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Abstract

A class of graphs admits an adjacency labeling scheme of size b(n), if the vertices in each
of its n-vertex graphs can be assigned binary strings (called labels) of length b(n) so that the
adjacency of two vertices can be determined solely from their labels.

We give tight bounds on the size of adjacency labels for every family of monotone (i.e.,
subgraph-closed) classes with a well-behaved growth function between 2O(n logn) and 2O(n2−δ) for
any δ > 0. Specifically, we show that for any function f : N→ R satisfying log n 6 f(n) 6 n1−δ

for any fixed δ > 0, and some sub-multiplicativity condition, there are monotone graph classes
with growth 2O(nf(n)) that do not admit adjacency labels of size at most f(n) log n. On the
other hand, any such class does admit adjacency labels of size O(f(n) log n). Surprisingly this
tight bound is a Θ(log n) factor away from the information-theoretic bound of Ω(f(n)). The
special case when f = log implies that the recently-refuted Implicit Graph Conjecture [Hatami
and Hatami, FOCS 2022] also fails within monotone classes.

We further show that the Implicit Graph Conjecture holds for all monotone small classes.
In other words, any monotone class with growth rate at most n! cn for some constant c > 0,
admits adjacency labels of information-theoretic order optimal size. In fact, we show a more
general result that is of independent interest: any monotone small class of graphs has bounded
degeneracy. We conjecture that the Implicit Graph Conjecture holds for all hereditary small
classes.

1 Introduction

A class of graphs is a set of graphs which is closed under isomorphism. For a class of graphs X we
denote by Xn the set of graphs in X with vertex set [n]. The function n 7→ |Xn| is called the speed of
X . A coding of graphs is a representation of graphs by words in the binary alphabet {0, 1}. One of
the main considerations with graph representations is their succinctness; clearly, any representation
of n-vertex graphs in a class X would require at least dlog |Xn|e bits for some graphs in Xn.

Another consideration is whether the representation is global or local. Standard graph rep-
resentations, such as adjacency matrix or adjacency lists, are examples of global representations,
where a graph is stored in a single data structure that needs to be accessed in order to query some
information about the graph, e.g., adjacency between a pair of vertices. By contrast, in local graph
representations, the encoding of a graph is distributed over its vertices in such a way that the queries
can be answered by looking only into the local information associated with the vertices involved in
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the query. In this work we are concerned with local graph representations for adjacency queries,
i.e., queries that given two vertices answer whether they are adjacent or not.

Let X be a class of graphs and b : N → N be a function. A b(n)-bit adjacency labeling scheme
(or simply b(n)-bit labeling scheme) for X is a pair (encoder, decoder) of algorithms where for
any n-vertex graph G ∈ Xn the encoder assigns binary strings, called labels, of length b(n) to the
vertices of G such that the adjacency between any pair of vertices can be inferred by the decoder
only from their labels. We note that the decoder depends on the class X , but not on the graph G.
The function b(·) is the size of the labeling scheme. Adjacency labeling schemes were introduced
by Kannan, Naor, and Rudich [KNR88, KNR92], and independently by Muller [Mul88] in the late
1980s and have been actively studied since then. Adjacency labeling schemes are closely related
to induced universal graphs, which we will refer to simply as universal graphs. For a function
u : N→ N, a universal graph sequence or simply universal graph of size u(n) is a sequence of graphs
(Un)n∈N such that for every n ∈ N the graph Un has at most u(n) vertices and every n-vertex
graph in X is an induced subgraph of Un. It was observed in [KNR92] that for a class of graphs
the existence of a b(n)-bit labeling scheme is equivalent to the existence of a universal graph of size
2b(n).

The binary word, obtained by concatenating labels of the vertices of a graph G ∈ Xn assigned
by an adjacency labeling scheme, uniquely determines graph G. Thus, a b(n)-bit labeling scheme
cannot represent more than 2nb(n) graphs on n vertices, and therefore, if X admits a b(n)-bit labeling
scheme, then |Xn| 6 2nb(n). This implies a lower bound of log |Xn|

n on the size b(n) of any adjacency
labeling scheme for X . A natural and important question is: which classes admit an adjacency
labeling scheme of a size that matches this information-theoretic lower bound?

We say that a graph class X admits an implicit representation, if it admits an information-
theoretic order optimal adjacency labeling scheme, i.e., if X has a b(n)-bit labeling scheme, where
b(n) = O(log |Xn|/n). Equivalently, X admits an implicit representation if X has a universal graph
of size exp(O(log |Xn|/n)). For example, the class A of all graphs admits an implicit representation,
because

|An| = 2(n2) = 2Θ(n2) and b(n) = O

(
log |An|

n

)
= O(n),

and one can easily design an O(n)-bit labeling scheme for A, e.g., by assigning to each vertex
of a graph an (n + dlog ne)-bit label consisting of the row in an adjacency matrix of the graph
corresponding to the vertex and the index of that row; in fact, as we discuss below, the class of all
graphs admits an asymptotically optimal (1 + o(1))n/2-bit labeling scheme [Alo17].

However, not every class admits an implicit representation. The following example is due to
Muller [Mul88] (see also [Spi03]). Let Y be the class of graphs in which the number of edges does
not exceed the number of vertices. It is easy to estimate that |Yn| = 2O(n logn). To show that this
class does not admit an implicit representation, consider an arbitrary n-vertex graph G. Obviously,
G does not necessarily belong to Y, but after adding n2−n isolated vertices to G, we obtain a graph
H on N = n2 vertices that belongs to Y. Now, if an O(log n)-bit labeling scheme for Y existed,
then the O(logN)-bit adjacency labels for H could be used as O(log n)-bit adjacency labels for G.
Since, G was chosen arbitrarily, this is in contradiction with the lower bound of log |An|

n = Ω(n) on
the size of any labeling scheme for the class A of all graphs.

The crucial property used in the above example is that by adding isolated vertices to a graph
not in Y, one can obtain a graph in Y. Using more familiar terminology, one would say that class
Y is not hereditary, i.e., it is not closed under vertex removal or, equivalently, under taking induced
subgraphs. Many natural graph classes (e.g., forests, planar graphs, bipartite graphs, geometric
intersection graphs) are hereditary. It turns out that finding a hereditary graph class that does not
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admit an implicit representation is a non-trivial question. The first instance of this question was
asked by Kannan, Naor, and Rudich [KNR88] for factorial classes (i.e., graph classes X with the
speed |Xn| = 2O(n logn)), which was later stated by Spinrad [Spi03] in the form of a conjecture, that
became known as the Implicit Graph Conjecture.

(IGC ): Any hereditary graph class of at most factorial speed admits anO(log n)-bit labeling scheme.

This question remained open for over 30 years until a recent breakthrough by Hatami and
Hatami [HH22]. They showed that, for any δ > 0, there exists a hereditary factorial class that does
not admit a labeling scheme of size n1/2−δ, which is very far from the information-theoretic lower
bound of Ω(log n). This result leaves wide open the question of characterizing factorial hereditary
graph classes that admit an implicit representation (see e.g. [HWZ22] for more discussion).

Factorial hereditary classes form an important family, as many classes of theoretical or practical
interest are factorial (e.g., forests, planar graphs, disk graphs, graphs of bounded twin-width). How-
ever, as was noted by Spinrad [Spi03], there is nothing that prevents one from considering implicit
representability of other hereditary graph classes. Spinrad [Spi03] raised this as the Generalized
Implicit Graph Question, which we restate using the terminology of our paper as follows.

Question 1 ([Spi03]). Which hereditary graph classes admit implicit representations?

The answer to this question is known for classes with |Xn| = 2Ω(n2), and for subfactorial graph
classes, i.e., classes X with |Xn| = 2o(n logn). Indeed, for the latter classes, it is known that they
have at most exponential speed, i.e., |Xn| = 2O(n) [Ale97, SZ94], and also admit O(1)-bit labeling
schemes [Sch99]. For the former classes, the O(n)-bit labeling scheme mentioned above for the
class A of all graphs is an order optimal labeling scheme. In fact, in this regime, information-
theoretic asymptotically optimal (up to the second-order term) labeling schemes are available. For
the class of all graphs, such results (in the language of universal graphs) were available since 1965
[Moo65, AKTZ15, Alo17]. For proper hereditary graph classes X with the speed 2Ω(n2), by the
Alekseev–Bollobás–Thomason theorem [Ale92, BT95], their speed is |Xn| = 2(1−1/k(X ))n2/2+o(n2),
where k(X ) is an integer greater than 1. Recently, Bonamy, Esperet, Groenland, and Scott showed
[BEGS21] that all such classes have asymptotically optimal adjacency labeling schemes of size
(1− 1/k(X ))n/2 + o(n).

For the classes in the intermediate range, i.e., the classes with the speed between 2Ω(n logn) and
2o(n

2) the picture is much less understood (see Figure 1). Most known information is concentrated
on the lower extreme of the range, i.e., around factorial speed, which was promoted by the Im-
plicit Graph Conjecture. Factorial graph classes from certain families are known to admit implicit
representations: proper minor-closed graph classes [GL07], graph classes of bounded degeneracy
(equivalently, of bounded arboricity) [KNR88], clique-width [CV03, Spi03] (see also [Ban22]), and
twin-width [BGK+22] all admit implicit representations. The only lower bound witnessing (non-
constructively) factorial classes1 that do not admit an implicit representation is the above-mentioned
result by Hatami and Hatami [HH22]. A notable family of hereditary graph classes where Ques-
tion 1 remains open is the small graph classes, i.e., classes X with |Xn| 6 n! cn for some constant c.
These classes encompass only the bottom part of the factorial layer and include proper minor-closed
classes [Bla03, NSTW06], and more generally, classes of bounded twin-width [BGK+22]. However,
it is still unknown if all such classes admit an implicit representation (see [BDS+24] for more details
on implicit representation of small classes). Alon showed [Alo23] that every hereditary graph class
X with |Xn| = 2o(n

2) admits an n1−δ-bit labeling scheme for some δ > 0.
1This lower bound is sufficiently large to rule out the existence of implicit representations even for hereditary

classes of size 2Θ(n3/2−δ), for any fixed 0 < δ < 1/2.
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Hereditary ClassesSpeed |Xn|

Sub-Factorial

2o(n logn)

X

[Sch99]

Small

2Θ(n) · n!

?

Bounded
Twin-Width
X[BGK+22]

Factorial

2Θ(n logn) LB: n1/2−δ [HH22]

Super-Factorial

2o(n
2) UB: n1−δ [Alo23]

Dense

2Θ(n2)

X

[BEGS21]
Monotone

7

LB/UB: log |Xn|
n · log n

[Theorem 1.4 & Proposition 1.3]

7

LB/UB: log2 n

[Corollary 1.5]

X Theorem 1.2

Bounded
Degeneracy

X [KNR92]

Minor-Closed
[GL07]

Figure 1: A X indicates that all classes of the given type have an implicit representation, a 7 shows
that they do not, and a ? signals that the question is open. A X is inherited by every sub-region,
a 7 is inherited to the left of the marked region, and a ? only holds in that region. The upper and
lower bounds (UB and LB respectively) are stated up to constants which may depend on the class.
The dashed extension of the bounded degeneracy region illustrates its containment of monotone
small classes (Theorem 1.2).

1.1 Our contribution

In this paper, we study Question 1 for monotone graph classes, i.e., graph classes that are closed
under taking subgraphs. Monotone graph classes form a subfamily of hereditary graph classes.
Together with some previous results mentioned in the introduction, the results of this paper give
a near complete resolution of Question 1 for monotone classes. We state our results below.

The degeneracy of a graph G is the minimum d such that every subgraph of G has a vertex
of degree at most d. We say that a class of graphs X has bounded degeneracy, if there exists
a constant d such that the degeneracy of every graph G ∈ X is at most d; otherwise, we say that X
has unbounded degeneracy. Our first main result shows that degeneracy is bounded for monotone
small classes.

Theorem 1.1. Let X be a monotone small class. Then, X has bounded degeneracy.

Theorem 1.1 has wider reaching implications than just labeling schemes, and is of independent
interest. In the context of Question 1, we obtain the following result from Theorem 1.1 and a classical
labeling scheme for classes of bounded degeneracy [KNR88] (see also Lemma 3.5).
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Theorem 1.2. Any monotone small class admits an implicit representation.

This answers Question 1 from [BDS+24] for monotone graph classes.
We now turn to monotone classes that are not small. Our next result shows that any monotone

class with non-decreasing speed admits a labeling scheme of size at most O(log n) away from the
information-theoretic lower bound.

Proposition 1.3. Let f : R>0 → R>0 be a non-decreasing function. Then, any monotone class of
graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size O(f(n) log n).

This upper bound is an easy consequence of an estimation of the number of edges in graphs
from monotone classes combined with a standard labeling scheme for k-degenerate graphs [KNR88].
Our second main result shows that this upper bound is attained by some monotone classes. Before
stating the result formally we must briefly introduce a family of non-decreasing functions we call
“decent”. Roughly speaking, on some domain [s,∞), decent functions are sub-multiplicative, i.e.,
f(xy) 6 f(x)f(y), and moderate-growing, that is log x 6 f(x) 6 x1−δ for some constant δ ∈ (0, 1),
see Definition 4.2 for the formal definition of decent functions.

Theorem 1.4. Let f : R>0 → R>0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most 2f(n) logn.
Equivalently, X admits no adjacency labeling scheme of size at most f(n) log n.

Theorem 1.4 gives the existence of monotone classes requiring labels whose size is a log n-factor
above the information-theoretic lower bound. In particular, this shows that Proposition 1.3 is tight.
A special case of Theorem 1.4 (when f(x) = log x) implies that the Implicit Graph Conjecture does
not hold even for monotone graph classes. Combining this observation with Proposition 1.3 gives
the following result.

Corollary 1.5. For any constant c > 0, there are factorial monotone classes that do not admit a
(c log2 n)-bit labeling scheme, while any factorial monotone class admits an O(log2 n)-bit labeling
scheme.

This result (more generally Theorem 1.4 and Proposition 1.3) gives the first example of tight
bounds for families of graph classes that do not admit information-theoretic order optimal adjacency
labeling schemes. Chandoo [Cha23] observed that the proof of the refutation of the IGC by Hatami
and Hatami [HH22] implies that the family of factorial classes cannot be “described” by a countable
set of factorial classes. Using the same ideas, we establish the following result from our proof for
monotone classes.

Theorem 1.6. Let f : R>0 → R>0 be any decent function, and X be any countable set of graph
classes, each with speed at most 2nf(n) logn. Then, there exists a monotone graph class X of speed
2O(nf(n)) such that there does not exist a D ∈ X with X ⊆ D.

This shows that monotone classes are complex in the sense that they cannot be covered by
a countably infinite family of classes growing slightly faster, even if these classes are not restricted
to being hereditary (thus, also to being monotone).

1.2 Proof outline and techniques

Monotone small classes have bounded degeneracy and implicit representations. We
establish Theorem 1.1 in the contrapositive: if a monotone class X has unbounded degeneracy, then
it is not small. To prove this we establish the following two intermediate steps:
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1. We first show that every graph of minimum degree d admits an induced subgraph with mini-
mum degree at least d that has a spanning tree of maximum degree at most d.

2. Next, we show that if G = Mon({G}), where G is any graph with minimum degree d > 1000,
then there exists a k ∈ N such that |Gk| > k! · 2kd/3.
To achieve this, we start from an induced graph H of G satisfying the previous item, with
k = |V (H)| and m = |E(H)|. Graph H can be shown to have at least 24m/5 pairwise non-
isomorphic spanning subgraphs, due to its large minimum degree. Let us denote by F this
set of subgraphs. Crucially each member of F has at most 2m/10 automorphisms, due to the
spanning tree of bounded maximum degree. We conclude since |Gk| >

∑
F∈F

k!
aut(F ) .

Finally, to show the contrapositive of Theorem 1.1, we consider an arbitrary monotone class X of
unbounded degeneracy and assume that for some constant c we have |Xn| 6 n! cn for every n ∈ N.
Since X has unbounded degeneracy, it contains a graph G with arbitrarily large minimum degree d.
If we take d suitably large, then applying Step 2 to such a graph yields a contradiction with the
assumption of smallness of X .

Having established Theorem 1.1, any small monotone class X has bounded degeneracy. Thus,
Theorem 1.2 follows by applying a classical O(log n)-bit labeling scheme for classes of bounded
degeneracy [KNR92], see Lemma 3.5 for a description of this scheme.

Monotone classes that do not admit implicit representations. Recall that, roughly speak-
ing2, a function f : R>0 → R>0 is decent if log x 6 f(x) 6 x1−δ for some constant δ ∈ (0, 1), and f
is sub-multiplicative, i.e., f(xy) 6 f(x) · f(y), for all x, y in the domain. Our approach is inspired
by the refutation of the IGC by Hatami and Hatami [HH22]. Namely, for any decent function f ,
we expose so many monotone classes of speed 2nf(n) that there are not enough universal graphs of
size 2f(n) logn to capture all of them. The approach involves several key ingredients:

1. Estimation of the number of sets of graphs of fixed cardinality representable by universal
graphs. A set of graphs M is representable by a universal graph U , if every graph in M is
an induced subgraph of U . A direct estimation shows that the number of sets of cardinality
kn := d2

√
nf(n)e of n-vertex graphs that are representable by a un-vertex universal graph,

with un := 2f(n) logn, is at most

2u
2
n · unknn = 222f(n) logn+kn·nf(n) logn. (1)

2. Notion of f -good graphs. We will construct our monotone classes of speed 2nf(n) by taking the
monotone closure of an appropriately chosen set of graphs. The monotonicity and the speed
of target classes impose a natural restriction on the number of edges in graphs that can be
used in such constructions. To explain, let X be a monotone class with |Xn| 6 2nf(n). Since
X is closed under taking subgraphs, if X contains an n-vertex graph with m edges, then X
contains at least 2m labeled n-vertex graphs. This, together with the speed assumption, imply
that for any G ∈ X and k, every subgraph of G on k vertices contains at most kf(k) edges.

This restriction, however, is not strong enough for our purposes. Indeed, while each graph with
the above property contributes to the monotone closure an appropriate number of subgraphs
at every level (i.e., on every number of vertices), we build our desired classes by taking the
monotone closure of infinitely many of such graphs, and this can result in some levels having

2The formal definition of decent (Definition 4.2) is more general and depends on three parameters δ, C, s. For this
proof sketch it suffices to work with the simplified (informal) definition above which only has one parameter δ.
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too many graphs. To overcome this difficulty, we introduce the notion of f -good graphs, which
are n-vertex graphs in which the number of edges in every k-vertex subgraph is at most kf(k)

if k >
√
n, and at most kf(k)

log k if 2 6 k 6
√
n. The latter condition ensures that if we take the

monotone closure of a set of f -good graphs, then all sufficiently small subgraphs of any graph
in this class belong to a fixed monotone class of speed 2nf(n). Namely, the class of all n-vertex
graphs in which very k-vertex subgraph has at most kf(k)

log k edges for every 2 6 k 6 n.

3. Construction of monotone classes of speed 2nf(n) from sets of f -good graphs. We show that
for any sequence (Mn)n∈N, where Mn is a set of f -good n-vertex graphs of cardinality kn,
the monotone closure Mon(∪n∈NMn) has speed at most 2nf(n).

4. Lower bound on the number of sets of cardinality kn of f -good n-vertex graphs. We show
that for any γ > 1, there exists some c := c(γ, δ) > 0 such that for every n ∈ N there are at
least 2(γδ/2−o(1))·nf(n) logn many unlabeled cf -good n-vertex graphs. Thus, the number of sets
of cardinality kn of cf -good n-vertex graphs is at least

2kn·(γδ/2−o(1))·nf(n) logn. (2)

By setting γ = 4/δ and recalling that kn = d2
√
nf(n)e, we show that (2) is larger than (1).

Therefore, there exists a monotone class Mon(∪n∈NMn) of speed 2nf(n) that is not representable
by a universal graph of size 2f(n) logn.

Many f-good graphs. A core step in the above approach is to show that for any γ > 1,
there exists some c := c(γ, δ) > 0 such that the number of n-vertex cf -good graphs grows as
2(γδ/2−o(1))·nf(n) logn. To do so, we show that a random graph Gn ∼ G(n, γf(n)/n) is cf -good
with high probability (w.h.p.). It is in this step that we really need to use the sub-multiplicativity
property of decent functions, as we need to relate the magnitude of f at two different parts of its
domain.

In particular, to show that w.h.p. Gn is cf -good, we apply a first moment bound to show there
are no “large” k-vertex subgraphs of Gn with more than ckf(k) edges, and “small” ones with more
than ckf(k)/ log k edges. Observe that the number of edges ξ in a given k-vertex subgraph has
expectation

(
k
2

)γf(n)
n . Thus, for “large” subgraphs, the probability that ξ is constant factor larger

than ckf(k) decays with exponent ∝ −f(k) · ln nf(k)
kf(n) by the Chernoff bound. From this we see that

unless f(k)/f(n) > k/n, then the bound fails. Sub-multiplicativity helps us here as it allows us to
say f(n) = f(k · (n/k)) 6 f(k) · f(n/k), moderate-growth then bounds the term f(n/k). A similar
issue occurs for “small” subgraphs.

From the explanation above it may seem that needing such tight control over the ratio of f(k) to
f(n) for all k 6 n is an artifact of our proof, however some “smoothness” condition on the function
is necessary. To see this, consider a function f : N → R>0 such that f(n) = log n, if n is odd,
and f(n) =

√
n, if n is even. Then, for any c > 0, and large enough even n, G(n, f(n)/n) will not

be cf -good as the restriction on the subgraphs with odd number of vertices is far too stringent.
Sub-multiplicativity was the most natural and broad condition we could find to combat this issue,
and we show in Lemma 4.3 that many common functions growing at a suitable rate satisfy this.

It would be interesting to see if sub-multiplicativity can be replaced with something more general.
We also used sub-multiplicativity in Step 3 above (which corresponds to Lemma 5.1) to bound the
speed of Mon(∪n∈NMn), however it is possible that some less stringent property can be used there.
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A matching upper bound on the size of adjacency labels. We show that for any non-
decreasing function f : R>0 → R>0, any monotone class with speed 2O(nf(n)) admits anO(f(n) log n)-
bit labeling scheme. This follows from an easy observation that any such class is O(f(n))-degenerate,
followed by the same standard O(k log n)-bit labeling scheme for k-degenerate graphs used to prove
Theorem 1.2. One consequence of this upper bound is that our result on the ‘f -goodness’ of a ran-
dom graph (Theorem 4.4) is tight: for any p ∈ ω(f(n)/n) and c > 0, a random graph Gn ∼ G(n, p)
is not cf -good w.h.p.

1.3 Discussion

A natural question arising from our work is to characterize monotone classes that admit an implicit
representation. Motivated by the Implicit Graph Conjecture, of particular interest is the case of
factorial classes.

Question 2. Which monotone factorial graph classes admit an O(log n)-bit labeling scheme?

An analogous question is completely understood for constant-size adjacency sketches (a proba-
bilistic version of adjacency labeling schemes) that were studied in [FK09, Har20, HWZ22]. The
importance of constant-size adjacency sketches is that they can be derandomized to O(log n)-bit
adjacency labels [Har20, HWZ22]. Thus, if a class admits constant-size adjacency sketches, then it
admits an O(log n)-bit labeling scheme. Though, the converse is not always true. Esperet, Harms,
and Kupavskii showed [EHK22] that a monotone class admits constant-size adjacency sketches if
and only if it has bounded degeneracy. This result may suggest that bounded degeneracy also
characterizes monotone classes that admit O(log n)-bit labeling schemes. This, however, is not the
case, as the class of subgraphs of hypercubes is monotone, has unbounded degeneracy, and admits
an O(log n)-bit labeling scheme [EHZ23].

Recall that Question 1 (first raised in [Spi03]), asks which hereditary graph classes admit implicit
representations. A prominent instance of Question 1 is whether every hereditary small class admits
an implicit representation. It was shown in [BDS+24] that for any κ > 0 there is a monotone
small class which does not admit a (κ log n)-bit labeling scheme; in particular, some monotone
small classes admit no information-theoretic asymptotically optimal labeling scheme. One of our
main results (Theorem 1.2) shows that every monotone class admits an information-theoretic order
optimal labeling scheme, i.e., an implicit representation. We conjecture that the same holds for all
hereditary small classes.

Conjecture 1.7 (Small Implicit Graph Conjecture). Any hereditary small class admits an implicit
representation.

Conjecture 1.7 is also known to hold for classes of bounded twin-width [BGK+22].
We conclude this discussion with a more technical (yet natural) question of whether the condi-

tions (moderate-growth and sub-multiplicativity) of “decent” can be relaxed. Due to the discussion
under the heading “Many f -good graphs” in Section 1.2, the moderate-growth condition is essen-
tially necessary, and if one is to follow our method, some notion of global “smoothness” is required
to prove Theorem 4.4. However, it is not so clear to what extent the sub-multiplicativity condition
is necessary to achieve the required “smoothness”.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we cover some common notation and
definitions. In Section 3, we prove our first main result, namely, that any monotone small class
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has bounded degeneracy, and therefore admits an implicit representation. Sections 4 and 5 are
devoted to our second main result, namely, tight bounds on the size of adjacency labeling schemes
for monotone classes. In Section 4.1 we introduce two key concepts used in the proofs. Firstly, we
give the notion of f -good graphs, which are the building blocks for the monotone classes used to
prove the lower bounds. Secondly, we formally define decent functions which describe the speeds of
these monotone graph classes, before concluding Section 4.1 with some natural examples of decent
functions. In Section 4.2, we prove a result about random graphs which is the main technical
ingredient of our lower bounds. In Section 5, we establish the lower and upper bounds on labeling
schemes for monotone classes, along with the result on the complexity of monotone graph classes.

2 Standard definitions and notation

We let [n] denote the set {1, . . . , n} of natural numbers, and use lnc x as a shorthand for (lnx)c. We
take R>0 to denote the set of non-negative real numbers. We use X ∼ D to denote that the random
variable X has distribution D. We say that a sequence of events (An) holds with high probability
(w.h.p.) if P [An ]→ 1 as n→∞.

Graphs. We consider finite undirected graphs, without loops or multiple edges. Given a graph G,
we write V (G) for its vertex set, and E(G) for its edge set. A graph H is a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). Thus, H can be obtained from G by vertex and edge deletions.
The graph H is an induced subgraph of G if V (H) ⊆ V (G), and E(H) consists exactly of the edges
in E(G) with both endpoints in V (H). In that case, H can be obtained from G by vertex deletions
only. In the usual way, for a set of vertices U ⊆ V (G), we denote by G[U ] the induced subgraph of
G with the set of vertices U . We denote by e(G) the number of edges in G

When we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n], and
we distinguish two different labeled graphs even if they are isomorphic. In contrast, if we refer to G
as unlabeled graph, its vertices are indistinguishable and two isomorphic graphs correspond to the
same unlabeled graph.

Graph classes. A graph class is hereditary if it is closed under taking induced subgraphs, and
it is monotone if it closed under taking subgraphs. For a set X of graphs we let Her(X ) denote
the hereditary closure of X , i.e., the inclusion-wise minimal hereditary class that contains X ; and
Mon(X ) denote the monotone closure of X , i.e., the minimal monotone class that contains X .

3 Monotone small classes admit an implicit representation

In this section we show that any monotone small class admits an implicit representation. To do so,
we first establish (Theorem 1.1) that any small monotone classes has bounded degeneracy. This
result has a broader scope than just implicit representations, and is of independent interest. For
example, it generalizes the fact that monotone classes of bounded twin-width have bounded degen-
eracy [BGK+22, (iv) ⇒ (iii) in Theorem 2.12]. The labeling scheme for monotone small classes
then follows from a classical labeling scheme for graphs of bounded degeneracy, see Lemma 3.5.

We proceed with some notation and known auxiliary facts that we will employ in the proof.
Recall that for a class of graphs X , we denote by Xn the set of graphs in X with vertex set [n].
We will denote by X un the set of unlabeled n-vertex graphs in X , i.e., the set of isomorphism classes
in Xn. Observe that for an unlabeled n-vertex graph G there are exactly n!

aut(G) labeled graphs

9



isomorphic to G, where aut(G) is the order of the automorphism group of G. Thus we have

|Xn| =
∑
G∈Xun

n!

aut(G)
.

Let F be a spanning subgraph of a fixed labeled graph G. Thus, we recall, F is defined by
a subset of E(G). We denote by #Sub(F → G) the number of subgraphs of G isomorphic to F ,
and by #Emb(F → G) the number of embeddings of F into G, i.e., the number of permutations
from Sn that map F to an isomorphic copy of F in G. Thus,

#Emb(F → G) = #Sub(F → G) · aut(F ).

We will use the following well known facts (see e.g. [KLT02]).

Lemma 3.1. Let F be a spanning subgraph of a graph G. Then

aut(G) 6 #Emb(F → G) = #Sub(F → G) · aut(F ).

Lemma 3.2. Let G be a connected graph of maximum degree ∆. Then

aut(G) 6 n ·∆! · (∆− 1)n−∆−1 6 n∆n−1.

We start with the following deceptively simple lemma.

Lemma 3.3. Let G be a graph of minimum degree d. Then G has an induced subgraph H of
minimum degree at least d with a spanning tree of maximum degree at most d.

Proof. Let T be an inclusion-wise maximal tree among subgraphs of G with maximum degree
at most d. Let H be G[V (T )]. Note that any vertex v of H that has degree less than d in T , has
no neighbors among V (G) \ V (H) in G, as otherwise T could have been extended by adding any
neighbor of v from V (G) \ V (H), which would contradict the maximality of T . Thus all neighbors
of v are in V (H), which implies that the minimum degree of H is at least d.

We show next that if a graph has large minimum degree and a spanning tree of bounded max-
imum degree, then it contains many pairwise non-isomorphic spanning connected subgraphs with
a small number of automorphisms.

Lemma 3.4. Let G be an n-vertex m-edge connected graph of minimum degree d > 1000, with
a spanning tree of maximum degree at most d. Then, G contains at least 24m/5 pairwise non-
isomorphic spanning connected subgraphs F with aut(F ) 6 2m/10. Consequently, Mon({G}) con-
tains at least n! · 2nd/3 graphs on vertex set [n].

Proof. Fix a spanning tree T of G of maximum degree at most d. Denote by F the family of all
subgraphs of G containing T . Then,

|F| = 2m−n+1 > 2m−
2m
d > 29m/10,

where we used the fact that n 6 2m/d by the assumption on the minimum degree of G, and the
assumption d > 1000.

For a fixed graph F ∈ F , we will now estimate the number NF (F ) of graphs in F that are
isomorphic to F . This number is at most the number #Emb(T → G) = #Sub(T → G) · aut(T ) of
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embeddings of T into G. The number #Sub(T → G) of subgraphs of G isomorphic to T is at most(
m

n− 1

)
6

(
m

2m/d

)
6

(
ed

2

)2m/d

6 2m/20,

where in the last inequality we used the assumption d > 1000. Recalling that the maximum degree
of T is at most d and using Lemma 3.2, we conclude that aut(T ) 6 ndn−1 6 22n log d. Consequently,

NF (F ) 6 #Emb(T → G) 6 2m/20 · 22n log d 6 2m/20+2(2m/d) log d 6 2m/10, (3)

where again we used n 6 2m/d and d > 1000. Note that the bound in (3) holds for any F ∈ F .
Thus, the number of pairwise non-isomorphic graphs in F is at least

|F|
maxF∈F NF (F )

> 29m/10 · 2−m/10 = 24m/5.

Furthermore, for any F ∈ F , we have

aut(F ) 6 #Sub(T → F ) · aut(T ) 6 #Sub(T → G) · aut(T ) = #Emb(T → G) 6 2m/10,

where we used Lemma 3.1, the fact that #Sub(T → F ) 6 #Sub(T → G), and (3).
Finally, the number of graphs with vertex set [n] isomorphic to a subgraph of G is at least∑

F∈F

n!

aut(F )
> 24m/5 · n!

2m/10
= n! · 27m/10 > n! · 2dn/3,

where in the last inequality we used m > dn/2.

We can now prove the main result of this section.

Theorem 1.1. Let X be a monotone small class. Then, X has bounded degeneracy.

Proof. To prove the theorem we will show the contrapositive, i.e., if a class X has unbounded
degeneracy, then it is not small. Suppose towards a contradiction that X has unbounded degeneracy,
but there exists a constant c, such that |Xn| 6 n! · cn holds for every n ∈ N.

Since X has unbounded degeneracy and is closed under taking subgraphs, for any positive d, the
class X contains a connected graph with minimum degree at least d. Fix any d > max{1000, 3 log c},
and let G ∈ X be a connected graph of minimum degree at least d. Let G = Mon({G}). By
Lemmas 3.3 and 3.4, for some n ∈ N we have

|Gn| > n! · 2nd/3 > n! · 2n log c = n! · cn,

where the first strict inequality holds due to d > 3 log c. Since G ⊆ X , this is in contradiction with
the assumed upper bound on the number of labeled graphs in X . Thus X is not small.

The previous result is of independent interest, and provides some structural insight on monotone
small classes. To show that some property generally holds on small monotone classes, one can now
use their degeneracy. We give the first such application of Theorem 1.1.

Theorem 1.2. Any monotone small class admits an implicit representation.

The relevance of Theorem 1.1 to labeling schemes should be clear from the following folklore
bound [KNR92], which we recall for completeness.
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Lemma 3.5. The class of k-degenerate graphs has a (k+ 1) · dlog ne-bit adjacency labeling scheme.

Proof. For any k-degenerate graph G on n-vertices, we first order vertices so that each vertex has at
most k neighbors appearing after it in the ordering. This can be done greedily since each subgraph
has a vertex of degree at most k. One can then assign each vertex a label consisting of its place in
the order, followed by the places of the at most k neighbor vertices following it in the ordering.

Theorem 1.2 follows directly from Lemma 3.5 and Theorem 1.1.

4 Ingredients for the proof of the lower bound

This section contains many of the components needed to construct the classes used in the proof of
the lower bound (Theorem 1.4). In Section 4.1 we introduce several notions related to subgraph
density, which are then applied to random graphs in Section 4.2.

4.1 Good graphs and decent functions

Our first definition describes graphs which do not have overly dense subgraphs.

Definition 4.1 (f -good). Let f : R>0 → R>0 be a function. An n-vertex graph G is f -good if the
number of edges in any subgraph on k vertices is bounded from above by{

k·f(k)
log k if 2 6 k 6

√
n

k · f(k) if
√
n < k 6 n

.

We observe that f -goodness is a monotone property, i.e., if a graph G is f -good, then so is any
of its subgraphs. Indeed, moving the threshold (between the first and the second, more relaxed,
upper bound) from

√
n down to a smaller value may only help in satisfying these bounds.

The next definition gives a class of functions used to describe speeds of monotone classes, where,
for such a function f(n), we will consider classes of growth 2nf(n).

Definition 4.2 ((δ, C, s)-decent). For constants δ ∈ (0, 1), C > 1 and s > 2, we say that a non-
decreasing function f : R>0 → R>0 is (δ, C, s)-decent if the following properties hold

(Moderate-growth): log x 6 f(x) 6 C · x1−δ holds for every x ∈ [s,∞),

(Sub-multiplicativity): f(xy) 6 C · f(x) · f(y) holds for any x, y ∈ [s,∞).

We say that a function f is decent if there exist some constants δ ∈ (0, 1), C > 1, and s > 2
such that f is (δ, C, s)-decent. For any constant C > 1, the function f(x) = C log x is decent; this
captures factorial growth. We now give some other natural examples of decent functions.

Lemma 4.3. For any fixed α > 0, β > 1, γ > 1 and d ∈ (0, 1), the following functions are decent:

(i) f(x) = αxd,

(ii) f(x) = exp
(
α · lnd x

)
,

(iii) f(x) = exp (β · lnγ(log x)),

(iv) f(x) = β · g(x), where g(x) is decent,

(v) f(x) = g(x) · h(x), where g(x), h(x) are decent and g(x) · h(x) is moderately-growing.
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Proof. For (i), if we set s :=
(

2
dmax{α,1}

)2/d
, then we have

f(s) = α ·
(

2

dmax{α, 1}

)2

>
2

d
· 2

dmax{α, 1}
>

2

d
· log

2

dmax{α, 1}
= log s.

Furthermore, observe that αxd

log x is increasing for all x > e1/d, and that s > 22/d > e1/d. Thus, f has
moderate-growth on [s,∞) with C = α and δ = 1− d. Observe also that f(xy) = 1

α · f(x)f(y), and

thus f(x) = αxd is
(

1− d,max
{
α, 1

α

}
, s
)
-decent.

For (ii), moderate-growth holds for C = 1, any fixed δ ∈ (0, 1), and sufficiently large s > 2. For
x, y > 0 let gx(y) = (x+y)d−xd−yd and observe that gx(0) = 0 and g′x(y) = d(x+y)d−1−dyd−1 6 0.
Consequently, gx(y) 6 0 for all x, y > 0, or equivalently (x+ y)d 6 xd + yd. This implies that f is
sub-multiplicative as

f(xy) = exp
(
α(lnx+ ln y)d

)
6 exp

(
α((lnx)d + (ln y)d)

)
= f(x) · f(y).

For (iii), it will be useful to show that

lnγ(x+ y) 6 lnγ x+ lnγ y, for all x, y ∈ [eγ ,∞). (4)

To prove (4), we first observe that the function g(x) = lnγ x
x is non-increasing for x ∈ [eγ ,∞).

This follows since g is differentiable when x 6= 0 and g′(x) = (γ−lnx) lnγ−1 x
x2 < 0 for all x > eγ > 1.

Thus (4) follows from this observation, since for any x, y ∈ [eγ ,∞) we have

lnγ(x+ y) = x · lnγ(x+ y)

x+ y
+ y · lnγ(x+ y)

x+ y
6 x · lnγ x

x
+ y · lnγ y

y
= lnγ x+ lnγ y.

We now see that f is sub-multiplicative for any x, y ∈ [2e
γ
,∞) as by (4) we have

f(xy) = exp (β · lnγ(log x+ log y)) 6 exp (β · (lnγ(log x) + lnγ(log y))) = f(x) · f(y).

Since γ > 1 and β > 1, f is also moderately-growing for a sufficiently large s.
For (iv), if g is (δg, Cg, sg)-decent, then it is easy to check that βg is (δg, βCg, sg)-decent.
For (v), let g be (δg, Cg, sg)-decent and h be (δh, Ch, sh)-decent, and f(x) := g(x) · h(x). As

log x 6 f(x) 6 C ′x1−δ′ for some δ′ ∈ (0, 1), C ′ > 0, and s′ > 2, by assumption, it remains to show
sub-multiplicativity. For any x, y ∈ [max{sg, sh},∞) we have

f(xy) = g(xy) · h(xy) 6 Cgg(x)g(y) · Chh(x)h(y) 6 Cg · Ch · f(x)f(y),

and thus f is (δ′,max{C ′, Cg · Ch},max{s′, sg, sh})-decent.

4.2 Growth of the number of edges in subgraphs of random graphs

The aim of this Section is to show that there are many graphs which are suitable for building the
classes we need to prove Theorem 1.4. We will achieve this using random graphs, where G(n, p)
denotes the distribution on n-vertex graphs where each edge is included independently with prob-
ability p, see (for example) [FK23]. Our main result shows that random graphs are suitable with
high probably.
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Theorem 4.4. Let f : R>0 → R>0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C > 1, and
s > 2. Then, for any fixed γ > 1, there exists c := c(δ, C, s, γ) > 0 such that, for large n,

P [G(n, γf(n)/n) is not (cf)-good ] 6 n−2.

To prove this we will utilize the following version of the Chernoff bound (see [AS08, Theorem
A.1.15]), where Bin(N, p) denotes the binomial distribution with parameters N and p.

Lemma 4.5 (Chernoff bound). Let ξ ∼ Bin(N, p), µ = Np, and a, t > 0. Then,

P(ξ > (1 + a)µ) 6

(
ea

(1 + a)1+a

)µ
6 exp

(
−(1 + a)µ · ln 1 + a

e

)
.

Proof of Theorem 4.4. Let p := p(n) = γf(n)/n, and let c1, c2 be sufficiently large constants
(depending on γ) fixed later. Let E1,k (respectively E2,k) be the event that there are no sub-
graphs of size k with more than c1kf(k)/ log k edges (respectively c2kf(k) edges). Observe that if
c = max{c1, c2,

(
s
2

)
}, then

{G(n, p) is not (cf)-good} ⊆

b√nc⋃
k=s

¬E1,k

 ∪
 n⋃
k=b
√
nc+1

¬E2,k

 . (5)

Let k denote the number of vertices in a subgraph, and thus ξ ∼ Bin
((

k
2

)
, p
)
denotes the number

of edges in a given k-vertex subgraph. The expectation of ξ is

µ :=

(
k

2

)
p =

γ

2
· k(k − 1)f(n)

n
.

On the other hand, the number of ways to select a k-vertex subgraph is(
n

k

)
6
(en
k

)k
= exp

(
k ln

n

k
+ k
)
6 exp (2k lnn) . (6)

Our strategy will be to bound the probability of the events on the right-hand side of (5) using the
union and Chernoff bounds.

We begin by considering events of the form E2,k and thus can assume that b
√
nc + 1 6 k 6 n.

Observe that since f is sub-multiplicative, non-decreasing, and moderately-growing, we have

f(k)

f(n)
=

f(k)

f
(
n
k · k

) >
f(k)

C · f(nk ) · f(k)
>

f(k)

C · f( snk ) · f(k)
>

f(k)

C2 · ( snk )1−δ · f(k)
>

k

C2s · n
. (7)

If we now fix
c2 = C2s · e2 · γ > 6, (8)

then by (7) we have
2c2nf(k)

eγ(k − 1)f(n)
=

2C2se · nf(k)

(k − 1)f(n)
>

2ek

k − 1
> e. (9)

So, applying Chernoff bound (Lemma 4.5) with 1 + a = c2kf(k)
µ = 2c2nf(k)

γ(k−1)f(n) gives

P(ξ > c2kf(k)) 6 exp

(
−(1 + a)µ · ln 1 + a

e

)
14



= exp

(
−c2kf(k) · ln 2c2nf(k)

eγ(k − 1)f(n)

)
(9)
6 exp (−c2kf(k))

(8)
6 exp (−6kf(k)) . (10)

Thus, by (6), (10), the union bound, and as f(k) > log k > ln k, we have

P

 n⋃
k=b
√
nc+1

¬E2,k

 6
n∑

k=b
√
nc+1

exp (2k lnn) · exp (−6kf(k)) 6
n∑

k=b
√
nc+1

k−k 6 exp(−
√
n). (11)

We now treat events of the form E1,k, and thus we can assume that s 6 k 6 b
√
nc. Observe

that for any fixed constant d > 0 and sufficiently large n we have n2/3

k(log k)d
> s as k 6

√
n. Thus, by

sub-multiplicativity, and moderate-growth we have

f

(
n2/3

(log k)d

)
= f

(
n2/3

k(log k)d
· k

)

6 C · f

(
n2/3

k(log k)d

)
· f (k)

6 C2 ·

(
n2/3

k(log k)d

)1−δ

· f(k)

6 C2 · n2/3

k(log k)d
· f(k).

Similarly, by sub-multiplicativity and moderate-growth, we have

f(n) = f

(
n2/3

(log k)d
· n1/3(log k)d

)

6 C · f

(
n2/3

(log k)d

)
· f
(
n1/3(log k)d

)
6 C2 · f

(
n2/3

(log k)d

)
· n(1−δ)/3(log k)(1−δ)·d.

If we set d = 1/δ > 0 then the two bounds above give

f(k)

f(n)
>

f
(

n2/3

(log k)d

)
· k(log k)d

C2n2/3

C2 · f
(

n2/3

(log k)d

)
· n(1−δ)/3(log k)(1−δ)·d

=
k(log k)δd

C4n1−δ/3 =
k log k

C4n
· nδ/3. (12)

Foreseeing the need for the constant 15 later on, we now set

c1 = e · 15 · C4γ/δ. (13)
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We now set 1 + a := c1kf(k)
µ·log k , which by (12) satisfies

1 + a =
c1kf(k)

µ · log k
=

2c1nf(k)

γ(k − 1)f(n) log k
>

2c1k

γ(k − 1)C4
· nδ/3 > e · nδ/3. (14)

As before, Chernoff bound (Lemma 4.5) with this 1 + a gives

P
(
ξ >

c1kf(k)

log k

)
6 exp

(
−c1kf(k)

log k
· ln 1 + a

e

)
(14)
6 exp

(
−c1kf(k)

log k
· δ

3
lnn

)
(∗)
6 exp

(
−c1k ·

δ

3
lnn

)
(13)
6 exp (−5k lnn) , (15)

where (∗) follows as f(k) > log k by moderate-growth. Thus, by (6), (15), and the union bound,

P

b√nc⋃
k=s

¬E1,k

 6
b
√
nc∑

k=s

exp (2k lnn) · exp (−5k lnn) 6
√
n · n−3s 6 n−5. (16)

The result follows by taking c = max{c1, c2,
(
s
2

)
}, (5), and the union bound over (11) and (16).

We now use Theorem 4.4 to prove Lemma 4.7, which bounds the number of cf -good graphs from
below. To prove Lemma 4.7, it is convenient to switch to an alternative model of random graphs
with a fixed number of edges. We let G(n,m) to denote the uniform distribution on n-vertex graphs
with m edges. The following lemma allows us to transfer results from one graph model to another.

Lemma 4.6. Let P be any graph property (i.e., graph class) and 0 6 p 6 1 satisfy p
(
n
2

)
→∞ and(

n
2

)
− p
(
n
2

)
→∞ and m =

⌈
p
(
n
2

)⌉
. Then, for Gn ∼ G(n,m) and G′n ∼ G(n, p), we have

P [Gn ∈ P ] 6 10
√
m · P

[
G′n ∈ P

]
.

Lemma 4.6 follows by a very minor adaption of [FK23, Lemma 3.2], the only difference is a ceiling
in the number of edges, which makes no difference in the proof.

Lemma 4.7. Let f : R>0 → R>0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C > 1, and s > 2.
Then, for any fixed γ > 1, there exists some c := c(γ, δ, C, s) > 0 such that for every n ∈ N there
are at least 2(γδ/2−o(1))·nf(n) logn many unlabeled (cf)-good n-vertex graphs.

Proof. Let m :=
⌈γ(n−1)f(n)

2

⌉
and Gn ∼ G

(
n,m

)
. Observe that by Theorem 4.4 and Lemma 4.6,

there exists some fixed c > 0 such that for sufficiently large n

P [Gn is (cf)-good ] > 1− 10

√⌈γ(n−1)f(n)
2

⌉
· n−2 = 1− o(1). (17)

The number of labeled graphs in the support of G
(
n,m

)
is

((n
2

)
m

)
=

( (
n
2

)⌈
γ(n−1)f(n)

2

⌉) >

(
n

γf(n)

)γ(n−1)f(n)
2

= 2
γ
2
·(n−1)f(n)·(logn−log(γf(n))).
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By (17), a 1− o(1) fraction of these labeled graphs are (cf)-good. Furthermore, there are at most
n! 6 nn labelings of a given unlabeled graph. Thus, the number of unlabeled n-vertex (cf)-good
graphs is bounded from below by

(1− o(1)) · 1

nn
· 2

γ
2
·(n−1)f(n)·(logn−log(γf(n))) = 2

γ
2
·nf(n)·(logn−log(f(n))−O(1))

> 2
γ
2
·nf(n)·(logn−(1−δ) log(n)−O(1))

= 2(δγ/2−o(1))·nf(n) logn,

as claimed, since log n 6 f(n) 6 Cn1−δ by moderate-growth.

5 Tight bounds on labeling schemes for monotone classes

We begin in Section 5.1 with a lemma which is useful for bounding the speed when constructing
monotone classes with no implicit representation. This is then used to prove our lower bound
in Section 5.2. Finally, in Section 5.3 we give a matching upper bound on labeling schemes for
monotone classes, this follows from [KNR92] and included mainly for completeness.

5.1 Construction of monotone classes

We begin with a lemma showing that, for a decent function f , we can create monotone classes from
the union of many f -good graphs and still maintain control over the speed. The proof follows the
broad idea of [HH22, Claim 3.1].

Lemma 5.1. Let f : R>0 → R>0 be (δ, C, s)-decent for some constants δ ∈ (0, 1), C > 1, and s > 2.
Let c > 0 be a constant, and, for every n ∈ N, let Mn be any set of (cf)-good unlabeled n-vertex
graphs satisfying |Mn| 6

⌈
2
√
nf(n)

⌉
. Then the speed of X := Mon(∪n∈NMn) is 2O(nf(n)).

Proof. Let Y := Her(∪n∈NMn). Note that X = Mon(Y). We first estimate the speed of Y. For an
n-vertex graph G ∈ Y, let N be the smallest integer such that G is an induced subgraph of a graph
H ∈MN . We split the proof over two cases: (i): N > n2, and (ii): N < n2.

Case (i): Since H is a (cf)-good N -vertex graph and G is its n-vertex induced subgraph, where
n 6
√
N , it follows from Definition 4.1 that G must have at most g(n) := cnf(n)/ log n

many edges. The number of such graphs is at most( (n
2

)
g(n)

)
6

(
n2e

g(n)

)g(n)

= 2
g(n)·log n2e

g(n) = 2
c
nf(n)
logn

·log n2e
g(n) = 2O(nf(n)),

and so Y contains 2O(nf(n)) many n-vertex labeled graphs each of which is an induced
subgraph of a graph in MN for some N with n 6

√
N .

Case (ii): For this case, we simply use the fact that any H ∈ MN has at most Nn many n-vertex
induced subgraphs. Thus, the number of n-vertex labeled graphs in Y each of which is
an induced subgraph of a graph in MN for some N with N < n2 is bounded from above
by

n! ·
n2∑
N=n

Nn · |MN | 6 n! ·
n2∑
N=n

Nn ·
⌈
2
√
Nf(N)

⌉
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6 n! · n2 · (n2)n ·
⌈
2
√
n2f(n2)

⌉
6 2O(n logn) ·

⌈
2
√
Cnf(n)

⌉
= 2O(nf(n)),

where in the last inequality we used sub-multiplicativity of f , and in the final equality
we used the fact that f(x) > log x.

Thus, |Yn| = 2O(nf(n)). Now, since every n-vertex labeled graph in X is a subgraph of an n-vertex
labeled graph in Y, and, due to (cf)-goodness, every graph in Yn has at most 2cnf(n) n-vertex
subgraphs, we conclude that |Xn| 6 |Yn| · 2cnf(n) = 2O(nf(n)).

5.2 Lower bound

We can now show the main result of the paper, which we recall for convenience.

Theorem 1.4. Let f : R>0 → R>0 be a decent function. Then, there exists a monotone graph
class X with speed |Xn| = 2O(nf(n)) that does not admit a universal graph of size at most 2f(n) logn.
Equivalently, X admits no adjacency labeling scheme of size at most f(n) log n.

Proof. By assumption f : R>0 → R>0 is (δ, C, s)-decent for some constants δ ∈ (0, 1), C > 1,
and s > 2. We will construct a monotone class (via the probabilistic method) with the speed
2O(nf(n)) that does not admit a universal graph of size un := 2f(n) logn. Fix γ := 4/δ > 1 and let
c := c(γ, δ, C, s) > 0 be the satisfying constant from Theorem 4.4 corresponding to this choice of γ.
Let kn :=

⌈
2
√
nf(n)

⌉
.

The number of distinct un-vertex graphs is at most 2u
2
n and the number of n-vertex induced

subgraphs of a fixed un-vertex graph is at most
(
un
n

)
. Hence the number of collections of kn graphs

on n vertices that are induced subgraphs of a un-vertex (universal) graph is at most

2u
2
n ·
((un

n

)
kn

)
6 2u

2
n · ukn·nn . (18)

On the other hand, from Lemma 4.7, the number of different collections of n-vertex (cf)-good
graphs of cardinality kn is at least(

2(γδ/2−o(1))·nf(n) logn

kn

)
>

(
2(γδ/2−o(1))·nf(n) logn

kn

)kn
= 2kn·(γδ/2−o(1))·nf(n) logn, (19)

as log kn = O(
√
nf(n)) = o(nf(n) log n). By taking logarithms, we can see that for sufficiently

large n the upper bound (18) is smaller than the lower bound (19). In particular, taking the
logarithm of (18) gives

log
(

2u
2
n · ukn·nn

)
= u2

n + kn · n log un

= 22f(n) logn + kn · nf(n) log n

= (1 + o(1)) · kn · nf(n) log n,
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as kn :=
⌈
2
√
nf(n)

⌉
= ω(22f(n) logn). However, since γ = 4/δ, the logarithm of (19) is

log
(

2kn·(γδ/2−o(1))·nf(n) logn
)

= kn · (γδ/2− o(1)) · nf(n) log n

= (2− o(1)) · kn · nf(n) log n.

Thus, for any sufficiently large n, there exists a collection Mn of kn (cf)-good n-vertex graphs
that are not representable by any universal graph of size at most un = 2f(n) logn. Consequently, by
Lemma 5.1, the speed of X := Mon(∪nMn) is |Xn| = 2O(nf(n)) and X does not admit a universal
graph of size at most 2f(n) logn.

5.3 Upper bound

In this section we prove the following upper bound on labeling schemes for monotone classes.

Proposition 1.3. Let f : R>0 → R>0 be a non-decreasing function. Then, any monotone class of
graphs X with speed |Xn| = 2O(nf(n)) admits an adjacency labeling scheme of size O(f(n) log n).

Proof. Let X be a monotone class with at most 2Cnf(n) labeled n-vertex graphs for every n. If an
n-vertex graph G ∈ X has m edges, then X contains at least 2m labeled n-vertex graphs, as every
subgraph of G also belongs to X due to monotonicity.

This implies that every n-vertex graph G in X contains at most Cnf(n) edges, and hence,
has a vertex of degree at most 2Cf(n). Due to monotonicity of f , the same is true for every
subgraph of G. Indeed, if H is a k-vertex subgraph of G, then, since H belongs to X , the number of
edges in H is at most Ckf(k) 6 Ckf(n), and therefore H has a vertex of degree at most 2Cf(n).
Thus, every n-vertex graph in X is 2Cf(n)-degenerate, and Lemma 3.5 implies that X admits
a (2Cf(n) + 1) · dlog ne-bit labeling scheme.

5.4 Complexity of monotone classes

The following result shows that monotone classes are complex in the sense that they cannot be
“described” by even a countable number of classes of a slightly larger speed. The proof of this
theorem follows the exact same idea as [Cha23, Lemma 2.4], also see [BDS+24, Theorem 1.2] for
the proof of a similar theorem in the context of small classes.

Theorem 1.6. Let f : R>0 → R>0 be any decent function, and X be any countable set of graph
classes, each with speed at most 2nf(n) logn. Then, there exists a monotone graph class X of speed
2O(nf(n)) such that there does not exist a D ∈ X with X ⊆ D.

Proof. By assumption f : R>0 → R>0 is (δ, C, s)-decent for some constants δ ∈ (0, 1), C > 1, and
s > 2. By Lemma 4.7 there exists some c := c(δ, C, s) > 0 such that if Gn is the number of unlabeled
(cf)-good n-vertex graphs, then |Gn| > 2(2−o(1))·nf(n) logn for every n ∈ N. Let kn :=

⌈
2
√
nf(n)

⌉
.

Then, by Lemma 5.1, for every n ∈ N and Mn ⊆ Gn satisfying |Mn| 6 kn, the speed of X :=
Mon(∪n∈NMn) is 2O(nf(n)). Thus if we wish to build such a class X there are(

|Gn|
kn

)
>

(
|Gn|
kn

)kn
> 2(2−o(1))·kn·nf(n) logn, (20)

ways of selecting the set Mn ⊆ Gn.
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Let X = (Di)i∈N be any countable collection of classes, satisfying |Din| 6 2nf(n) logn for each
n ∈ N and i ∈ N. Any class Di ∈ X contains at most 2kn·nf(n) logn different sets of n-vertex graphs
with size kn. By (20), there is some constant N0 such that for all n > N0 this is less than the
number of choices of sets Mn ⊆ Gn with size kn. Thus, given any such set X, for each n ∈ N we can
take some Mn ⊆ Gn+N0 such that Mn 6⊆ Dn and thus X /∈ X.
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