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Abstract8

A resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the9

same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum10

size, and in its decision form, a resolving set of size at most some specified integer. This problem is11

NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect12

to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth.13

On the algorithmic side, a polytime algorithm is known for trees, and even for outerplanar graphs,14

but the general case of treewidth at most two is open. On the complexity side, no parameterized15

hardness is known. This has led several papers on the topic to ask for the parameterized complexity16

of Metric Dimension with respect to treewidth.17

We provide a first answer to the question. We show that Metric Dimension parameterized by18

the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential19

Time Hypothesis fails, there is no algorithm solving Metric Dimension in time f(pw)no(pw) on20

n-vertex graphs of constant degree, with pw the pathwidth of the input graph, and f any computable21

function. This is in stark contrast with an FPT algorithm of Belmonte et al. [SIAM J. Discrete22

Math. ’17] with respect to the combined parameter tl + ∆, where tl is the tree-length and ∆ the23

maximum-degree of the input graph.24
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1 Introduction29

The Metric Dimension problem has been introduced in the 1970s independently by Slater30

[22] and by Harary and Melter [13]. Given a graph G and an integer k, Metric Dimension31

asks for a subset S of vertices of G of size at most k such that every vertex of G is uniquely32

determined by its distances to the vertices of S. Such a set S is called a resolving set, and33

a resolving set of minimum-cardinality is called a metric basis. The metric dimension of34

graphs finds application in various areas including network verification [1], chemistry [3],35

robot navigation [18], and solving the Mastermind game [4].36

Metric Dimension is an entry of the celebrated book on intractability by Garey and37

Johnson [12] where the authors show that it is NP-complete. In fact Metric Dimension38

remains NP-complete in many restricted classes of graphs such as planar graphs [6], split,39

bipartite, co-bipartite graphs, and line graphs of bipartite graphs [9], graphs that are both40

interval graphs of diameter two and permutation graphs [11], and in a subclass of unit disk41

graphs [16]. On the positive side, the problem is polynomial-time solvable on trees [22, 13, 18].42

Diaz et al. [6] generalize this result to outerplanar graphs. Fernau et al. [10] give a polynomial-43

time algorithm on chain graphs. Epstein et al. [9] show that Metric Dimension (and44

even its vertex-weighted variant) can be solved in polynomial time on co-graphs and forests45
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augmented by a constant number of edges. Hoffmann et al. [15] obtain a linear algorithm on46

cactus block graphs.47

Hartung and Nichterlein [14] prove that Metric Dimension is W[2]-complete (paramet-48

erized by the size of the solution k) even on subcubic graphs. Therefore an FPT algorithm49

solving the problem is unlikely. However Foucaud et al. [11] give an FPT algorithm with50

respect to k on interval graphs. This result is later generalized by Belmonte et al. [2] who51

obtain an FPT algorithm with respect to tl + ∆ (where tl is the tree-length and ∆ is the52

maximum-degree of the input graph), implying one for parameter tl + k. Indeed interval53

graphs, and even chordal graphs, have constant tree-length. Hartung and Nichterlein [14]54

presents an FPT algorithm parameterized by the vertex cover number, Eppstein [8], by the55

max leaf number, and Belmonte et al. [2], by the modular-width (a larger parameter than56

clique-width).57

The complexity of Metric Dimension parameterized by treewidth is quite elusive. It58

is discussed [8] or raised as an open problem in several papers [2, 6]. On the one hand,59

it was not known, prior to our paper, if this problem is W[1]-hard. On the other hand,60

the complexity of Metric Dimension in graphs of treewidth at most two is still an open61

question.62

1.1 Our contribution63

We settle the parameterized complexity of Metric Dimension with respect to treewidth.64

We show that this problem is W[1]-hard, and we rule out, under the Exponential Time65

Hypothesis (ETH), an algorithm running in f(tw)|V (G)|o(tw), where G is the input graph, tw66

its treewidth, and f any computable function. Our reduction even shows that an algorithm67

in time f(pw)|V (G)|o(pw) is unlikely on constant-degree graphs, for the larger parameter68

pathwidth pw. This is in stark contrast with the FPT algorithm of Belmonte et al. [2] for69

the parameter tl + ∆ where tl is the tree-length and ∆ is the maximum-degree of the graph.70

We observe that this readily gives an FPT algorithm for ctw + ∆ where ctw is the connected71

treewidth, since ctw > tl. This unravels an interesting behavior of Metric Dimension,72

at least on bounded-degree graphs: usual tree-decompositions are not enough for efficient73

solving. Instead one needs tree-decompositions with an additional guarantee that the vertices74

of a same bag are at a bounded distance from each other.75

As our construction is quite technical, we chose to introduce an intermediate problem76

dubbed k-Multicolored Resolving Set in the reduction from k-Multicolored Inde-77

pendent Set to Metric Dimension. The first half of the reduction, from k-Multicolored78

Independent Set to k-Multicolored Resolving Set, follows a generic and standard79

recipe to design parameterized hardness with respect to treewidth. The main difficulty is80

to design an effective propagation gadget with a constant-size left-right cut. The second81

half brings some new local attachments to the produced graph, to bridge the gap between82

k-Multicolored Resolving Set and Metric Dimension. Along the way, we introduce83

a number of gadgets: edge, propagation, forced set, forced vertex. They are quite stream-84

lined and effective. Therefore, we believe these building blocks may help in designing new85

reductions for Metric Dimension.86

1.2 Organization of the paper87

In Section 2 we introduce the definitions, notations, and terminology used throughout the88

paper. In Section 3 we present the high-level ideas to establish our result. We define89

the k-Multicolored Resolving Set problem which serves as an intermediate step for90
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our reduction. In Section 4 we design a parameterized reduction from the W[1]-complete91

k-Multicolored Independent Set to k-Multicolored Resolving Set parameter-92

ized by treewidth. In Section 5 we show how to transform the produced instances of93

k-Multicolored Resolving Set to Metric Dimension-instances (while maintaining94

bounded treewidth). In Section 6 we conclude with some open questions.95

2 Preliminaries96

We denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].97

If X is a set of sets, we denote by ∪X the union of them.98

2.1 Graph notations99

All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by100

V (G), respectively E(G), the set of vertices, respectively of edges, of the graph G. For101

S ⊆ V (G), we denote the open neighborhood (or simply neighborhood) of S by NG(S), i.e.,102

the set of neighbors of S deprived of S, and the closed neighborhood of S by NG[S], i.e., the103

set NG(S)∪S. For singletons, we simplify NG({v}) into NG(v), and NG[{v}] into NG[v]. We104

denote by G[S] the subgraph of G induced by S, and G− S := G[V (G) \ S]. For S ⊆ V (G)105

we denote by S the complement V (G) \ S. For A,B ⊆ V (G), E(A,B) denotes the set of106

edges in E(G) with one endpoint in A and the other one in B.107

The length of a path in an unweighted graph is simply the number of edges of the path.108

For two vertices u, v ∈ V (G), we denote by distG(u, v), the distance between u and v in G,109

that is the length of the shortest path between u and v. The diameter of a graph is the110

longest distance between a pair of its vertices. The diameter of a subset S ⊆ V (G), denoted111

by diamG(S), is the longest distance between a pair of vertices in S. Note that the distance112

is taken in G, not in G[S]. In particular, when G is connected, diamG(S) is finite for every113

S. A pendant vertex is a vertex with degree one. A vertex u is pendant to v if v is the only114

neighbor of u. Two distinct vertices u, v such that N(u) = N(v) are called true twins, and115

false twins if N [u] = N [v]. In particular, false twins are adjacent. In all the above notations116

with a subscript, we omit it whenever the graph is implicit from the context.117

2.2 Treewidth, pathwidth, connected treewidth, and tree-length118

A tree-decomposition of a graph G, is a tree T whose nodes are labeled by subsets of V (G),119

called bags, such that for each vertex v ∈ V (G), the bags containing v induce a non-empty120

subtree of T , and for each edge e ∈ E(G), there is at least one bag containing both endpoints121

of e. A connected tree-decomposition further requires that each bag induces a connected122

subgraph in G. The width of a (connected) tree-decomposition is the size of its largest123

bag minus one. The treewidth (resp. connected treewidth) of a graph G is the minimum124

width of a tree-decomposition (resp. a connected tree-decomposition) of G. The length of a125

tree-decomposition is the maximum diameter of its bags in G. The tree-length of a graph G126

is the minimum length of a tree-decomposition of G. We denote the treewidth, connected127

treewidth, and tree-length of a graph by tw, ctw, and tl respectively. Since a connected128

graph on n vertices has diameter at most n− 1, it holds that ctw > tl.129

The pathwidth is the same as treewidth except the tree T is now required to be a path,130

and hence is called a path-decomposition. In particular pathwidth is always larger than131

treewidth. Later we will need to upper bound the pathwidth of our constructed graph.132

Since writing down a path-decomposition is a bit cumbersome, we will rely on the following133

CVIT 2016
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characterization of pathwidth. Kirousis and Papadimitriou [19] show the equality between134

the interval thickness number, which is known to be pathwidth plus one, and the node135

searching number. Thus we will only need to show that the number of searchers required to136

win the following one-player game is bounded by a suitable function. We imagine the edges of137

a graph to be contaminated by a gas. The task is to move around a team of searchers, placed138

at the vertices, in order to clean all the edges. A move consists of removing a searcher from139

the graph, adding a searcher at an unoccupied vertex, or displacing a searcher from a vertex140

to any other vertex (not necessarily adjacent). An edge is cleaned when both its endpoints141

are occupied by a searcher. However after each move, all the cleaned edges admitting a142

free-of-searchers path from one of its endpoints to the endpoint of a contaminated edge are143

recontaminated. The node searching number is the minimum number of searchers required144

to win the game.145

2.3 Parameterized problems and algorithms146

Parameterized complexity aims to solve hard problems in time f(k)|I|O(1), where k is a147

parameter of the instance I which is hopefully (much) smaller than the total size of I. More148

formally, a parameterized problem is a pair (Π, κ) where Π ⊆ L for some language L ⊆ Σ∗149

over a finite alphabet Σ (e.g., the set of words, graphs, etc.), and κ is a mapping from L150

to N. An element I ∈ L is called an instance (or input). The mapping κ associates each151

instance to an integer called parameter. An instance is said positive if I ∈ Π, and a negative152

otherwise. We denote by |I| the size of I, that can be thought of as the length of the word I.153

An FPT algorithm is an algorithm which solves a parameterized problem (Π, κ), i.e., decides154

whether or not an input I ∈ L is positive, in time f(κ(I))|I|O(1) for some computable155

function f . We refer the interested reader to recent textbooks in parameterized algorithms156

and complexity [7, 5].157

2.4 Exponential Time Hypothesis, FPT reductions, and W[1]-hardness158

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [17] asserting159

that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables. Lokshtanov160

et al. [20] survey conditional lower bounds under the ETH.161

An FPT reduction from a parameterized problem (Π ⊆ L, κ) to a parameterized problem162

(Π′ ⊆ L′, κ′) is a mapping ρ : L 7→ L′ such that for every I ∈ L:163

(1) I ∈ Π⇔ ρ(I) ∈ Π′,164

(2) |ρ(I)|6 f(κ(I))|I|O(1) for some computable function f , and165

(3) κ(ρ(I)) 6 g(κ(I)) for some computable function g.166

We further require that for every I, we can compute ρ(I) in FPT time h(κ(I))|I|O(1) for167

some computable function h. Condition (1) makes ρ a valid reduction, condition (2) together168

with the further requirement on the time to compute ρ(I) make the mapping ρ FPT, and169

condition (3) controls that the new parameter κ(ρ(I)) is bounded by a function of the170

original parameter κ(I). One can therefore observe that using ρ in combination with an171

FPT algorithm solving (Π′, κ′) yields an FPT procedure to solve the initial problem (Π, κ).172

A standard use of an FPT reduction is to derive conditional lower bounds: if a problem173

(Π, κ) is thought not to admit an FPT algorithm, then an FPT reduction from (Π, κ) to174

(Π′, κ′) indicates that (Π′, κ′) is also unlikely to admit an FPT algorithm. We refer the175

reader to the textbooks [7, 5] for a formal definition of W[1]-hardness. For the purpose of176

this paper, we will just state that W[1]-hard are parameterized problems that are unlikely177
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to be FPT, and that the following problem is W[1]-complete even when all the Vi have the178

same number of elements, say t (see for instance [21]).179

k-Multicolored Independent Set (k-MIS) Parameter: k
Input: An undirected graph G, an integer k, and (V1, . . . , Vk) a partition of V (G).
Question: Is there a set I ⊆ V (G) such that |I ∩ Vi| = 1 for every i ∈ [k], and G[I] is
edgeless?

180

Every parameterized problem that k-Multicolored Independent Set FPT-reduces181

to is W[1]-hard. Our paper is thus devoted to designing an FPT reduction from k-182

Multicolored Independent Set to Metric Dimension parameterized by tw. Let183

us observe that the ETH implies that one (equivalently, every) W[1]-hard problem is not in184

the class of problems solvable in FPT time (FPT 6=W[1]). Thus if we admit that there is no185

subexponential algorithm solving 3-SAT, then k-Multicolored Independent Set is not186

solvable in time f(k)|V (G)|O(1). Actually under this stronger assumption, k-Multicolored187

Independent Set is not solvable in time f(k)|V (G)|o(k). A concise proof of that fact can188

be found in the survey on the consequences of ETH [20].189

2.5 Metric dimension, resolved pairs, distinguished vertices190

A pair of vertices {u, v} ⊆ V (G) is said to be resolved by a set S if there is a vertex w ∈ S191

such that dist(w, u) 6= dist(w, v). A vertex u is said to be distinguished by a set S if for any192

w ∈ V (G) \ {u}, there is a vertex v ∈ S such that dist(v, u) 6= dist(v, w). A resolving set of193

a graph G is a set S ⊆ V (G) such that every two distinct vertices u, v ∈ V (G) are resolved194

by S. Equivalently, a resolving set is a set S such that every vertex of G is distinguished195

by S. Then Metric Dimension asks for a resolving set of size at most some threshold k.196

Note that a resolving set of minimum size is sometimes called a metric basis for G.197

Metric Dimension (MD) Parameter: tw(G)
Input: An undirected graph G and an integer k.
Question: Does G admit a resolving set of size at most k?

198

Here we anticipate on the fact that we will mainly consider Metric Dimension paramet-199

erized by treewidth. Henceforth we sometimes use the notation Π/tw to emphasize that Π is200

not parameterized by the natural parameter (size of the resolving set) but by the treewidth201

of the input graph.202

3 Outline of the W[1]-hardness proof of Metric Dimension/tw203

We will show the following.204

I Theorem 1. Unless the ETH fails, there is no computable function f such that Metric205

Dimension can be solved in time f(pw)no(pw) on constant-degree n-vertex graphs.206

We first prove that the following variant of Metric Dimension is W[1]-hard.207

k-Multicolored Resolving Set (k-MRS) Parameter: tw(G)
Input: An undirected graph G, an integer k, a set X of q disjoint subsets of V (G):
X1, . . . , Xq, and a set P of pairs of vertices of G: {x1, y1}, . . . , {xh, yh}.
Question: Is there a set S ⊆ V (G) of size q such that

(i) for every i ∈ [q], |S ∩Xi| = 1, and
(ii) for every p ∈ [h], there is an s ∈ S satisfying distG(s, xp) 6= distG(s, yp)?

208
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In words, in this variant the resolving set is made by picking exactly one vertex in each209

set of X , and not all the pairs should be resolved but only the ones in a prescribed set P.210

We call critical pair a pair of P. In the context of k-Multicolored Resolving Set, we211

call legal set a set which satisfies the former condition, and resolving set a set which satisfies212

the latter. Thus a solution for k-Multicolored Resolving Set is a legal resolving set.213

The reduction from k-Multicolored Independent Set starts with a well-established214

trick to show parameterized hardness by treewidth. We create m “empty copies” of the215

k-MIS-instance (G, k, (V1, . . . , Vk)), where m := |E(G)| and t := |Vi|. We force exactly one216

vertex in each color class of each copy to be in the resolving set, using the set X . In each217

copy, we introduce an edge gadget for a single (distinct) edge of G. Encoding an edge of218

k-MIS in the k-MRS-instance is fairly simple: we build a pair (of P) which is resolved by219

every choice but the one selecting both its endpoints in the resolving set. We now need to220

force a consistent choice of the vertex chosen in Vi over all the copies. We thus design a221

propagation gadget. A crucial property of the propagation gadget, for the pathwidth of the222

constructed graph to be bounded, is that it admits a cut of size O(k) disconnecting one copy223

from the other. Encoding a choice in Vi in the distances to four special vertices, called gates,224

we manage to build such a gadget with constant-size “left-right” separator per color class.225

This works by introducing t pairs (of P) which are resolved by the south-west and north-east226

gates but not by the south-east and north-west ones. Then we link the vertices of a copy227

of Vi in a way that the higher their index, the more pairs they resolve in the propagation228

gadget to their left, and the fewer pairs they resolve in the propagation gadget to their right.229

We then turn to the actual Metric Dimension problem. We design a gadget which230

simulates requirement (i) by forcing a vertex of a specific set X in the resolving set. This231

works by introducing two pairs that are only resolved by vertices of X. We attach this new232

gadget, called forcing set gadget, to all the k color classes of the m copies. Finally we have to233

make sure that a candidate solution resolves all the pairs, and not only the ones prescribed234

by P. For that we attach two adjacent “pendant” vertices to strategically chosen vertices.235

One of these two vertices have to be in the resolving set since they are false twins, hence not236

resolved by any other vertex. Then everything is as if the unique common neighbor v of the237

false twins was added to the resolving set. Therefore we can perform this operation as long238

as v does not resolve any of the pairs of P.239

To facilitate the task of the reader, henceforth we stick to the following conventions:240

Index i ∈ [k] ranges over the k rows of the k-MRS/MD-instance or color classes of241

k-MIS.242

Index j ∈ [m] ranges over the m columns of the k-MRS/MD-instance or edges of k-MIS.243

Index γ ∈ [t], ranges over the t vertices of a color class.244

We invite the reader to look up Table 1 when in doubt about a notation/symbol relative to245

the construction.246

4 Parameterized hardness of k-Multicolored Resolving Set/tw247

In this section, we give an FPT reduction from the W[1]-complete k-Multicolored248

Independent Set to k-Multicolored Resolving Set parameterized by treewidth.249

More precisely, given a k-Multicolored Independent Set-instance (G, k, (V1, . . . , Vk))250

we produce in polynomial-time an equivalent k-Multicolored Resolving Set-instance251

(G′, k′,X ,P) where G′ has pathwidth (hence treewidth) O(k).252
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4.1 Construction253

Let (G, k, (V1, . . . , Vk)) be an instance of k-Multicolored Independent Set where254

(V1, . . . , Vk) is a partition of V (G) and Vi := {vi,γ | 1 6 γ 6 t}. We arbitrarily number255

e1, . . . , ej , . . . , em the m edges of G.256

4.1.1 Overall picture257

We start with a high-level description of the k-MRS-instance (G′, k′,X ,P). For each color258

class Vi, we introduce m copies V 1
i , . . . , V

j
i , . . . , V

m
i of a selector gadget to G′. Each set V ji259

is added to X , so a solution has to pick exactly one vertex within each selector gadget. One260

can imagine the vertex-sets V 1
i , . . . , V

m
i to be aligned on the i-th row, with V ji occupying261

the j-th column (see Figure 1). Each V ji has t vertices denoted by vji,1, v
j
i,2, . . . , v

j
i,t, where262

each vji,γ “corresponds” to vi,γ ∈ Vi. We make vji,1v
j
i,2 . . . v

j
i,t a path with t− 1 edges.263

For each edge ej ∈ E(G), we insert an edge gadget G(ej) containing a pair of vertices264

{cj , c′j} that we add to P. Gadget G(ej) is attached to V ji and V ji′ , where ej ∈ E(Vi, Vi′).265

The edge gadget is designed in a way that the only legal sets that do not resolve {cj , c′j}266

are the ones that precisely pick vji,γ ∈ V
j
i and vji′,γ′ ∈ V ji′ such that ej = vi,γvi′,γ′ . We add a267

propagation gadget P j,j+1
i between two consecutive copies V ji and V j+1

i , where the indices268

in the superscript are taken modulo m. The role of the propagation gadget is to ensure that269

the choices in each V ji (j ∈ [m]) corresponds to the same vertex in Vi.270

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1 V 6

1

V 1
2 V 2

2 V 3
2 V 4

2 V 5
2 V 6

2

V 1
3 V 2

3 V 3
3 V 4

3 V 5
3 V 6

3

P 1,2
1 P 2,3

1 P 3,4
1 P 4,5

1 P 5,6
1

P 1,2
2 P 2,3

2 P 3,4
2 P 4,5

2 P 5,6
2

P 1,2
3 P 2,3

3 P 3,4
3 P 4,5

3 P 5,6
3

P 6,1
1

P 6,1
2

P 6,1
3

G(e1) G(e2) G(e3) G(e4) G(e5) G(e6)

Figure 1 The overall picture with k = 3 color classes, t = 5 vertices per color class, m = 6 edges,
e1 = v1,3v2,4, e2 = v1,4v2,1, e3 = v1,5v3,1, etc. The dashed lines on the left and right symbolize that
the construction is cylindrical.

The intuitive idea of the reduction is the following. We say that a vertex of G′ is selected271

if it is put in the resolving set of G′, a tentative solution. The propagation gadget P j,j+1
i272

ensures a consistent choice among the m copies V 1
i , . . . , V

m
i . The edge gadget ensures that273

the selected vertices of G′ correspond to an independent set in the original graph G. If both274

CVIT 2016
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the endpoints of an edge ej are selected, then the pair {cj , c′j} is not resolved. We now detail275

the construction.276

4.1.2 Selector gadget277

For each i ∈ [k] and j ∈ [m], we add to G′ a path on t− 1 edges vji,1, v
j
i,2, . . . , v

j
i,t, and denote278

this set of vertices by V ji . Each vji,γ corresponds to vi,γ ∈ Vi. We call j-th column the set279 ⋃
i∈[k] V

j
i , and i-th row, the set

⋃
j∈[m] V

j
i . We set X := {V ji }i∈[k],j∈[m]. By definition of280

k-Multicolored Resolving Set, a solution S has to satisfy that for every i ∈ [k], j ∈ [m],281

|S ∩ V ji | = 1. We call legal set a set S of size k′ = km that satisfies this property. We call282

consistent set a legal set S which takes the “same” vertex in each row, that is, for every283

i ∈ [k], for every pair (vji,γ , v
j′

i,γ′) ∈ (S ∩ V ji )× (S ∩ V j
′

i ), then γ = γ′.284

4.1.3 Edge gadget285

For each edge ej = vi,γvi′,γ′ ∈ E(G), we add an edge gadget G(ej) in the j-th column of G′.286

G(ej) consists of a path on three vertices: cjgjc′j . The pair {cj , c′j} is added to the list of287

critical pairs P. We link both vji,γ and vji′,γ′ to gj by a private path1 of length t + 2. We288

link the at least two and at most four vertices vji,γ−1, v
j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1 (whenever they289

exist) to cj by a private path of length t+ 2. This defines at most six paths from V ji ∪ V
j
i′ to290

G(ej). Let us denote by Wj the at most six endpoints of these paths in V ji ∪ V
j
i′ . For each291

v ∈Wj , we denote by P (v, j) the path from v to G(ej). We set Eji :=
⋃
v∈Wj∩V j

i
P (v, j) and292

Eji′ :=
⋃
v∈Wj∩V j

i′
P (v, j). We denote by Xj the set of the at most six neighbors of Wj on293

the paths to G(ej). Henceforth we may refer to the vertices in some Xj as the cyan vertices.294

Individually we denote by eji,γ the cyan vertex neighbor of vji,γ in P (vji,γ , j). We observe that295

for fixed i and j, eji,γ exists for at most three values of γ. We add an edge between two cyan296

vertices if their respective neighbors in V ji are also linked by an edge (or equivalently, if they297

have consecutive “indices γ”). These extra edges are useless in the k-MRS-instance, but will298

turn out useful in the MD-instance. See Figure 2 for an illustration of the edge gadget.299

The rest of the construction will preserve that for every v ∈ (V ji ∪ V
j
i′ ) \ {v

j
i,γ , v

j
i′,γ′},300

dist(v, c′j) = dist(v, cj) + 2, and for each v ∈ {vji,γ , v
j
i′,γ′}, dist(v, cj) = dist(v, gj) + 1 =301

dist(v, c′j). In other words, the only two vertices of V ji ∪ V
j
i′ not resolving the critical pair302

{cj , c′j} are v
j
i,γ and vji′,γ′ , corresponding to the endpoints of ej .303

4.1.4 Propagation gadget304

Between each pair (V ji , V
j+1
i ), where j + 1 is taken modulo m, we insert an identical copy of305

the propagation gadget, and we denote it by P j,j+1
i . It ensures that if the vertex vji,γ is in306

a legal resolving set S, then the vertex of S ∩ V j+1
i should be some vj+1

i,γ′ with γ 6 γ′. The307

cylindricity of the construction and the fact that exactly one vertex of V ji is selected, will308

therefore impose that the set S is consistent.309

P j,j+1
i, comprises four vertices swji , se

j
i , nw

j
i , ne

j
i , called gates, and a set Aji of 2t vertices310

aji,1, . . . , a
j
i,t, α

j
i,1, . . . , α

j
i,t. We make both aji,1a

j
i,2 . . . a

j
i,t and α

j
i,1α

j
i,2 . . . α

j
i,t a path with t− 1311

1 We use the expression private path to emphasize that the different sources get a pairwise internally
vertex-disjoint path to the target.
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1,5
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1,4

e4
1,5

g4
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c′4

G(e4)

6

6
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Figure 2 The edge gadget G(e4) with e4 = v1,5v3,3. Weighted edges are short-hands for subdivi-
sions of the corresponding length. The edges between the cyan vertices will not be useful for the
k-MRS-instance, but will later simplify the construction of the MD-instance.

edges. For each γ ∈ [t], we add the pair {aji,γ , α
j
i,γ} to the set of critical pairs P. Removing312

the gates disconnects Aji from the rest of the graph.313

We now describe how we link the gates to V ji , V
j+1
i , and Aji . We link vji,1 (the “top”314

vertex of V ji ) to swji and vji,t (the “bottom” vertex of V ji ) to nwji both by a path of length 2.315

We also link vj+1
i,1 to seji by a path of length 3, and vj+1

i,t to neji by a path of length 2. Then316

we make nwji adjacent to a
j
i,1 and αji,1, while we make neji adjacent to α

j
i,1 only. We make317

seji adjacent to aji,t and α
j
i,t, while we make swji adjacent to aji,t only. Finally, we add an318

edge between neji and nwji , and between swji and seji . See Figure 3 for an illustration of the319

propagation gadget P j,j+1
i with t = 5.320

Let us motivate the gadget P j,j+1
i . One can observe that the gates neji and swji resolve321

the critical pairs of the propagation gadget, while the gates nwji and seji do not. Consider322

that the vertex added to the resolving set in V ji is vji,γ . Its shortest paths to critical pairs323

below it (that is, with index γ′ > γ) go through the gate swji , whereas its shortest paths to324

critical pairs at its level or above (that is, with index γ′ 6 γ) go through the gate nwji . Thus325

vji,γ only resolves the critical pairs {aji,γ′ , αi,γ′} with γ′ > γ. On the contrary, the vertex of326

the resolving set in V j+1
i only resolves the critical pairs {aji,γ′ , α

j
i,γ′} at its level or above.327

This will force that its level is γ or below. Hence the vertices of the resolving in V ji and328

V j+1
i should be such that γ′ > γ. Since there is also a propagation gadget between V mi and329

V 1
i , this circular chain of inequalities forces a global equality.330

4.1.5 Wrapping up331

We put the pieces together as described in the previous subsections. At this point, it is332

convenient to give names to the neighbors of V ji in the propagation gadgets P j−1,j
i and333

CVIT 2016
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vji,1

vji,2

vji,3

vji,4

vji,5

vj+1
i,1

vj+1
i,2

vj+1
i,3

vj+1
i,4

vj+1
i,5

V ji V j+1
i

swji seji

nwji neji

6|7

7|8

6|7

5|6

4|5

6|6

7|7

7|7

6|6

5|5

aji,1 αji,1

aji,2 αji,2

aji,3 αji,3

aji,4 αji,4

aji,5 αji,5

2

32

2

Figure 3 The propagation gadget P j,j+1
i . The critical pairs {aji,γ , α

j
i,γ} are surrounded by thin

dashed lines. The blue (resp. red) integer on a vertex of Aji is its distance to the blue (resp. red)
vertex in V ji (resp. V j+1

i ). Note that the blue vertex distinguishes the critical pairs below it, while
the red vertex distinguishes critical pairs at its level or above.

P j,j+1
i . We may refer to them as blue vertices (as they appear in Figure 4). We denote by334

tlji the neighbor of vji,1 in P j−1,j
i , trji , the neighbor of vji,1 in P j,j+1

i , blji , the neighbor of vji,t335

in P j−1,j
i , and brji , the neighbor of vji,t in P

j,j+1
i . We add the following edges and paths.336

For any pair i, j such that ej has an endpoint in Vi, the vertices tlji , tr
j
i ,bl

j
i ,br

j
i are linked337

to gj by a private path of length the distance of their unique neighbor in V ji to cj . We add an338

edge between seji and sej+1
i , and between nwji and nwj+1

i (where j+ 1 is modulo m). Finally,339

for every ej ∈ E(Vi, Vi′), we add four paths between seji , se
j
i′ ,nw

j
i ,nw

j
i′ and gj ∈ G(ej). More340

precisely, for each i′′ ∈ {i, i′}, we add a path from gj to seji′′ of length dist(gj , swji′′)− 4, and341

a path from gj to nwji′′ of length dist(gj ,nwji′′)− 4. These distances are taken in the graph342

before we introduced the new paths, and one can observe that the length of these paths is at343

least t. This finishes the construction.344

We recall that, by a slight abuse of language, a resolving set in the context of k-345

Multicolored Resolving Set is a set which resolves all the critical pairs of P. In346

particular, it is not necessarily a resolving set in the sense of Metric Dimension. With347

that terminology, a solution for k-Multicolored Resolving Set is a legal resolving set.348

4.2 Correctness of the reduction349

We now check that the reduction is correct. We start with the following technical lemma. If350

a set X contains a pair that no vertex of N(X) (that is N [X] \X) resolves, then no vertex351

outside X can distinguish the pair.352

I Lemma 2. Let X be a subset of vertices, and a, b ∈ X be two distinct vertices. If for every353

vertex v ∈ N(X), dist(v, a) = dist(v, b), then for every vertex v /∈ X, dist(v, a) = dist(v, b).354

Proof. Let v be a vertex outside of X. We further assume that v is not in N(X), otherwise355

we can already conclude that it does not distinguish {a, b}. A shortest path from v to356

a, has to go through N(X). Let wa be the first vertex of N(X) met in this shortest357
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path from v to a. Similarly, let wb be the first vertex of N(X) met in a shortest path358

from v to b. Since wa, wb ∈ N(X), they satisfy dist(wa, a) = dist(wa, b) and dist(wb, a) =359

dist(wb, b). Then, dist(v, a) 6 dist(v, wb) + dist(wb, a) = dist(v, wb) + dist(wb, b) = dist(v, b),360

and dist(v, b) 6 dist(v, wa) + dist(wa, b) = dist(v, wa) + dist(wa, a) = dist(v, a). Thus361

dist(v, a) = dist(v, b). J362

We use the previous lemma to show that every vertex of a V ji only resolves critical pairs363

in gadgets it is attached to. This will be useful in the two subsequent lemmas.364

I Lemma 3. For any i ∈ [k], j ∈ [m], and v ∈ V ji , v does not resolve any critical pair365

outside of P j−1,j
i , P j,j+1

i (where indices in the superscript are taken modulo m), and {cj , c′j}.366

Furthermore, if ej ∈ E(G) has no endpoint in Vi ⊆ V (G), then v does not resolve {cj , c′j}.367

Proof. We first show that v ∈ V ji does not resolve any critical pair in propagation gadgets368

that are not P j−1,j
i and P j,j+1

i . Let {aj
′

i′,γ , α
j′

i′,γ} be a critical pair in a propagation gadget369

different from P j−1,j
i and P j,j+1

i . Let X be the connected component containing P j
′,j′+1
i′ of370

G′−({nwj
′−1
i′ , sej

′−1
i′ ,nwj

′+1
i′ , sej

′+1
i′ }∪Ce), where Ce comprises {c′j , g′j} if ej′ has an endpoint371

in Vi′ and {cj′+1, gj′+1} if ej′+1 has an endpoint in Vi′ . Thus Ce has size 0, 2, or 4. One372

can observe that N(X) = {nwj
′−1
i′ , sej

′−1
i′ ,nwj

′+1
i′ , sej

′+1
i′ } ∪ Ce, that V j

′

i′ ∪ V
j′+1
i′ ⊆ X, and373

that no “other V ji ” intersects X. In particular V ji is fully contained in G − X. We now374

check that no vertex of N(X) resolves the pair {aj
′

i′,γ , α
j′

i′,γ} (which is inside X). For each375

u ∈ {nwj
′−1
i′ ,nwj

′+1
i′ }, it holds that dist(u, aj

′

i′,γ) = γ + 1 = dist(u, aj
′

i′,γ) (the shortest paths376

go through nwj
′

i′ ), while for each u ∈ {sej
′−1
i′ , sej

′+1
i′ , it holds that dist(u, aj

′

i′,γ) = t− γ + 2 =377

dist(u, aj
′

i′,γ) (the shortest paths go through sej
′

i′ ). If they are part of Ce, gj′ and cj′ also378

do not resolve {aj
′

i′,γ , α
j′

i′,γ}, the shortest paths going through the gates nwj
′

i′ or sej
′

i′ , and379

respectively gj and then the gates nwj
′

i′ or sej
′

i′ . For the same reason, gj′+1 and cj′+1 do not380

resolve {aj
′

i′,γ , α
j′

i′,γ}. Then we conclude by Lemma 2 that no vertex of V ji (in particular v)381

resolves {aj
′

i′,γ , α
j′

i′,γ}, or any critical pair in P j
′

i′ .382

Let us now show that the pair {cj , c′j} is not resolved by any vertex of ∪X \(V ji′ ∪V
j
i′′) such383

that ej ∈ E(Vi′ , Vi′′). Let Y := {tlji′ , tr
j
i′ ,bl

j
i′ ,br

j
i′ , tl

j
i′′ , trji′′ ,blji′′ ,brji′′ ,nwji′ , se

j
i′ ,nw

j
i′′ , seji′′},384

and X be the connected component containing gj in G′ − Y . Again one can observe that385

N(X) = Y , X contains V ji′ ∪ V
j
i′′ but does not intersect any “other V ji ”. We therefore show386

that no vertex of Y resolves {cj , c′j}, and conclude with Lemma 2. All the vertices of Y387

have a private path to gj whose length is such that they have a shortest path to cj going388

through gj . Therefore ∀u ∈ Y , dist(u, cj) = dist(u, gj) + 1 = dist(u, c′j). J389

The two following lemmas show the equivalences relative to the expected use of the edge390

and propagation gadgets. They will be useful in Sections 4.2.1 and 4.2.2.391

I Lemma 4. A legal set S resolves the critical pair {cj , c′j} with ej = vi,γvi′,γ′ if and only if392

the vertex vji,γi
in V ji ∩ S and the vertex vji′,γi′ in V ji′ ∩ S satisfy (γ, γ′) 6= (γi, γi′).393

Proof. By Lemma 3, no vertex of S \ {vji,γi
, vji′,γi′} resolves {cj , c

′
j}. By construction of G′,394

vji,γ (resp. vji′,γ′) is the only vertex of V ji (resp. V ji′ ) that does not resolve {cj , c′j}. Indeed395

the shortest paths of vji,γ′′ , for γ′′ > γ + 1, to {cj , c′j} go through vji,γ+1 which resolves the396

pair. Note that a shortest path between V ji and V ji′ has length at least 2t+ 4, so a shortest397

path from vji,γ′′ to {cj , c′j} cannot go through V ji′ . Similarly the shortest paths of vji,γ′′ ,398

for γ′′ 6 γ − 1, to {cj , c′j} go through vji,γ−1 which also resolves the pair. Thus only vji,γ399
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(resp. vji′,γ′), whose shortest paths to {cj , c′j} go via gj , does not resolve this pair among V ji400

(resp. V ji′ ). Hence, the critical pair {cj , c′j} is not resolved by S if and only if vji,γi
= vji,γ and401

vji′,γi′ = vji′,γ′ . J402

I Lemma 5. A legal set S resolves all the critical pairs of P j,j+1
i if and only if the vertex403

vji,γ in V ji ∩ S and the vertex vj+1
i,γ′ in V j+1

i ∩ S satisfy γ 6 γ′.404

Proof. By Lemma 3, no vertex of S\{vji,γ , v
j+1
i,γ′ } resolves a critical pair of P j,j+1

i . Let us show405

that the critical pairs that vji,γ resolves in Aji are exactly the pairs {aji,z, α
j
i,z} with z > γ. For406

any z ∈ [t], it holds that dist(vji,γ , a
j
i,z) = min(t+2+z−γ, t+2+γ−z) = t+2+min(z−γ, γ−z),407

and dist(vji,γ , α
j
i,z) = min(t+ 2 + z − γ, t+ 3 + γ − z) = t+ 2 + min(z − γ, γ − z + 1). So if408

z > γ, dist(vji,γ , a
j
i,z) = t+ 2 + γ − z 6= t+ 2 + γ − z + 1 = dist(vji,γ , α

j
i,z). Whereas if z 6 γ,409

dist(vji,γ , a
j
i,z) = t+ 2 + z − γ = dist(vji,γ , α

j
i,z).410

Similarly, we show that the critical pairs that vj+1
i,γ′ resolves in Aji are exactly the pairs411

{aji,z, α
j
i,z} with z 6 γ′. For every z ∈ [t], it holds that dist(vj+1

i,γ′ , a
j
i,z) = min(t+3+z−γ′, t+412

3+γ′−z) = t+3+min(z−γ′, γ′−z), and dist(vj+1
i,γ′ , α

j
i,z) = min(t+2+z−γ′, t+3+γ′−z) =413

t+ 2 + min(z− γ′, γ′− z+ 1). So if z 6 γ′, dist(vj+1
i,γ′ , a

j
i,z) = t+ 3 + z− γ′ 6= t+ 2 + z− γ′ =414

dist(vj+1
i,γ′ , α

j
i,z). Whereas if z > γ′, dist(vj+1

i,γ′ , a
j
i,z) = t+ 3 + γ′ − z = dist(vj+1

i,γ′ , α
j
i,z). This415

implies that all the critical pairs of Aji are resolved by S if and only if γ 6 γ′. J416

We can now prove the correctness of the reduction. The construction can be computed417

in polynomial time in |V (G)|, and G′ itself has size bounded by a polynomial in |V (G)|. We418

postpone checking that the pathwidth is bounded by O(k) to the end of the second step,419

where we produce an instance of MD whose graph G′′ admits G′ as an induced subgraph.420

4.2.1 k-Multicolored Independent Set in G ⇒ legal resolving set in G′.421

Let {v1,γ1 , . . . , vk,γk
} be a k-multicolored independent set in G. We claim that S :=422 ⋃

j∈[m]{v
j
1,γ1

, . . . , vjk,γk
} is a legal resolving set in G′ (of size km). The set S is legal by423

construction. Since for every i ∈ [k], and j ∈ [m], vji,γi
and vj+1

i,γi
are in S (j + 1 is modulo424

m), all the critical pairs in the propagation gadgets are resolved by S, by Lemma 5. Since425

{v1,γ1 , . . . , vk,γk
} is an independent set in G, there is no ej = vi,γvi′,γ′ ∈ E(G), such that426

(γ, γ′) = (γi, γi′). Thus every critical pair {cj , c′j} is resolved by S, by Lemma 4.427

4.2.2 Legal resolving set in G′ ⇒ k-Multicolored Independent Set in G.428

Assume that there is a legal resolving set S in G′. For every i ∈ [k], for every j ∈ [m], the429

vertex vji,γ(i,j) in V
j
i ∩S and the vertex vj+1

i,γ(i,j+1) in V
j+1
i ∩S (j+1 is modulom) are such that430

γ(i, j) 6 γ(i, j+1), by Lemma 5. Thus γ(i, 1) 6 γ(i, 2) 6 . . . 6 γ(i,m−1) 6 γ(i,m) 6 γ(i, 1),431

and γi := γ(i, 1) = γ(i, 2) = . . . = γ(i,m− 1) = γ(i,m). We claim that {v1,γ1 , . . . , vk,γk
} is a432

k-multicolored independent set in G. Indeed, there cannot be an edge ej = vi,γivi′,γi′ ∈ E(G),433

since otherwise the critical pair {cj , c′j} is not resolved, by Lemma 4.434

5 Parameterized hardness of Metric Dimension/tw435

In this section, we produce in polynomial time an instance (G′′, k′′) of Metric Dimension436

equivalent to (G′,X , km,P) of k-Multicolored Resolving Set. The graph G′′ has also437

pathwidth O(k). Now, an instance is just a graph and an integer. There is no longer X and438
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P to constrain and respectively loosen the “resolving set” at our convenience. This creates439

two issues: (1) the vertices outside the former set X can now be put in the resolving set,440

potentially yielding undesired solutions2 and (2) our candidate solution (when there is a441

k-multicolored independent set in G) may not distinguish all the vertices.442

5.1 Construction443

We settle both issues by attaching new gadgets to G′. Eventually the new graph G′′ will444

contain G′ as an induced subgraph. To settle the issue (1), we design a forced set gadget. A445

forced set gadget attached to V ji contains two pairs of vertices which are only resolved by446

vertices of V ji . Thus the gadget simulates the action of X .447

There are a few pairs which are not resolved by a solution of k-Multicolored Resolving448

Set. To make sure that all pairs are resolved, we add vertices which need be selected in the449

resolving set. Technically we could use the previous gadget on a singleton set. But we can450

make it simpler: we just attach two pendant neighbors, that we then make adjacent, to some451

chosen vertices. A pair of pendant neighbors are false twins in the whole graph. So we know452

that at least one of these two vertices have to be in the resolving set. Hence we call that the453

forced vertex gadget, and one of the false twins, a forced vertex. It is important that these454

forced vertices do not resolve any pair of P. So we can only add pendant twins to vertices455

themselves not resolving any pair of P.456

5.1.1 Forced set gadget457

To deal with the issue (1), we introduce two new pairs of vertices for each V ji . The intention458

is that the only vertices resolving both these pairs simultaneously are precisely the vertices459

of V ji . For any i ∈ [k] and j ∈ [m], we add to G′ two pairs of vertices {pji , q
j
i } and {r

j
i , s

j
i},460

and two gates πji and ρji . Vertex π
j
i is adjacent to pji and qji , and vertex ρji is adjacent to rji461

and sji .462

We link vji,1 to pji , and vji,t to r
j
i , each by a path of length t. It introduces two new463

neighbors of vji,1 and vji,t (the brown vertices in Figure 4). We denote them by tbji and bbji ,464

respectively. The blue and brown vertices are linked to πji and ρji in the following way. We465

link tlji and trji to π
j
i by a private path of length t, and to ρji by a private path of length 2t−1.466

We link blji and brji to πji by a private path of length 2t− 1, and to ρji by a private path of467

length t. (Let us clarify that the names of the blue vertices blji and brji are for “bottom-left”468

and “bottom-right”, and not for “blue” and “brown”.) We link tbji (neighbor of v
j
i,1) to ρ

j
i469

by a private path of length 2t − 1. We link bbji (neighbor of vji,t) to π
j
i by a private path470

of length 2t− 1. Note that the general rule to set the path length is to match the distance471

between the neighbor in V ji and pji (resp. r
j
i ). With that in mind we link, if it exists, the top472

cyan vertex tcji (the one with smallest index γ) neighboring V ji to πji with a path of length473

dist(vji,γ , p
j
i ) = t+ γ − 1 where vji,γ is the unique vertex in N(tcji ) ∩ V

j
i . Observe that with474

the notations of the previous section tcji = eji,γ . We also link, if it exists, the bottom cyan475

vertex bcji (the one with largest index γ) to ρji with a path of length dist(v, rji ) where v is476

again the unique neighbor of bcji in V
j
i .477

It can be observed that we only have two paths (and not all six) from the at most three478

cyan vertices to the gates πji and ρji . This is where the edges between the cyan vertices will479

2 Also, it is now possible to put two or more vertices of the same V ji in the resolving set S
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become relevant. See Figure 4 for an illustration of the forced vertex gadget, keeping in mind480

that, for the sake of legibility, four paths to {πji , ρ
j
i} are not represented.481

5.1.2 Forced vertex gadget482

We now deal with the issue (2). By we add (or attach) a forced vertex to an already present483

vertex v, we mean that we add two adjacent neighbors to v, and that these two vertices484

remain of degree 2 in the whole graph G′′. Hence one of the two neighbors will have to be485

selected in the resolving set since they are false twins. We call forced vertex one of these two486

vertices (picking arbitrarily).487

For every i ∈ [k] and j ∈ [m], we add a forced vertex to the gates nwji and seji of P j,j+1
i .488

We also add a forced vertex to each vertex in N({πji , ρ
j
i}) \ {p

j
i , q

j
i , r

j
i , s

j
i}. This represents a489

total of 12 vertices (6 neighbors of πji and 6 neighbors of ρji ). For every j ∈ [m], we attach a490

forced vertex to each vertex in N(gj) \ {cj , c′j}. This constitutes 14 neighbors (hence 14 new491

forced vertices). Therefore we set k′′ := km+ 12km+ 2km+ 14m = 15km+ 14m.492
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cjc′j

6

6

6

swji seji

nwji neji

swj−1
i sej−1

i

nwj−1
i nej−1

i

2

4

4 pji π
j
i q

j
i

rji ρ
j
i s

j
i

5

9

5

9

5

5

8

6

9
9

Figure 4 Vertices tlji , tr
j
i , bl

j
i , br

j
i (blue vertices) are linked to πji , ρ

j
i by paths of appropriate

lengths (see Section 5.1.1). Vertex tbji is linked by a path to ρji , while bbji is linked by a path to πji .
To avoid cluttering the figure, we did not represent four paths: from tlji and bcji to ρ

j
i , and from

blji and tcji to πji . We also did not represent the paths already in the k-MRS-instance from the
blue vertices to gj . Black vertices are forced vertices. Gray edges are the edges in the propagation
gadgets already depicted in Figure 3. Not represented on the figure, we add a forced vertex to
each neighbor of the red vertices, except pji , q

j
i , r

j
i , s

j
i , cj , c

′
j . Finally we add four more paths and

potentially two edges (see Section 5.1.3).
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5.1.3 Finishing touches and useful notations493

We use the convention that P (u, v) denotes the path from u to v which was specifically494

built from u to v. In other words, for P (u, v) to make sense, there should be a point in the495

construction where we say that we add a (private) path between u and v. For the sake of496

legibility, P (u, v) may denote either the set of vertices or the induced subgraph. We also497

denote by ν(u, v) the neighbor of u in the path P (u, v). Observe that P (u, v) is a symmetric498

notation but not ν(u, v).499

We add a path of length dist(ν(πji , tr
j
i ), sw

j
i ) = t between ν(πji , tr

j
i ) and seji , and a path500

of length dist(ν(πji ,bl
j
i ),ne

j−1
i ) = 2t− 1 between ν(πji ,bl

j
i ) and nwj−1

i . Similarly, we add a501

path of length dist(ν(ρji , tr
j
i ), sw

j
i ) = 2t− 1 between ν(ρji , tr

j
i ) and seji , and a path of length502

dist(ν(ρji ,bl
j
i ),ne

j−1
i ) = t between ν(ρji ,bl

j
i ) and nwj−1

i . We added these four paths so that503

no forced vertex resolves any critical pair in the propagation gadgets P j−1,j
i and P j,j+1

i .504

Finally we add an edge between ν(gj ,nwji ) and ν(cj ,bcji ) whenever V
j
i have exactly three505

cyan vertices. We do that to resolve the pair {ν(cj , tcji ), ν(cj ,bcji )}, and more generally506

every pair {x, y} ∈ P (cj , tcji ) × P (cj ,bcji ) such that dist(cj , x) = dist(cj , y). This finishes507

the construction of the instance (G′′, k′′ := 15km+ 14m) of Metric Dimension.508

5.2 Correctness of the reduction509

The two next lemmas will be crucial in Section 5.2.1. The first lemma shows how the forcing510

set gadget simulates the action of former set X .511

I Lemma 6. For every i ∈ [k] and j ∈ [m],512

∀v ∈ V ji , v resolves both pairs {pji , q
j
i } and {rji , s

j
i},513

∀v /∈ V ji , v resolves at most one pair of {pji , q
j
i } and {rji , s

j
i},514

∀v /∈ V ji ∪ P (vji,1, p
j
i ) ∪ P (vji,t, r

j
i ) ∪ {q

j
i , s

j
i}, v does not resolve {pji , q

j
i } nor {rji , s

j
i}.515

Proof. Let Y := {tlji , tr
j
i ,bl

j
i ,br

j
i}∪ (Xj ∩N(V ji ))∪ (N({πji , ρ

j
i})\{p

j
i , q

j
i , r

j
i , s

j
i}), and recall516

that Xj ∩N(V ji ) is the set of cyan vertices neighbors of V ji (if they exist). Let us assume517

that these cyan vertices exist (otherwise the proof is just simpler). In particular, there are518

at least two cyan neighbors tcji ,bc
j
i ∈ Xj ∩ N(V ji ). Let X be the connected component519

of G − Y containing {πji , ρ
j
i}. For every vertex u ∈ {tlji , tr

j
i ,bl

j
i ,br

j
i , tc

j
i ,bc

j
i}, by the way520

we chose the length of P (u, πji ) (resp. P (u, ρji )), there is a shortest path from u to pji521

(resp. rji ) that goes through π
j
i (resp. ρji ). Thus dist(u, p

j
i ) = dist(u, πji ) + 1 = dist(u, qji ) and522

dist(u, rji ) = dist(u, ρji ) + 1 = dist(u, sji ).523

Let mcji be the middle cyan vertex if it exists (the one which is not the top nor the bottom524

one). There is shortest path from mcji to pji (resp. rji ) going via tcji (resp. bcji ) and then πji525

(resp. ρji ). This is where the edges mcji tc
j
i and mcjibc

j
i are useful. Hence mcji does not resolve526

{pji , q
j
i } nor {r

j
i , s

j
i}, either. It is direct that no vertex of N({πji , ρ

j
i})\{p

j
i , q

j
i , r

j
i , s

j
i} resolves527

{pji , q
j
i } nor {r

j
i , s

j
i}. Thus no vertex of Y resolves any of {pji , q

j
i } and {r

j
i , s

j
i}. Therefore by528

Lemma 2, no vertex outside X resolves any of {pji , q
j
i } and {r

j
i , s

j
i}.529

We observe that X = V ji ∪ P (vji,1, p
j
i ) ∪ P (vji,t, r

j
i ) ∪ {π

j
i , q

j
i , ρ

j
i , s

j
i}. Because of the path530

from the top brown vertex to ρji , vertices of P (vji,1, p
j
i )\{v

j
i,1}∪{q

j
i }, which do resolve {pji , q

j
i },531

do not resolve {rji , s
j
i}. Similarly because of the path from the bottom brown vertex to πji ,532

vertices of P (vji,t, r
j
i ) \ {v

j
i,t}∪{s

j
i}, which do resolve {rji , s

j
i}, do not resolve {pji , q

j
i }. Finally533

for every u ∈ V ji , dist(u, q
j
i ) = dist(u, pji ) + 2 and dist(u, rji ) = dist(u, sji ) + 2. Therefore534

vertices of V ji are the only ones resolving both {pji , q
j
i } and {r

j
i , s

j
i}, while no vertex of G−X535

resolves any of these pairs. J536

CVIT 2016



23:16 Metric Dimension Parameterized by Treewidth

We denote by f(v) the forced vertex attached to a vertex v. For Section 5.2.1, we also537

need the following lemma, which states that the forced vertices do not resolve critical pairs.538

I Lemma 7. No forced vertex resolves a pair of P.539

Proof. We first show that no critical pair in some P j,j+1
i is resolved by a forced vertex. We540

use a similar plan as for the proof of Lemma 3. Let Y := {nwj−1
i , sej−1

i ,nwj+1
i , sej+1

i } ∪ Ce,541

where Ce comprises {cj , gj} if ej has an endpoint in Vi and {cj+1, gj+1} if ej+1 has an542

endpoint in Vi. Let X be the connected component of G′′ − Y containing P j,j+1
i . Note that543

the distances between the vertices of Y and the critical pairs in P j,j+1
i are the same between544

G′ and G′′. Hence as we showed in Lemma 3, no vertex of Y resolves a critical pair in P j,j+1
i .545

Thus by Lemma 2 no vertex outside X resolves a critical pair in P j,j+1
i .546

We now check that no forced vertex in X resolves a critical pair in P j,j+1
i . We show that547

every forced vertex in X has a shortest path to {nwji ,ne
j
i} ending in nwji , and a shortest path548

to {swji , se
j
i} ending in seji . It is clear for f(nwji ) and for f(seji ), as well as for all the forced549

vertices attached to neighbors of gj (in case ej has an endpoint in Vi). Indeed recall that550

the length of P (gj ,nwji ) (resp. P (gj , seji )) is four less than the distance to nwji (resp. sw
j
i )551

ignoring the path P (gj ,nwji ) (resp. P (gj , seji )). So the shortest paths from the latter forced552

vertices go to gj and then to nwji (resp. se
j
i ). Similarly in case ej+1 has an endpoint in Vi,553

the shortest paths from the forced vertices attached to the neighbors of cj+1 to {nwji ,ne
j
i}554

(resp. {swji , se
j
i}) go to gj+1, then to nwj+1

i and nwji (resp. then to sej+1
i and seji ).555

Note that all the forced vertices attached to neighbors of πji and ρji (resp. π
j+1
i and ρj+1

i )556

have a shortest path to {nwji ,ne
j
i} ending in nwji (resp. to {swji , se

j
i} ending in seji ). Finally557

due to the paths P (ν(πji , tr
j
i ), se

j
i ) and P (ν(ρji , tr

j
i ), se

j
i ), all the forced vertices attached to558

neighbors of πji and ρji have a shortest path to {swji , se
j
i} ending in seji . And due to the559

paths P (ν(πj+1
i ,blj+1

i ),nwji ) and P (ν(ρj+1
i ,blj+1

i ),nwji ), all the forced vertices attached to560

neighbors of πj+1
i and ρj+1

i have a shortest path to {nwji ,ne
j
i} ending in nwji .561

We now show that no critical pair {cj , c′j} is resolved by a forced vertex. We set Y ′ :=562

{tlji , tr
j
i ,bl

j
i ,br

j
i , tl

j
i′ , tr

j
i′ ,bl

j
i′ ,br

j
i′ ,nw

j
i , se

j
i ,nw

j
i′ , se

j
i′ , π

j
i , ρ

j
i , π

j
i′ , ρ

j
i′}, with ej ∈ E(Vi, Vi′), and563

X ′ be the connected component of G′′ − Y ′ containing gj . We showed in Lemma 3, and564

it remains true in G′′, that no vertex of Y ′ \ {πji , ρ
j
i , π

j
i′ , ρ

j
i′} resolves {cj , c′j}. We observe565

that πji and ρji have shortest paths to cj going through gj (via a vertex of {tlji , tr
j
i ,bl

j
i ,br

j
i}).566

Similarly πji′ and ρji′ have shortest paths to cj going through gj . Therefore no vertex of567

{πji , ρ
j
i , π

j
i′ , ρ

j
i′} resolves the pair {cj , c′j}. Hence by Lemma 2, no vertex outside X ′ resolves568

{cj , c′j}. The only forced vertices in X ′ are attached to neighbors of gj , thus they do not569

resolve {cj , c′j}. J570

5.2.1 MD-instance has a solution ⇒ k-MRS-instance has a solution.571

Let S be a resolving set for the Metric Dimension-instance. We show that S′ := S ∩572 ⋃
i∈[k],j∈[m] V

j
i is a solution for k-Multicolored Resolving Set. The set S \S′ is made of573

14km+14m forced vertices, none of which is in some V ji ∪P (vji,1, p
j
i )∪{q

j
i }∪P (vji,t, r

j
i )∪{s

j
i}.574

Thus by Lemma 6, S \ S′ does not resolve any pair {pji , q
j
i } or {r

j
i , s

j
i}. Now S′ is a set of575

k′′ − (14km+ 14m) = km vertices resolving all the 2km pairs {pji , q
j
i } and {r

j
i , s

j
i}. Again576

by Lemma 6, this is only possible if |S′ ∩ V ji |= 1. Thus S′ is a legal set of size k′ = km. Let577

us now check that S′ resolves every pair of P in the graph G′.578

By Lemma 7, S \ S′ does not resolve any pair of P in the graph G′′. Thus S′ resolves all579

the pairs of P in G′′. Since the distances between V ji and the critical pairs in the edge and580

propagation gadgets V ji is attached to are the same in G′ and in G′′, S′ also resolves every581

pair of P in G′. Thus S′ is a solution for the k-MRS-instance.582
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5.2.2 k-MRS-instance has a solution ⇒ MD-instance has a solution.583

For every i ∈ [k], j ∈ [m], let

F ji :=
⋃

u∈{nwj
i
,sej

i
}∪N({πj

i
,ρj

i
})\{pj

i
,qj

i
,rj

i
,sj

i
}

{f(u)}, and

Fj :=
⋃

u∈N(gj)\{cj ,c′
j
}

{f(u)}.

Let S be a solution for k-Multicolored Resolving Set. Thus |S|= km. Let F :=⋃
i∈[k],j∈[m] F

j
i ∪

⋃
j∈[m] Fj . We show that S′ := S ∪ F is a solution of Metric Dimension.

First we observe that |S′|= km+ 14km+ 14m = k′′. Since the distances between the sets
V ji and the critical pairs (of P) are the same in G′ and in G′′, the pairs of P are resolved
by S. In what follows, we show that F resolves all the other pairs. For every i ∈ [k], j ∈ [m],
we define the subset of vertices:

Πj
i :=

⋃
u∈{trj

i
,tlj

i
,brj

i
,blj

i
,bbj

i
,tcj

i
}

P (πji , u) ∪ P (vji,1, p
j
i ) ∪ {q

j
i },

Rji :=
⋃

u∈{trj
i
,tlj

i
,brj

i
,blj

i
,tbj

i
,bcj

i
}

P (ρji , u) ∪ P (vji,t, r
j
i ) ∪ {s

j
i}, and

Gj :=
⋃

u∈{trj
i
,tlj

i
,brj

i
,blj

i
,tlj

i′ ,tr
j

i′ ,bl
j

i′ ,br
j

i′ ,nw
j
i
,sej

i
,nwj

i′ ,se
j

i′}

P (gj , u) ∪ Eji ∪ E
j
i′ ∪ {c

′
j}.

Informally Πj
i (Rji , Gj , respectively) consists of the vertices on the paths incident to πji (ρji ,584

gj , respectively). Our objective is the following result.585

I Lemma 8. Every vertex in G′′ is distinguished by S′.586

We start with the forced vertices and their false twin. We denote by f ′(v) the false twin587

of the forced vertex f(v).588

I Lemma 9. All the vertices f(v) and f ′(v) are distinguished by F .589

Proof. Any vertex f(v) is distinguished by being the only vertex at distance 0 of itself590

f(v) ∈ F . Since f(v) has only two neighbors f ′(v) and v, it also resolves every pair591

{f ′(v), w} where w is not v. The pair {f ′(v), v} is resolved by any vertex f ∈ F \ {f(v)}.592

Indeed dist(f, f ′(v)) = dist(f, v) + 1. Thus f ′(v) is distinguished. J593

In general, to show that all the vertices in a set X are distinguished, we proceed in two594

steps. First we show that every internal pair of X is resolved. Then, we prove that every595

pair of X ×X is also resolved. Let us recall that X is the complement of x, here V (G′′) \X.596

For instance, the two following lemmas show that every vertex of Πj
i is distinguished by S′.597

I Lemma 10. Every pair of distinct vertices x, y ∈ Πj
i is resolved by S′.598

Proof. Let U ji be the set {tlji , tr
j
i ,bl

j
i ,br

j
i , tc

j
i ,bb

j
i}. We first consider two vertices x 6= y ∈599

P (πji , u), for some u ∈ U ji . As distG′′(πji , u) is equal to the length of P (πji , u), it holds600

that distG′′(πji , x) = distP (πj
i
,u)(π

j
i , x) 6= distP (πj

i
,u)(π

j
i , y) = distG′′(πji , y). Without loss of601

generality, we assume that dist(πji , x) < dist(πji , y). If x 6= πji , then x and y have distinct602

distances to ν(πji , u). Hence dist(f(ν(πji , u)), x) 6= dist(f(ν(πji , u)), y) and S′ resolves {x, y}.603

Now if x = πji , then f(ν(πji , u′)) resolves {x, y} for any u′ ∈ U ji \ {u}.604
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Secondly we consider x ∈ P (πji , u) and y ∈ P (πji , u′), for some u 6= u′ ∈ U ji . If605

dist(πji , x) 6= 2 + dist(πji , y), then f(ν(πji , x)) resolves {x, y}. Indeed dist(f(ν(πji , x)), x) =606

dist(πji , x) 6= 2 + dist(πji , y) = dist(f(ν(πji , x)), y). Else if dist(πji , x) = 2 + dist(πji , y), then607

f(ν(πji , y)) resolves {x, y} (since dist(πji , y) 6= 2 + dist(πji , x)).608

Two distinct vertices on P (vji,1, p
j
i ) are resolved by, say, f(ν(πji ,br

j
i )) ∈ F . A vertex of609

P (vji,1, p
j
i ) and a vertex of P (πji , u), for some u ∈ U ji , are resolved by either f(ν(πji , u)) or610

f(ν(πji , u′)) for a u′ ∈ U ji \ {u}. Finally q
j
i and a vertex in P (vji,1, p

j
i ) \ {p

j
i} are resolved by,611

say, f(ν(πji ,br
j
i )), whereas q

j
i and a vertex in P (pji , u) is resolved by either f(ν(πji , u)) or612

f(ν(πji , u′)) for a u′ ∈ U ji \ {u}. Therefore every pair of distinct vertices in Πj
i is resolved613

by F , except {pji , q
j
i } which is resolved by S. J614

I Lemma 11. Every pair {x, y} ∈ Πj
i ×Πj

i is resolved by F .615

Proof. Again let U ji be the set {tlji , tr
j
i ,bl

j
i ,br

j
i , tc

j
i ,bb

j
i}. We first assume x is in P (πji , u)616

for some u ∈ U ji \ {tr
j
i ,bl

j
i}. Let y be a vertex of Πj

i such that dist(f(ν(πji , u)), x) =617

dist(f(ν(πji , u)), y), otherwise f(ν(πji , u)) already resolves {x, y}. Every shortest path from618

f(ν(πji , u)) to y go through πji . One can observe that there is a u′ ∈ U ji \ {u} such that619

f(ν(πji , u′)) has a shortest path also going through πji . Hence f(ν(πji , u′)) has the same620

distance to y (as f(ν(πji , u))) but a larger distance to x. Hence f(ν(πji , u′)) resolves {x, y}.621

We now consider an x ∈ P (πji , u) for some u ∈ {trji ,bl
j
i}. Again let y be a vertex of Πj

i such622

that dist(f(ν(πji , u)), x) = dist(f(ν(πji , u)), y). If all the shortest paths of f(ν(πji , u)) to y623

goes through πji , we conclude as in the previous paragraph. So they go through P (ν(πji , u), seji )624

(if u = trji ) or P (ν(πji , u),nwj−1
i ) (if u = blji ). Since dist(f(ν(πji , u)), x) 6 2t − 1, it also625

holds that dist(f(ν(πji , u)), y) 6 2t− 1. The path P (ν(πji , tr
j
i ), se

j
i ) has length t and the path626

P (ν(πji ,bl
j
i ),nw

j−1
i ) has length 2t− 1. Therefore one of f(seji ), f(sej−1

i ), f(nwji ), f(nwj−1
i )627

resolves {x, y}.628

We now assume x is in P (vji,1, p
j
i ) ∪ {q

j
i } and y ∈ Πj

i . Then f(ν(πji ,br
j
i )) resolves {x, y}629

if y is not in the path P (ν(πji , tr
j
i ), se

j
i ) or P (ν(πji , u),nwj−1

i ). Otherwise at least one of630

f(ν(πji ,br
j
i )), f(ν(πji , tr

j
i )), f(ν(πji ,bl

j
i )) resolves {x, y}. In conclusion, every pair of vertices631

{x, y} ∈ Πj
i ×Πj

i is resolved by F . J632

Lemmas 10 and 11 prove that every vertex in Πj
i is distinguished by S′. Using the same633

arguments, we get symmetrically that every vertex of Rji is distinguished by S′.634

I Lemma 12. All the vertices in the paths P (ν(πji , tr
j
i ), se

j
i ), P (ν(ρji , tr

j
i ), se

j
i ), P (ν(πji , blji ),635

nwj−1
i ), P (ν(ρji , blji ),nwj−1

i ) are distinguished by F .636

Proof. Any vertex x ∈ P (ν(πji , tr
j
i ), se

j
i ) is uniquely determined by its distances to f(seji ),637

f(sej−1
i ), and ν(πji , tr

j
i ). Any vertex x ∈ P (ν(πji ,bl

j
i ),nw

j−1
i ) is uniquely determined by its638

distances to f(nwji ), f(nwj−1
i ), and ν(πji ,bl

j
i ). The two other cases are symmetric. J639

So far we showed that the vertices added in the forced set and forced vertex gadgets640

are all distinguished. We now focus on the vertices in propagation gadgets. Let ∆i :=641

Aji ∪ {nw
j
i ,ne

j
i , sw

j
i , se

j
i}.642

I Lemma 13. Every pair of distinct vertices x, y ∈ ∆j
i is resolved by S′.643

Proof. Since the distances between vertices of V ji and vertices of ∆j
i are the same between644

G′ and G′′, S resolves all the critical pairs {aji,γ , α
j
i,γ}. Thus we turn our attention to the645

pairs which are not critical pairs. Since dist(nwji , a
j
i,γ) = γ and dist(nwji , α

j
i,γ) = γ, every646

pair {aji,γ , a
j
i,γ′}, {aji,γ , α

j
i,γ′}, or {αji,γ , α

j
i,γ′}, with γ 6= γ′ is resolved by f(nwji ).647
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Gate nwji (resp. seji ) and any other vertex in ∆j
i is resolved by f(nwji ) (resp. f(seji )).648

Gate neji (resp. sw
j
i ) is resolved from any vertex of ∆j

i \ {a
j
i,1, α

j
i,1} (resp. ∆j

i \ {a
j
i,t, α

j
i,t}) by649

f(nwji ) (resp. f(seji )). Finally, ne
j
i (resp. sw

j
i ) and a vertex of {aji,1, α

j
i,1} (resp. {a

j
i,t, α

j
i,t})650

is resolved by f(seji ) (resp. f(nwji )). J651

Now when we check that a pair made of a vertex in ∆j
i and a vertex outside ∆j

i is resolved,652

we can further assume that the second vertex is not in some Πj
i ∪R

j
i since we already showed653

that these vertices were distinguished.654

I Lemma 14. Every pair {x, y} ∈ ∆j
i ×∆j

i is resolved by S′.655

Proof. We may assume that y is not a vertex that was previously shown distinguished. Thus656

y is not in some Πj
i ∪ R

j
i nor in a path of Lemma 12. Then we claim that the pair {x, y}657

is resolved by at least one of f(seji ), f(sej−1
i ), f(sej+1

i ), f(nwji ). Indeed assume that f(seji )658

does not resolve {x, y}, and consider a shortest path from f(seji ) to y. Either this shortest659

path goes through sej−1
i (resp. sej+1

i ), and in that case f(sej−1
i ) (resp. f(sej+1

i )) resolves660

{x, y}. Either it takes the path to gj (if ej has an endpoint in Vi) or to tlj+1
i , and then661

f(nwji ) resolves {x, y}. Or it takes a path to V ji , and then f(sej−1
i ) resolves {x, y}. J662

Lemmas 13 and 14 show that that every vertex in ∆j
i is distinguished by S′. The common663

neighbor of sej−1
i and tlji is distinguished by {f(sej−1

i ), f(ν(πji , tl
j
i ))}. We are now left with664

showing that the vertices in the edge gadgets, in the sets V ji , and in the paths incident to665

the edge gadgets, are distinguished.666

I Lemma 15. Every pair of distinct vertices x, y ∈ Gj is resolved by S′.667

Proof. Let vi,γ and vi′,γ′ be the two endpoints of ej , and U ji := {tlji , tr
j
i ,bl

j
i ,br

j
i , tl

j
i′ , tr

j
i′ ,bl

j
i′ ,668

blji′ ,nw
j
i , se

j
i ,nw

j
i′ , se

j
i′ , v

j
i,γ , v

j
i′,γ′}. Every pair in

⋃
u∈Uj

i
P (gj , u) is resolved. Indeed, similarly669

to Lemma 10, two distinct vertices x, y on a path P (gj , u) (u ∈ U ji ) are resolved by f(ν(gj , u)),670

while two vertices on distinct paths P (gj , u) and P (gj , u′) (u 6= u′ ∈ U ji ) are resolved by at671

least one of f(ν(gj , u)) and f(ν(gj , u′)).672

We now show that any pair in Γji := Eji ∪ E
j
i′ \ {P (gj , vji,γ), P (gj , vji,γ)} is resolved. Two673

distinct vertices x, y ∈ Γji are resolved by, say, f(ν(gj , seji )) if they are on the same path, or674

more generally if they have different distances to cj . Thus let us assume that x and y are675

at the same distance from cj . If x ∈ Eji and y ∈ Eji′ (or vice versa) then the pair {x, y} is676

resolved by the vertex in S ∩ V ji or the vertex in S ∩ V ji′ . If x 6= y ∈ Eji (resp. ∈ Eji′), then677

{x, y} is resolved by f(ν(gj ,nwji )) (resp. f(ν(gj ,nwji′))). This is the reason why we added678

an edge between ν(gj ,nwji ) and ν(cj ,bcji ) (recall Section 5.1.3).679

We now consider pairs {x, y} of
⋃
u∈Uj

i
P (gj , u)× Γji . Any of these pairs are resolved by680

at least one of f(ν(gj , u)), f(ν(gj , u′)), f(ν(gj ,nwji )), f(ν(gj ,nwji′)), where x is on the path681

P (cj , u) and u′ is any vertex in U ji \ {u,nw
j
i ,nw

j
i′}. Finally c′j is distinguished from all the682

other vertices in G′′ but cj by the forced vertices attached to the neighbors of gj .683

Thus every pair {x, y} in Gj is resolved by F , except {cj , c′j} which is resolved by S. J684

I Lemma 16. Every pair {x, y} ∈ Gj ×Gj is resolved by F .685

Proof. Consider an arbitrary pair {x, y} ∈ Gj × Gj . We can assume that x is not c′j ,686

and that y is in one different Gj′ or in one V j
′′

i′′ (since we already showed that the other687

vertices are distinguished). Again let vi,γ and vi′,γ′ be the two endpoints of ej , and U ji :=688

{tlji , tr
j
i ,bl

j
i ,br

j
i , tl

j
i′ , tr

j
i′ ,bl

j
i′ , bl

j
i′ ,nw

j
i , se

j
i ,nw

j
i′ , se

j
i′ , v

j
i,γ , v

j
i′,γ′}. If x is on a path P (gj , u),689

then at least one of f(ν(gj , u)) and f(ν(gj , u′)), with u′ being any vertex in U ji \{u}, resolves690
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{x, y}. If instead x is on a path P (cj , u) with u ∈ {vji,γ−1, v
j
i,γ+1, v

j
i′,γ′−1, v

j
i′,γ′+1}, then691

at least one of f(ν(gj ,nwji )), f(ν(gj ,nwji′)), f(ν(gj , u′)), with u′ being any vertex in U ji ,692

resolves {x, y}. J693

Lemmas 15 and 16 show that every vertex in Gj is distinguished by S′. We finally show694

that the vertices in V ji are distinguished. A pair of distinct vertices x, y ∈ V ji is resolved695

by f(nwji ). We thus consider a pair {x, y} ∈ V ji × V
j
i . We can further assume that y is in696

some V j
′

i′ , since all the other vertices have already been shown distinguished. Then {x, y} is697

resolved by at least one of f(nwji ), f(nwj
′

i′ ), the vertex in S ∩ V ji , and the vertex in S ∩ V j
′

i′ .698

This finishes the proof of Lemma 8. Thus S′ is a solution of the Metric Dimension-instance.699

The reduction is correct and it takes polynomial-time in |V (G)| to compute G′′. The700

maximum degree of G′′ is 16. It is the degree of the vertices gj (nwji and seji have degree701

at most 11, πji and ρji have degree 8, and the other vertices have degree at most 5). The702

last element to establish Theorem 1 is to show that pw(G′′) is in O(k). Then solving703

Metric Dimension on constant-degree graphs in time f(pw)no(pw) could be used to solve704

k-Multicolored Independent Set in time f(k)no(k), disproving the ETH.705

5.3 G′′ has pathwidth O(k)706

We use the pathwidth characterization of Kirousis and Papadimitriou [19] mentioned in the707

preliminaries, and give a strategy with O(k) searchers cleaning all the edges of G′′. A basic708

and useful fact is that the searching number of a path is two.709

I Lemma 17. Two searchers are enough to clean a path u1u2 . . . un.710

Proof. We place two searchers at u1 and u2. This cleans the edge u1u2. Then we move711

the searcher in u1 to u3. This cleans u2u3 (while u1u2 remains clean). Then we move the712

searcher in u2 to u4, and so on. J713

I Lemma 18. pw(G′′) 6 90k + 83.714

Proof. For every j ∈ [m], let Sj := N [gj ] ∪ Xj ∪
⋃
i∈[k] N [{vji,1, v

j
i,t, π

j
i , ρ

j
i}]∪{nw

j
i ,ne

j
i , sw

j
i ,715

seji}. We notice that |Sj |6 17 + 6 + 30k + 4 = 30k + 27. Another important observation is716

that S1 ∪Sj disconnects the first j columns of G′′ from the rest of G′′. Finally the connected717

components G′′ − (Sj ∪ Sj+1) that are not the main component (i.e., containing more than718

half of the graph if m > 4) are all paths.719

We now suggest the following cleaning strategy with at most 90k+ 83 searchers. We place720

one searcher at each vertex of S1 ∪ S2 ∪ S3. This requires 90k + 81 searchers. By Lemma 17,721

with two additional searchers we clean all the connected components of G′′ − (S1 ∪ S2 ∪ S3)722

that are paths. We then move all the searchers from S2 to S4, and clean all the connected723

components of G′′ − (S1 ∪ S3 ∪ S4) that are paths. Since S1 ∪ S3 is a separator, the edges724

that were cleaned during the first phase are not recontaminated when we move from S2 to725

S4. We then move the searchers of S3 to S5, and so on. Eventually the searchers reach726

S1 ∪ Sm−1 ∪ Sm, and the last contaminated edges are cleaned. J727

6 Perspectives728

The main remaining open question is whether or not Metric Dimension is polytime solvable729

on graphs with constant treewidth. In the parameterized complexity language, now we know730

that MD/tw is W[1]-hard, is it in XP or paraNP-hard? We believe that the tools and ideas731
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developed in this paper could help answering this question negatively. The FPT algorithm of732

Belmonte et al. [2] also implies that Metric Dimension is FPT with respect to tl + k were733

k is the size of the resolving set, due to the bound ∆ 6 2k + k − 1 [18]. What about the734

parameterized complexity of Metric Dimension with respect to tw+k? We conjecture that735

this problem is W[1]-hard as well, and once again, treewidth will contrast with tree-length.736

It appears that bounded connected treewidth or tree-length is significantly more helpful737

than the mere bounded treewidth when it comes to solving MD. We wish to ask for the738

parameterized complexity of Metric Dimension with respect to ctw only (on graphs with739

arbitrarily large degree). Finally, it would be interesting to determine if planarity can740

sometimes help to compute a metric basis. Therefore we also ask all the above questions in741

planar graphs.742
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Symbol/term Definition/action
{aji,γ , α

j
i,γ} critical pair of the propagation gadget P j,j+1

i

Aji set of vertices
⋃
γ∈[t]{a

j
i,γ , α

j
i,γ}

bbji bottom brown vertex, ν(vji,t, r
j
i )

bcji bottom cyan vertex (smallest index γ)
blji neighbor of vji,t in P

j−1,j
i

blue vertex one of the four neighbors of V ji in the propagation gadgets
brji neighbor of vji,t in P

j,j+1
i

brown vertex vertices ν(vji,1, p
j
i ) and ν(vji,t, r

j
i )

{cj , c′j} critical pair of the edge gadget G(ej)
cyan vertex neighbor of V ji in the paths to G(ej)

Eji vertices in the paths from V ji to G(ej)
eji,γ alternative labeling of the cyan vertices, neighbor of vji,γ
F set of all forced vertices,

⋃
i∈[k],j∈[m] F

j
i ∪

⋃
j∈[m] Fj

F ji set of forced vertices attached to neighbors of {πji , ρ
j
i ,nw

j
i , se

j
i}

Fj set of forced vertices attached to neighbors of gj
f(v) forced vertex attached to a vertex v
f ′(v) false twin of f(v)
G(ej) edge gadget on {gj , cj , c′j} between V

j
i and V ji′ , where ej ∈ E(Vi, Vi′)

mcji middle cyan vertex (not top nor bottom)
neji north-east gate of P j,j+1

i

nwji north-west gate of P j,j+1
i

neji , sw
j
i resolve the critical pairs of P j,j+1

i

nwji , se
j
i do not resolve the critical pairs of P j,j+1

i

ν(u, v) neighbor of u in the path P (u, v)
P list of critical pairs

{pji , q
j
i } pair only resolved by vertices in V ji ∪ P (vji,1, p

j
i ) ∪ {q

j
i }

πji gate of {pji , q
j
i }, linked by paths to most neighbors of V ji

P j,j+1
i propagation gadget between V ji and V j+1

i

P (u, v) path added in the construction expressly between u and v
{rji , s

j
i} pair only resolved by vertices in V ji ∪ P (vji,t, r

j
i ) ∪ {s

j
i}

ρji gate of {rji , s
j
i}, linked by paths to most neighbors of V ji

seji south-east gate of P j,j+1
i

swji south-west gate of P j,j+1
i

t size of each Vi
tbji top brown vertex, ν(vji,1, p

j
i )

tcji top cyan vertex (largest index γ)
tlji neighbor of vji,1 in P j−1,j

i

trji neighbor of vji,1 in P j,j+1
i

Vi partite set of G
V ji “copy of Vi”, stringed by a path, in G′ and G′′
vji,γ vertex of V ji representing vi,γ ∈ V (G)
Wj endpoints in V ji ∪ V

j
i′ of paths from V ji ∪ V

j
i′ to G(ej)

X set containing all the sets V ji for i ∈ [k] and j ∈ [m]
Xj neighbors of Wj on the paths to G(ej) (cyan vertices)

Table 1 Glossary of the construction.
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