for completion will cover at least either a µ/1−ξ

fraction of the weight of the edges incident to X2, or a µ/2(1−ξ) fraction of the weight of the edges
incident to X2 ∪ Ō2, i.e., at least an edge-weight M1, where M1 is given by:

max
{

µ

1 − ξ
δ (X2) , µ

2(1 − ξ) ((X2) + F2 + L3 + L6 + L9 + P2 + P3)
}

(18)

2. else, completion can be done by taking the whole set X2 and then the additional vertices taken:

(a) either within the rest of V2 covering, in particular, a

min
{

1, µ− 1 + ξ⏐⏐Ō2
⏐⏐

}
⩾ min

{
1, µ− 1 + ξ

1 − ξ

}
fraction of the total weight of the edges incident to Ō2 (quantity M2 in (19)),

(b) or in S1 covering, in particular, a µ−1+ξ/µ fraction of the total weight of uncovered edges incident
to S1 (quantity M3 in (19)),

(c) or in S1 ∪ X1 covering, in particular, a µ−1+ξ/µ(2−ν) fraction of the total weight of uncovered
edges incident to S1 ∪X1 (quantity M4 in (19)),

(d) or, finally, in S1 ∪X1 ∪ Ō1 covering, in particular, a µ−1+ξ/µ(3−2ν) fraction of the total weight of
uncovered edges incident to this vertex-set (quantity M5 in (19));

in any case such a completion will cover a total weight of edges that is at least the maximum of the
following quantities:

M2 = min
{

1, µ− 1 + ξ

1 − ξ

}
(F2 + L3 + L6 + L9 + P2 + P3)

M3 = µ− 1 + ξ

µ
(F2 +H2 + L3 + U2)

M4 = µ− 1 + ξ

µ(2 − ν) (F2 +H2 + I2 + I6 + L3 + L6 + P2 + U2)

M5 = µ− 1 + ξ

µ(3 − 2ν) (F2 +H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2) .

(19)

Using (18) and (19), the following holds for the approximation ratio of SOL4(G):

r4 =
δ (S2) +

{
M1 µ ⩽ 1 − ξ
δ (X2) + max {M2,M3,M4,M5} µ ⩾ 1 − ξ

opt(G) . (20)

3.5. Vertical separations—solutions SOL5(G) and SOL6(G)

For i = 1, 2, given a vertex subset V ′ ⊆ Vi, we call vertical separation of V ′ with parameter c ∈ (0, 1/2],
a partition of V ′ into two subsets such that one of them contains a c-fraction of the best (highest weighted
degree) vertices of V ′. Then, the following easy claim holds for a vertical separation of V ′ ∪ V ′′ with
parameter c.
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Claim. Let A(V ′) be a fraction c of the best vertices in V ′ and A(V ′′) the same in V ′′. Then
δ(A(V ′)) + δ(A(V ′′)) ⩾ cδ(V ′ ∪ V ′′).

Proof. Assume that in V ′ we have n′ vertices. To form A(V ′) we take the cn′ vertices of V ′ with
highest degree. The average weighted degree of V ′ is δ(V ′)/n′. The average weighted degree of A(V ′)
is δ(A(V ′))/cn′. But, from the selection of A(V ′) as the cn′ vertices with highest weighted degree, we have
that δ(A(V ′))/cn′ ⩾ δ(V ′)/n′ ⇒ δ(A(V ′)) ⩾ cδ(V ′). Similarly for V ′′, i.e., δ(A(V ′′)) ⩾ cδ(V ′′). □

Solutions SOL5(G) and SOL6(G) are based upon vertical separations of Si ∪Xi, i = 1, 2, with parameters π
and λ, called π- and λ-vertical separations, respectively.

The idea behind vertical separation is to handle the scenario when there is a “tiny” part of the solution
(i.e. few in comparison to, let us say, k1 vertices) that covers a large part of the solution and the “completion”
of the solution done by the previous cases does not contribute more than a small fraction to the final solution.
The vertical separation indeed tries to identify such a small part, and then continues the completion on the
other side of the bipartition.

Solution SOL5(G). It consists of separating S1 ∪X1 with parameter π ∈ (0, 1/2], i.e., of taking a π fraction
of the best vertices of S1 and of X1 in the solution and of completing it with the adequate vertices from V2.
A π-vertical separation of S1 ∪X1 introduces in the solution π (2k1 − k′

1) = π(2−ν)µk2 vertices of V1, which
are to be completed with:

k − π(2 − ν)µk2 = (1 + µ)k2 − π(2 − ν)µk2 = (1 − µ(2π − 1) + µνπ)k2

vertices from V2. Observe that such a separation implies the cuts with corresponding weights B, C, Fi,
i = 1, 2, 3, H1, H2, I1, I2, I5, I6, J1, J3, Lj , j = 1, . . . , 6, N1, P2, P4, U1 and U2. Let us group these cuts in
the following way:

Π1 = C + J1 + J3 + U1
Π2 = B + L1 + L4 +N1
Π3 = F3 + L2 + L5 + P4
Π4 = I1 + I5 + F1 +H1
Π5 = F2 + L3 + L6 + P2
Π6 = I2 + I6 +H2 + U2.

(21)

We may also notice that group Π1 refers to S2 \O2, Π2 refers to S2 ∩O2, Π3 to X2 ∩O2, Π5 to Ō2 and Π4
to X2 \ O2. Assume that a πi < 1 fraction of each group Πi, i = 1, . . . , 6 contributes in the π vertical
separation of S1 ∪X1. Then, a π-vertical separation of S1 ∪X1 will contribute with a value:

6∑
i=1

πiΠi ⩾ π

6∑
i=1

Πi (22)

to sol5(G). We now distinguish two cases.

Case 1: (1 − µ(2π − 1) + µνπ)k2 ⩾ k2, i.e., 1 − µ(2π − 1) + µνπ ⩾ 1. Then we have:

1. µ(1−2π)+µνπ ⩽ 1−ξ; then, the partial solution induced by the π-vertical separation will be completed
in such a way that the contribution of the completion is at least equal to max{Zi, i = 1, . . ., 5}, where:
Z1 refers to S2 plus the best (1 −µ(2π− 1) +µνπ)k2 − k2 = (µ(1 − 2π) +µνπ)k2 vertices of O2 having
a contribution of:

Z1 =
2∑

i=1
(1 − πi)Πi + (J2 + L7 +N2 + U3) + µ(1 − 2π) + µνπ

1 − ξ
[(1 − π3)Π3

+ (1 − π5)Π5 + (L8 + L9 + P3 + P5)] (23)
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Z2 refers to S2 plus the best (µ(1 − 2π) + µνπ)k2 vertices of X2 having a contribution of:

Z2 =
2∑

i=1
(1 − πi)Πi + (J2 + L7 +N2 + U3)

+ µ(1 − 2π) + µνπ

1 − ξ

⎡⎣ 4∑
j=3

(1 − πi)Πi + (I3 + L8 + P1 + P5)

⎤⎦ (24)

Z3 and Z4 refer to the best (1 − µ(2π − 1) + µνπ)k2 vertices of S2 ∪ X2 and of S2 ∪ O2 having,
respectively, contributions:

Z3 = 1 − µ(2π − 1) + µνπ

2 − ξ

[ 4∑
i=1

(1 − πi)Πi

+ (I3 + J2 + L7 + L8 +N2 + P1 + P5 + U3)
]

(25)

Z4 = 1 − µ(2π − 1) + µνπ

2 − ξ

[ 3∑
i=1

(1 − πi)Πi + (1 − π5)Π5

+ (J2 + L7 + L8 + L9 +N2 + P3 + P5 + U3)
]

(26)

Z5 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices of S2 ∪X2 ∪ Ō2 having a contribution of:

Z5 = 1 − µ(2π − 1) + µνπ

3 − 2ξ

[ 5∑
i=1

(1 − πi)Πi

+ (I3 + J2 + L7 + L8 + L9 +N2 + P1 + P3 + P5 + U3)
]

(27)

2. µ(1 − 2π) + µνπ ⩾ 1 − ξ; in this case, the partial solution induced by the π-vertical separation will
be completed in such a way that the contribution of the completion is at least max{Θi, i = 1, . . ., 3},
where: Θ1 refers to S2 ∪X2 plus the best (µ(1 − 2π) + µνπ − (1 − ξ))k2 vertices of Ō2, all this having
a contribution of:

Θ1 =
4∑

i=1
(1 − πi)Πi + (I3 + J2 + L7 + L8 +N2 + P1 + P5 + U3)

+ µ(1 − 2π) + µνπ − (1 − ξ)
1 − ξ

[(1 − π5)Π5 + L9 + P3] (28)

Θ2 refers to S2 ∪O2 plus the best (µ(1 − 2π) + µνπ − (1 − ξ))k2 vertices of X2 \O2, all this having a
contribution of:

Θ2 =
3∑

i=1
(1 − πi)Πi

+ (1 − π5)Π5 + (J2 + L7 + L8 + L9 +N2 + P3 + P5 + U3)

+ µ(1 − 2π) + µνπ − (1 − ξ)
1 − ξ

[(1 − π4)Π4 + I3 + P1] (29)
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Θ3 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices of S2 ∪X2 ∪ Ō2 having a contribution of:

Θ3 = 1 − µ(2π − 1) + µνπ

3 − 2ξ

[ 5∑
i=1

(1 − πi)Πi

+ (I3 + J2 + L7 + L8 + L9 +N2 + P1 + P3 + P5 + U3)
]
. (30)

Case 2: 1−µ(2π−1)+µνπ < 1. The partial solution induced by the π-vertical separation will be completed
in such a way that the contribution of the completion is at least equal to max{Φi, i = 1, . . ., 5}, where:

Φ1 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices in S2 with a contribution:

Φ1 = (1 − µ(2π − 1) + µνπ)
[ 2∑

i=1
(1 − πi)Πi + (J2 + L7 +N2 + U3)

]
(31)

Φ2 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices in X2 with a contribution:

Φ2 = 1 − µ(2π − 1) + µνπ

1 − ξ

[ 4∑
i=3

(1 − πi)Πi + (I3 + L8 + P1 + P5)
]

(32)

Φ3 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices in O2 with a contribution:

Φ3 = (1 − µ(2π − 1) + µνπ)
[ 3∑

i=2
(1 − πi)Πi + (1 − π5)Π5

+ (L7 + L8 + L9 +N2 + P3 + P5)
]

(33)

Φ4 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices in S2 ∪X2 with a contribution:

Φ4 = 1 − µ(2π − 1) + µνπ

2 − ξ

⎡⎣ 4∑
j=1

(1 − πj)Πj

+ (I3 + J2 + L7 + L8 +N2 + P1 + P5 + U3)

⎤⎦ (34)

Φ5 refers to the best (1 − µ(2π − 1) + µνπ)k2 vertices in S2 ∪X2 ∪ Ō2 with a contribution:

Φ5 = 1 − µ(2π − 1) + µνπ

3 − 2ξ

⎡⎣ 5∑
j=1

(1 − πj)Πj

+ (I3 + J2 + L7 + L8 + L9 +N2 + P1 + P3 + P5 + U3)

⎤⎦ . (35)

Setting Z∗ = max{Zi : i = 1, . . ., 5}, Θ∗ = max{Θi : i = 1, 2, 3} and Φ∗ = max{Φi : i = 1, . . ., 5}, and
putting (21) and (22) together with expressions (23) to (35), we get for ratio r5:

∑6
i=1 πiΠi +

⎧⎪⎨⎪⎩
{
Z∗ if µ(1 − 2π) + µνπ ⩽ 1 − ξ

Θ∗ if µ(1 − 2π) + µνπ ⩾ 1 − ξ

}
case: 1 − µ(2π − 1) + µνπ ⩾ 1

Φ∗ case: 1 − µ(2π − 1) + µνπ < 1
opt(G) . (36)
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Solution SOL6(G). Symmetrically to SOL5(G), solution SOL6(G) consists of separating S2 ∪ X2 with
parameter λ, of taking a λ fraction of the best vertices of S2 and X2 in the solution and of completing it
with the adequate vertices from V1. Here, we need that:

λ (k2 + k2 − k′
2) ⩽ k ⇒ λ(2 − ξ)k2 ⩽ (1 + µ)k2 ⇒ λ ⩽

1 + µ

2 − ξ
⇒ λ ∈

(
0, 1 + µ

2 − ξ

]
.

A λ-vertical separation of S2 ∪ X2 introduces in the solution λ(2 − ξ)k2 vertices of V2, which are to be
completed with:

k − λ(2 − ξ)k2 = (1 + µ)k2 − λ(2 − ξ)k2 = (1 + µ− λ(2 − ξ))k2

vertices from V1.
Observe that such a separation implies the cuts with corresponding weights B, C, F1, F3, H1, I1, I3, I5,

Ji, i = 1, 2, 3, L1, L2, L4, L5, L7, L8, N1, N2, P1, P4, P5, U1 and U3. We group these cuts in the following
way:

Λ1 = B + F1 + F3 + U1
Λ2 = C +H1 + L1 + L2
Λ3 = J3 + I5 + L4 + L5
Λ4 = I1 + J1 +N1 + P4
Λ5 = I3 + J2 + L7 + L8
Λ6 = N2 + P1 + P5 + U3.

(37)

Group Λ1 refers to S1 \O1, Λ2 to S1 ∩O1, Λ3 to X1 ∩O1, Λ5 to Ō1 and Λ4 to X1 \O1. Assume, as previously,
that a λi < 1 fraction of each group Λi, i = 1, . . . , 6 contributes in the λ vertical separation of S2 ∪ X2.
Then, a λ-vertical separation of S2 ∪X2 will contribute with a value:

6∑
i=1

λiΛi ⩾ λ

6∑
i=1

Λi (38)

to sol6(G). We again distinguish two cases.

Case 1: (1 + µ− λ(2 − ξ))k2 ⩾ µk2, i.e., 1 + µ− λ(2 − ξ) ⩾ µ. Here we have the two following subcases:

1. 1−λ(2−ξ) ⩽ (1−ν)µ; then, the partial solution induced by the λ-vertical separation will be completed
in such a way that the contribution of the completion is at least equal to Υ∗ = max{Υi, i = 1, . . ., 5},
where:
Υ1 refers to S1 plus the best (1 − λ(2 − ξ))k2 vertices of X1 having a contribution of:

Υ1 =
2∑

i=1
(1 − λi)Λi + (H2 + F2 + L3 + U2)

+ 1 − λ(2 − ξ)
µ(1 − ν)

[ 4∑
i=3

(1 − λi)Λi + (I2 + I6 + L6 + P2)
]

(39)

Υ2 refers to S1 plus the best (1 − λ(2 − ξ))k2 vertices of O1 having a contribution of:

Υ2 =
2∑

i=1
(1 − λi)Λi + (H2 + F2 + L3 + U2) + 1 − λ(2 − ξ)

µ(1 − ν) [(1 − λ3)Λ3

+ (1 − λ5)Λ5 + (I4 + I6 + L6 + L9)] (40)
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Υ3 and Υ4 refer to the best (1 + µ− λ(2 − ξ))k2 vertices of S1 ∪X1 and S1 ∪O1 having, respectively,
contributions:

Υ3 = µ+ 1 − λ(2 − ξ)
µ(2 − ν)

[ 4∑
i=1

(1 − λi)Λi

+ (F2 +H2 + I2 + I6 + L3 + L6 + P2 + U2)
]

(41)

Υ4 = µ+ 1 − λ(2 − ξ)
µ(2 − ν)

[ 3∑
i=1

(1 − λi)Λi + (1 − λ5)Λ5

+ (F2 +H2 + I4 + I6 + L3 + L6 + L9 + U2)
]

(42)

Υ5 refers to the best (1 + µ− λ(2 − ξ))k2 vertices of S1 ∪X1 ∪ Ō1 having a contribution of:

Υ5 = µ+ 1 − λ(2 − ξ)
µ(3 − 2ν)

⎡⎣ 5∑
j=1

(1 − λj)Λj

+ (F2 +H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2)

⎤⎦ (43)

2. 1 − λ(2 − ξ) ⩾ (1 − ν)µ; in this case, the partial solution induced by the λ-vertical separation will be
completed in such a way that the contribution of the completion is at least Ψ∗ = max{Ψi, i = 1, . . ., 3},
where:
Ψ1 refers to S1 ∪X1 plus the best (1−λ(2−ξ)−(1−ν))k2 vertices of Ō1, all this having a contribution
of:

Ψ1 =
4∑

j=1
(1 − λj)Λj + (F2 +H2 + I2 + I6 + L3 + L6 + P2 + U2)

+ 1 − λ(2 − ξ) − µ(1 − ν)
µ(1 − ν) [(1 − λ5)Λ5 + I4 + L9] (44)

Ψ2 refers to S1 ∪ O1 plus the best (1 − λ(2 − ξ) − (1 − ν))k2 vertices of X1 \ O1, all this having a
contribution of:

Ψ2 =
3∑

j=1
(1 − λj)Λj + (1 − λ5)Λ5

+ (F2 +H2 + I4 + I6 + L3 + L6 + L9 + U2)

+ 1 − λ(2 − ξ) − µ(1 − ν)
µ(1 − ν) [(1 − λ4)Λ4 + (I2 + P2)] (45)

Ψ3 refers to the best (µ+ 1 − λ(2 − ξ))k2 vertices of S1 ∪X1 ∪ Ō1 having a contribution of:

Ψ3 = µ+ 1 − λ(2 − ξ)
µ(3 − 2ν)

⎡⎣ 5∑
j=1

(1 − λj)Λj

+ (F2 +H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2)

⎤⎦ (46)
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Case 2: 1 +µ−λ(2 − ξ) ⩽ µ. The partial solution induced by the λ-vertical separation will be completed in
such a way that the contribution of the completion is at least equal to Ω∗ = max{Ωi, i = 1, . . ., 5}, where:
Ω1 refers to the best (1 + µ− λ(2 − ξ))k2 vertices in S1 with a contribution:

Ω1 = 1 + µ− λ(2 − ξ)
µ

⎡⎣ 2∑
j=1

(1 − λj)Λj + (F2 +H2 + L3 + U2)

⎤⎦ (47)

Ω2 refers to the best (1 + µ− λ(2 − ξ))k2 vertices in X1 with a contribution:

Ω2 = 1 + µ− λ(2 − ξ)
µ

⎡⎣ 4∑
j=3

(1 − λj)Λj + (I2 + I6 + L6 + P2)

⎤⎦ (48)

Ω3 refers to the best (1 + µ− λ(2 − ξ))k2 vertices in O1 with a contribution:

Ω3 = 1 + µ− λ(2 − ξ)
µ

⎡⎣ 3∑
j=2

(1 − λj)Λj + (1 − λ5)Λ5

+ (H2 + I4 + I6 + L3 + L6 + L9)

⎤⎦ (49)

Ω4 refers to the best (1 + µ− λ(2 − ξ))k2 vertices in S1 ∪X1 with a contribution:

Ω4 = 1 + µ− λ(2 − ξ)
µ(2 − ν)

⎡⎣ 4∑
j=1

(1 − λj)Λj

+ (F2 +H2 + I2 + I6 + L3 + L6 + P2 + U2)

⎤⎦ (50)

Ω5 refers to the best (1 + µ− λ(2 − ξ))k2 vertices in S1 ∪X1 ∪ Ō1 with a contribution:

Ω5 = 1 + µ− λ(2 − ξ)
µ(3 − 2ν)

⎡⎣ 5∑
j=1

(1 − λj)Λj

+ (F2 +H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2)

⎤⎦ . (51)

Putting (37) and (38) together with expressions (39) to (51), we get:

r6 =

∑6
i=1 λiΛi +

⎧⎪⎨⎪⎩
{
Υ∗ if 1 − λ(2 − ξ) ⩽ (1 − ν)µ
Ψ∗ if 1 − λ(2 − ξ) > (1 − ν)µ

}
case: µ+ 1 − λ(2 − ξ) ⩾ µ

Ω∗ case: µ+ 1 − λ(2 − ξ) < µ

opt(G) . (52)

4. Results

To analyze the performance guarantee of k-VC ALGORITHM, we set up a non-linear program and solved it.
Here, we interpret the values of cuts B,C, Fi, . . ., as variables , the expressions in (11) as constraints and
the objective function is min r(≡max6

j=1rj). In other words, we try to find a value assignment to the set of
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Table 1
The final results with π = λ = 10−5.

Variables Values Groups Values π, λ Values Ratios Values

B 1 δ(S1) 5.28490 π 0.00001 r1 0.81806
C 0.9944 δ(S2) 5.90033 π1 0.08471 r2 0.81797
F 1 0.0002 δ(X1) 2.78398 π2 0.13072 r3 0.79280
F 2 0.4954 δ(X2) 3.09961 π3 0.97865 r4 0.79657
F 3 0.4457 δ(O1) 5.26489 π4 0.19364 r5 0.82104
H1 0.8449 δ(O2) 5.88331 π5 0.38861 r6 0.82103
H2 0.0623 δ(OP T ) 10.5589
I1 0 λ 0.00001
I2 0 λ1 0.14995
I3 0.9986 λ2 0.76660
I4 0 λ3 0.15362
I5 0.0577 λ4 1
I6 0.3740 λ5 1
J1 0.2386
J2 0.9824
J3 0.3612
N1 1
N2 0.6005
P 1 0
P 2 0
P 3 1
P 4 0.7525
P 5 0
L1 0.1932
L2 0
L3 0.3960
L4 0
L5 0
L6 0
L7 0
L8 0
L9 0
U1 0.5330
U2 0.3198
U3 0
µ 0.809
ν 0
ξ 0

variables such that the maximum among all the six ratios defined is minimized. This value would give us
the desired approximation guarantee of k-VC ALGORITHM.

Towards this goal, we set up a GRG (Generalized Reduced Gradient [20]) program. The reasons this
method is selected are presented in Section 5, as well as a more detailed description of the implementation.
GRG is a generalization of the classical Reduced Gradient method [21] for solving (concave) quadratic
problems so that it can handle higher degree polynomials and incorporate non-linear constraints. Table 1 in
the following Section 5 shows the results of the GRG program about the values of variables and quantities.
The values of ratios r1 ÷ r6 computed for them are the following:

r1 = 0.81806
r2 = 0.81797
r3 = 0.79280
r4 = 0.79657
r5 = 0.82104
r6 = 0.82103.

These results correspond to the cycle that outputs the minimum value for the approximation factor and
this is 0.821, given by solution SOL5.
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Remark. As we note in Section 5, the GRG solver does not guarantee the global optimal solution. The 0.821
guarantee is the minimum value that the solver returns after several runs from different initial starting points.
However, successive re-executions of the algorithm, starting from this minimum value, were unable to find
another point with smaller value. In each one of these successive re-runs, we tested the algorithm on 1000
random different starting points (which is greater than the estimation of the number of local minima) and
the solver did not find value worse that the reported one.

5. A computer assisted analysis of the approximation ratio of k-VC_ALGORITHM

In this section we provide all the implementation details and a brief discussion about all the issues
regarding the optimizer and about the set-up of our non-convex program.

5.1. Description of the method

In this section we give details of the implementation of the solutions of the previous sections (as captured
by the corresponding ratios) and we explain how these ratios guarantee a performance ratio of 0.821, i.e., that
there is always a ratio among the ones described that is within a factor of 0.821 of the optimal solution
value for the bipartite max k-vertex cover.

Our strategy can be summarized as follows. We see the values (total weights) of all cuts defined in Section 2
as variables. These quantities represent how many edges go from one specific part of the bi-partition to any
other given part of the other side of the bipartition. Counting these edges gives the value of the desired
solution. By a proper scaling (i.e., by dividing every variable by the maximum among them) we guarantee
that all these variables are in [0, 1]. Our goal is to find a particular configuration (which means a value
assignment on the variables) such that the maximum among all the different ratios that define the solutions
of the previous section is as low as possible. This will give the performance guarantee.

This boils down to an optimization problem which can be, more formally, described as follows:

min r∗ such that max
i

{ri} ⩽ r∗. (53)

Unfortunately, given the nature of the constraints captured by (53), this is not a linear problem even though
each variable appears as a monomial on the numerator and denominator of each constraint. This is because
the numerators of r3 (17), r4 (20), r5 (36) and r6 (52) are polynomials of degree 3 or 4. Otherwise we could
easily set up and solve to optimality this optimization problem, with our favorite linear solver. Let us note
that, this is not a convex program, so we cannot hope to formulate it as a semi-definite program.

To the best of our knowledge, there are no commercial solvers for solving polynomial optimization
problems to find the global optimal solution. All solvers for such polynomial systems stuck on local optima.
The task then is to run the solver many times, with different starting points and different parameters,
and to apply knowledge and intuition about the “ballpark” of the optimal solution value together with
the respective configuration of the values of the variables, to be sure (given an error ϵ unavoidable in such
situations) that the optimal (or an almost optimal) solution of (53) is reached.

An important issue regarding the set-up of our program is that we do not seek a configuration of the
variable that satisfies all constraints (ratios). But we seek a configuration of minimum value such that there
exists at least one constraint with value greater than the value of the configuration. In other words, if we
look more carefully on the constraints, we see that these are of the form min r∗ s.t. ∃ri ⩾ r∗. It is far from
obvious how, and if, such a system could be set up on such solvers (in which some constraints might be
“violated” i.e., be less than the target value of r∗).
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Another way to understand the above is to define the objective function value F of a given configuration
(values) C for all the variables included. Given C ∈ [0, 1]X where X is the set of variables, let ri be the values
of the ratios corresponding to the particular solutions. Then F (C) = max{ri}. Our goal is to minimize this
objective function value, i.e., to find a configuration on the variables such that F (C) is as small as possible.
Observe that for a particular C it might very well be the case that all but one ris are less than F (C). The
objective value is given by the maximum value of all these ratios. This complexity of the objective function
is precisely the reason why it is difficult to apply the solve environment. There are more complications that
arise of technical nature (such as the use of conditions and cases), that will be discussed shortly.

5.2. Selection of the optimizer

So we have to settle with polynomial optimizers that may stuck on local optima and then, applying
external knowledge and with the help of repetitive experiments, we try to reach a global optimal solution.
For this reason we used the GRG (Generalized Reduced Gradient) solver [20,22] (which is an extension
of the famous Reduced Gradient method of Wolfe & Frank [21]. See also the book [23] for a modern and
pedagogically nice treatment of this and related topics. As mentioned above, by setting the objective function
value for a given configuration C on the variables X to be F (C) = max{ri}, our goal is to find a feasible C
that minimizes F (C). An important thing here is to explain what we mean by “feasible”. Typically, not
every assignment of values to variables counts as feasible, because it might violate some obvious restrictions
i.e., it might be the case that under a given assignment of values we have δ(S1) ⩽ δ(O1) which is of course
impossible (remember that S1 is the set of the k1 vertices of the highest degree in V1 and so, by definition,
they cover more edges than the vertices in the part of the optimum in V1). So, in order to complete our
program, we couple it with all the constraints from block (11):

min F (C) = max6
i=1 {ri}

s.t. (11).

5.3. Implementation

We set up a GRG program with the following details.

Variables. We have one binary variable for each set of edges as depicted in Figs. 1–6 plus πi, λi,
i = 1, . . . , 5, plus µ, ν, ξ. Let X be this set of variables. We have |X| = 48.

Parameters. We note that in the π-fraction and in the λ-fraction of the solutions SOL5, and SOL6, the
numbers π and λ are not variables, but rather parameters that we are free to choose. For the purpose of
our experiments, we tried several different values for λ, π. correspond to π = λ = 0.05. In Table 2, we
report results for various different choices of values for parameters λ and π.

Constraints. Expression (11) in Section 2.
Further details. In order to be certain about the optimality of the results, we employ a 2-step strategy.

First, we apply a “multistart” on the optimizer. This works as follows: we provide a random seed to the
optimizer, together with a parameter X, which is a positive integer. Then, we partition the feasible region
of the variables (which is a subset of the n-dimensional hypercube [0, 1]n, n = number of variables) into
X segments. The selection of X feasible starting points inside the hypercube is done randomly. We try to
identify the local minimum in the neighborhood of each starting point. The output of the algorithm is the
minimum among all these local minima. The intuition is simple: there might be several minima and by
selecting randomly different starting points we significantly increase the chance to hit the global optimum.
Typical size of X in our experiments is 1000 (which is much greater than the number of different local
optima in any case).
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Table 2
Results according to the different values of parameters π and λ.

Value of π Value of λ Ratio

– – 0.723269
0.4 0.4 0.754895
0.2 0.00001 0.776595
0.1 0.1 0.780161
0.05 0.1 0.795602
0.0001 0.5 0.807453
0.0001 0.0001 0.805927
0.00001 0.00001 0.821044

Differencing method. In order to numerically compute the partial derivative of a given configuration, we
use the Central Differencing method [24,25]. In order to compute the first derivative at point x0 ∈ [0, 1]n
we use the following (where h is the precision, or the “spacing”: typical values of h in our applications
are <0.00001):

∂cf (x0) = f

(
x0 + 1

2h
)

− f

(
x0 − 1

2h
)
.

5.4. Values of the several variables and parameters

In this section we report the results of the GRG program. First, we summarize the results according to
the different values of parameters π and λ. One can see that as these values decrease, the approximation
guarantee increases. Also, for convenience, we include the approximation guarantee returned by including
only the four first rations (excluding SOL5,SOL6 corresponding to the two vertical cuts on V1 and V2

respectively; first line in Table 2). In Table 1, the final results with π = λ = 10−5 are given.
We run the program on a standard C++ implementation of the GRG algorithm on a 64-bit Intel Core

i7-3720QM@2.6 GHz, with 16 GB of RAM at 1600 MHz running Windows 7 x64.

6. Some simpler approximation results for bipartite max k-vertex cover

The purpose of this final section of the paper is to provide two simple combinatorial approximation
algorithms for the max k-vertex cover. The first, and simpler one, has an approximation guarantee of 2/3

and the second, more complicated, a guarantee of ≈0.7234. The first one already beats the natural greedy,
which up to date, was the best combinatorial algorithm for max k-vertex cover. The second one can
be seen as a restriction of the main algorithm of this paper. In particular, when we simplify the solutions
involved and their expressions, we can much more easily algebraically argue about them and prove that they
provide a more or less satisfactory solution.

6.1. An easy 2/3-approximation algorithm

We first propose a 2/3-approximation algorithm for max k-vertex cover, which goes as follows.
Consider a bipartite graph G = (V1, V2, E) and the integer k.

1. For k1 from 0 to k:

▷ Set k2 = k − k1;
▷ let S1 be the set of k1 largest weighted degree vertices in V1, and S′

2 be the set of k2 largest
weighted degree vertices in V2 if S1 is removed from V1; set SOL1 = S1 ∪ S′

2;
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▷ let S2 be the set of k2 largest weighted degree vertices in V2, and S′
1 be the set of k1 largest

weighted degree vertices in V1 if S2 is removed from V2; set SOL2 = S2 ∪ S′
1;

2. output sol(G) the best among the solutions SOL1 and SOL2 computed above.

Theorem 1. The above algorithm is a 2/3-approximation algorithm for max k-vertex cover in bipartite
graphs.

Proof. Considering an optimal solution O (i.e., a set of k vertices covering a maximum number of edges
in E), let O1 and O2 be the parts of O lying in color-classes V1 and V2, respectively. Consider the iteration
of the algorithm where k1 = |O1| (hence k2 = |O2|). In SOL1 S

′
2 is the best choice of choosing k2 vertices

from V2 once S1 is chosen. Consequently, SOL1 is at least as good as S1 ∪O2, and at least as good as S1 ∪S2.
From the first argument we get:

sol(G) ⩾ δ(S1) + δ(O2) − δ(S1, O2) (54)

and the same argument for SOL2 gives:

sol(G) ⩾ δ(S2) + δ(O1) − δ(S2, O1). (55)

Denote by x the number of edges between S1 ∩ O1 and S2 ∩ O2. Then S1 ∪ S2 covers at least
δ(S1, O2) + δ(S2, O1) − x edges, so

sol(G) ⩾ δ(S1, O2) + δ(S2, O1) − x. (56)

Considering that δ(S1) ⩾ δ(O1) and δ(S2) ⩾ δ(O2), summing up inequalities (54), (55) and (56) gives:

3sol(G) ⩾ 2δ(O1) + 2δ(O2) − x.

Since x ⩽ δ(O1, O2) we get the result. □

We now show that in the case where O1 ∩S1 = ∅ and O2 ∩S2 = ∅ at iteration k1 = |O1| (i.e., when ν = ξ = 0;
notice that this case is not polynomially detectable), a 4/5-approximation ratio is achieved by the algorithm
above.

As said before, the output solution is at least as good as S1 ∪ S2. Since S2 and O2 are assumed to be
disjoint, we get:

sol(G) ⩾ δ (S2) + δ (S1, O2) . (57)

Now, consider the solution when the algorithm takes the set S1 of k best vertices in V1. Since k1 ⩽ k/2

and O1 and S1 are disjoint, it holds in this case that:

sol(G) ⩾ δ (S1) + δ (O1) (58)

Now, sum up (54), (57) and (58) with coefficients 2, 2 and 1, respectively. Then:

5 · sol(G) ⩾ 3 · δ (S1) + δ (O1) + 2 · δ (S2) + 2 · δ (O2) .

Note that opt(G) ⩽ δ(O1)+δ(O2). The results follow since by the choice of S1 and S2 we have δ(S1) ⩾ δ(O1)
and δ(S2) ⩾ δ(O2).
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Fig. 7. The edge-sets induced by the several “Greek” parameters.

6.2. A 34/47-ratio combinatorial algorithm

In this section, we will use the following additional notations and conventions with respect to those of
Section 2 (we assume that vertices in both V1 and V2 are ordered in decreasing weighted degree order),
where all the Greek letters (but δ) used, imply parameters that are all smaller than, or equal to, 1: then
previous sections):

– for conciseness we set δ(O1) = α · opt;
– β1 · δ(O1) = β1 · α · opt: the total weight of edges covered by S1 ∩O1;
– δ′(O2): the total weight of private edges covered by O2, i.e., the edges already covered by O1 are not

counted up to δ′(O2); obviously, δ′(O2) = (1 − α) · opt;
– ψ · δ′(O2) = ψ · (1 − α) · opt: the total weight of private edges covered by S2 ∩O2;
– θ · δ(O1): the total weight of edges (if any) from O1 that go “below” O2 (recall V1 and V2 are ordered

in decreasing weighted degree order);
– γ · δ′(O2): symmetrically, it denotes the total weight of edges of O2 that go below the vertices of O1;
– ζ · δ(O1): suppose that after taking the k best vertices of V1, there still remain, say, k′

1 vertices of O1

that have not been encountered yet; then, ζ ·δ(O1) is the total weight of edges covered by those vertices;
– ϕ · δ′(O2): this is the symmetric of the quantity ζ · δ(O1) for the pair (V2, O2) (supposing that the

number of vertices in O2 that have not been encountered is k′
2).

In Fig. 7, the edge-sets defined by the parameters above are illustrated (for simplicity we use in the figure
the same notation for a cut and its weight). Heavy lines within rectangles V1 and V2 represent the borders
of S1 and S2 (the upper ones) and those of the k best vertices (the lower ones). Edges from O1 are not
shown in the figure. They can go everywhere in V2. Private edges of O2 are shown as heavy black and red
lines (the sets of edges with total weights δ′

2 and ψ, respectively). They can go everywhere in V1 \O1.
The algorithm. The basic idea of the algorithm, that is a simplified version of the algorithm analyzed in
Section 3, is the following.

Consider an optimal solution O (i.e., a vertex-set on k vertices covering a maximum number of edges
in E). Denoting as previously by O1 and O2 the subsets of an optimal solution O lying in the color-classes V1

and V2 and supposing that |O1| = k1 and |O2| = k2 (k1 +k2 = k), for any pair (χ1, χ2) such that χ1 +χ2 = k,
it builds the five solutions specified just below and returns the best among them. As previously we only
specify its stem where (χ1, χ2) = (k1, k2). This step goes as follows:
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build the following solutions:

SOL1: S1 plus the k2 remaining best vertices from V2;
SOL2: S2 plus the k1 remaining best vertices from V1;
SOL3: the k best vertices of V1;
SOL4: the k best vertices of V2;
SOL5: the best 2 · k1 vertices of V1 plus the remaining k − 2 · k1 best vertices of V2;

return the best among the five solutions computed.

It is easy to see that the complexity of the overall algorithm is O(n3).
Lemmata 2–5 give expressions for the ratios achieved by the five solutions built by the algorithm. These

expressions are functions of some of the parameters specified just above. Lemma 2 handles the approximation
ratios achieved by solutions SOL1, SOL2 and SOL4 specified just above.

Lemma 2. The approximation ratios achieved by the solutions SOL1, SOL2 and SOL4 are, respectively, at
least:

1 − α+ β1 · α (59)
α+ ψ · (1 − α). (60)
(1 − α)(1 + µ · (1 − ψ)). (61)

Furthermore, if either S1 and O1, or S2 and O2 coincide (i.e., S1 ∩ O1 = S1, or S2 ∩ O2 = S2), then
either SOL1, or SOL2 is optimal.

Proof. For (59), S1 contributes, by the first line (11), with a total edge-weight more than δ(O1) = α · opt.
Decompose this weight into a weight X for the edges covered by S1 \ (S1 ∩ O1) and a weight β1 · α · opt
concerning the edges covered by S1 ∩ O1, i.e., δ(S1) = |X| + β1 · α · opt. On the other hand, the k2 best
vertices in V2 have a contribution at least equal to that of the k2 vertices in O2, that ensure a weight more
than (1 − α) · opt −X, qed. The proof for (60) is similar.

If S1 and O1 coincide, SOL1 will cover α ·opt+(1−α) ·opt = opt edges. The same holds when S2 and O2
coincide.

We now prove (61). In fact, SOL4 consists of first taking S2 and of completing it with the k1 best
vertices below this set. The contribution of S2 in this solution is, by the second line of (11), more than
δ(O2) = (1 − α) · opt. But, there still exists an uncovered weight of (1 − α) · (1 − ψ) · opt due to the
edges covered by the optimum; these edges are covered by less than k2 vertices lying below S2 and SOL4
takes the k1 best vertices below S2. A simple average argument immediately concludes that these vertices
contribute with a weight that is at least (k1/k2) · (1 − α) · (1 − ψ) · opt = µ · (1 − ψ) · (1 − α) · opt. □

Before studying the ratios of SOL3 and SOL5, let us note that we assume k′
1 vertices of O1, ensuring a

total weight of ζ · δ(O1) that remain outside (below) the k best vertices of V1. At the end of the proof of
Theorem 2, the case k′

1 = ζ = 0 will be separately handled.
Consider solution SOL3. The k vertices taken from V1 can be seen as the union of ⌊k/k1⌋ consecutive k1-

groups (called clusters in what follows), eventually completed by some vertices just below the last cluster.
By the fact that k1 = µ · k2 and (8),

k/k1 = (1+µ)/µ ⇒ ⌊k/k1⌋ ⩾ ((1+µ)/µ) − 1 = 1/µ.

Assume now that the k − k′
1 vertices of O1 encountered among the k best vertices of V1 are included in

the π first clusters. Denote by κi the number of vertices of O1 in the ith cluster, i = 1, . . . , π, and suppose
that the “optimal” κi vertices of cluster i cover βi · δ(O1) = βi · α · opt edges. Note also that π ⩽ ⌊k/k1⌋.
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Lemma 3. Consider cluster i ∈ [1, π] and denote by Ō1,i the part of O1 not captured by clusters 1, 2, . . . , i−1
(so, |Ō1,1| = |O1| =

∑π
j=1κj + k′

1 and |Ō1,i| =
∑π

j=iκj + k′
1). Then, the vertices of cluster i will cover edges

of a total weight that is at least (1 −
∑i−1

j=0βj) · α · opt (β0 = 0). Moreover, any of the remaining ⌊k/k1⌋ − π

clusters in SOL3 will cover edges of a total weight that is more than ζ · α · opt.

Proof. Observe that δ(O1) =
∑π

i=1βi · α · opt + ζ · α · opt and that the part of δ(O1) covered by Ō1,i is:

δ
(
Ō1,i

)
= δ (O1) −

i−1∑
j=0

βj · δ (O1) =

⎛⎝1 −
i−1∑
j=0

βj

⎞⎠ · α · opt

=

⎛⎝ π∑
j=i

βj + ζ

⎞⎠ · α · opt. (62)

The edges whose total weight is δ(Ō1,i) are covered by
∑π

j=iκj + k′
1 = k1 − (

∑
j⩽i−1κj) ⩽ k1 vertices

(κ0 = 0), while cluster i contains exactly k1 vertices, κi of them belonging to O1 while the k1 −κi remaining
ones having weighted degrees at least as large as those of the vertices in Ō1,i+1. An easy average argument
derives then that the total weight of edges covered by the vertices of cluster i will be least:

k1 ·

(
1 −

∑i−1
j=0 βj

)
· α · opt

k1 −
(∑

j⩽i−1 κj

) ⩾

⎛⎝1 −
i−1∑
j=0

βj

⎞⎠ · α · opt. (63)

Using the same average argument, vertices in any of the remaining ⌊k/k1⌋ − π clusters ensure a weight that
is more than k1 · ζ·δ(O1)/k′

1 ⩾ ζ · δ(O1) ⩾ ζ · α · opt. □

Lemma 4. The approximation ratio achieved by SOL3 is at least:⎛⎝π−1∑
i=0

⎛⎝1 −
i∑

j=0
βj

⎞⎠⎞⎠ · α. (64)

Proof. By (62) and (63), the k1 vertices of cluster i, i ∈ [1, π], will contribute with total weight more than:

k1

k1 −
∑

j⩽i−1 κj
·

⎛⎝ π∑
j=i

βj + ζ

⎞⎠ · δ (O1) ⩾

⎛⎝1 −
i−1∑
j=0

βj

⎞⎠ · δ (O1) (65)

while, by Lemma 3, the rest of the vertices in the ⌊k/k1⌋ − π remaining clusters will contribute with a total
weight more than (⌊k/k1⌋ − π) · ζ · δ(O1). Summing (65) for i = 0 to π − 1 and setting β0 = 0, we get:

sol3(G) ⩾

⎛⎝π−1∑
i=0

⎛⎝1 −
i∑

j=0
βj

⎞⎠ +
(⌊

k

k1

⌋
− π

)
· ζ

⎞⎠ · δ (O1)

This quantity is always greater than its first term since ⌊k/k1⌋ − π is positive. □

The following (last) lemma handles approximation ratio of solution SOL5.

Lemma 5. The approximation ratio achieved by solution SOL5 is at least:

(1 − µ) − (1 − 3 · µ) · α+ (1 − µ) · (β1 + β2) · α− µ · β1 · α. (66)
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Proof. Rewriting Lemma 3 for π = 2, the 2 · k1 best vertices from V1 ensure a total edge-weight at least
(β1 + β2) · δ(O1) of the optimum and more than [(1 − β1) + (1 − β1 − β2)] · δ(O1) = (2 − 2 · β1 − β2) · α · opt
additional weight, i.e., a total of at least:

[(β1 + β2) + (2 − 2 · β1 − β2)] · α · opt. (67)

The best k − 2 · k1 vertices of V2 will ensure then a weight that is at least equal to the contribution of the
k − 2 · k1 best vertices of O2, that ensure an additional coverage weight of at least:

k − 2 · k1

k2
· [δ′ (O2) − (2 − 2 · β1 − β2) · δ (O1)]

= (1 − µ) · [(1 − α) − (2 − 2 · β1 − β2) · α] · opt. (68)

Summing (67) and (68), we get (66). □

We are ready to prove the final result of this subsection:

Theorem 2. Weighted max k- vertex cover in bipartite graphs is combinatorially 34/47- approximable
in polynomial time.

Proof. We propose an exhaustive parameter-elimination that has the advantage to be quite simple. It
consists of subsequently eliminating parameters from the ratios proved in Lemmata 2, 4 and 5, until ratios
that are only functions of µ are obtained.

Expressions (60) and (61) have opposite monotonies with respect to ψ, so equalizing them one can
eliminate this parameter. Some easy algebra leads to:

α+ ψ · (1 − α) = (1 − α)(1 + µ · (1 − ψ)) ⇒ ψ =
1 − α · 2+µ

1+µ

1 − α
(69)

and embedding (69) to either (60) or (61) results in ratio:

1 − α

1 + µ
. (70)

In what follows, we distinguish two cases following the value of parameter µ, namely, µ ⩽ 1/2 and µ > 1/2.
For the former we show that the ratio achieved by the algorithm is 3/4, while for the latter we obtain a lower
bound of 34/47.

Case 1: µ ⩽ 1/2. In this case, the number of clusters needed in order to capture the k best vertices of V1

is at least 3, and (64) in Lemma 4 leads to the ratio:

(3 − 2 · β1 − β2) · α. (71)

Ratios (66) and (71) have opposite monotonies with respect to the term (β1 + β2); so, equalizing them
leads after some easy algebra to:

(β1 + β2) = −(1 − µ) + (4 − 3 · µ) · α− (1 − µ) · β1 · α
(2 − µ) · α

. (72)

Embedding (72) in either one of (66) and (71), one gets:

(1 − µ) + 2 · α− β1 · α
2 − µ

(73)
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which, equalized with ratio in (59) in order to eliminate parameter β1, leads to:

β1 = −1 + (4 − µ) · α
(3 − µ) · α

and then to ratio:
2 − µ+ α

3 − µ
. (74)

Now, ratios (70) and (74) have opposite monotonies with respect to α and equality of them occurs when
α = (1+µ)/4 that leads to a ratio equal to 3/4.

Case 2: µ > 1/2. Here, the k best vertices of V1 will be contained in at most three clusters. If the number of
clusters needed to capture those vertices is equal to three, the analysis of the previous case remains valid
and the ratio achieved is again 3/4. Hence, suppose that the k best vertices of V1 have been captured by
the first two clusters (with eventually a certain number of them –less than k1 –below the second cluster;
denote by X this set of vertices). Then, by Lemma 3, the 2 · k1 vertices of the two first (full) clusters will
contribute with a total weight that is at least (2 − β1) · δ(O1), while the contribution of set X is at least
(1 − β1 − β2 − ζ) · δ(O1). In all, it holds in this case that:

sol3(G) ⩾ (3 − 2 · β1 − β2 − ζ) · δ (O1)

that induces an approximation ratio:

(3 − 2 · β1 − β2 − ζ) · α. (75)

On the other hand, by the discussion at the end of the proof of Lemma 3, any of the two first clusters
covers a total weight more than ζ · δ(O1); hence SOL3 also guarantees ratio 2 · ζ · α. Combination of this
ratio with (75) and elimination of ζ, leads to ratio:

2
3 · (3 − 2 · β1 − β2) · α. (76)

We now proceed exactly as in the previous case. We first equalize (66) with (76), to eliminate the term
(β1 + β2); this, after some easy though tedious algebra leads to:

(β1 + β2) = −3 · (1 − µ) + 9 · (1 − µ) · α− (2 − 3 · µ) · β1 · α
(5 − 3 · µ) · α

which embedded to either one of (66), or (76), leads to ratio:(
2 − 5 · µ+ 3 · µ2)

+
(
4 + 9 · µ− 9 · µ2)

· α−
(
2 + 2 · µ− 3 · µ2)

· β1 · α
5 − 3 · µ

. (77)

Equality of ratios (59) and (77) (in order to eliminate β1) gives:

β1 =
−

(
3 + 2 · µ− 3 · µ2)

+
(
9 + 6 · µ− 9 · µ2)

· α
(7 − µ− 3 · µ2) · α

and leads to ratio:

4 − 3 · µ+
(
2 + 7 · µ− 6 · µ2)

· α
7 − µ− 3 · µ2 . (78)

Equality of ratios (78) and (70) occurs when:

α =
(1 + µ) ·

(
3 + 2 · µ− 3 · µ2)

9 + 8 · µ− 2 · µ2 − 6 · µ3 .
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Embedding now this value for α to, say, (70), derives ratio:

6 + 6 · µ+ µ2 − 6 · µ3

9 + 8 · µ− 2 · µ2 − 6 · µ3 . (79)

Ratio in (79) increases with µ and for µ = 1/2 becomes greater than 34/47 ≊ 0.7234, that concludes the
study of case µ > 1/2.

To conclude the proof, it is easy to see that, when ζ = 0, the analysis of the case µ ⩽ 1/2 remains valid. So,
for ζ = 0 the ratio achieved by the algorithm is 3/4. □
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Appendix. Description of the GRG method

Here, we will describe in a little more detail the GRG method with the sole purpose of making the paper
a bit more self-contained. Of course, the interesting reader is pointed to the original publications or to the
standard textbook presentations mentioned in the corresponding section.

The GRG method allows us to solve non-linear and even non-smooth problems. It has many different
options that we exploit in our way to find a global optimal solution. The GRG algorithm is the convex
analog of the simplex method where we allow the constraints to be arbitrary nonlinear functions, and we
also allow the variables to possibly have lower and upper bounds. The general form of the method is the
following:

max (min) f (x)
s.t. hT

i (x) = 0 ∀i ∈ [m],L ⩽ x ⩽ U

where x is the n-dimensional variable vector, hi is the ith constraint, and L, U are n-dimensional vectors
representing lower and upper bounds of the variables. For simplicity we assume that h is a matrix with m

rows (the constraints) and n columns (variables) with rank m (i.e., m linear independent constraints). The
GRG method assumes that the set X of variables can be partitioned into two sets (α, β) (let α and β be
the corresponding vectors) such that:

1. α has dimension m and β has dimension n−m;
2. the variables in α strictly respect the given bounds represented by Lα and Uα; in other words, ∀xi ∈ α,

Lxi
⩽ xi ⩽ Uxi

.
3. ∇αh(x) is non-singular (invertible) at X = (α, β). From the Implicit Function Theorem, we know

that for any given β ⊆ X, ∃α = X \ β such that h(α, β) = 0. This immediately implies that
dα/dβ = (∇αh(x))−1∇βh(x).

The main idea behind GRG is to select the direction of the independent variables (which are the analog of
the non-basic variables of the SIMPLEX method) β to be the reduced gradient as follows:

∇β

(
f (x) − yTh (x)

)
, where y = dα

dβ = (∇αh (x))−1∇βh (x) .
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Fig. 8. Sets Si, Oi, Xi i = 1, 2 and cuts between them.

Then, the step size is chosen and a correction procedure applied to return to the surface h(x) = 0. The
intuition is fairly simple: if, for a given configuration of the values of the variables, a partial derivative has
large absolute value, then the GRG would try to change the value of the variable appropriately and observe
how its partial derivative changes. The goal is to arrive at a point where all partial derivatives are zero. This
can happen to any local or global optimal point. In a few words, the GRG method is viewed as a sequence
of steps through feasible points xj such that the final vector of this sequence satisfied the famous KKT
conditions [26] of optimality of non-linear systems.

In order to derive these conditions, we first take the Lagrangian of the above problem:

L (x, ℓ) = f (x) +
∑

j∈[m]

ℓjh
j (x) −

∑
i∈[n]

Li (xi − Li) +
∑
i∈[n]

Ui (xi − Ui) .

At the optimum point x∗ the KKT conditions would yield that:

∇L = ∇f (x∗) +
∑

j∈[m]

ℓj∇hj (x∗) − (L − U ) = 0

coupled with the standard constraints derived from the complementary slackness conditions. This is the
stopping criterion of an iteration, meaning that we hit a local minimum.
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