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Abstract

We show that for any positive integers g and t, there is a K
(1)
6 -induced-minor-free

graph of girth at least g that is not a region intersection graph over the class of Kt-
minor-free graphs. This answers in a strong form the recently raised question of whether
for every graph H there is a graph H ′ such that H-induced-minor-free graphs are region
intersection graphs over H ′-minor-free graphs.

1 Introduction

Inspired by the success of Robertson and Seymour’s graph minor theory [17], a recent line of
work aims to extend this theory to the realm of induced-minor-free classes.1 Currently, far
less is understood on classes excluding an induced minor than on those excluding a minor.
While H-minor-free n-vertex graphs are known since the 90’s to have treewidth OH(

√
n) [1],

foreshadowed a decade earlier by the Lipton–Tarjan planar separator theorem [13], only
recently were H-induced-minor-free m-edge graphs shown to have treewidth ÕH(

√
m) [11].

There are several open questions (for simplicity, we phrase all of them as conjectures) on
induced-minor-free classes.

• For any planar graph H, the independence number of any H-induced-minor-free graph
can be computed in polynomial time (see [5, Question 8.2]).2

• For any planar graph H, every H-induced-minor-free graph admits a balanced separa-
tor dominated by a subset of size OH(1) (Gartland–Lokshtanov’s conjecture [9]).

• For any planar graph H, every H-induced-minor-free graph has treewidth at most
linear in its maximum degree (see [3]).

• For any graph H, the independence number admits a polynomial-time approximation
scheme in H-induced-minor-free graphs.

• For any planar graph H, weakly sparse H-induced-minor-free classes have bounded
twin-width (a special case is mentioned in [2]).

1All the relevant notions are defined in Section 2.
2Merely obtaining a quasipolynomial-time algorithm is also a wide open question.
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• For any planar graph H, every H-induced-minor-free graph has treewidth at most
linear in its Hadwiger number (see [4]).

• For any graph H, every H-induced-minor-free graph is quasi-isometric to an H-minor-
free graph (a more general conjecture is found in [10]).

All these questions are open within classes of large girth, a condition which may make
them more approachable. One more question, posed independently by Lokshtanov [14] and
McCarty [15], is whether region intersection graphs could provide a bridge between the
structure of minors and induced minors. A graph G is a region intersection graph (RIG)
over a graph H if there exists a collection R = (Rv ⊆ H : v ∈ V (G)) of connected subgraphs
of H such that uv ∈ E(G) if and only if V (Ru)∩V (Rv) ̸= ∅. We call H the host graph of G.

Question 1. Is every graph class excluding a fixed induced minor included in the region
intersection graphs of a class excluding a fixed minor?

If true, one could then work with the host graph and benefit from its decomposition
given by the Graph Minor Structure Theorem [18]. Wiederrecht asked a related question of
whether one can determine if a given induced-minor-free class is a region intersection graph
over a minor-free class [20].

Region intersection graphs were introduced by Lee [12] as a generalization of the well-
studied class of string graphs (intersection graph of curves on the plane). Indeed, a graph is
a string graph if and only if it is a region intersection graph over some planar graph. The
class of string graphs does not exclude any graph as a minor, but excludes any 1-subdivision
of a non-planar graph as an induced minor [19]. More generally, Lee [12] proved the following
relationship between region intersection graphs and minors.

Lemma 1 ([12]). For every graph G, if a graph H is not a minor of G then any graph that
contains H(1) as an induced minor is not a region intersection graph over G.

Thus RIGs over an H-minor-free class are examples of classes excluding an induced minor.
The theory on region intersection graphs, and mainly on string graphs, is more advanced
than that of induced-minor-free graphs. For instance, RIGs over Kt-minor-free classes can
be Ot(1)-vertex-colored (or Ot(1)-edge-colored) such that every monochromatic connected
component has bounded weak diameter [12, 7]. Such a result is useful in various contexts,
and it would resolve several conjectures for classes excluding a fixed induced minor (see for
instance [11, 3]). One way to achieve that would be via a positive answer to Question 1.

Unfortunately, we answer Question 1 negatively, and perhaps more surprisingly, even
within classes of arbitrarily large girth.

Theorem 2. For any positive integers t and g, there is a K
(1)
6 -induced-minor-free graph of

girth at least g that is not in RIG({H : H is Kt-minor-free}).
The bridge between induced-minor-freeness and minor-freeness (if it exists) is not given

straightforwardly by region intersection graphs. Our construction for proving Theorem 2 is
an extension of the so-called Pohoata–Davies grids [6, 16] (see Figure 1), a key family of
graphs in the study of induced subgraphs and tree-decompositions.

Hopefully, our construction steers the search for a link between induced-minor-freeness
and minor-freeness in a more fortunate direction.
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Figure 1: The Pohoata–Davies 6× 6 grid.

2 Preliminaries

Given an integer i, we denote by [i] the set of integers that are at least 1 and at most i.

2.1 Standard graph-theoretic notation

We denote by V (G) and E(G) the set of vertices and edges of a graph G, respectively.
A graph H is a subgraph of a graph G, denoted by H ⊆ G, if H can be obtained from G by
vertex and edge deletions. Graph H is an induced subgraph of G if H is obtained from G

by vertex deletions only. For S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is
obtained by removing from G all the vertices that are not in S. Then G−S is a short-hand
for G[V (G) \ S].

A set X ⊆ V (G) is connected (in G) if G[X] has a single connected component. The
girth of a graph is the number of vertices of one of its shortest cycles, and ∞ if the graph
is acyclic. A graph class is weakly sparse if it excludes Kt,t as a subgraph for some finite
integer t. A balanced separator of an n-vertex graph G is a set X ⊆ V (G) such that G−X

has no connected component on more than n/2 vertices.
If G is a graph and ℓ is a positive integer, then G(ℓ) denotes the ℓ-subdivision of G

(replacing every edge of G by a path with ℓ+ 1 edges), and ℓG denotes the graph obtained
from ℓ disjoint copies of G. We call the original vertices of V (G) in G(ℓ) branching vertices,
and the added vertices (which have degree 2) subdivision vertices. We say that two disjoint
sets X, Y ⊆ V (G) are anti-complete if there is no edge in G with one end in X and the other
in Y . The diameter of G is defined as maxu,v∈V (G) dG(u, v), where dG(u, v) is the number of
edges in a shortest path between u and v. The weak diameter of S in G for S ⊆ V (G) is
equal to maxu,v∈S dG(u, v).

2.2 Tree-decomposition

A tree-decomposition of a graph G is a collection T = (Wx : x ∈ V (T )) of subsets of V (G)

(called bags) indexed by the vertices of a tree T , such that
• for every edge uv ∈ E(G), some bag Wx contains both u and v, and
• for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a non-empty

(connected) subtree of T .
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The width of T is max{|Wx| : x ∈ V (T )}− 1. The treewidth of G is the minimum width of a
tree-decomposition of G. The adhesion of T is max{|Wx ∩Wy| : xy ∈ E(T )}. The torso of
a bag Wx (with respect to T ), denoted by G⟨Wx⟩, is the graph obtained from the induced
subgraph G[Wx] by adding edges so that Wx ∩ Wy is a clique for each edge xy ∈ E(T ).
A path-decomposition is a tree-decomposition in which the underlying tree is a path, simply
denoted by the corresponding sequence of bags (W1, . . . ,Wn).

2.3 Minors, induced minors, and region intersection graphs

A graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges. Equivalently, H is a minor of G if there exists
a model M = (Xv ⊆ G : v ∈ V (H)) of H in G which is a collection of disjoint connected
subgraphs of G such that Xu and Xv are adjacent whenever uv ∈ E(H). Each Xu is called
a branch set. A graph H is an induced minor of a graph G if H is isomorphic to a graph
that can be obtained from an induced subgraph of G by contracting edges. Equivalently, H
is an induced minor of G if there is a model M = (Xv ⊆ G : v ∈ V (H)) of H in G with the
additional constraint that Xu and Xv are adjacent if and only if uv ∈ E(H). A graph G

is H-minor-free (resp. H-induced-minor-free) if H is not a minor (resp. an induced minor)
of G.

Recall that a graph G is a region intersection graph over a graph H if there exists a
collection R = (Rv ⊆ H : v ∈ V (G)) of connected subgraphs of H such that uv ∈ E(G) if
and only if V (Ru) ∩ V (Rv) ̸= ∅. We denote by RIG(H) the class of graphs that are region
intersection graphs over H. By extension, given a graph class C, RIG(C) denotes the class
of graphs that are region intersection graphs over some graph of C.

2.4 Graph minor structure theorem

The Graph Minor Structure Theorem of Robertson and Seymour [18] states that every Kt-
minor-free graph has a tree-decomposition with bounded-size adhesion such that each torso
can be constructed using three ingredients: graphs on surfaces, vortices, and apices. To
describe this formally, we need the following definitions.

Let G0 be a graph embedded in a surface Σ. A closed disk D in Σ is G0-clean if its only
points of intersection with G0 are vertices of G0 that lie on the boundary of D. Let x1, . . . , xb

be the vertices of G0 on the boundary of D in the order around D. A D-vortex (with respect
to G0) of a graph H is a path-decomposition (W1, . . . ,Wb) of H such that xi ∈ Wi for each
i ∈ [b], and V (G0 ∩H) = {x1, . . . , xb}.

For integers g, p, a ⩾ 0 and k ⩾ 1, a graph G is (g, p, k, a)-almost-embeddable if for some
set Z ⊆ V (G) with |Z| ⩽ a, there are graphs G0, G1, . . . , Gp such that:

• G− Z = G0 ∪G1 ∪ · · · ∪Gp,
• G1, . . . , Gp are pairwise vertex-disjoint,
• G0 is embedded in a surface Σ of Euler genus at most g,
• there are p pairwise disjoint G0-clean closed disks D1, . . . , Dp in Σ, and
• for i ∈ [p], there is a Di-vortex (W1, . . . ,Wbi) of Gi of width at most k.
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The vertices in Z are called apex vertices—they can be adjacent to any vertex in G. A graph
is ℓ-almost-embeddable if it is (g, p, k, a)-almost-embeddable for some ℓ ⩾ g, p, k, a. A graph
is apex-free ℓ-almost-embeddable if it is (g, p, k, 0)-almost-embeddable for some ℓ ⩾ g, p, k.

Theorem 3 ([18]). For every positive integer t, there exists an integer ℓ such that every
Kt-minor-free graph has a tree-decomposition of adhesion at most ℓ such that each torso is
ℓ-almost-embeddable.

For every positive integer n, let An denote the apex n×n grid ; that is, the graph obtained
from the n×n grid by adding a universal vertex. The next theorem concerns the structure of
apex-minor-free graphs. The statement is implied by a characterization of apex-minor-free
graphs [8, Theorem 25, (6) ⇒ (5)].

Theorem 4 ([8]). For every positive integer ℓ, there exists some integer n such that every
graph that has a tree-decomposition of adhesion at most ℓ where each torso is apex-free ℓ-
almost-embeddable is An-minor-free.

Finally, we will need the notion of clique-sum. Let k be a positive integer, C1 =

{v1, . . . , vk}, a clique in a graph G1, C2 = {w1, . . . , wk}, a clique in a graph G2.
A k-clique-sum of G1 and G2 is any graph G obtained from the disjoint union of G1 and G2

by identifying vi and wi for each i ∈ [k] and then possibly deleting some edges in C1 (= C2).

3 Proof of Theorem 2

In this section, we prove Theorem 2 first for graphs of girth 5. We then explain how the
construction can be generalized so that the result holds for arbitrarily large girth.

Theorem 5. For every positive integer t, there is a K
(1)
6 -induced-minor-free graph G of

girth 5 such that G is not in RIG({H : H is Kt-minor-free}).

We fix any positive integer t. By Theorem 3, there exists some integer ℓ := ℓ(t) such that
every Kt-minor-free graph has a tree-decomposition of adhesion at most ℓ where each torso
is ℓ-almost-embeddable. By Theorem 4, there exists some integer n := n(ℓ) such that every
graph that has a tree-decomposition of adhesion at most ℓ where each torso is apex-free
ℓ-almost-embeddable is An-minor-free. We may assume that n ⩾ ℓ + 1. We now construct
our graph G.

Construction of G. Since the n × n grid is K5-minor-free, the apex n × n grid An is
K6-minor-free. Let Bn be nA

(1)
n , that is, the disjoint union of n copies of the 1-subdivision

of An, also equal to the 1-subdivision of the disjoint union of n copies of An. We now set
a total order ≺ of V (Bn), and a traceable (i.e., admitting a Hamiltonian path) spanning
supergraph B′

n of Bn, whose Hamiltonian path defines the successor relation of ≺.
The vertices of each copy of A(1)

n appear consecutively along ≺. The graph B′
n is obtained

by adding to each copy of A(1)
n the red edges of Figure 2. Note that this includes an edge

between the top-left vertex of the grid and the apex of the previous copy of A(1)
n (leftmost
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Figure 2: The graphs Bn, B
′
n and the order ≺. We only represented one entire copy of A(1)

n .
Black edges represent Bn. Together with the red edges, they form B′

n. Every vertex filled
in gray is adjacent to the apex vertex to the right (we only drew some of these edges for
legibility). The Hamiltonian path of B′

n in blue defines the successor relation of ≺.

vertex in the figure). The order ≺ within each A
(1)
n is given by the Hamiltonian path in

blue, starting at the top-left vertex of the grid to the apex. Like Bn, the graph B′
n is also

K6-minor-free. The graph B′
n is not part of the construction and we will only use it in the

proof of Lemma 7.
To finish the construction, we add to Bn the disjoint union of n paths P1, . . . , Pn of length

2|V (Bn)| − 1, and make for every i ∈ [|V (Bn)|] and j ∈ [n], the (2i − 1)-st vertex of Pj,
denoted by pj,i, adjacent to the i-th vertex of Bn along ≺, denoted by bi. Call G the resulting
graph. As a side note, if we replaced each copy of A(1)

n in G by K1, then the graph obtained
is a Pohoata–Davies Grid (see Figure 1).

The following three lemmas prove Theorem 5.

Lemma 6. G has girth at least 5.

Proof. Bn is the 1-subdivision of a simple graph, hence has girth at least 6. G − V (Bn)

is a disjoint union of paths, thus does not contain any cycle. Any cycle going through
V (G)\V (Bn) has at least two consecutive edges within G−V (Bn). We conclude as no distinct
pair of vertices within the same connected component of V (G) \ V (Bn) shares a neighbor in
V (Bn).

Lemma 7. G is K
(1)
6 -induced-minor-free.

Proof. Assume for the sake of contradiction that G admits K
(1)
6 as an induced minor. We

will then build a minor model of K6 in B′
n, which, we know, does not exist.

Let M be an induced minor model of K(1)
6 in G such that

• every branch set of a subdivision vertex of K(1)
6 is a singleton,

• if such a singleton is on some Pj and its two neighbors on Pj are in the two adjacent
branch sets (one in each), then the singleton cannot be a vertex pj,i (it has to be
a degree-2 vertex in between some pj,i and pj,i+1), and
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• each branch set is inclusion-wise minimal.
It is easy to see that this can always be done. Let X1, . . . , X6 ∈ M be the branch sets
corresponding to the branching vertices of K(1)

6 . We denote by {sk,k′} the branch set (of the
subdivision vertex) adjacent to Xk and Xk′ , for k ̸= k′ ∈ [6]. For each k ∈ [6], let

Yk := (Xk∩V (B′
n))∪{bi : ∃j ∈ [n], pj,i ∈ Xk and ∄k′ < k ∈ [6], j′ ∈ [n], pj′,i ∈ Xk′}, and

Y ′
k := Yk ∪ {sk,k′ ∈ V (B′

n) \ (Y1 ∪ · · · ∪ Y6) : k < k′}.

We now show that Y ′
1 , . . . , Y

′
6 is a minor model of K6 in B′

n.

Claim 1. The sets Y ′
1 , . . . , Y

′
6 are pairwise disjoint.

Proof of Claim: Suppose there exists some bi ∈ Y ′
k ∩Y ′

k′ with k < k′. From the definition
of Y1, . . . , Y6 and Y ′

1 , . . . , Y
′
6 , it should be that bi ∈ Xk and pj,i ∈ Xk′ for some j ∈ [n] or that

bi ∈ Xk′ and pj,i ∈ Xk for some j ∈ [n]. But that would make Xk and Xk′ adjacent. 3

To further show that the sets Y ′
1 , . . . , Y

′
6 are connected and pairwise adjacent in B′

n, we
need the following notion and claims. An interval I of some Xk is a subset of consecutive
positive integers such that there is a connected component J of G[Xk ∩ V (Pj)] for some
j ∈ [n] such that {i : pj,i ∈ V (J)} = I.

Claim 2. For any k ̸= k′ ∈ [6], any interval I of Xk, and any interval I ′ of Xk′, it cannot be
that I ⊆ I ′ (and symmetrically I ′ ⊆ I). Furthermore, at most one vertex of {bi : i ∈ I ∩ I ′}
can be in a branch set of M, namely sk,k′.

Proof of Claim: If I ⊆ I ′, then Xk is a subpath of Pj for some j ∈ [n], as otherwise Xk

and Xk′ would be adjacent. But then Xk has at most two neighbors that are not neighbors
of Xk′ , a contradiction to realize the 4 branch sets adjacent to Xk but not to Xk′ . The rest
of the claim follows because {sk,k′} is the only branch set adjacent to both Xk and Xk′ , and
Xk and Xk′ are non-adjacent. 3

We can extend a bit the previous claim.

Claim 3. For any pairwise distinct k, k′, k′′ ∈ [6], any interval I of Xk, any interval I ′

of Xk′, and any interval I ′′ of Xk′′, it cannot be that I ⊆ I ′∪ I ′′. Furthermore, if sk′,k′′ = pj,i
for some j ∈ [n], it cannot be that I ⊆ I ′ ∪ I ′′ ∪ {i}.

Proof of Claim: Again, any such inclusion would imply that Xk is a subpath of some Pj.
But then Xk has at most two neighbors that are not neighbors of Xk′ ∪ Xk′′(∪{sk′,k′′}),
a contradiction to realize the 3 branch sets adjacent to Xk but not to Xk′ nor Xk′′ . 3

As M is minimal, Claims 2 and 3 imply in particular that there is at most one pair I, I ′

of intervals of Xk, Xk′ with I ∩ I ′ ̸= ∅, per k ̸= k′ ∈ [6]. As another direct consequence
of Claims 2 and 3, we get the following.

Claim 4. For any pairwise distinct k, k′, k′′ ∈ [6], any interval I of Xk and any interval I ′

of Xk′ such that I ∩ I ′ ̸= ∅ and min(I) < min(I ′), there is no i ∈ [min(I ′) − 1,max(I) + 1]

such that pj,i ∈ Xk′′ for some j ∈ [n] (or bi ∈ Xk′′).
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The next two claims complete the proof.

Claim 5. The sets Y ′
1 , . . . , Y

′
6 are connected in B′

n.

Proof of Claim: For any k ∈ [6], and any u, v ∈ Y ′
k , we exhibit a u–v path P in B′

n

such that V (P ) ⊆ Y ′
k . (As we do not need to show that P is a path, we call it so, but

only argue that it is a walk, which is sufficient.) Let u′ ∈ V (G) (resp. v′ ∈ V (G)) be the
vertex in (V (G) \ V (B′

n)) ∩Xk causing that u ∈ Y ′
k (resp v ∈ Y ′

k) if this applies, or u′ := u

(resp. v′ := v), otherwise. Let P ′ be a u′–v′ path in G such that V (P ) \ {u′, v′} ⊆ Xk.
Observe that u′ and v′ may be equal to some sk,k′ with k < k′, and thus not be in Xk

themselves. In which case, we simply run the following arguments with their neighbors in P ′

(which are in Xk). Hence, we may as well suppose that u′, v′ ∈ Xk.
If P ′ is a subpath of some Pj, we have u′ = pj,i and v′ = pj,i′ , no Xk′ with k′ < k contains

some vertex pj′,i or pj′,i′ , and no other Xk′ contains bi′′ for any i′′ between i and i′. By
Claim 2, it means that for any integer i′′ between i and i′, no Xk′ with k′ < k contains some
vertex pj′,i′′ , and no other Xk′ contains bi′′ . In particular, all such vertices bi′′ are in Y ′

k , and
this makes the path P between u and v.

More generally, the path P ′ alternates between maximal subpaths contained in V (G) \
V (Bn) and maximal subpaths contained in V (Bn). The latter are kept to build P . We then
mimic each maximal subpath contained in V (G) \ V (Bn) with a path of B′

n included in Y ′
k ,

with the appropriate endpoints. By Claim 2, in P ′, every maximal subpath pj,i . . . pj,i′ in
V (G) \V (Bn) surrounded by two subpaths in V (Bn) is such that the corresponding vertices
bi . . . bi′ are all in Y ′

k , hence form the desired subpath of P in B′
n.

We finally move to the case when P ′ starts with a subpath u′ = pj,i . . . pj,i′ ̸= v′ maximal
in V (G) \ V (Bn); the case when P ′ ends with such a maximal subpath is dealt with sym-
metrically. We know that bi′ ∈ Xk, no Xk′ with k′ < k contains some vertex pj′,i, and no
other Xk′ contains some vertex bi′′ where i′′ is between i and i′. Thus by Claim 2, all the
vertices bi . . . bi′ are in Y ′

k , the desired subpath of P in B′
n. 3

Claim 6. The sets Y ′
1 , . . . , Y

′
6 are pairwise adjacent in B′

n.

Proof of Claim: For any k ̸= k′ ∈ [6], let u ∈ Xk, u
′ ∈ Xk′ be such that usk,k′ , u

′sk,k′ ∈
E(G).

Assume first that sk,k′ = bi for some i ∈ [|V (B′
n)|]. If at most one ℓ ∈ {k, k′} (thus,

at most one ℓ ∈ [6]) is such that pj,i ∈ Xℓ for some j ∈ [n], then either sk,k′ ∈ Y ′
k and

u′ ∈ V (B′
n), or sk,k′ ∈ Y ′

k′ and u ∈ V (B′
n); so Y ′

k and Y ′
k′ are adjacent in B′

n. If, instead, there
are j, j′ such that pj,i ∈ Xk and pj′,i ∈ Xk′ , consider the intervals I, I ′ of Xk, Xk′ associated
to pj,i, pj′,i. Claim 4 implies that there is some i′ such that bi′ ∈ Y ′

k and bi′+1 ∈ Y ′
k′ ; so, again,

Y ′
k and Y ′

k′ are adjacent in B′
n.

We next assume that sk,k′ ∈ V (G) \ V (B′
n).

First consider the case both u and u′ are also in V (G) \ V (B′
n). Let I, I ′ be their

associated interval, and assume without loss of generality that max(I) < min(I ′). By the
second item of the conditions satisfied by M, min(I ′) − max(I) = 1. By Claim 3, there is
no k′′ ∈ [6] \ {k, k′} such that Xk′′ contains some vertex pj,i or bi with i ∈ [max(I),min(I ′)].
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Besides, Xk (resp. Xk′) contains no vertex pj,min(I′) nor bmin(I′) (resp. pj,max(I) nor bmax(I)).
Therefore, bmax(I) ∈ Y ′

k and bmin(I′) = bmax(I)+1 ∈ Y ′
k′ , thus Y ′

k and Y ′
k′ are adjacent in B′

n.
Finally consider, without loss of generality, that sk,k′ = pj,i, pj,i−1 ∈ Xk, and bi ∈ Xk′ .

By Claim 2, there is no ℓ ∈ [6]\{k} such that Xℓ contains some vertex pj′,i−1 nor bi−1. Thus
bi−1 ∈ Y ′

k . As bi ∈ Y ′
k′ , we have that Y ′

k and Y ′
k′ are adjacent. 3

Claims 1, 5 and 6 imply that Y ′
1 , . . . , Y

′
6 is a K6 minor model in B′

n; a contradiction.

Lemma 8. For every Kt-minor-free graph H, G is not a region intersection graph over H.

Proof. Suppose, for contradiction, that there is a Kt-minor-free graph H for which G ∈
RIG(H). Let R = (Rv ⊆ H : v ∈ V (G)) be a collection of connected subgraphs of H such
that uv ∈ E(G) if and only if V (Ru)∩V (Rv) ̸= ∅. By Theorem 3, H has a tree-decomposition
T = (Wx : x ∈ V (T )) of adhesion at most ℓ where each torso is ℓ-almost-embeddable.

We claim that there is an x ∈ V (T ) such that the bag Wx intersects V (Rv) for each
vertex v ∈ V (Bn). For each vertex v ∈ V (Bn), the set {x ∈ V (T ) : V (Rv) ∩ Wx ̸= ∅} is
a subtree of T . By the Helly property for subtrees, it suffices to show that any two such
subtrees meet.

Assume, for contradiction, that there exist u, v ∈ V (Bn) such that V (Ru) and V (Rv)

do not intersect a common bag. Since T has adhesion at most ℓ, there is a set S ⊆ V (H)

with |S| ⩽ ℓ whose deletion separates V (Ru) and V (Rv). By construction, G contains n

u–v paths uQ1v, . . . , uQnv with Qi ⊆ Pi. So, for each i ∈ [n], the connected subgraph Q⋆
i =⋃

(Rp : p ∈ V (Qi)) of H connects Ru to Rv, hence meets S. Since Q1, . . . , Qn are pairwise
anti-complete, the subgraphs Q⋆

1, . . . , Q
⋆
n are pairwise vertex-disjoint, forcing |S| ⩾ n ⩾ ℓ+1,

a contradiction.
Therefore, there is a bag Wx in T intersecting all regions Rv for v ∈ V (Bn). Since every

adhesion set is a clique in a torso, V (Rv)∩Wx induces a connected subgraph R′
v in H⟨Wx⟩ for

every v ∈ V (Bn). However, there may be an edge uv ∈ E(Bn) for which V (R′
u)∩V (R′

v) = ∅.
Nevertheless, since V (Ru)∩V (Rv) ̸= ∅, there is an adhesion set S = Wx∩Wy (for some edge
xy ∈ E(T )) such that V (R′

u) ∩ S ̸= ∅ and V (R′
v) ∩ S ̸= ∅. Choose vertices a ∈ V (R′

u) ∩ S

and b ∈ V (R′
v) ∩ S. Then ab ∈ E(H⟨Wx⟩). Add a vertex w to H⟨Wx⟩ adjacent to both

a and b then include w in the connected subgraphs R′
u and R′

v. Repeating this procedure
for every such edge produces a supergraph H ′ of H⟨Wx⟩ built by performing 2-clique-sums
with triangles together with a collection (R′

v ⊆ H ′ : v ∈ V (Bn)) of connected subgraphs in
H ′ that realizes Bn as a region intersection graph over H ′.

Let Z ⊆ Wx be the set of apex vertices in H⟨Wx⟩. Since |Z| ⩽ ℓ and Bn consists
of n ⩾ ℓ + 1 anti-complete copies of A

(1)
n , there exists a copy of A

(1)
n , denoted as Ã

(1)
n ,

for which
⋃
(V (Rx) : x ∈ V (Ã

(1)
n )) ∩ Z = ∅. Let H̃ be the subgraph of H ′ induced by⋃

(V (Rx) : x ∈ V (Ã
(1)
n )). Then V (H̃) ∩ Z = ∅. As such, H̃ has a tree-decomposition with

adhesion at most 2 where one torso is an apex-free ℓ-almost embeddable graph and the other
torsos are triangles. By Theorem 4, H̃ is An-minor-free. However, since Ã

(1)
n ∈ RIG(H̃)

and Ã
(1)
n is isomorphic to A

(1)
n , Lemma 1 implies An is a minor of H̃, giving us the desired

contradiction.
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We now explain how to modify the construction in Theorem 5 to force the girth to be
arbitrarily large. Fix positive integer g. Define Bg,n to be nA

(g)
n , that is the disjoint union

of n copies of the g-subdivision of An. Then Bg,n has girth 3(g+1). We define a total order
≺ of V (Bg,n) by using the same strategy of that given by Figure 2. Similar to before, we
add to Bg,n the disjoint union of n paths P1, . . . , Pn of length g|V (Bg,n)| − 1 and make, for
every i ∈ [|V (Bg,n)|] and j ∈ [n], the (gi − 1)-st vertex of Pj adjacent to the i-th vertex of
Bg,n along ≺. Call the resulting graph Gg,n. Since Gg,n − Bg,n is a disjoint union of paths,
it does not contain any cycle. Any cycle going through V (Gg,n) \ V (Bg,n) has at least g − 1

consecutive edges within Gg,n−V (Bg,n). Since no pair of vertices within the same connected
component of V (Gg,n) \ V (Bg,n) shares a neighbor in V (Bg,n), we conclude that every cycle
in Gg,n has length at least g. Since Lemmas 7 and 8 also generalize to Gg,n, this completes
the proof of Theorem 2.
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