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Abstract A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have
the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum
size, and in its decision form, a resolving set of size at most some specified integer. This problem is
NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect
to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On
the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs, but the
general case of treewidth at most two is open. On the complexity side, no parameterized hardness is
known. This has led several papers on the topic to ask for the parameterized complexity of Metric
Dimension with respect to treewidth.

We provide a first answer to the question. We show that Metric Dimension parameterized by the
treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time
Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)no(pw) on n-vertex
graphs of constant degree, with pw the pathwidth of the input graph, and f any computable function.
This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete Math. ’17] with
respect to the combined parameter tl + ∆, where tl is the tree-length and ∆ the maximum-degree of the
input graph.

Keywords Metric Dimension · Treewidth · Parameterized Hardness

1 Introduction

The Metric Dimension problem has been introduced in the 1970s independently by Slater [22] and
by Harary and Melter [13]. Given a graph G and an integer k, Metric Dimension asks for a subset
S of vertices of G of size at most k such that every vertex of G is uniquely determined by its distances
to the vertices of S. Such a set S is called a resolving set, and a resolving set of minimum-cardinality is
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called a metric basis. The metric dimension of graphs finds application in various areas including network
verification [2], chemistry [4], and robot navigation [18].

Metric Dimension is an entry of the celebrated book on intractability by Garey and Johnson [12]
where the authors show that it is NP-complete. In fact Metric Dimension remains NP-complete in
many restricted classes of graphs such as planar graphs [6], split, bipartite, co-bipartite graphs, and
line graphs of bipartite graphs [9], interval graphs of diameter two [11], permutation graphs of diameter
two [11], and in a subclass of unit disk graphs [15]. Furthermore Metric Dimension cannot be solved in
subexponential-time unless 3-SAT can [1]. On the positive side, the problem is polynomial-time solvable
on trees [13, 18, 22]. Diaz et al. [6] generalize this result to outerplanar graphs. Fernau et al. [10] give a
polynomial-time algorithm on chain graphs. Epstein et al. [9] show that Metric Dimension (and even
its vertex-weighted variant) can be solved in polynomial time on co-graphs and forests augmented by a
constant number of edges. Hoffmann et al. [16] obtain a linear algorithm on cactus block graphs.

Hartung and Nichterlein [14] prove that Metric Dimension is W[2]-complete (parameterized by
the size of the solution k) even on subcubic graphs. Therefore an FPT algorithm solving the problem is
unlikely. However Foucaud et al. [11] give an FPT algorithm with respect to k on interval graphs. This
result is later generalized by Belmonte et al. [3] who obtain an FPT algorithm with respect to tl+∆ (where
tl is the tree-length and ∆ is the maximum-degree of the input graph), implying one for parameter tl+k.
Indeed interval graphs, and even chordal graphs, have constant tree-length. Hartung and Nichterlein [14]
presents an FPT algorithm parameterized by the vertex cover number, Eppstein [8], by the max leaf
number, and Belmonte et al. [3], by the modular-width (a larger parameter than clique-width).

The complexity of Metric Dimension parameterized by treewidth is quite elusive. It is discussed [8]
or raised as an open problem in several papers [3, 6]. On the one hand, it was not known, prior to our
paper, if this problem is W[1]-hard. On the other hand, the complexity of Metric Dimension in graphs
of treewidth at most two is still an open question.

1.1 Our contribution

We settle the parameterized complexity of Metric Dimension with respect to treewidth. We show that
this problem is W[1]-hard, and we rule out, under the Exponential Time Hypothesis (ETH), an algorithm
running in f(tw)|V (G)|o(tw), whereG is the input graph, tw its treewidth, and f any computable function.
Our reduction even shows that an algorithm in time f(pw)|V (G)|o(pw) is unlikely on constant-degree
graphs, for the larger parameter pathwidth pw. This is in stark contrast with the FPT algorithm of
Belmonte et al. [3] for the parameter tl + ∆ where tl is the tree-length and ∆ is the maximum-degree of
the graph. We observe that this readily gives an FPT algorithm for ctw + ∆ where ctw is the connected
treewidth, since ctw > tl. This unravels an interesting behavior of Metric Dimension, at least on
bounded-degree graphs: usual tree-decompositions are not enough for efficient solving. Instead one needs
tree-decompositions with an additional guarantee that the vertices of a same bag are at a bounded
distance from each other.

As our construction is quite technical, we chose to introduce an intermediate problem dubbed
k-Multicolored Resolving Set in the reduction from k-Multicolored Independent Set to
Metric Dimension. The first half of the reduction, from k-Multicolored Independent Set to
k-Multicolored Resolving Set, follows a generic and standard recipe to design parameterized hard-
ness with respect to treewidth. The main difficulty is to design an effective propagation gadget with a
constant-size left-right cut. The second half brings some new local attachments to the produced graph,
to bridge the gap between k-Multicolored Resolving Set and Metric Dimension. Along the way,
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we introduce a number of gadgets: edge, propagation, forced set, forced vertex. They are quite stream-
lined and effective. Therefore, we believe these building blocks may help in designing new reductions for
Metric Dimension.

1.2 Organization of the paper

In section 2 we introduce the definitions, notations, and terminology used throughout the paper. In sec-
tion 3 we present the high-level ideas to establish our result. We define the k-Multicolored Resolving
Set problem which serves as an intermediate step for our reduction. In section 4 we design a parame-
terized reduction from the W[1]-complete k-Multicolored Independent Set to k-Multicolored
Resolving Set parameterized by treewidth. In section 5 we show how to transform the produced
instances of k-Multicolored Resolving Set to Metric Dimension-instances (while maintaining
bounded treewidth). In section 6 we conclude with some open questions.

2 Preliminaries

We denote by [i, j] the set of integers {i, i+ 1, . . . , j − 1, j}, and by [i] the set of integers [1, i]. If X is a
set of sets, we denote by ∪X the union of them.

2.1 Graph notations

All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by V (G), respec-
tively E(G), the set of vertices, respectively of edges, of the graph G. For S ⊆ V (G), we denote the
open neighborhood (or simply neighborhood) of S by NG(S), i.e., the set of neighbors of S deprived
of S, and the closed neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. For singletons, we simplify
NG({v}) into NG(v), and NG[{v}] into NG[v]. We denote by G[S] the subgraph of G induced by S, and
G − S := G[V (G) \ S]. For S ⊆ V (G) we denote by S the complement V (G) \ S. For A,B ⊆ V (G),
E(A,B) denotes the set of edges in E(G) with one endpoint in A and the other one in B.

The length of a path in an unweighted graph is simply the number of edges of the path. For two
vertices u, v ∈ V (G), we denote by distG(u, v), the distance between u and v in G, that is the length of
the shortest path between u and v. The diameter of a graph is the longest distance between a pair of its
vertices. The diameter of a subset S ⊆ V (G), denoted by diamG(S), is the longest distance between a
pair of vertices in S. Note that the distance is taken in G, not in G[S]. In particular, when G is connected,
diamG(S) is finite for every S. A pendant vertex is a vertex with degree one. A vertex u is pendant to
v if v is the only neighbor of u. Two distinct vertices u, v such that N(u) = N(v) are called false twins,
and true twins if N [u] = N [v]. In particular, true twins are adjacent. In all the above notations with a
subscript, we omit it whenever the graph is implicit from the context.

2.2 Treewidth, pathwidth, connected treewidth, and tree-length

A tree-decomposition of a graph G, is a tree T whose nodes are labeled by subsets of V (G), called bags,
such that for each vertex v ∈ V (G), the bags containing v induce a non-empty subtree of T , and for each
edge e ∈ E(G), there is at least one bag containing both endpoints of e. A connected tree-decomposition
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further requires that each bag induces a connected subgraph in G. The width of a (connected) tree-
decomposition is the size of its largest bag minus one. The treewidth (resp. connected treewidth) of a
graph G is the minimum width of a tree-decomposition (resp. a connected tree-decomposition) of G. The
length of a tree-decomposition is the maximum diameter of its bags in G. The tree-length of a graph G
is the minimum length of a tree-decomposition of G. We denote the treewidth, connected treewidth, and
tree-length of a graph by tw, ctw, and tl respectively. Since a connected graph on n vertices has diameter
at most n− 1, it holds that ctw > tl.

The pathwidth is the same as treewidth except the tree T is now required to be a path, and hence is
called a path-decomposition. In particular pathwidth is always larger than treewidth. Later we will need
to upper bound the pathwidth of our constructed graph. Since writing down a path-decomposition is a
bit cumbersome, we will rely on the following characterization of pathwidth. Kirousis and Papadimitriou
[19] show the equality between the interval thickness number, which is known to be pathwidth plus one,
and the node searching number. Thus we will only need to show that the number of searchers required
to win the following one-player game is bounded by a suitable function. We imagine the edges of a graph
to be contaminated by a gas. The task is to move around a team of searchers, placed at the vertices, in
order to clean all the edges. A move consists of removing a searcher from the graph, adding a searcher
at an unoccupied vertex, or displacing a searcher from a vertex to any other vertex (not necessarily
adjacent). An edge is cleaned when both its endpoints are occupied by a searcher. However after each
move, all the cleaned edges admitting a free-of-searchers path from one of its endpoints to the endpoint
of a contaminated edge are recontaminated. The node searching number is the minimum number of
searchers required to win the game.

2.3 Parameterized problems and algorithms

Parameterized complexity aims to solve hard problems in time f(k)|I|O(1), where k is a parameter of
the instance I which is hopefully (much) smaller than the total size of I. More formally, a parameterized
problem is a pair (Π, κ) where Π ⊆ L for some language L ⊆ Σ∗ over a finite alphabet Σ (e.g., the set of
words, graphs, etc.), and κ is a mapping from L to N. An element I ∈ L is called an instance (or input).
The mapping κ associates each instance to an integer called parameter. An instance is said positive if
I ∈ Π, and a negative otherwise. We denote by |I| the size of I, that can be thought of as the length of
the word I. An FPT algorithm is an algorithm which solves a parameterized problem (Π, κ), i.e., decides
whether or not an input I ∈ L is positive, in time f(κ(I))|I|O(1) for some computable function f . We
refer the interested reader to recent textbooks in parameterized algorithms and complexity [5, 7].

2.4 Exponential Time Hypothesis, FPT reductions, and W[1]-hardness

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [17] asserting that there is
no 2o(n)-time algorithm for 3-SAT on instances with n variables. Lokshtanov et al. [20] survey conditional
lower bounds under the ETH.

An FPT reduction from a parameterized problem (Π ⊆ L, κ) to a parameterized problem (Π′ ⊆ L′, κ′)
is a mapping ρ : L 7→ L′ such that for every I ∈ L:

– (1) I ∈ Π⇔ ρ(I) ∈ Π′,
– (2) |ρ(I)|6 f(κ(I))|I|O(1) for some computable function f , and
– (3) κ(ρ(I)) 6 g(κ(I)) for some computable function g.
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We further require that for every I, we can compute ρ(I) in FPT time h(κ(I))|I|O(1) for some computable
function h. Condition (1) makes ρ a valid reduction, condition (2) together with the further requirement
on the time to compute ρ(I) make the mapping ρ FPT, and condition (3) controls that the new parameter
κ(ρ(I)) is bounded by a function of the original parameter κ(I). One can therefore observe that using
ρ in combination with an FPT algorithm solving (Π′, κ′) yields an FPT procedure to solve the initial
problem (Π, κ).

A standard use of an FPT reduction is to derive conditional lower bounds: if a problem (Π, κ) is
thought not to admit an FPT algorithm, then an FPT reduction from (Π, κ) to (Π′, κ′) indicates that
(Π′, κ′) is also unlikely to admit an FPT algorithm. We refer the reader to the textbooks [5, 7] for a
formal definition of W[1]-hardness. For the purpose of this paper, we will just state that W[1]-hard are
parameterized problems that are unlikely to be FPT, and that the following problem is W[1]-complete
even when all the Vi have the same number of elements, say t (see for instance [21]).

k-Multicolored Independent Set (k-MIS) Parameter: k
Input: An undirected graph G, an integer k, and (V1, . . . , Vk) a partition of V (G).
Question: Is there a set I ⊆ V (G) such that |I ∩ Vi| = 1 for every i ∈ [k], and G[I] is edgeless?

Every parameterized problem that k-Multicolored Independent Set FPT-reduces to is W[1]-
hard. Our paper is thus devoted to designing an FPT reduction from k-Multicolored Independent
Set to Metric Dimension parameterized by tw. Let us observe that the ETH implies that one (equiv-
alently, every) W[1]-hard problem is not in the class of problems solvable in FPT time (FPT 6=W[1]).
Thus if we admit that there is no subexponential algorithm solving 3-SAT, then k-Multicolored
Independent Set is not solvable in time f(k)|V (G)|O(1). Actually under this stronger assumption,
k-Multicolored Independent Set is not solvable in time f(k)|V (G)|o(k). A concise proof of that
fact can be found in the survey on the consequences of ETH [20].

2.5 Metric dimension, resolved pairs, distinguished vertices

A pair of vertices {u, v} ⊆ V (G) is said to be resolved by a set S if there is a vertex w ∈ S such that
dist(w, u) 6= dist(w, v). A vertex u is said to be distinguished by a set S if for any w ∈ V (G) \ {u}, there
is a vertex v ∈ S such that dist(v, u) 6= dist(v, w). A resolving set of a graph G is a set S ⊆ V (G) such
that every two distinct vertices u, v ∈ V (G) are resolved by S. Equivalently, a resolving set is a set S
such that every vertex of G is distinguished by S. Then Metric Dimension asks for a resolving set of
size at most some threshold k. Note that a resolving set of minimum size is sometimes called a metric
basis for G.

Metric Dimension (MD) Parameter: tw(G)
Input: An undirected graph G and an integer k.
Question: Does G admit a resolving set of size at most k?

Here we anticipate on the fact that we will mainly consider Metric Dimension parameterized by
treewidth. Henceforth we sometimes use the notation Π/tw to emphasize that Π is not parameterized
by the natural parameter (size of the resolving set) but by the treewidth of the input graph.

3 Outline of the W[1]-hardness proof of Metric Dimension/tw

We will show the following.
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Theorem 3.1 Unless the ETH fails, there is no computable function f such that Metric Dimension
can be solved in time f(pw)no(pw) on constant-degree n-vertex graphs.

We first prove that the following variant of Metric Dimension is W[1]-hard.

k-Multicolored Resolving Set (k-MRS) Parameter: tw(G)
Input: An undirected graph G, an integer k, a set X of q disjoint subsets of V (G): X1, . . . , Xq, and
a set P of pairs of vertices of G: {x1, y1}, . . . , {xh, yh}.
Question: Is there a set S ⊆ V (G) of size q such that

– (i) for every i ∈ [q], |S ∩Xi| = 1, and
– (ii) for every p ∈ [h], there is an s ∈ S satisfying distG(s, xp) 6= distG(s, yp)?

In words, in this variant the resolving set is made by picking exactly one vertex in each set of X ,
and not all the pairs should be resolved but only the ones in a prescribed set P. We call critical pair a
pair of P. In the context of k-Multicolored Resolving Set, we call legal set a set which satisfies the
former condition, and resolving set a set which satisfies the latter. Thus a solution for k-Multicolored
Resolving Set is a legal resolving set.

The reduction from k-Multicolored Independent Set starts with a well-established trick to show
parameterized hardness by treewidth. We create m “empty copies” of the k-MIS-instance (G, k, (V1, . . . ,
Vk)), where m := |E(G)| and t := |Vi|. We force exactly one vertex in each color class of each copy to be
in the resolving set, using the set X . In each copy, we introduce an edge gadget for a single (distinct) edge
of G. Encoding an edge of k-MIS in the k-MRS-instance is fairly simple: we build a pair (of P) which
is resolved by every choice but the one selecting both its endpoints in the resolving set. We now need
to force a consistent choice of the vertex chosen in Vi over all the copies. We thus design a propagation
gadget. A crucial property of the propagation gadget, for the pathwidth of the constructed graph to
be bounded, is that it admits a cut of size O(k) disconnecting one copy from the other. Encoding a
choice in Vi in the distances to four special vertices, called gates, we manage to build such a gadget with
constant-size “left-right” separator per color class. This works by introducing t pairs (of P) which are
resolved by the south-west and north-east gates but not by the south-east and north-west ones. Then
we link the vertices of a copy of Vi in a way that the higher their index, the more pairs they resolve in
the propagation gadget to their left, and the fewer pairs they resolve in the propagation gadget to their
right.

We then turn to the actual Metric Dimension problem. We design a gadget which simulates
requirement (i) by forcing a vertex of a specific set X in the resolving set. This works by introducing two
pairs that are only resolved by vertices of X. We attach this new gadget, called forcing set gadget, to all
the k color classes of the m copies. Finally we have to make sure that a candidate solution resolves all
the pairs, and not only the ones prescribed by P. For that we attach two adjacent “pendant” vertices to
strategically chosen vertices. One of these two vertices have to be in the resolving set since they are true
twins, hence not resolved by any other vertex. Then everything is as if the unique common neighbor v
of the true twins was added to the resolving set. Therefore we can perform this operation as long as v
does not resolve any of the pairs of P.

To facilitate the task of the reader, henceforth we stick to the following conventions:

– Index i ∈ [k] ranges over the k rows of the k-MRS/MD-instance or color classes of k-MIS.
– Index j ∈ [m] ranges over the m columns of the k-MRS/MD-instance or edges of k-MIS.
– Index γ ∈ [t], ranges over the t vertices of a color class.

We invite the reader to look up table 1 when in doubt about a notation/symbol relative to the construc-
tion.
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4 Parameterized hardness of k-Multicolored Resolving Set/tw

In this section, we give an FPT reduction from the W[1]-complete k-Multicolored Independent
Set to k-Multicolored Resolving Set parameterized by treewidth. More precisely, given a k-
Multicolored Independent Set-instance (G, k, (V1, . . . , Vk)) we produce in polynomial-time an equiv-
alent k-Multicolored Resolving Set-instance (G′, k′,X ,P) whereG′ has pathwidth (hence treewidth)
O(k).

4.1 Construction

Let (G, k, (V1, . . . , Vk)) be an instance of k-Multicolored Independent Set where (V1, . . . , Vk) is a
partition of V (G) and Vi := {vi,γ | 1 6 γ 6 t}. We arbitrarily number e1, . . . , ej , . . . , em the m edges of
G.

4.1.1 Overall picture

We start with a high-level description of the k-MRS-instance (G′, k′,X ,P). For each color class Vi, we
introduce m copies V 1

i , . . . , V
j
i , . . . , V

m
i of a selector gadget to G′. Each set V ji is added to X , so a solution

has to pick exactly one vertex within each selector gadget. One can imagine the vertex-sets V 1
i , . . . , V

m
i

to be aligned on the i-th row, with V ji occupying the j-th column (see fig. 1). Each V ji has t vertices

denoted by vji,1, v
j
i,2, . . . , v

j
i,t, where each vji,γ “corresponds” to vi,γ ∈ Vi. We make vji,1v

j
i,2 . . . v

j
i,t a path

with t− 1 edges.
For each edge ej ∈ E(G), we insert an edge gadget G(ej) containing a pair of vertices {cj , c′j} that we

add to P. Gadget G(ej) is attached to V ji and V ji′ , where ej ∈ E(Vi, Vi′). The edge gadget is designed in

a way that the only legal sets that do not resolve {cj , c′j} are the ones that precisely pick vji,γ ∈ V
j
i and

vji′,γ′ ∈ V ji′ such that ej = vi,γvi′,γ′ . We add a propagation gadget P j,j+1
i between two consecutive copies

V ji and V j+1
i , where the indices in the superscript are taken modulo m. The role of the propagation

gadget is to ensure that the choices in each V ji (j ∈ [m]) corresponds to the same vertex in Vi.
The intuitive idea of the reduction is the following. We say that a vertex of G′ is selected if it is put in

the resolving set of G′, a tentative solution. The propagation gadget P j,j+1
i ensures a consistent choice

among the m copies V 1
i , . . . , V

m
i . The edge gadget ensures that the selected vertices of G′ correspond to

an independent set in the original graph G. If both the endpoints of an edge ej are selected, then the
pair {cj , c′j} is not resolved. We now detail the construction.

4.1.2 Selector gadget

For each i ∈ [k] and j ∈ [m], we add to G′ a path on t− 1 edges vji,1, v
j
i,2, . . . , v

j
i,t, and denote this set of

vertices by V ji . Each vji,γ corresponds to vi,γ ∈ Vi. We call j-th column the set
⋃
i∈[k] V

j
i , and i-th row,

the set
⋃
j∈[m] V

j
i . We set X := {V ji }i∈[k],j∈[m]. By definition of k-Multicolored Resolving Set, a

solution S has to satisfy that for every i ∈ [k], j ∈ [m], |S ∩ V ji | = 1. We call legal set a set S of size
k′ = km that satisfies this property. We call consistent set a legal set S which takes the “same” vertex

in each row, that is, for every i ∈ [k], for every pair (vji,γ , v
j′

i,γ′) ∈ (S ∩ V ji )× (S ∩ V j
′

i ), then γ = γ′.
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V 1
1 V 2

1 V 3
1 V 4

1 V 5
1 V 6

1

V 1
2 V 2

2 V 3
2 V 4

2 V 5
2 V 6

2

V 1
3 V 2

3 V 3
3 V 4

3 V 5
3 V 6

3

P 1,2
1 P 2,3

1 P 3,4
1 P 4,5

1 P 5,6
1

P 1,2
2 P 2,3

2 P 3,4
2 P 4,5

2 P 5,6
2

P 1,2
3 P 2,3

3 P 3,4
3 P 4,5

3 P 5,6
3

P 6,1
1

P 6,1
2

P 6,1
3

G(e1) G(e2) G(e3) G(e4) G(e5) G(e6)

Fig. 1: The overall picture with k = 3 color classes, t = 5 vertices per color class, m = 6 edges, e1 = v1,3v2,4, e2 = v1,4v2,1,
e3 = v1,5v3,1, etc. The dashed lines on the left and right symbolize that the construction is cylindrical.

4.1.3 Edge gadget

For each edge ej = vi,γvi′,γ′ ∈ E(G), we add an edge gadget G(ej) in the j-th column of G′. G(ej) consists
of a path on three vertices: cjgjc

′
j . The pair {cj , c′j} is added to the list of critical pairs P. We link both

vji,γ and vji′,γ′ to gj by a private path1 of length t+ 2. We link the at least two and at most four vertices

vji,γ−1, v
j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1 (whenever they exist) to cj by a private path of length t+ 2. This defines

at most six paths from V ji ∪V
j
i′ to G(ej). Let us denote by Wj the at most six endpoints of these paths in

V ji ∪V
j
i′ . For each v ∈Wj , we denote by P (v, j) the path from v to G(ej). We set Eji :=

⋃
v∈Wj∩V j

i
P (v, j)

and Eji′ :=
⋃
v∈Wj∩V j

i′
P (v, j). We denote by Xj the set of the at most six neighbors of Wj on the paths

to G(ej). Henceforth we may refer to the vertices in some Xj as the cyan vertices. Individually we denote

by eji,γ the cyan vertex neighbor of vji,γ in P (vji,γ , j). We observe that for fixed i and j, eji,γ exists for at

most three values of γ. We add an edge between two cyan vertices if their respective neighbors in V ji
are also linked by an edge (or equivalently, if they have consecutive “indices γ”). These extra edges are
useless in the k-MRS-instance, but will turn out useful in the MD-instance. See fig. 2 for an illustration
of the edge gadget.

The rest of the construction will preserve that for every v ∈ (V ji ∪ V
j
i′ ) \ {v

j
i,γ , v

j
i′,γ′}, dist(v, c′j) =

dist(v, cj) + 2, and for each v ∈ {vji,γ , v
j
i′,γ′}, dist(v, cj) = dist(v, gj) + 1 = dist(v, c′j). In other words, the

1 We use the expression private path to emphasize that the different sources get a pairwise internally vertex-disjoint path
to the target.
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V 4
1

V 4
2

V 4
3

v41,1
v41,2
v41,3
v41,4
v41,5

e41,4

e41,5

g4

c4

c′4

G(e4)

6

6

6

6

6

Fig. 2: The edge gadget G(e4) with e4 = v1,5v3,3. Weighted edges are short-hands for subdivisions of the corresponding
length. The edges between the cyan vertices will not be useful for the k-MRS-instance, but will later simplify the construction
of the MD-instance.

only two vertices of V ji ∪ V
j
i′ not resolving the critical pair {cj , c′j} are vji,γ and vji′,γ′ , corresponding to

the endpoints of ej .

4.1.4 Propagation gadget

Between each pair (V ji , V
j+1
i ), where j + 1 is taken modulo m, we insert an identical copy of the propa-

gation gadget, and we denote it by P j,j+1
i . It ensures that if the vertex vji,γ is in a legal resolving set S,

then the vertex of S ∩ V j+1
i should be some vj+1

i,γ′ with γ 6 γ′. The cylindricity of the construction and

the fact that exactly one vertex of V ji is selected, will therefore impose that the set S is consistent.

P j,j+1
i, comprises four vertices swji , seji , nwji , neji , called gates, and a set Aji of 2t vertices aji,1, . . . ,

aji,t, α
j
i,1, . . . , α

j
i,t. We make both aji,1a

j
i,2 . . . a

j
i,t and αji,1α

j
i,2 . . . α

j
i,t a path with t − 1 edges. For each

γ ∈ [t], we add the pair {aji,γ , α
j
i,γ} to the set of critical pairs P. Removing the gates disconnects Aji from

the rest of the graph.
We now describe how we link the gates to V ji , V j+1

i , and Aji . We link vji,1 (the “top” vertex of V ji )

to swji and vji,t (the “bottom” vertex of V ji ) to nwji both by a path of length 2. We also link vj+1
i,1 to seji

by a path of length 3, and vj+1
i,t to neji by a path of length 2. Then we make nwji adjacent to aji,1 and

αji,1, while we make neji adjacent to αji,1 only. We make seji adjacent to aji,t and αji,t, while we make swji
adjacent to aji,t only. Finally, we add an edge between neji and nwji , and between swji and seji . See fig. 3

for an illustration of the propagation gadget P j,j+1
i with t = 5.



10 Édouard Bonnet, Nidhi Purohit

vji,1

vji,2

vji,3

vji,4

vji,5

vj+1
i,1

vj+1
i,2

vj+1
i,3

vj+1
i,4

vj+1
i,5

V ji V j+1
i

swji seji

nwji neji

6 | 7

7 | 8

6 | 7

5 | 6

4 | 5

6 | 6

7 | 7

7 | 7

6 | 6

5 | 5

aji,1 αji,1

aji,2 αji,2

aji,3 αji,3

aji,4 αji,4

aji,5 αji,5

2

32

2

Fig. 3: The propagation gadget P j,j+1
i . The critical pairs {aji,γ , α

j
i,γ} are surrounded by thin dashed lines. The blue (resp.

red) integer on a vertex of Aji is its distance to the blue (resp. red) vertex in V ji (resp. V j+1
i ). Note that the blue vertex

distinguishes the critical pairs below it, while the red vertex distinguishes critical pairs at its level or above.

Let us motivate the gadget P j,j+1
i . One can observe that the gates neji and swji resolve the critical

pairs of the propagation gadget, while the gates nwji and seji do not. Consider that the vertex added to

the resolving set in V ji is vji,γ . Its shortest paths to critical pairs below it (that is, with index γ′ > γ) go

through the gate swji , whereas its shortest paths to critical pairs at its level or above (that is, with index

γ′ 6 γ) go through the gate nwji . Thus vji,γ only resolves the critical pairs {aji,γ′ , αi,γ′} with γ′ > γ. On

the contrary, the vertex of the resolving set in V j+1
i only resolves the critical pairs {aji,γ′ , α

j
i,γ′} at its

level or above. This will force that its level is γ or below. Hence the vertices of the resolving in V ji and

V j+1
i should be such that γ′ > γ. Since there is also a propagation gadget between V mi and V 1

i , this
circular chain of inequalities forces a global equality.

4.1.5 Wrapping up

We put the pieces together as described in the previous subsections. At this point, it is convenient to give
names to the neighbors of V ji in the propagation gadgets P j−1,ji and P j,j+1

i . We may refer to them as

blue vertices (as they appear in fig. 4). We denote by tlji the neighbor of vji,1 in P j−1,ji , trji , the neighbor

of vji,1 in P j,j+1
i , blji , the neighbor of vji,t in P j−1,ji , and brji , the neighbor of vji,t in P j,j+1

i . We add the
following edges and paths.

For any pair i, j such that ej has an endpoint in Vi, the vertices tlji , tr
j
i ,blji ,brji are linked to gj by

a private path of length the distance of their unique neighbor in V ji to cj . We add an edge between seji
and sej+1

i , and between nwji and nwj+1
i (where j + 1 is modulo m). Finally, for every ej ∈ E(Vi, Vi′), we

add four paths between seji , se
j
i′ ,nwji ,nwji′ and gj ∈ G(ej). More precisely, for each i′′ ∈ {i, i′}, we add a

path from gj to seji′′ of length dist(gj , sw
j
i′′)− 4, and a path from gj to nwji′′ of length dist(gj ,nwji′′)− 4.
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These distances are taken in the graph before we introduced the new paths, and one can observe that
the length of these paths is at least t. This finishes the construction.

We recall that, by a slight abuse of language, a resolving set in the context of k-Multicolored
Resolving Set is a set which resolves all the critical pairs of P. In particular, it is not necessarily a
resolving set in the sense of Metric Dimension. With that terminology, a solution for k-Multicolored
Resolving Set is a legal resolving set.

4.2 Correctness of the reduction

We now check that the reduction is correct. We start with the following technical lemma. If a set X
contains a pair that no vertex of N(X) (that is N [X] \ X) resolves, then no vertex outside X can
distinguish the pair.

Lemma 4.1 Let X be a subset of vertices, and a, b ∈ X be two distinct vertices. If for every vertex
v ∈ N(X), dist(v, a) = dist(v, b), then for every vertex v /∈ X, dist(v, a) = dist(v, b).

Proof Let v be a vertex outside of X. We further assume that v is not in N(X), otherwise we can
already conclude that it does not distinguish {a, b}. A shortest path from v to a, has to go through
N(X). Let wa be the first vertex of N(X) met in this shortest path from v to a. Similarly, let wb
be the first vertex of N(X) met in a shortest path from v to b. Since wa, wb ∈ N(X), they satisfy
dist(wa, a) = dist(wa, b) and dist(wb, a) = dist(wb, b). Then, dist(v, a) 6 dist(v, wb) + dist(wb, a) =
dist(v, wb) + dist(wb, b) = dist(v, b), and dist(v, b) 6 dist(v, wa) + dist(wa, b) = dist(v, wa) + dist(wa, a) =
dist(v, a). Thus dist(v, a) = dist(v, b). ut

We use the previous lemma to show that every vertex of a V ji only resolves critical pairs in gadgets
it is attached to. This will be useful in the two subsequent lemmas.

Lemma 4.2 For any i ∈ [k], j ∈ [m], and v ∈ V ji , v does not resolve any critical pair outside of P j−1,ji ,

P j,j+1
i (where indices in the superscript are taken modulo m), and {cj , c′j}. Furthermore, if ej ∈ E(G)

has no endpoint in Vi ⊆ V (G), then v does not resolve {cj , c′j}.

Proof We first show that v ∈ V ji does not resolve any critical pair in propagation gadgets that are not

P j−1,ji and P j,j+1
i . Let {aj

′

i′,γ , α
j′

i′,γ} be a critical pair in a propagation gadget different from P j−1,ji and

P j,j+1
i . Let X be the connected component containing P j

′,j′+1
i′ of G′− ({nwj

′−1
i′ , sej

′−1
i′ ,nwj

′+1
i′ , sej

′+1
i′ }∪

Ce), where Ce comprises {c′j , g′j} if ej′ has an endpoint in Vi′ and {cj′+1, gj′+1} if ej′+1 has an endpoint

in Vi′ . Thus Ce has size 0, 2, or 4. One can observe that N(X) = {nwj
′−1
i′ , sej

′−1
i′ ,nwj

′+1
i′ , sej

′+1
i′ } ∪ Ce,

that V j
′

i′ ∪ V
j′+1
i′ ⊆ X, and that no “other V ji ” intersects X. In particular V ji is fully contained in

G − X. We now check that no vertex of N(X) resolves the pair {aj
′

i′,γ , α
j′

i′,γ} (which is inside X). For

each u ∈ {nwj
′−1
i′ ,nwj

′+1
i′ }, it holds that dist(u, aj

′

i′,γ) = γ + 1 = dist(u, aj
′

i′,γ) (the shortest paths go

through nwj
′

i′ ), while for each u ∈ {sej
′−1
i′ , sej

′+1
i′ , it holds that dist(u, aj

′

i′,γ) = t − γ + 2 = dist(u, aj
′

i′,γ)

(the shortest paths go through sej
′

i′ ). If they are part of Ce, gj′ and cj′ also do not resolve {aj
′

i′,γ , α
j′

i′,γ},
the shortest paths going through the gates nwj

′

i′ or sej
′

i′ , and respectively gj and then the gates nwj
′

i′ or

sej
′

i′ . For the same reason, gj′+1 and cj′+1 do not resolve {aj
′

i′,γ , α
j′

i′,γ}. Then we conclude by lemma 4.1

that no vertex of V ji (in particular v) resolves {aj
′

i′,γ , α
j′

i′,γ}, or any critical pair in P j
′

i′ .
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Let us now show that the pair {cj , c′j} is not resolved by any vertex of ∪X \ (V ji′ ∪V
j
i′′) such that ej ∈

E(Vi′ , Vi′′). Let Y := {tlji′ , tr
j
i′ ,blji′ ,brji′ , tl

j
i′′ , tr

j
i′′ ,blji′′ ,brji′′ ,nwji′ , se

j
i′ ,nwji′′ , se

j
i′′}, and X be the connected

component containing gj in G′ − Y . Again one can observe that N(X) = Y , X contains V ji′ ∪ V
j
i′′ but

does not intersect any “other V ji ”. We therefore show that no vertex of Y resolves {cj , c′j}, and conclude
with lemma 4.1. All the vertices of Y have a private path to gj whose length is such that they have a
shortest path to cj going through gj . Therefore ∀u ∈ Y , dist(u, cj) = dist(u, gj) + 1 = dist(u, c′j). ut

The two following lemmas show the equivalences relative to the expected use of the edge and propa-
gation gadgets. They will be useful in sections 4.2.1 and 4.2.2.

Lemma 4.3 A legal set S resolves the critical pair {cj , c′j} with ej = vi,γvi′,γ′ if and only if the vertex

vji,γi in V ji ∩ S and the vertex vji′,γi′ in V ji′ ∩ S satisfy (γ, γ′) 6= (γi, γi′).

Proof By lemma 4.2, no vertex of S \ {vji,γi , v
j
i′,γi′
} resolves {cj , c′j}. By construction of G′, vji,γ (resp.

vji′,γ′) is the only vertex of V ji (resp. V ji′ ) that does not resolve {cj , c′j}. Indeed the shortest paths of vji,γ′′ ,

for γ′′ > γ + 1, to {cj , c′j} go through vji,γ+1 which resolves the pair. Note that a shortest path between

V ji and V ji′ has length at least 2t + 4, so a shortest path from vji,γ′′ to {cj , c′j} cannot go through V ji′ .

Similarly the shortest paths of vji,γ′′ , for γ′′ 6 γ− 1, to {cj , c′j} go through vji,γ−1 which also resolves the

pair. Thus only vji,γ (resp. vji′,γ′), whose shortest paths to {cj , c′j} go via gj , does not resolve this pair

among V ji (resp. V ji′ ). Hence, the critical pair {cj , c′j} is not resolved by S if and only if vji,γi = vji,γ and

vji′,γi′ = vji′,γ′ . ut

Lemma 4.4 A legal set S resolves all the critical pairs of P j,j+1
i if and only if the vertex vji,γ in V ji ∩ S

and the vertex vj+1
i,γ′ in V j+1

i ∩ S satisfy γ 6 γ′.

Proof By lemma 4.2, no vertex of S \ {vji,γ , v
j+1
i,γ′ } resolves a critical pair of P j,j+1

i . Let us show that

the critical pairs that vji,γ resolves in Aji are exactly the pairs {aji,z, α
j
i,z} with z > γ. For any z ∈ [t],

it holds that dist(vji,γ , a
j
i,z) = min(t + 2 + z − γ, t + 2 + γ − z) = t + 2 + min(z − γ, γ − z), and

dist(vji,γ , α
j
i,z) = min(t + 2 + z − γ, t + 3 + γ − z) = t + 2 + min(z − γ, γ − z + 1). So if z > γ,

dist(vji,γ , a
j
i,z) = t + 2 + γ − z 6= t + 2 + γ − z + 1 = dist(vji,γ , α

j
i,z). Whereas if z 6 γ, dist(vji,γ , a

j
i,z) =

t+ 2 + z − γ = dist(vji,γ , α
j
i,z).

Similarly, we show that the critical pairs that vj+1
i,γ′ resolves in Aji are exactly the pairs {aji,z, α

j
i,z}

with z 6 γ′. For every z ∈ [t], it holds that dist(vj+1
i,γ′ , a

j
i,z) = min(t + 3 + z − γ′, t + 3 + γ′ − z) =

t+3+min(z−γ′, γ′−z), and dist(vj+1
i,γ′ , α

j
i,z) = min(t+2+z−γ′, t+3+γ′−z) = t+2+min(z−γ′, γ′−z+1).

So if z 6 γ′, dist(vj+1
i,γ′ , a

j
i,z) = t + 3 + z − γ′ 6= t + 2 + z − γ′ = dist(vj+1

i,γ′ , α
j
i,z). Whereas if z > γ′,

dist(vj+1
i,γ′ , a

j
i,z) = t+3+γ′−z = dist(vj+1

i,γ′ , α
j
i,z). This implies that all the critical pairs of Aji are resolved

by S if and only if γ 6 γ′. ut

We can now prove the correctness of the reduction. The construction can be computed in polynomial
time in |V (G)|, and G′ itself has size bounded by a polynomial in |V (G)|. We postpone checking that
the pathwidth is bounded by O(k) to the end of the second step, where we produce an instance of MD
whose graph G′′ admits G′ as an induced subgraph.
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4.2.1 k-Multicolored Independent Set in G ⇒ legal resolving set in G′.

Let {v1,γ1 , . . . , vk,γk} be a k-multicolored independent set in G. We claim that S :=
⋃
j∈[m]{v

j
1,γ1

, . . . ,

vjk,γk} is a legal resolving set in G′ (of size km). The set S is legal by construction. Since for every

i ∈ [k], and j ∈ [m], vji,γi and vj+1
i,γi

are in S (j + 1 is modulo m), all the critical pairs in the propagation
gadgets are resolved by S, by lemma 4.4. Since {v1,γ1 , . . . , vk,γk} is an independent set in G, there is no
ej = vi,γvi′,γ′ ∈ E(G), such that (γ, γ′) = (γi, γi′). Thus every critical pair {cj , c′j} is resolved by S, by
lemma 4.3.

4.2.2 Legal resolving set in G′ ⇒ k-Multicolored Independent Set in G.

Assume that there is a legal resolving set S in G′. For every i ∈ [k], for every j ∈ [m], the vertex vji,γ(i,j)
in V ji ∩ S and the vertex vj+1

i,γ(i,j+1) in V j+1
i ∩ S (j + 1 is modulo m) are such that γ(i, j) 6 γ(i, j + 1),

by lemma 4.4. Thus γ(i, 1) 6 γ(i, 2) 6 . . . 6 γ(i,m− 1) 6 γ(i,m) 6 γ(i, 1), and γi := γ(i, 1) = γ(i, 2) =
. . . = γ(i,m − 1) = γ(i,m). We claim that {v1,γ1 , . . . , vk,γk} is a k-multicolored independent set in G.
Indeed, there cannot be an edge ej = vi,γivi′,γi′ ∈ E(G), since otherwise the critical pair {cj , c′j} is not
resolved, by lemma 4.3.

5 Parameterized hardness of Metric Dimension/tw

In this section, we produce in polynomial time an instance (G′′, k′′) of Metric Dimension equivalent to
(G′,X , km,P) of k-Multicolored Resolving Set. The graph G′′ has also pathwidth O(k). Now, an
instance is just a graph and an integer. There is no longer X and P to constrain and respectively loosen
the “resolving set” at our convenience. This creates two issues: (1) the vertices outside the former set
X can now be put in the resolving set, potentially yielding undesired solutions2 and (2) our candidate
solution (when there is a k-multicolored independent set in G) may not distinguish all the vertices.

5.1 Construction

We settle both issues by attaching new gadgets to G′. Eventually the new graph G′′ will contain G′ as
an induced subgraph. To settle the issue (1), we design a forced set gadget. A forced set gadget attached
to V ji contains two pairs of vertices which are only resolved by vertices of V ji . Thus the gadget simulates
the action of X .

There are a few pairs which are not resolved by a solution of k-Multicolored Resolving Set.
To make sure that all pairs are resolved, we add vertices which need be selected in the resolving set.
Technically we could use the previous gadget on a singleton set. But we can make it simpler: we just
attach two pendant neighbors, that we then make adjacent, to some chosen vertices. A pair of pendant
neighbors are true twins in the whole graph. So we know that at least one of these two vertices have to
be in the resolving set. Hence we call that the forced vertex gadget, and one of the true twins, a forced
vertex. It is important that these forced vertices do not resolve any pair of P. So we can only add pendant
twins to vertices themselves not resolving any pair of P.

2 Also, it is now possible to put two or more vertices of the same V ji in the resolving set S
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5.1.1 Forced set gadget

To deal with the issue (1), we introduce two new pairs of vertices for each V ji . The intention is that the

only vertices resolving both these pairs simultaneously are precisely the vertices of V ji . For any i ∈ [k]

and j ∈ [m], we add to G′ two pairs of vertices {pji , q
j
i } and {rji , s

j
i}, and two gates πji and ρji . Vertex πji

is adjacent to pji and qji , and vertex ρji is adjacent to rji and sji .

We link vji,1 to pji , and vji,t to rji , each by a path of length t. It introduces two new neighbors of vji,1
and vji,t (the brown vertices in fig. 4). We denote them by tbji and bbji , respectively. The blue and brown

vertices are linked to πji and ρji in the following way. We link tlji and trji to πji by a private path of length

t, and to ρji by a private path of length 2t − 1. We link blji and brji to πji by a private path of length

2t− 1, and to ρji by a private path of length t. (Let us clarify that the names of the blue vertices blji and

brji are for “bottom-left” and “bottom-right”, and not for “blue” and “brown”.) We link tbji (neighbor

of vji,1) to ρji by a private path of length 2t − 1. We link bbji (neighbor of vji,t) to πji by a private path
of length 2t− 1. Note that the general rule to set the path length is to match the distance between the
neighbor in V ji and pji (resp. rji ). With that in mind we link, if it exists, the top cyan vertex tcji (the one

with smallest index γ) neighboring V ji to πji with a path of length dist(vji,γ , p
j
i ) = t + γ − 1 where vji,γ

is the unique vertex in N(tcji ) ∩ V
j
i . Observe that with the notations of the previous section tcji = eji,γ .

We also link, if it exists, the bottom cyan vertex bcji (the one with largest index γ) to ρji with a path of

length dist(v, rji ) where v is again the unique neighbor of bcji in V ji .
It can be observed that we only have two paths (and not all six) from the at most three cyan vertices

to the gates πji and ρji . This is where the edges between the cyan vertices will become relevant. See fig. 4
for an illustration of the forced vertex gadget.

5.1.2 Forced vertex gadget

We now deal with the issue (2). By we add (or attach) a forced vertex to an already present vertex v,
we mean that we add two adjacent neighbors to v, and that these two vertices remain of degree 2 in the
whole graph G′′. Hence one of the two neighbors will have to be selected in the resolving set since they
are true twins. We call forced vertex one of these two vertices (picking arbitrarily).

For every i ∈ [k] and j ∈ [m], we add a forced vertex to the gates nwji and seji of P j,j+1
i . We

also add a forced vertex to each vertex in N({πji , ρ
j
i}) \ {p

j
i , q

j
i , r

j
i , s

j
i}. This represents a total of 12

vertices (6 neighbors of πji and 6 neighbors of ρji ). For every j ∈ [m], we attach a forced vertex to each
vertex in N(gj) \ {cj , c′j}. This constitutes 14 neighbors (hence 14 new forced vertices). Therefore we set
k′′ := km+ 12km+ 2km+ 14m = 15km+ 14m.

5.1.3 Finishing touches and useful notations

We use the convention that P (u, v) denotes the path from u to v which was specifically built from u to
v. In other words, for P (u, v) to make sense, there should be a point in the construction where we say
that we add a (private) path between u and v. For the sake of legibility, P (u, v) may denote either the
set of vertices or the induced subgraph. We also denote by ν(u, v) the neighbor of u in the path P (u, v).
Observe that P (u, v) is a symmetric notation but not ν(u, v).

We add a path of length dist(ν(πji , tr
j
i ), sw

j
i ) = t between ν(πji , tr

j
i ) and seji , and a path of length

dist(ν(πji ,blji ),nej−1i ) = 2t−1 between ν(πji ,blji ) and nwj−1i . Similarly, we add a path of length dist(ν(ρji ,
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Fig. 4: The forcet set gadget for V ji . The cyan vertices are the at most three neighbors of V ji in the potential paths to

G(ej). The lengths of the paths from the neighbors of V ji to πji and ρji is defined in section 5.1.1.

trji ), sw
j
i ) = 2t − 1 between ν(ρji , tr

j
i ) and seji , and a path of length dist(ν(ρji ,blji ),nej−1i ) = t between

ν(ρji ,blji ) and nwj−1i . We added these four paths so that no forced vertex resolves any critical pair in the

propagation gadgets P j−1,ji and P j,j+1
i .

Finally we add an edge between ν(gj ,nwji ) and ν(cj ,bcji ) whenever V ji have exactly three cyan

vertices. We do that to resolve the pair {ν(cj , tc
j
i ), ν(cj ,bcji )}, and more generally every pair {x, y} ∈

P (cj , tc
j
i ) × P (cj ,bcji ) such that dist(cj , x) = dist(cj , y). This finishes the construction of the instance

(G′′, k′′ := 15km+ 14m) of Metric Dimension.

5.2 Correctness of the reduction

The two next lemmas will be crucial in section 5.2.1. The first lemma shows how the forcing set gadget
simulates the action of former set X .

Lemma 5.1 For every i ∈ [k] and j ∈ [m],

– ∀v ∈ V ji , v resolves both pairs {pji , q
j
i } and {r

j
i , s

j
i},

– ∀v /∈ V ji , v resolves at most one pair of {pji , q
j
i } and {r

j
i , s

j
i},

– ∀v /∈ V ji ∪ P (vji,1, p
j
i ) ∪ P (vji,t, r

j
i ) ∪ {q

j
i , s

j
i}, v does not resolve {pji , q

j
i } nor {r

j
i , s

j
i}.

Proof Let Y := {tlji , tr
j
i ,blji ,brji}∪(Xj∩N(V ji ))∪(N({πji , ρ

j
i})\{p

j
i , q

j
i , r

j
i , s

j
i}), and recall thatXj∩N(V ji )

is the set of cyan vertices neighbors of V ji (if they exist). Let us assume that these cyan vertices exist

(otherwise the proof is just simpler). In particular, there are at least two cyan neighbors tcji ,bcji ∈
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Fig. 5: The different gadgets attached to V ji (recall that G(ej) is only optionally linked to V ji ). Gray edges are the edges
in the propagation gadgets already depicted in fig. 3. Black vertices are forced vertices. For the sake of clarity, we did not
represent the paths already in the k-MRS-instance from the blue vertices to gj , and the full forced set gadget of fig. 4
(it is only symbolized with the dash-dotted edges). A forced vertex is added to each neighbor of the red vertices, except

pji , q
j
i , r

j
i , s

j
i , cj , c

′
j . Finally we will add four more paths and potentially two edges (see the finishing touches of section 5.1.3).

Xj ∩ N(V ji ). Let X be the connected component of G − Y containing {πji , ρ
j
i}. For every vertex u ∈

{tlji , tr
j
i ,blji ,brji , tc

j
i ,bcji}, by the way we chose the length of P (u, πji ) (resp. P (u, ρji )), there is a shortest

path from u to pji (resp. rji ) that goes through πji (resp. ρji ). Thus dist(u, pji ) = dist(u, πji )+1 = dist(u, qji )

and dist(u, rji ) = dist(u, ρji ) + 1 = dist(u, sji ).

Let mcji be the middle cyan vertex if it exists (the one which is not the top nor the bottom one).

There is shortest path from mcji to pji (resp. rji ) going via tcji (resp. bcji ) and then πji (resp. ρji ). This is

where the edges mcji tc
j
i and mcjibcji are useful. Hence mcji does not resolve {pji , q

j
i } nor {rji , s

j
i}, either.

It is direct that no vertex of N({πji , ρ
j
i}) \ {p

j
i , q

j
i , r

j
i , s

j
i} resolves {pji , q

j
i } nor {rji , s

j
i}. Thus no vertex

of Y resolves any of {pji , q
j
i } and {rji , s

j
i}. Therefore by lemma 4.1, no vertex outside X resolves any of

{pji , q
j
i } and {rji , s

j
i}.

We observe that X = V ji ∪P (vji,1, p
j
i )∪P (vji,t, r

j
i )∪ {π

j
i , q

j
i , ρ

j
i , s

j
i}. Because of the path from the top

brown vertex to ρji , vertices of P (vji,1, p
j
i )\{v

j
i,1}∪{q

j
i }, which do resolve {pji , q

j
i }, do not resolve {rji , s

j
i}.

Similarly because of the path from the bottom brown vertex to πji , vertices of P (vji,t, r
j
i ) \ {v

j
i,t} ∪ {s

j
i},

which do resolve {rji , s
j
i}, do not resolve {pji , q

j
i }. Finally for every u ∈ V ji , dist(u, qji ) = dist(u, pji ) + 2
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and dist(u, rji ) = dist(u, sji ) + 2. Therefore vertices of V ji are the only ones resolving both {pji , q
j
i } and

{rji , s
j
i}, while no vertex of G−X resolves any of these pairs. ut

We denote by f(v) the forced vertex attached to a vertex v. For section 5.2.1, we also need the
following lemma, which states that the forced vertices do not resolve critical pairs.

Lemma 5.2 No forced vertex resolves a pair of P.

Proof We first show that no critical pair in some P j,j+1
i is resolved by a forced vertex. We use a similar

plan as for the proof of lemma 4.2. Let Y := {nwj−1i , sej−1i ,nwj+1
i , sej+1

i } ∪ Ce, where Ce comprises
{cj , gj} if ej has an endpoint in Vi and {cj+1, gj+1} if ej+1 has an endpoint in Vi. Let X be the connected

component of G′′−Y containing P j,j+1
i . Note that the distances between the vertices of Y and the critical

pairs in P j,j+1
i are the same between G′ and G′′. Hence as we showed in lemma 4.2, no vertex of Y resolves

a critical pair in P j,j+1
i . Thus by lemma 4.1 no vertex outside X resolves a critical pair in P j,j+1

i .

We now check that no forced vertex in X resolves a critical pair in P j,j+1
i . We show that every forced

vertex in X has a shortest path to {nwji ,neji} ending in nwji , and a shortest path to {swji , se
j
i} ending

in seji . It is clear for f(nwji ) and for f(seji ), as well as for all the forced vertices attached to neighbors

of gj (in case ej has an endpoint in Vi). Indeed recall that the length of P (gj ,nwji ) (resp. P (gj , se
j
i ))

is four less than the distance to nwji (resp. swji ) ignoring the path P (gj ,nwji ) (resp. P (gj , se
j
i )). So the

shortest paths from the latter forced vertices go to gj and then to nwji (resp. seji ). Similarly in case ej+1

has an endpoint in Vi, the shortest paths from the forced vertices attached to the neighbors of cj+1 to

{nwji ,neji} (resp. {swji , se
j
i}) go to gj+1, then to nwj+1

i and nwji (resp. then to sej+1
i and seji ).

Note that all the forced vertices attached to neighbors of πji and ρji (resp. πj+1
i and ρj+1

i ) have

a shortest path to {nwji ,neji} ending in nwji (resp. to {swji , se
j
i} ending in seji ). Finally due to the

paths P (ν(πji , tr
j
i ), se

j
i ) and P (ν(ρji , tr

j
i ), se

j
i ), all the forced vertices attached to neighbors of πji and

ρji have a shortest path to {swji , se
j
i} ending in seji . And due to the paths P (ν(πj+1

i ,blj+1
i ),nwji ) and

P (ν(ρj+1
i ,blj+1

i ),nwji ), all the forced vertices attached to neighbors of πj+1
i and ρj+1

i have a shortest

path to {nwji ,neji} ending in nwji .

We now show that no critical pair {cj , c′j} is resolved by a forced vertex. We set Y ′ := {tlji , tr
j
i ,blji ,brji ,

tlji′ , tr
j
i′ ,blji′ ,brji′ ,nwji , se

j
i ,nwji′ , se

j
i′ , π

j
i , ρ

j
i , π

j
i′ , ρ

j
i′}, with ej ∈ E(Vi, Vi′), and X ′ be the connected com-

ponent of G′′ − Y ′ containing gj . We showed in lemma 4.2, and it remains true in G′′, that no vertex of

Y ′ \ {πji , ρ
j
i , π

j
i′ , ρ

j
i′} resolves {cj , c′j}. We observe that πji and ρji have shortest paths to cj going through

gj (via a vertex of {tlji , tr
j
i ,blji ,brji}). Similarly πji′ and ρji′ have shortest paths to cj going through gj .

Therefore no vertex of {πji , ρ
j
i , π

j
i′ , ρ

j
i′} resolves the pair {cj , c′j}. Hence by lemma 4.1, no vertex outside

X ′ resolves {cj , c′j}. The only forced vertices in X ′ are attached to neighbors of gj , thus they do not
resolve {cj , c′j}. ut

5.2.1 MD-instance has a solution ⇒ k-MRS-instance has a solution.

Let S be a resolving set for the Metric Dimension-instance. We show that S′ := S ∩
⋃
i∈[k],j∈[m] V

j
i is

a solution for k-Multicolored Resolving Set. The set S \S′ is made of 14km+ 14m forced vertices,
none of which is in some V ji ∪ P (vji,1, p

j
i ) ∪ {q

j
i } ∪ P (vji,t, r

j
i ) ∪ {s

j
i}. Thus by lemma 5.1, S \ S′ does not

resolve any pair {pji , q
j
i } or {rji , s

j
i}. Now S′ is a set of k′′ − (14km + 14m) = km vertices resolving all
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the 2km pairs {pji , q
j
i } and {rji , s

j
i}. Again by lemma 5.1, this is only possible if |S′ ∩ V ji |= 1. Thus S′ is

a legal set of size k′ = km. Let us now check that S′ resolves every pair of P in the graph G′.
By lemma 5.2, S \S′ does not resolve any pair of P in the graph G′′. Thus S′ resolves all the pairs of

P in G′′. Since the distances between V ji and the critical pairs in the edge and propagation gadgets V ji
is attached to are the same in G′ and in G′′, S′ also resolves every pair of P in G′. Thus S′ is a solution
for the k-MRS-instance.

5.2.2 k-MRS-instance has a solution ⇒ MD-instance has a solution.

For every i ∈ [k], j ∈ [m], let

F ji :=
⋃

u∈{nwj
i ,se

j
i}∪N({πj

i ,ρ
j
i})\{p

j
i ,q

j
i ,r

j
i ,s

j
i}

{f(u)}, and

Fj :=
⋃

u∈N(gj)\{cj ,c′j}

{f(u)}.

Let S be a solution for k-Multicolored Resolving Set. Thus |S|= km. Let F :=
⋃
i∈[k],j∈[m] F

j
i ∪⋃

j∈[m] Fj . We show that S′ := S ∪ F is a solution of Metric Dimension. First we observe that

|S′|= km+ 14km+ 14m = k′′. Since the distances between the sets V ji and the critical pairs (of P) are
the same in G′ and in G′′, the pairs of P are resolved by S. In what follows, we show that F resolves all
the other pairs. For every i ∈ [k], j ∈ [m], we define the subset of vertices:

Πj
i :=

⋃
u∈{trji ,tl

j
i ,br

j
i ,bl

j
i ,bb

j
i ,tc

j
i}

P (πji , u) ∪ P (vji,1, p
j
i ) ∪ {q

j
i },

Rji :=
⋃

u∈{trji ,tl
j
i ,br

j
i ,bl

j
i ,tb

j
i ,bc

j
i}

P (ρji , u) ∪ P (vji,t, r
j
i ) ∪ {s

j
i}, and

Gj :=
⋃

u∈{trji ,tl
j
i ,br

j
i ,bl

j
i ,tl

j

i′ ,tr
j

i′ ,bl
j

i′ ,br
j

i′ ,nw
j
i ,se

j
i ,nw

j

i′ ,se
j

i′}

P (gj , u) ∪ Eji ∪ E
j
i′ ∪ {c

′
j}.

Informally Πj
i (Rji , Gj , respectively) consists of the vertices on the paths incident to πji (ρji , gj , respec-

tively). Our objective is the following result.

Lemma 5.3 Every vertex in G′′ is distinguished by S′.

We start with the forced vertices and their true twin. We denote by f ′(v) the true twin of the forced
vertex f(v).

Lemma 5.4 All the vertices f(v) and f ′(v) are distinguished by F .

Proof Any vertex f(v) is distinguished by being the only vertex at distance 0 of itself f(v) ∈ F . Since
f(v) has only two neighbors f ′(v) and v, it also resolves every pair {f ′(v), w} where w is not v. The pair
{f ′(v), v} is resolved by any vertex f ∈ F \ {f(v)}. Indeed dist(f, f ′(v)) = dist(f, v) + 1. Thus f ′(v) is
distinguished. ut
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Symbol/term Definition/action

{aji,γ , α
j
i,γ} critical pair of the propagation gadget P j,j+1

i

Aji set of vertices
⋃
γ∈[t]{a

j
i,γ , α

j
i,γ}

bbji bottom brown vertex, ν(vji,t, r
j
i )

bcji bottom cyan vertex (smallest index γ)

blji neighbor of vji,t in P j−1,j
i

blue vertex one of the four neighbors of V ji in the propagation gadgets

brji neighbor of vji,t in P j,j+1
i

brown vertex vertices ν(vji,1, p
j
i ) and ν(vji,t, r

j
i )

{cj , c′j} critical pair of the edge gadget G(ej)

cyan vertex neighbor of V ji in the paths to G(ej)

Eji vertices in the paths from V ji to G(ej)

eji,γ alternative labeling of the cyan vertices, neighbor of vji,γ
F set of all forced vertices,

⋃
i∈[k],j∈[m] F

j
i ∪

⋃
j∈[m] Fj

F ji set of forced vertices attached to neighbors of {πji , ρ
j
i ,nwji , se

j
i}

Fj set of forced vertices attached to neighbors of gj
f(v) forced vertex attached to a vertex v
f ′(v) true twin of f(v)

G(ej) edge gadget on {gj , cj , c′j} between V ji and V j
i′ , where ej ∈ E(Vi, Vi′ )

mcji middle cyan vertex (not top nor bottom)

neji north-east gate of P j,j+1
i

nwji north-west gate of P j,j+1
i

neji , swji resolve the critical pairs of P j,j+1
i

nwji , seji do not resolve the critical pairs of P j,j+1
i

ν(u, v) neighbor of u in the path P (u, v)
P list of critical pairs

{pji , q
j
i } pair only resolved by vertices in V ji ∪ P (vji,1, p

j
i ) ∪ {qji }

πji gate of {pji , q
j
i }, linked by paths to most neighbors of V ji

P j,j+1
i propagation gadget between V ji and V j+1

i
P (u, v) path added in the construction expressly between u and v

{rji , s
j
i} pair only resolved by vertices in V ji ∪ P (vji,t, r

j
i ) ∪ {sji}

ρji gate of {rji , s
j
i}, linked by paths to most neighbors of V ji

seji south-east gate of P j,j+1
i

swji south-west gate of P j,j+1
i

t size of each Vi
tbji top brown vertex, ν(vji,1, p

j
i )

tcji top cyan vertex (largest index γ)

tlji neighbor of vji,1 in P j−1,j
i

trji neighbor of vji,1 in P j,j+1
i

Vi partite set of G

V ji “copy of Vi”, stringed by a path, in G′ and G′′

vji,γ vertex of V ji representing vi,γ ∈ V (G)

Wj endpoints in V ji ∪ V j
i′ of paths from V ji ∪ V j

i′ to G(ej)

X set containing all the sets V ji for i ∈ [k] and j ∈ [m]
Xj neighbors of Wj on the paths to G(ej) (cyan vertices)

Table 1: Glossary of the construction.

In general, to show that all the vertices in a set X are distinguished, we proceed in two steps. First we
show that every internal pair of X is resolved. Then, we prove that every pair of X ×X is also resolved.
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Let us recall that X is the complement of x, here V (G′′) \ X. For instance, the two following lemmas
show that every vertex of Πj

i is distinguished by S′.

Lemma 5.5 Every pair of distinct vertices x, y ∈ Πj
i is resolved by S′.

Proof Let U ji be the set {tlji , tr
j
i ,blji ,brji , tc

j
i ,bbji}. We first consider two vertices x 6= y ∈ P (πji , u),

for some u ∈ U ji . As distG′′(πji , u) is equal to the length of P (πji , u), it holds that distG′′(πji , x) =

distP (πj
i ,u)

(πji , x) 6= distP (πj
i ,u)

(πji , y) = distG′′(πji , y). Without loss of generality, we assume that dist(πji , x)

< dist(πji , y). If x 6= πji , then x and y have distinct distances to ν(πji , u). Hence dist(f(ν(πji , u)), x) 6=
dist(f(ν(πji , u)), y) and S′ resolves {x, y}. Now if x = πji , then f(ν(πji , u

′)) resolves {x, y} for any

u′ ∈ U ji \ {u}.
Secondly we consider x ∈ P (πji , u) and y ∈ P (πji , u

′), for some u 6= u′ ∈ U ji . If dist(πji , x) 6=
2+dist(πji , y), then f(ν(πji , x)) resolves {x, y}. Indeed dist(f(ν(πji , x)), x) = dist(πji , x) 6= 2+dist(πji , y) =

dist(f(ν(πji , x)), y). Else if dist(πji , x) = 2+dist(πji , y), then f(ν(πji , y)) resolves {x, y} (since dist(πji , y) 6=
2 + dist(πji , x)).

Two distinct vertices on P (vji,1, p
j
i ) are resolved by, say, f(ν(πji ,brji )) ∈ F . A vertex of P (vji,1, p

j
i ) and

a vertex of P (πji , u), for some u ∈ U ji , are resolved by either f(ν(πji , u)) or f(ν(πji , u
′)) for a u′ ∈ U ji \{u}.

Finally qji and a vertex in P (vji,1, p
j
i ) \ {p

j
i} are resolved by, say, f(ν(πji ,brji )), whereas qji and a vertex

in P (pji , u) is resolved by either f(ν(πji , u)) or f(ν(πji , u
′)) for a u′ ∈ U ji \ {u}. Therefore every pair of

distinct vertices in Πj
i is resolved by F , except {pji , q

j
i } which is resolved by S. ut

Lemma 5.6 Every pair {x, y} ∈ Πj
i ×Πj

i is resolved by F .

Proof Again let U ji be the set {tlji , tr
j
i ,blji ,brji , tc

j
i ,bbji}. We first assume x is in P (πji , u) for some

u ∈ U ji \ {tr
j
i ,blji}. Let y be a vertex of Πj

i such that dist(f(ν(πji , u)), x) = dist(f(ν(πji , u)), y), otherwise

f(ν(πji , u)) already resolves {x, y}. Every shortest path from f(ν(πji , u)) to y go through πji . One can

observe that there is a u′ ∈ U ji \ {u} such that f(ν(πji , u
′)) has a shortest path also going through

πji . Hence f(ν(πji , u
′)) has the same distance to y (as f(ν(πji , u))) but a larger distance to x. Hence

f(ν(πji , u
′)) resolves {x, y}.

We now consider an x ∈ P (πji , u) for some u ∈ {trji ,blji}. Again let y be a vertex of Πj
i such

that dist(f(ν(πji , u)), x) = dist(f(ν(πji , u)), y). If all the shortest paths of f(ν(πji , u)) to y goes through

πji , we conclude as in the previous paragraph. So they go through P (ν(πji , u), seji ) (if u = trji ) or

P (ν(πji , u),nwj−1i ) (if u = blji ). Since dist(f(ν(πji , u)), x) 6 2t−1, it also holds that dist(f(ν(πji , u)), y) 6
2t−1. The path P (ν(πji , tr

j
i ), se

j
i ) has length t and the path P (ν(πji ,blji ),nwj−1i ) has length 2t−1. There-

fore one of f(seji ), f(sej−1i ), f(nwji ), f(nwj−1i ) resolves {x, y}.
We now assume x is in P (vji,1, p

j
i ) ∪ {q

j
i } and y ∈ Πj

i . Then f(ν(πji ,brji )) resolves {x, y} if y is not in

the path P (ν(πji , tr
j
i ), se

j
i ) or P (ν(πji , u),nwj−1i ). Otherwise at least one of f(ν(πji ,brji )), f(ν(πji , tr

j
i )),

f(ν(πji ,blji )) resolves {x, y}. In conclusion, every pair of vertices {x, y} ∈ Πj
i ×Πj

i is resolved by F . ut

lemmas 5.5 and 5.6 prove that every vertex in Πj
i is distinguished by S′. Using the same arguments,

we get symmetrically that every vertex of Rji is distinguished by S′.

Lemma 5.7 All the vertices in the paths P (ν(πji , tr
j
i ), se

j
i ), P (ν(ρji , tr

j
i ), seji ), P (ν(πji , bl

j
i ), nwj−1i ),

P (ν(ρji , bl
j
i ),nw

j−1
i ) are distinguished by F .
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Proof Any vertex x ∈ P (ν(πji , tr
j
i ), se

j
i ) is uniquely determined by its distances to f(seji ), f(sej−1i ),

and ν(πji , tr
j
i ). Any vertex x ∈ P (ν(πji ,blji ),nwj−1i ) is uniquely determined by its distances to f(nwji ),

f(nwj−1i ), and ν(πji ,blji ). The two other cases are symmetric. ut

So far we showed that the vertices added in the forced set and forced vertex gadgets are all distin-
guished. We now focus on the vertices in propagation gadgets. Let ∆i := Aji ∪ {nwji ,neji , sw

j
i , se

j
i}.

Lemma 5.8 Every pair of distinct vertices x, y ∈ ∆j
i is resolved by S′.

Proof Since the distances between vertices of V ji and vertices of ∆j
i are the same between G′ and G′′,

S resolves all the critical pairs {aji,γ , α
j
i,γ}. Thus we turn our attention to the pairs which are not

critical pairs. Since dist(nwji , a
j
i,γ) = γ and dist(nwji , α

j
i,γ) = γ, every pair {aji,γ , a

j
i,γ′}, {aji,γ , α

j
i,γ′}, or

{αji,γ , α
j
i,γ′}, with γ 6= γ′ is resolved by f(nwji ).

Gate nwji (resp. seji ) and any other vertex in ∆j
i is resolved by f(nwji ) (resp. f(seji )). Gate neji

(resp. swji ) is resolved from any vertex of ∆j
i \{a

j
i,1, α

j
i,1} (resp. ∆j

i \{a
j
i,t, α

j
i,t}) by f(nwji ) (resp. f(seji )).

Finally, neji (resp. swji ) and a vertex of {aji,1, α
j
i,1} (resp. {aji,t, α

j
i,t}) is resolved by f(seji ) (resp. f(nwji )).

ut
Now when we check that a pair made of a vertex in ∆j

i and a vertex outside ∆j
i is resolved, we can

further assume that the second vertex is not in some Πj
i ∪R

j
i since we already showed that these vertices

were distinguished.

Lemma 5.9 Every pair {x, y} ∈ ∆j
i ×∆j

i is resolved by S′.

Proof We may assume that y is not a vertex that was previously shown distinguished. Thus y is not in
some Πj

i ∪R
j
i nor in a path of lemma 5.7. Then we claim that the pair {x, y} is resolved by at least one

of f(seji ), f(sej−1i ), f(sej+1
i ), f(nwji ). Indeed assume that f(seji ) does not resolve {x, y}, and consider a

shortest path from f(seji ) to y. Either this shortest path goes through sej−1i (resp. sej+1
i ), and in that

case f(sej−1i ) (resp. f(sej+1
i )) resolves {x, y}. Either it takes the path to gj (if ej has an endpoint in

Vi) or to tlj+1
i , and then f(nwji ) resolves {x, y}. Or it takes a path to V ji , and then f(sej−1i ) resolves

{x, y}. ut

lemmas 5.8 and 5.9 show that that every vertex in ∆j
i is distinguished by S′. The common neighbor of

sej−1i and tlji is distinguished by {f(sej−1i ), f(ν(πji , tl
j
i ))}. We are now left with showing that the vertices

in the edge gadgets, in the sets V ji , and in the paths incident to the edge gadgets, are distinguished.

Lemma 5.10 Every pair of distinct vertices x, y ∈ Gj is resolved by S′.

Proof Let vi,γ and vi′,γ′ be the two endpoints of ej , and U ji := {tlji , tr
j
i ,blji ,brji , tl

j
i′ , tr

j
i′ ,blji′ , blji′ ,nwji , se

j
i ,

nwji′ , se
j
i′ , v

j
i,γ , v

j
i′,γ′}. Every pair in

⋃
u∈Uj

i
P (gj , u) is resolved. Indeed, similarly to lemma 5.5, two distinct

vertices x, y on a path P (gj , u) (u ∈ U ji ) are resolved by f(ν(gj , u)), while two vertices on distinct paths

P (gj , u) and P (gj , u
′) (u 6= u′ ∈ U ji ) are resolved by at least one of f(ν(gj , u)) and f(ν(gj , u

′)).

We now show that any pair in Γji := Eji ∪ E
j
i′ \ {P (gj , v

j
i,γ), P (gj , v

j
i,γ)} is resolved. Two distinct

vertices x, y ∈ Γji are resolved by, say, f(ν(gj , se
j
i )) if they are on the same path, or more generally if

they have different distances to cj . Thus let us assume that x and y are at the same distance from cj . If

x ∈ Eji and y ∈ Eji′ (or vice versa) then the pair {x, y} is resolved by the vertex in S ∩ V ji or the vertex
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in S ∩ V ji′ . If x 6= y ∈ Eji (resp. ∈ Eji′), then {x, y} is resolved by f(ν(gj ,nwji )) (resp. f(ν(gj ,nwji′))).

This is the reason why we added an edge between ν(gj ,nwji ) and ν(cj ,bcji ) (recall section 5.1.3).

We now consider pairs {x, y} of
⋃
u∈Uj

i
P (gj , u)× Γji . Any of these pairs are resolved by at least one

of f(ν(gj , u)), f(ν(gj , u
′)), f(ν(gj ,nwji )), f(ν(gj ,nwji′)), where x is on the path P (cj , u) and u′ is any

vertex in U ji \ {u,nwji ,nwji′}. Finally c′j is distinguished from all the other vertices in G′′ but cj by the
forced vertices attached to the neighbors of gj .

Thus every pair {x, y} in Gj is resolved by F , except {cj , c′j} which is resolved by S. ut

Lemma 5.11 Every pair {x, y} ∈ Gj ×Gj is resolved by F .

Proof Consider an arbitrary pair {x, y} ∈ Gj × Gj . We can assume that x is not c′j , and that y

is in one different Gj′ or in one V j
′′

i′′ (since we already showed that the other vertices are distin-

guished). Again let vi,γ and vi′,γ′ be the two endpoints of ej , and U ji := {tlji , tr
j
i ,blji ,brji , tl

j
i′ , tr

j
i′ ,blji′ ,

blji′ ,nwji , se
j
i ,nwji′ , se

j
i′ , v

j
i,γ , v

j
i′,γ′}. If x is on a path P (gj , u), then at least one of f(ν(gj , u)) and f(ν(gj , u

′)),

with u′ being any vertex in U ji \ {u}, resolves {x, y}. If instead x is on a path P (cj , u) with u ∈
{vji,γ−1, v

j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1}, then at least one of f(ν(gj ,nwji )), f(ν(gj ,nwji′)), f(ν(gj , u

′)), with u′

being any vertex in U ji , resolves {x, y}. ut

lemmas 5.10 and 5.11 show that every vertex in Gj is distinguished by S′. We finally show that the

vertices in V ji are distinguished. A pair of distinct vertices x, y ∈ V ji is resolved by f(nwji ). We thus

consider a pair {x, y} ∈ V ji ×V
j
i . We can further assume that y is in some V j

′

i′ , since all the other vertices

have already been shown distinguished. Then {x, y} is resolved by at least one of f(nwji ), f(nwj
′

i′ ), the

vertex in S ∩ V ji , and the vertex in S ∩ V j
′

i′ . This finishes the proof of lemma 5.3. Thus S′ is a solution
of the Metric Dimension-instance.

The reduction is correct and it takes polynomial-time in |V (G)| to compute G′′. The maximum degree
of G′′ is 16. It is the degree of the vertices gj (nwji and seji have degree at most 11, πji and ρji have degree
8, and the other vertices have degree at most 5). The last element to establish theorem 3.1 is to show that
pw(G′′) is in O(k). Then solving Metric Dimension on constant-degree graphs in time f(pw)no(pw)

could be used to solve k-Multicolored Independent Set in time f(k)no(k), disproving the ETH.

5.3 G′′ has pathwidth O(k)

We use the pathwidth characterization of Kirousis and Papadimitriou [19] mentioned in the preliminaries,
and give a strategy with O(k) searchers cleaning all the edges of G′′. A basic and useful fact is that the
searching number of a path is two.

Lemma 5.12 Two searchers are enough to clean a path u1u2 . . . un.

Proof We place two searchers at u1 and u2. This cleans the edge u1u2. Then we move the searcher in
u1 to u3. This cleans u2u3 (while u1u2 remains clean). Then we move the searcher in u2 to u4, and so
on. ut

Lemma 5.13 pw(G′′) 6 90k + 83.
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Proof For every j ∈ [m], let Sj := N [gj ] ∪ Xj ∪
⋃
i∈[k]N [{vji,1, v

j
i,t, π

j
i , ρ

j
i}] ∪ {nwji ,neji , sw

j
i , seji}. We

notice that |Sj |6 17 + 6 + 30k+ 4 = 30k+ 27. Another important observation is that S1 ∪Sj disconnects
the first j columns of G′′ from the rest of G′′. Finally the connected components G′′ − (Sj ∪ Sj+1) that
are not the main component (i.e., containing more than half of the graph if m > 4) are all paths.

We now suggest the following cleaning strategy with at most 90k+83 searchers. We place one searcher
at each vertex of S1 ∪ S2 ∪ S3. This requires 90k + 81 searchers. By lemma 5.12, with two additional
searchers we clean all the connected components of G′′− (S1 ∪S2 ∪S3) that are paths. We then move all
the searchers from S2 to S4, and clean all the connected components of G′′−(S1∪S3∪S4) that are paths.
Since S1 ∪ S3 is a separator, the edges that were cleaned during the first phase are not recontaminated
when we move from S2 to S4. We then move the searchers of S3 to S5, and so on. Eventually the searchers
reach S1 ∪ Sm−1 ∪ Sm, and the last contaminated edges are cleaned. ut

6 Perspectives

The main remaining open question is whether or not Metric Dimension is polytime solvable on graphs
with constant treewidth. In the parameterized complexity language, now we know that MD/tw is W[1]-
hard, is it in XP or paraNP-hard? We believe that the tools and ideas developed in this paper could help
answering this question negatively. The FPT algorithm of Belmonte et al. [3] also implies that Metric
Dimension is FPT with respect to tl + k were k is the size of the resolving set, due to the bound
∆ 6 2k + k − 1 [18]. What about the parameterized complexity of Metric Dimension with respect to
tw + k? We conjecture that this problem is W[1]-hard as well, and once again, treewidth will contrast
with tree-length.

It appears that bounded connected treewidth or tree-length is significantly more helpful than the
mere bounded treewidth when it comes to solving MD. We wish to ask for the parameterized complexity
of Metric Dimension with respect to ctw only (on graphs with arbitrarily large degree). Finally, it
would be interesting to determine if planarity can sometimes help to compute a metric basis. Therefore
we also ask all the above questions in planar graphs.
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24 Édouard Bonnet, Nidhi Purohit

5. Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M,
Saurabh S (2015) Parameterized Algorithms. Springer, DOI 10.1007/978-3-319-21275-3, URL
https://doi.org/10.1007/978-3-319-21275-3

6. Dı́az J, Pottonen O, Serna MJ, van Leeuwen EJ (2017) Complexity of metric dimension
on planar graphs. J Comput Syst Sci 83(1):132–158, DOI 10.1016/j.jcss.2016.06.006, URL
https://doi.org/10.1016/j.jcss.2016.06.006

7. Downey RG, Fellows MR (2013) Fundamentals of Parameterized Complexity. Texts in Computer
Science, Springer, DOI 10.1007/978-1-4471-5559-1, URL https://doi.org/10.1007/978-1-4471-5559-1

8. Eppstein D (2015) Metric dimension parameterized by max leaf number. J Graph Algorithms Appl
19(1):313–323, DOI 10.7155/jgaa.00360, URL https://doi.org/10.7155/jgaa.00360

9. Epstein L, Levin A, Woeginger GJ (2015) The (weighted) metric dimension of graphs:
Hard and easy cases. Algorithmica 72(4):1130–1171, DOI 10.1007/s00453-014-9896-2, URL
https://doi.org/10.1007/s00453-014-9896-2

10. Fernau H, Heggernes P, van ’t Hof P, Meister D, Saei R (2015) Computing the metric di-
mension for chain graphs. Inf Process Lett 115(9):671–676, DOI 10.1016/j.ipl.2015.04.006, URL
https://doi.org/10.1016/j.ipl.2015.04.006

11. Foucaud F, Mertzios GB, Naserasr R, Parreau A, Valicov P (2017) Identification, location-domination
and metric dimension on interval and permutation graphs. II. algorithms and complexity. Algo-
rithmica 78(3):914–944, DOI 10.1007/s00453-016-0184-1, URL https://doi.org/10.1007/s00453-016-
0184-1

12. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman

13. Harary F, Melter RA (1976) On the metric dimension of a graph. Ars Combin 2(191-195):1
14. Hartung S, Nichterlein A (2013) On the parameterized and approximation hardness of met-

ric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC
2013, K.lo Alto, California, USA, 5-7 June, 2013, pp 266–276, DOI 10.1109/CCC.2013.36, URL
https://doi.org/10.1109/CCC.2013.36

15. Hoffmann S, Wanke E (2012) Metric dimension for gabriel unit disk graphs is NP-complete. In:
Algorithms for Sensor Systems, 8th International Symposium on Algorithms for Sensor Systems,
Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS 2012, Ljubljana,
Slovenia, September 13-14, 2012. Revised Selected Papers, pp 90–92, DOI 10.1007/978-3-642-36092-
3 10, URL https://doi.org/10.1007/978-3-642-36092-3 10

16. Hoffmann S, Elterman A, Wanke E (2016) A linear time algorithm for metric dimension
of cactus block graphs. Theor Comput Sci 630:43–62, DOI 10.1016/j.tcs.2016.03.024, URL
https://doi.org/10.1016/j.tcs.2016.03.024

17. Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponential complexity?
Journal of Computer and System Sciences 63(4):512–530

18. Khuller S, Raghavachari B, Rosenfeld A (1996) Landmarks in graphs. Discrete Applied Math-
ematics 70(3):217–229, DOI 10.1016/0166-218X(95)00106-2, URL https://doi.org/10.1016/0166-
218X(95)00106-2

19. Kirousis LM, Papadimitriou CH (1985) Interval graphs and searching. Discrete Mathe-
matics 55(2):181–184, DOI 10.1016/0012-365X(85)90046-9, URL https://doi.org/10.1016/0012-
365X(85)90046-9

20. Lokshtanov D, Marx D, Saurabh S (2011) Lower bounds based on the exponential time hypothesis.
Bulletin of the EATCS 105:41–72, URL http://eatcs.org/beatcs/index.php/beatcs/article/view/92



Metric Dimension Parameterized By Treewidth 25

21. Pietrzak K (2003) On the parameterized complexity of the fixed alphabet shortest common su-
persequence and longest common subsequence problems. J Comput Syst Sci 67(4):757–771, DOI
10.1016/S0022-0000(03)00078-3, URL https://doi.org/10.1016/S0022-0000(03)00078-3

22. Slater PJ (1975) Leaves of trees. Congr Numer 14(549-559):37


