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Abstract4

We investigate the parameterized complexity in a and b of determining whether a graph G5

has a subset of a vertices and b edges whose removal disconnects G, or disconnects two6

prescribed vertices s, t ∈ V (G).7
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1 Introduction10

Vertex- and edge-connectivity are fundamental concepts in graph theory and combinatorial11

optimization. They provide a basic measure of the vulnerability of a network with respect to12

failures, and serve as building blocks or lie at the heart of several more advanced concepts (such13

as flows, well-linkedness, and expanders). A graph G with at least k + 1 vertices is k-vertex-14

connected if the removal of any k− 1 vertices of G leaves a connected graph. Similarly, a graph15

G is k-edge-connected if no removal of k− 1 edges can disconnect G.16

It is also very common to consider the rooted connectivity, or (s, t)-connectivity. For rooted17

vertex-connectivity, we are also given two non-adjacent, distinct vertices s, t of the graph G, the18

roots, and we ask whether the removal of any k− 1 vertices distinct from s and t leave the roots19

s and t in the same connected component. For rooted edge-connectivity, the vertices s, t are20

arbitrary, meaning that the edge st may be present in the graph G, and ask whether the removal21

of any k− 1 edges leaves some path from s to t.22

To make the distinction clear, we talk about rooted connectivity when we want to disconnect23

two prescribed vertices and about global connectivity when we want to obtain (at least) two24

connected components.25

An alternative interpretation of the rooted connectivity is through hitting sets of the s-t paths26

of the graph. This connection is made explicit by Menger’s theorems, that relate the rooted vertex-27

connectivity to the number of internally vertex-disjoint paths from s to t and the edge-connectivity28

to the number of edge-disjoint paths from s to t. Since the number of vertex and edge disjoint29

paths can be computed in polynomial time using algorithms for maximum flow, we can compute30

the rooted and the global vertex- and edge-connectivity of a graph in polynomial time.31

Beineke and Harary [3] considered a natural version of the rooted connectivity where vertices32

and edges are removed simultaneously and claimed a Menger-like theorem combining vertex and33

edge-disjoint paths. For integers a, b, an (a, b)-mixed cut is a pair (W, F) such that W ⊂ V (G),34

F ⊂ E(G), |W | ≤ a, |F | ≤ b and (G − F)−W is disconnected. For the rooted version we define35
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Figure 1: Example of a 3-vertex-connected graph with arbitrarily large edge-connectivity (in
particular, edge-connectivity 2+ 3 = 5), but yet admitting a (2, 2)-mixed cut. Vertices inside each
single shaded region form a clique; edges of those cliques are not drawn to keep readability. (In
the example, the graph is 5-edge-connected, as we have a “spanning-tree-like of thickness 5".)

a rooted (a, b)-mixed cut for s and t to be a pair (W, F) such that W ⊂ V (G) \ {s, t}, F ⊂ E(G),36

|W | ≤ a, |F | ≤ b and in G − (W ∪ F) there is not path from s to t. The k-vertex-connectivity is37

equivalent to the lack of (k− 1, 0)-mixed cuts, while the k-edge-connectivity is equivalent to the38

lack of (0, k− 1)-mixed cuts (possibly with respect to roots s, t).39

The claim of Beineke and Harary was that, if G has no rooted (a − 1, b)-mixed cut and no40

rooted (a, b − 1)-mixed cut for s and t, then there exists a + b edge-disjoint paths between s41

and t, of which a are internally pairwise disjoint. Note that, contrary to Menger’s theorem, the42

implication is claimed only in one direction, and thus it does not provide a characterization.43

Nevertheless, Mader [12] pointed out that the proof in [3] is not satisfactory, and the truth of the44

claim is currently unclear. The problem has been recently revisited by Johann et al. [16] for small45

values of b as well as for graphs of treewidth 3. The behavior of mixed connectivity of Cartesian46

product of graphs was considered by Erveš and Žerovnik [8].47

Sadeghi and Fan [15] claimed that G has no (a, b− 1)-mixed cut if and only if G is (a+ 1)-48

vertex-connected and (a+ b)-edge-connected. While the forward direction is simple, the reverse49

direction of the implication is wrong and has been retracted by the authors. The falsity of the claim50

is observed in [16] which credits the third author, Streicher. As Figure 1 shows, the latter direction51

cannot be corrected if we replace the property of (a+ b)-edge-connectivity by `-edge-connectivity52

for any ` depending on a and b. As a consequence, since some of the results in [9] are using this53

erroneous characterization, their validity is unclear.54

Our focus in this paper is to analyze the computational complexity of deciding whether a graph55

has a global (a, b)-mixed cut or a rooted (a, b)-mixed cut, when parameterized by a and/or b.56

More precisely, we consider the following computational problems.57

GLOBAL-MIXED-CUT58

Input: An undirected graph G, and two positive integers a and b.59

Question: Can G be disconnected by the removal of at most a vertices in V (G) and at60

most b edges in E(G)?61

ROOTED-MIXED-CUT62

Input: An undirected graph G, two distinct vertices s, t ∈ V (G), and two positive63

integers a and b.64

Question: Can the removal of at most a vertices in V (G) \ {s, t} and at most b edges65

in E(G) leave s and t in two distinct connected components?66
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These problems can also be stated equivalently as connectivity questions, where one has to be67

careful on how to define mixed-connectivity.68

The central focus in parameterized complexity [6, 7] is whether problems can be solved in69

time f (k)nO(1), where n is the input size, and k is a parameter value of the instance. Algorithms70

with such a running time are called fixed-parameter tractable, or FPT for short, in the parameter k.71

In our case, we have two natural parameters: a and b. We wonder if these mixed-cut problems72

on n-vertex graphs can be solved in time f (a)nd , g(b)nd or h(a, b)nd , for some functions f (·),73

g(·), h(·) and some constant d.74

Previous results. The following problem will be relevant for the forthcoming discussion.75

BIPARTITE MAXIMUM k-VERTEX COVER (or BIPARTITE PARTIAL COVER)76

Input: An undirected bipartite graph G, two positive integers k and p.77

Question: Are there k vertices in V (G) touching at least p edges in E(G)?78

This problem generalizes the classic VERTEX COVER problem on bipartite graphs, by setting79

p = |E(G)|. However it turns out to be a difficult problem, unlike BIPARTITE VERTEX COVER.80

Using the fact that BIPARTITE MAXIMUM k-VERTEX COVER is NP-hard [2, 4, 10], Rai et al. [13]81

and Johann et al. [16] have noted that that ROOTED-MIXED-CUT is NP-hard. The basic idea is to82

attach the vertex s to every vertex of one side of the bipartition and the vertex t to every vertex on83

the other side. Now disconnecting s and t by removing k vertices and at most |E(G)| − p edges is84

equivalent to finding in the bipartite graph k vertices covering at least p edges, which is precisely85

BIPARTITE MAXIMUM k-VERTEX COVER.86

Note that this reduction does not imply NP-hardness for GLOBAL-MIXED-CUT; in the constructed87

graph, a global mixed-cut could very well disconnect a different pair than s and t. We observe88

also that BIPARTITE MAXIMUM k-VERTEX COVER is known to be FPT in k [1] and in |E(G)| − p (i.e.,89

number of edges not touched by the k vertices). Therefore the existing reduction does not imply90

parameterized hardness by a only nor by b only.91

In the same paper by Rai et al. [13] it is shown that ROOTED-MIXED-CUT, and even a far-92

reaching generalization of it, is fixed-parameter tractable (FPT) in a and b combined. They93

develop a self-contained algorithm running in time 2O((a+b)3 log (a+b))n4 log n.94

The problem can be interpreted as an optimization problem: remove a vertices and minimize95

the edge-connectivity (or rooted edge-connectivity) of the remaining graph. This problem, and96

generalizations of it, have been considered in the context approximation algorithms; see [5] and97

references therein.98

Our contribution. In Section 3 we show that GLOBAL-MIXED-CUT is in fact also NP-complete.99

Actually we show that GLOBAL-MIXED-CUT, and hence ROOTED-MIXED-CUT, are even W[1]-hard100

parameterized by b only (i.e., the maximum number of edges to remove). We also prove that101

ROOTED-MIXED-CUT is W[1]-hard parameterized by a only (i.e., the maximum number of vertices102

to remove).103

As noted before, Rai et al. [13] show that ROOTED-MIXED-CUT is fixed-parameter tractable104

in a + b with a running time of 2O((a+b)3 log (a+b))n4 log n for graphs with n vertices. One may105

wonder whether the known heavy machinery, that one could summarize as “small treewidth or106

large clique minor or large flat wall”, used for instance to solve k-Disjoint Paths in cubic [14] and107

then quadratic time [11], can also solve ROOTED-MIXED-CUT in quadratic time. In Section 4 we108

show that a straightforward application of the technique does not work; a bottleneck is the case109

of large clique minor. This of course does not exclude the option for faster algorithms modifying110

the approach.111
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2 Preliminaries and notation112

For a graph G and a subset S of its vertices, G[S] is the subgraph of G induced by S. Thus,113

G[S] = (S, {uv ∈ E(G) | u, v ∈ S}). For a graph G and two disjoint subsets of vertices X , Y ⊆ V (G),114

we denote by EG(X , Y ) the set of edges with one endpoint in X and another endpoint in Y . Thus,115

EG(X , Y ) = {x y ∈ E(G) | x ∈ X , y ∈ Y }.116

We provide a quick, informal overview of the concepts we will use from parameterized117

complexity and refer the interested reader to the standard textbooks, such as [6, 7], for a118

comprehensive treatment.119

In the k-CLIQUE problem, given a graph, one is asked whether it contains a clique of size k,120

that is, a subset of k vertices with all the edges between them. The k-CLIQUE problem is a121

W [1]-complete problem, hence unlikely to have an FPT algorithm; see [7, Theorem 21.2.4] or [6,122

Chapter 13] for statements of this classical result. The inputs of parameterized problems are123

pairs, formed by an instance I and a parameter value κ(I), related to a feature of the instance124

other than its size. The most natural parameters are the size of the desired solution or integer125

thresholds used in the problem definition.126

Consider a parameterized problem Π with parameter κ. In an fpt-reduction from k-CLIQUE127

to Π, we reduce a k-CLIQUE-instance (G, k) to a Π-instance (I ,κ(I)) such that κ(I) depends only128

on k, not on the size of G. An fpt-reduction from k-CLIQUE to Π shows that Π is W[1]-hard with129

respect to the parameter κ. The intuition is that, if we would be able to solve the problems of Π in130

time f (κ(I)) · p(|I |) for some function f (·) and some polynomial p, then we could solve k-CLIQUE131

in time g(k) · q(n) for a function g(·) and a polynomial q.132

Another cornerstone is the Exponential Time Hypothesis (ETH); for its precise definition we133

refer to the textbooks. One of the important consequences of the ETH, which is potentially weaker134

than the ETH, is that a SAT problem with n variables and m clauses cannot be solved in time135

2o(n)p(n, m) for any polynomial p(·, ·). Assuming the ETH, there is no algorithm to solve the136

k-CLIQUE problem in f (k)no(k) time for any computable function f (·); see [7, Theorem 29.7.1]137

or [6, Theorem 14.21].138

Assume that we have an fpt-reduction from k-CLIQUE with parameter k to instances I of Π139

with parameter κ such that κ(I) = O(k). Under the ETH, we can conclude that the instances I of140

Π cannot be solved in time g(k)|I |o(κ) for any computable function g(·). Otherwise, we could use141

the reduction to solve the k-CLIQUE problem in g(O(k))no(O(k)), which would contradict the ETH.142

3 Parameterized hardness with respect to a only or b only143

Theorem 1. ROOTED-MIXED-CUT is W [1]-hard parameterized by a only. Moreover, unless the144

ETH fails, there is no computable function f such that ROOTED-MIXED-CUT can be solved in time145

f (a)|V (H)|o(a) on instances (H, s, t, a, b).146

Proof. We reduce from the k-CLIQUE problem, which is W[1]-complete parameterized by the147

solution size k, and remains so when restricted to inputs (G, k) satisfying |E(G)| ¾
�k

2

�

; see148

the discussion above. Let (G, k) be an instance of k-CLIQUE. We build an equivalent instance149

(H, s, t, a := k, b := |E(G)| −
�k

2

�

) of ROOTED-MIXED-CUT in the following way. See Figure 2 for an150

example. Let V = V (G), E = E(G) and m= |E|.151

We start the description of H with the vertex s that we make adjacent to a clique C of size152

a+ b+ 1. We add to H all the vertices V , without any edges between them, and make C fully153

adjacent to each vertex of V . We add to H an independent set ZE in one-to-one correspondence154

with the edges of G. We denote by ze the vertex corresponding to the edge e ∈ E(G), and we link155

ze ∈ ZE to v ∈ V whenever v is an endpoint of e. We finally add the new vertex t that we fully156

link to ZE . To summarize, V (H) := {s} ∪ C ∪ V ∪ ZE ∪ {t}, and the edges of H can be described157
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v5
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zv2v3 zv1v3 zv1v4 zv1v5 zv3v4 zv4v5zv1v2 zv2v4G

H = H(G, 4)

clique C

vertex-edge
incidence graph

V

ZE

t

s

Figure 2: Example showing the reduction in the proof of Theorem 1. On the left side we have
an instance (G, 4) for the problem k-CLIQUE, and on the right we have the instance (H, s, t, a, b)
with a = 4 and b = 8− 6= 2 for ROOTED-MIXED-CUT. All the vertices in the shaded region form
a clique.

as: the clique C is fully adjacent to the independent set V (G)∪ {s}, t is fully adjacent to ZE , and158

EH(V, ZE) is (isomorphic to) the vertex-edge incidence graph of G. We allow to delete up to a := k159

vertices and b := m−
�k

2

�

edges. Note that by our assumption, b is non-negative. We now show160

the correctness of the reduction: the graph G has a k-clique if and only if the graph H has an161

(a, b)-mixed cut for s and t.162

Let us assume that G admits a k-clique S ⊂ V . See Figure 3 to see the construction in the163

example of Figure 2. Let Z ′ ⊂ ZE be the set of vertices ze ∈ ZE such that e ∈ E(G) has at least one164

endpoint outside S, and let F ⊆ E(H) be all the edges between t and Z ′. We claim that (S, F) is165

an (a, b)-mixed cut for s and t, hence a solution for ROOTED-MIXED-CUT. The set S is indeed of166

size a = k, and the number of edges of F is |Z ′| = m− e(S), where e(S) is the number of edges in167

G[S]. Since S is a k-clique in G, we have e(S) =
�k

2

�

and thus |F | = m−
�k

2

�

= b. It only remains to168

argue that there is no path between s and t in H ′ := (H − F)− S. The only vertices in H ′ adjacent169

to t are the vertices ze ∈ ZE for which e is an edge of the clique induced by S, namely the vertices170

ZS := ZE \ Z ′. On the other hand, since NH(ZS) = {t} ∪ S, in the graph H ′ the vertices ZS are171

only adjacent to t. We conclude that {t} ∪ ZS is a (maximal) connected component in H ′, and172

therefore there is no s-t path in H ′.173

We now assume that there is a solution for the ROOTED-MIXED-CUT instance. A first observation,174

as C has size a+ b+1, is that one cannot disconnect s from any remaining vertex of V by removing175

vertices of C and edges incident to C (within their respective limit of a and b). It is therefore176

useless to remove vertices of C or edges incident to C . This also implies that the solution has to cut177

{s}∪ C ∪ V (or rather what is left of it) from t. Among all the mixed cuts separating s from t with178

at most a+ b objects in total (mixing vertices and edges), we consider one using the minimum179

number a′ ¶ a of vertices and, subject to this, using the minimum number b′ ¶ b + (a − a′)180

of edges. We next note that removing a vertex in ZE is a waste of the vertex-budget because181

instead of removing the vertex ze one can just as well remove the edge ze t. (Here we use the182

minimization of a′.) Indeed, for any edge uv of G, whether the vertices u and v keep being183
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t

v5

clique C

zv2v3 zv1v3 zv1v4 zv1v5 zv3v4 zv4v5zv1v2 zv2v4

v1 v2 v3 v4

vertex-edge
incidence graph

V

ZEv2

v3

v4

v1

v5

G

H = H(G, 4)

Figure 3: The (4, 2)-cut in the graph of Figure 2 obtained from the 4-clique {v1, v2, v3, v4} in G.

connected is independent of the removal of zuv because of C; it just depends on whether u and v184

are being removed or not. We can thus assume that the mixed cut only removes vertices of V and185

some additional edges. Again instead of deleting an edge vze in the incidence graph H[V ∪ ZE],186

we can assume that we remove the edge ze t. Indeed, the removal of vzuv to put v and zuv in187

different components requires that either we remove also uzuv or u. (The vertex t cannot be188

removed.) In either case we could as well remove only the edge zuv t (and perhaps change the189

connected component of zuv).190

We have seen that we can restrict our attention to solutions that remove only vertices of V and191

edges of EH({t}, ZE). Let S ⊆ V be the subset of a′ ¶ a vertices removed by the solution and note192

that we are removing at most b+ a− a′ = m−
�a

2

�

+ a− a′ edges of EH({t}, ZE) in the solution.193

Every edge of EH({t}, ZE) that does not correspond to an edge in G[S] has to be removed, in194

order to disconnect s from t. As at most m−
�a

2

�

+ a− a′ edges may be removed, it follows that195

e(S) ¾
�a

2

�

+ a′ − a. Since S contains a′ vertices, we get
�a′

2

�

¾ e(S) ¾
�a

2

�

+ a′ − a. Whenever196

a = k ≥ 3, which we may assume, this is only possible if a = a′ and e(S) =
�a

2

�

, implying that S is197

a clique of size a = k in G.198

The graph H has |V | + m + a + b + 3 vertices, can be built in polynomial time, and the199

parameter a is set equal to k. Therefore the problem inherits the hardness of k-CLIQUE, namely200

W[1]-hardness and the claimed ETH lower bound.201

An algorithm with matching running time nO(a) (even na+O(1)) is immediate by running202

through all subsets S ⊂ V (H) on up to a vertices, and trying to find an edge-(s, t)-cut of cardinality203

at most b on each instance H − S. In the previous reduction, we have vertices of degree three204

(each vertex of ZE), so those vertices can be disconnected from the rest of the graph (as long as205

a+ b ¾ 3). Therefore it does not imply any hardness for GLOBAL-MIXED-CUT.206

We use a different strategy to show that GLOBAL-MIXED-CUT is NP-hard. The same reduction207

even shows W[1]-hardness parameterized by the number of removed edges of both GLOBAL-208

MIXED-CUT and its rooted version.209

Theorem 2. GLOBAL-MIXED-CUT and ROOTED-MIXED-CUT are NP-hard and W [1]-hard parameter-210

ized by b only.211
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zv2v3 zv1v3 zv1v4 zv1v5 zv3v4 zv4v5zv1v2 zv2v4zv2v3 zv1v3 zv1v4 zv1v5 zv3v4 zv4v5zv1v2 zv2v4

Z

Y

Figure 4: Example showing the reduction in the proof of Theorem 2. On the left side we have an
instance (G, 4) for the problem k-CLIQUE, and on the right we have the instance (H, a, b) with
a = 8−

�4
2

�

+ 4 = 6 and b =
�4

2

�

= 6 for GLOBAL-MIXED-CUT. All the vertices in each of the shaded
regions form a clique.

v2

v3

v4

v1

v5

G

H = H(G, 4) YE

V

ZE

vertex-edge
incidence graph

st

D2 D1

zv4v5zv4v5

Z

Y

v5v1 v2 v3 v4

zv2v3 zv1v3 zv1v4 zv1v5 zv3v4zv1v2 zv2v4zv2v3 zv1v3 zv1v4 zv3v4zv1v2 zv2v4 zv1v5

yv4v5yv2v3 yv1v3 yv1v4 yv1v5 yv3v4yv1v2 yv2v4

Figure 5: The (a = 6, b = 6)-cut in the graph of Figure 4, due to the 4-clique {v1, v2, v3, v4} in G.

Proof. We reduce again from k-CLIQUE. Let G be the instance of k-CLIQUE. We assume without212

loss of generality that k > 5. Set V = V (G), E = E(G) and m = |E|. We build (H, a, b), instance of213

GLOBAL-MIXED-CUT, as follows. See Figure 4 for an example. The whole graph H is partitioned214

into two cliques Y ∪ Z with Y := V ∪ YE ∪ D1 and Z := ZE ∪ D2, where both YE and ZE are sets of215

vertices in one-to-one correspondence with E, and D1 and D2 are two sets, each of size a+ b+1, to216

force a certain structure. We denote by ye (resp. ze) the vertex of YE (resp. of ZE) corresponding217

to the edge e ∈ E(G). In addition to the edges of the cliques Y and Z , we add the incidence graph218

of G between V and ZE . We also add each edge yeze for each e ∈ E(G); thus we have a matching219

between between YE and ZE . We set a := m−
�k

2

�

+ k and b :=
�k

2

�

.220

We now show the correctness of the reduction: the graph G has a k-clique if and only if the221

graph H has an (a, b)-mixed cut, under the assumption that k > 5.222

Let us suppose that there is a clique S of size k in G. Let Z ′ the m −
�k

2

�

vertices of ZE223

which do not have both endpoints in S. Let F be the
�k

2

�

edges of EH(ZE , YE) incident to the224

vertices ZE \ Z ′. We claim that (S ∪ Z ′, F) is an (a, b)-mixed cut in H. For the sizes, note that225

|S ∪ Z ′|= |S|+ |Z ′|= k+m−
�k

2

�

= a and |F |=
�k

2

�

= b. Regarding the property of being a cut,226

since H[V ∪ ZE] is the incidence graph of G, the only edges between Y \ S and Z \ Z ′ are the
�k

2

�

227

edges between Z \ Z ′ and YE , that is F . See Figure 5 for the mixed cut that we construct for the228

positive instance of Figure 4.229

Now let us assume that the GLOBAL-MIXED-CUT-instance instance has an (a, b)-mixed cut230

(W ⊆ V (H), F ⊆ E(H)). Let WY := W ∩ Y and WZ := W ∩ Z . Because of the sets D1 and D2,231

|Y |> a+b+1 and |Z |> a+b+1. Hence it is not helpful to remove edges in the induced subgraphs232

H[Y ] or H[Z], and we can assume that F ⊆ EH(Y, Z). The problem is therefore equivalent to233

removing at most a vertices so that there are at most b edges between what is left of Y and what234

is left of Z . Since it is always better to remove the vertex ze than the vertex ye, one can and shall235

assume that WY ⊆ V and WZ ⊆ ZE .236

Let us analyze |WY | and |WZ |. We will use the following property, which follows from the fact237
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that the function x 7→ (x2 − x)/2− 2x is a parabola with minimum at x = 5/2.238

∀k > 5 and k > t ≥ 0 :
�

k
2

�

− 2k >
�

t
2

�

− 2t. (1)239

First note that, since |F |= b =
�k

2

�

, the matching EH(ZE \WZ , YE) should have at most
�k

2

�

edges240

left, which means that ZE \WZ should have at most
�k

2

�

vertices, and thus |WZ | ≥ m−
�k

2

�

. The241

remaining budget of a implies that we remove at most k vertices WY ⊆ V . In short, |WY | ≤ k.242

We next show that |WY | = k. Assume, for the sake of reaching a contradiction, that the243

solution is removing t < k vertices WY ⊆ V and a− t = m−
�k

2

�

+k− t vertices WZ ⊂ ZE . We count244

the remaining edges from the perspective of ZE \WZ . To bound the edges remaining between245

ZE and V , we note that each vertex of ZE \WZ has exactly two neighbors at V , and at most246

|E(G[WY ])| ≤
�|WY |

2

�

=
� t

2

�

vertices of ZE \WZ have both neighbors in WY . Thus, each vertex of247

ZE \WZ , but for
� t

2

�

of them, have at least one neighbor in V \WY . In short, we have248

|EH(V \WY , ZE \WZ)| ≥ |ZE \WZ | −
�

t
2

�

= m−
�

m−
�

k
2

�

+ k− t
�

−
�

t
2

�

249

=
�

k
2

�

− k+ t −
�

t
2

�

,250

251

while the number of remaining edges between ZE and YE is at least252

|EH(YE , ZE \WZ)| ≥ m−
�

m−
�

k
2

�

+ k− t
�

=
�

k
2

�

− k+ t253

This means that, after the removal of W ⊆ V ∪ ZE , the number of edges between Y and Z that254

remain is255

|EH(V \WY , ZE \WZ)|+ |EH(YE , ZE \WZ)| ≥ 2
�

k
2

�

− 2k+ 2t −
�

t
2

�

>

�

k
2

�

= b,256

where we have used (1) for the last inequality. This means that removing t < k vertices WY ⊂ V257

we cannot obtain an (a, b)-mixed cut, and therefore it must be |WY |= k.258

From |WY | = k and the fact that we only remove vertices in V∪ZE , we obtain that |WZ | = m−
�k

2

�

259

and F is the
�k

2

�

edges in EH(ZE \WZ , YE). As any of the remaining vertices in ZE \WZ corresponds260

to an edge linking vertices of WY , the set WY is a clique in G with k vertices.261

The graph H has |V |+ 2(m+ a + b + 1) vertices, can be built in polynomial time, and the262

parameter b is equal to
�k

2

�

. Therefore the problem GLOBAL-MIXED-CUT is NP-hard and inherits263

the W[1]-hardness of k-CLIQUE. The same hardness immediately holds for ROOTED-MIXED-CUT264

by calling s one vertex of D1, and t one vertex of D2.265

4 Quadratic FPT algorithm?266

Rai et al. [13] show that ROOTED-MIXED-CUT can be solved in time 2O((a+b)3 log (a+b))n4 log n for267

graphs with n vertices. Thus, the problem is fixed-parameter tractable in a+ b. This implies that268

the GLOBAL-MIXED-CUT is also fixed-parameter tractable, as we can try all n2 pairs of vertices for s269

and t, giving a running time of n2 ·2O((a+b)3 log (a+b))n4 log n = 2O((a+b)3 log (a+b))n6 log n. A slightly270

better asymptotic running time can be obtained observing that it suffices to take a subset U of271

V (G) with a+ 1 vertices and check the existence of a rooted s-t mixed separator for all the pairs272

(s, t) ∈ {(u, v) | u ∈ U , v ∈ V (G), u 6= v}.273

Indeed, if there exists an (a, b)-mixed separator (W, F), where W ⊂ V (G), F ⊂ E(G), |W | ≤ a274

and |F | ≤ b, then at least one of the vertices of U is not in W because |U | = a + 1. When we275
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try a pair (s, t) with s ∈ U \W and t in the component of G − (W ∪ F) that does not contain s,276

we will find an (a, b)-mixed cut for s and t. (Possibly we find (W, F) or another one.) Thus, we277

need to invoke the algorithm Rai et al. (a+ 1)(n− 1) times, achieving a total running time of278

O(an) · 2O((a+b)3 log (a+b))n4 log n= 2O((a+b)3 log (a+b))n5 log n.279

One of the standard approaches to try to obtain a faster FPT algorithm for ROOTED-MIXED-CUT280

is the technique used for the k-Disjoint-Paths problem. Kawarabayashi et al. [11] show how to281

solve the problem in O(n2) time for any constant k, improving the previous cubic-time algorithm282

algorithm by Robertson and Seymour [14], as part of their graph minors project. Both papers283

employ the same basic structure. In the following we show that the straightforward application284

of that idea does not apply here. Some familiarity with the general structure of [14] or [11] is285

convenient to follow the discussion.286

The basic idea in those works is to split the algorithm into three cases: the graph has small287

treewidth, the graph has a large flat minor, or the graph has a large clique minor. Let us concentrate288

on the last case: the graph G has a large clique-minor. For the sake of the discussion, we can289

directly assume that G contains a large complete graph K` that is disjoint from s and t, where290

` ≥ 3a + 3b + 3 may depend on a and b. (Usually one would have ` = 3a + 3b + 3 or some291

other ` depending on a, b linearly, depending on how the discussion continues.) The algorithm292

then considers two cases, depending on the minimum-size vertex cut S separating {s, t} from293

some vertex v of K`. This means that the vertex set of G can be expressed as V (G) = A∪ B where294

s, t ∈ A, some vertex of K` is in B, there is no edge from A\B to B \A, and the size of the separator295

S = A∩ B is minimized. In [14], the set B is also chosen inclusion-wise minimal. If the size of S is296

large, then one can find a+ b vertex disjoint paths from s to t, and thus there is no (a, b)-mixed297

cut; see [11, Theorem 4.1]. If the size of S is small, for the disjoint paths problem, one can show298

that an equivalent instance is obtained by removing B \ A and connecting all the vertices of S.299

This last claim is not true for the mixed-cut. See Figure 6 for an example showing that we can get300

from an instance that has a (1, b)-mixed cut for s and t and no (1, b− 1)-mixed cut for s and t,301

but after the transformation, it has a (1, 2)-mixed cut. This of course does not exclude the option302

for faster algorithms modifying the approach.303

References304

[1] O. Amini, F. V. Fomin, and S. Saurabh. Implicit branching and parameterized partial cover305

problems. J. Comput. Syst. Sci. 77(6):1159–1171, 2011, doi:10.1016/j.jcss.2010.12.002,306

https://doi.org/10.1016/j.jcss.2010.12.002.307

[2] N. Apollonio and B. Simeone. The maximum vertex coverage problem on bipartite graphs.308

Discrete Applied Mathematics 165:37–48, 2014, doi:10.1016/j.dam.2013.05.015, https:309

//doi.org/10.1016/j.dam.2013.05.015.310

[3] L. W. Beineke and F. Harary. The connectivity function of a graph. Mathematika 14(2):197–311

202, 1967, doi:10.1112/S0025579300003806.312

[4] B. Caskurlu, V. Mkrtchyan, O. Parekh, and K. Subramani. Partial vertex cover and budgeted313

maximum coverage in bipartite graphs. SIAM J. Discrete Math. 31(3):2172–2184, 2017,314

doi:10.1137/15M1054328, https://doi.org/10.1137/15M1054328.315

[5] J. Chuzhoy, Y. Makarychev, A. Vijayaraghavan, and Y. Zhou. Approximation algorithms316

and hardness of the k-route cut problem. ACM Trans. Algorithms 12(1):2:1–2:40, 2016,317

https://doi.org/10.1145/2644814.318

9

http://dx.doi.org/10.1016/j.jcss.2010.12.002
https://doi.org/10.1016/j.jcss.2010.12.002
http://dx.doi.org/10.1016/j.dam.2013.05.015
https://doi.org/10.1016/j.dam.2013.05.015
https://doi.org/10.1016/j.dam.2013.05.015
https://doi.org/10.1016/j.dam.2013.05.015
http://dx.doi.org/10.1112/S0025579300003806
http://dx.doi.org/10.1137/15M1054328
https://doi.org/10.1137/15M1054328
https://doi.org/10.1145/2644814


K`

K`

K`
s

t

s

t

s

t

s

t

K`

Figure 6: An instance for ROOTED-MIXED-CUT (top left) that has an (a = 1, b = 5)-mixed cut for s
and t (top right), but no (1, 4)-mixed cut for s and t. The instance has an arbitrary large clique
K` and there is a vertex-separation between {s, t} and the clique K` with four vertices (bottom
left). Removing the part of the separation that contains K` and connecting the vertices of the
four-vertex separator (bottom right), we get an instance that has a (1,2)-mixed cut for s and t.
The example can be easily generalized to any b > 5.

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,319

and S. Saurabh. Parameterized Algorithms. Springer, 2015, http://dx.doi.org/10.1007/320

978-3-319-21275-3.321

[7] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in322

Computer Science. Springer, 2013, doi:10.1007/978-1-4471-5559-1, https://doi.org/323

10.1007/978-1-4471-5559-1.324

[8] R. Erveš and J. Žerovnik. Mixed connectivity of Cartesian graph products and bundles. Ars325

Comb. 124:49–64, 2016.326

[9] R. Gu, Y. Shi, and N. Fan. Mixed connectivity properties of random graphs and some special327

graphs. J. Comb. Optim., 2019, https://doi.org/10.1007/s10878-019-00415-z.328

[10] G. Joret and A. Vetta. Reducing the rank of a matroid. Discrete Mathematics & Theoretical329

Computer Science 17(2):143–156, 2015, http://dmtcs.episciences.org/2135.330

[11] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in quadratic331

time. J. Comb. Theory, Ser. B 102(2):424–435, 2012, doi:10.1016/j.jctb.2011.07.004,332

https://doi.org/10.1016/j.jctb.2011.07.004.333

10

http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s10878-019-00415-z
http://dmtcs.episciences.org/2135
http://dx.doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004


[12] W. Mader. Connectivity and edge-connectivity in finite graphs. Surveys in Combinatorics,334

pp. 66–95. Cambridge University Press, London Mathematical Society Lecture Note Series,335

1979, doi:10.1017/CBO9780511662133.005.336

[13] A. Rai, M. S. Ramanujan, and S. Saurabh. A parameterized algorithm for mixed-cut.337

LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mexico,338

April 11-15, 2016, Proceedings, pp. 672–685, 2016, doi:10.1007/978-3-662-49529-2_50,339

https://doi.org/10.1007/978-3-662-49529-2_50.340

[14] N. Robertson and P. D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem. J. Comb.341

Theory, Ser. B 63(1):65–110, 1995, doi:10.1006/jctb.1995.1006, https://doi.org/10.342

1006/jctb.1995.1006.343

[15] E. Sadeghi and N. Fan. On the survivable network design problem with mixed connectivity344

requirements. Ann. Oper. Res., 2019, https://doi.org/10.1007/s10479-019-03175-5.345

[16] M. S. Sebastian S. Johann, Sven O. Krumke. On the mixed connectivity conjecture of Beineke346

and Harary. CoRR abs/1908.11621, 2019, https://arxiv.org/abs/1908.11621.347

11

http://dx.doi.org/10.1017/CBO9780511662133.005
http://dx.doi.org/10.1007/978-3-662-49529-2_50
https://doi.org/10.1007/978-3-662-49529-2_50
http://dx.doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1007/s10479-019-03175-5
https://arxiv.org/abs/1908.11621

	Introduction
	Preliminaries and notation
	Parameterized hardness with respect to a only or b only
	Quadratic FPT algorithm?

