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Orthogonal Terrain Guarding is NP-complete∗

Édouard Bonnet†and Panos Giannopoulos‡

Abstract. A terrain is an x-monotone polygonal curve, that is, every vertical line crosses
the curve at most once. In the Terrain Guarding problem, a special case of the famous
art gallery problem, one has to place at most k guards on the vertices of a n-vertex terrain,
in order to fully see it. In 2010, King and Krohn showed that Terrain Guarding is NP-hard
[SODA ’10, SIAM J. Comput. ’11] thereby solving a long-standing open question. They
observe that their proof does not settle the complexity of Orthogonal Terrain Guard-
ing where the terrain only consists of horizontal or vertical segments; those terrains are
called rectilinear or orthogonal. Recently, Ashok et al. [SoCG’17] presented an FPT algo-
rithm running in time kO(k)nO(1) for Dominating Set in the visibility graphs of rectilinear
terrains without 180-degree vertices. They ask if Orthogonal Terrain Guarding is
in P or NP-hard. In the same paper, they give a subexponential-time algorithm running
in nO(

√
n) (actually even nO(

√
k)) for the general Terrain Guarding and notice that the

hardness proof of King and Krohn only disproves a running time 2o(n1/4) under the ETH.
Hence, there is a significant gap between their 2O(n1/2 logn)-algorithm and the no 2o(n1/4)

ETH-hardness implied by King and Krohn’s result.

In this paper, we adapt the gadgets of King and Krohn to rectilinear terrains in
order to prove that even Orthogonal Terrain Guarding is NP-complete. Then, we
show how to obtain an improved ETH lower bound1 of 2Ω(n1/3) by refining the quadratic
reduction from Planar 3-SAT into a cubic reduction from 3-SAT. This works for both
Orthogonal Terrain Guarding and Terrain Guarding.

1 Introduction

Given p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn) ∈ R2, n distinct points of the plane,
such that x1 6 x2 6 . . . 6 xn, an x-monotone polygonal chain or terrain is defined as the
sequence of vertices and edges p1, p1p2, p2, . . . , pn−1, pn−1pn, pn. Each point pi is called a
vertex of the terrain. A point p lying on the terrain is guarded (or seen) by a subset S of
guards if there is at least one guard g ∈ S such that the straight-line segment pg is entirely
above the polygonal chain. The terrain is said guarded if every point lying on the terrain is
guarded. Terrain Guarding, a natural restriction of the well-known art gallery problem,

∗Supported by EPSRC grant FptGeom (EP/N029143/1)
†Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France,

edouard.bonnet@ens-lyon.fr
‡giCentre, Department of Computer Science, City University of London, EC1V 0HB, London, United

Kingdom, panos.giannopoulos@city.ac.uk
1In the conference version of this paper, we mistakenly claim a tighter lower bound.

http://jocg.org/


Journal of Computational Geometry jocg.org

asks, given an integer k, and a terrain T , to guard it by placing at most k guards at vertices
of T . The visibility graph of a terrain has as vertices the geometric vertices of the polygonal
chain and as edges every pair which sees each other. Again two vertices (or points) see each
other if the straight-line segment that they define is above the terrain.

The Orthogonal Terrain Guarding is the same problem restricted to rectilin-
ear (also called orthogonal) terrains, that is every edge of the terrain is either horizontal or
vertical. In other words, pi and pi+1 share the same x-coordinate or the same y-coordinate.
We say that a rectilinear terrain is strictly rectilinear (or strictly orthogonal) if the horizontal
and vertical edges alternate, that is, there are no two consecutive horizontal (resp. vertical)
edges. In the literature, what we call (Orthogonal) Terrain Guarding is sometimes
referred to as Discrete (Orthogonal) Terrain Guarding to emphasize the fact that
guards can only placed at vertices. Henceforth, we consider it to be the main variant, and call
it the discrete variant. Both problems (general and orthogonal) come with two other vari-
ants: the continuous variant, Continuous (Orthogonal) Terrain Guarding, where
the guards can be placed anywhere on the edges of the terrain (and not only at the vertices),
and the graphic variant, that is, Dominating Set in the visibility graphs of (strictly recti-
linear) terrains. A convex vertex (resp. reflex vertex ) of a terrain is a vertex pi such that the
angle formed by pi−1pipi+1 above the terrain is at most 180 degrees (resp. more than 180
degrees). The first and the last vertices of the terrain are convex by convention. A convex
edge is an edge whose both endpoints are convex vertices. It is a folklore observation that
for rectilinear terrains, the discrete and continuous variants coincide (see Observation 7 in
Section 2). In particular, Observation 7 establishes the NP membership of the continuous
variant (for orthogonal terrains). And, it allows us to only consider Orthogonal Terrain
Guarding and Dominating Set in the visibility graphs of strictly rectilinear terrains. By
subdividing the edges of a strictly rectilinear terrain with an at most quadratic number of
180-degree vertices (i.e., vertices incident to two horizontal edges or to two vertical edges),
one can make guarding all the vertices equivalent to guarding the whole terrain. Therefore,
Orthogonal Terrain Guarding is not very different from Dominating Set in the
visibility graph of (non necessarily strictly) rectilinear terrains (and Terrain Guarding
is not very different from Dominating Set in the visibility graph of terrains).

Exponential Time Hypothesis. The Exponential Time Hypothesis (usually referred to as
the ETH) is a stronger assumption than P6=NP formulated by Impagliazzo and Paturi [16].
A practical (and slightly weaker) statement of ETH is that 3-SAT with n variables cannot
be solved in subexponential-time 2o(n). Although this is not the original statement of the
hypothesis, this version is most commonly used; see also Impagliazzo et al. [17]. The so-
called sparsification lemma shows that, assuming the ETH, 3-SAT does not even admit a
subexponential algorithm in the number of variables plus the number of clauses.

Theorem 1 (Impagliazzo and Paturi [16]). Under the ETH, there is no algorithm solving
every instance of 3-SAT with n variables and m clauses in time 2o(n+m).

As a direct consequence, unless the ETH fails, even instances with a linear number
of clauses m = Θ(n) cannot be solved in 2o(n). Unlike P 6=NP, the ETH allows to rule out
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specific running times. We refer the reader to the survey by Lokshtanov et al. for more
information about ETH and conditional lower bounds [26].

Planar satisfiability. Planar 3-SAT was introduced by Lichtenstein [25] who showed its
NP-hardness. It is a special case of 3-SAT where the variable/clause incidence graph is
planar even if one adds edges between two consecutive variables for a specified ordering of
the variables: x1, x2, . . . , xn; i.e., xixi+1 is an edge (with index i+ 1 taken modulo n). This
extra structure makes this problem particularly suitable to reduce to planar or geometric
problems. As a counterpart, the ETH lower bound that one gets from a linear reduction
from Planar 3-SAT is worse than the one with a linear reduction from 3-SAT; it only
rules out a running time 2o(

√
n). Indeed, Planar 3-SAT can be solved in time 2O(

√
n) and,

unless the ETH fails, cannot be solved in time 2o(
√
n). A useful property of any Planar

3-SAT-instance is that its set of clauses C can be partitioned into C+ and C− such that both
C+ and C− admit a removal ordering. A removal ordering is a sequence of the two following
deletions:

• (a) removing a variable which is not present in any remaining clause and

• (b) removing a clause on three consecutive remaining variables together with themiddle
variable,

which ends up with an empty set of clauses. By three consecutive remaining variables,
we mean three variables xi, xj , xk, with i < j < k such that xi+1, xi+2, . . . , xj−1 and
xj+1, xj+2, . . . , xk−1 have all been removed already. The middle variable of the clause is xj .
For an example, see Figure 1.

x1 x2 x3 x4 x5 x6 x7 x8

C+

C−

Figure 1: The bipartition (C+, C−) of a Planar 3-SAT-instance. The three-legged arches
represent the clauses. Here is a removal ordering for C−: remove the clause on x5, x6, x7

and its middle variable x6, remove the variable x5, remove the clause on x3, x4, x7 and its
middle variable x4, remove the clause on x2, x3, x7 and its middle variable x3, remove the
variable x7, remove the clause x1, x2, x8 and its middle variable x2.

Order claim. The following visibility property in a terrain made King and Krohn realize
that they will crucially need the extra structure given by the planarity of 3-SAT-instances.
We mean the latter informal remark as a way to form an intuition on the difficulty of showing
hardness for Terrain Guarding, but not as a formal barrier.
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Lemma 2 (Order Claim, see Figure 2). If a, b, c, d happen in this order from the left
endpoint of the terrain to its right endpoint, a and c see each other, and b and d see each
other, then a and d also see each other.

a

b
cc

d

Figure 2: The order claim.

In particular, this suggests that checking in the terrain if a clause is satisfied can
only work if the encodings of the three variables contained in the clause are consecutive.

Related work and remaining open questions for terrain guarding. Terrain Guarding
(together with its continuous and graphic variants) was shown NP-hard [21], and the mem-
bership in NP of Continuous Terrain Guarding was established [15]. Observe that the
discrete and the graphic variants are immediately in NP. Terrain Guarding can be solved
in time nO(

√
k) [2]. This contrasts with the parameterized complexity of the more general

art gallery problem where an algorithm running in time f(k)no(k/ log k) for any computable
function f would disprove the ETH, both for the variant Point Guard Art Gallery
where the k guards can be placed anywhere inside the gallery (polygon with n vertices) and
for the variant Vertex Guard Art Gallery where the k guards can only be placed at
the vertices of the polygon [5], even when the gallery is a simple polygon (i.e., does not have
holes). Dominating Set on the visibility graph of strictly rectilinear terrains can be solved
in time kO(k)nO(1) [2], while it is still not known if (Orthogonal) Terrain Guarding
can be solved in FPT time f(k)nO(1) with respect to the number of guards.

There has been a succession of approximation algorithms with better and better con-
stant ratios [19, 18, 8, 3, 14]. Eventually, a PTAS was found for Terrain Guarding (hence
for Orthogonal Terrain Guarding) [23] using local search and an idea developed by
Chan and Har-Peled [7] and Mustafa and Ray [27] which consists of applying the planar
separator theorem to a (planar) graph relating local and global optima. Interestingly, this
planar graph is the starting point of the subexponential algorithm of Ashok et al. [2].

Again the situation is not nearly as good for the art gallery problem, whose point
guard variant is ∃R-complete [1] (hence unlikely to even be in NP). If holes are allowed in the
polygon, the main variants of the art gallery problem are as hard as the Set Cover problem;
hence an o(log n)-approximation cannot exist unless P=NP [12]. Eidenbenz also showed that
a PTAS is unlikely in simple polygons [11]. For simple polygons, there is an O(log logOPT )-
approximation [20, 22] for Vertex Guard Art Gallery, using the framework of Brön-
nimann and Goodrich to transform an ε-net finder into an approximation algorithm, and
for Point Guard Art Gallery there is a randomized O(logOPT )-approximation un-
der some mild assumptions [6], building up on [10, 9]. Recently, a constant-approximation
for Vertex Guard Art Gallery was announced [4]. If a small fraction of the polygon
can be left unguarded there is again an O(logOPT )-approximation [13]. A constant-factor
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approximation is known for monotone polygons [24], where a monotone polygon is made of
two terrains sharing the same left and right endpoints and except those two points the two
terrains are never touching nor crossing.

The following open question is raised by Ashok et al. [2]:

Open question 1. Is Orthogonal Terrain Guarding in P or NP-hard?

In the conclusion of the same paper, the authors observe that the construction of
King and Krohn [21] rules out for Terrain Guarding a running time of 2o(n1/4), under the
ETH. Indeed the reduction from Planar 3-SAT (which is not solvable in time 2o(

√
n) unless

the ETH fails) and its adaptation for Orthogonal Terrain Guarding in the current
paper have a quadratic blow-up: the terrain is made of Θ(m) = Θ(n) chunks containing
each O(n) vertices. On the positive side, the subexponential algorithm of Ashok et al. runs
in time 2O(

√
n logn) [2]. Therefore, there is a significant gap between the algorithmic upper

and lower bounds.

Open question 2. Assuming the ETH, what is the provably best asymptotic running time
for Terrain Guarding and Orthogonal Terrain Guarding?

Our contributions. In Section 2, we address Open question 1 by showing:

Theorem 3. Orthogonal Terrain Guarding is NP-complete.

To achieve that result, we design a rectilinear subterrain with a constant number of
vertices which simulates a triangular pocket surrounded by two horizontal segments. This
enables us to adapt the reduction of King and Krohn [21] to rectilinear terrains. Our
orthogonal gadgets make an extensive use of the triangular pockets. A slight tuning of the
construction also shows:

Theorem 4. Dominating Set in the visibility graphs of strictly rectilinear terrains is
NP-complete.

In Section 3, we show how to make cubic reductions from 3-SAT by refining the
quadratic reductions from Planar 3-SAT:

Theorem 5. Terrain Guarding and Orthogonal Terrain Guarding both require
time 2Ω(n1/3), unless the ETH fails.

This improves the lower bound of 2Ω(n1/4) implicitly proven by King and Krohn [21],
but does not quite resolve Open question 2.

2 Orthogonal Terrain Guarding is NP-complete

We start this section with generic observations on guarding orthogonal terrains.
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Observation 6 (folklore). A guarding set remains so when we change the visibility notion to
guards only see at their y-coordinate and below. In more intuitive terms, in an orthogonal
terrain, what a guard sees strictly above itself is irrelevant.

Proof. Strictly above itself, a guard g can only see a point on a vertical edge minus its
lower endpoint v. The guard responsible for seeing v (possibly g) sees this vertical edge
entirely.

Observation 7 (folklore). For any n-vertex orthogonal terrain T and integer k, (T , k) is a
positive instance for Orthogonal Terrain Guarding if and only if it is for Contin-
uous Orthogonal Terrain Guarding. Furthermore, a solution for the latter can be
transformed into a solution for the former in polynomial time.

Proof. A solution for Orthogonal Terrain Guarding is obviously also a solution for
Continuous Orthogonal Terrain Guarding. We thus show that a guarding set for
Continuous Orthogonal Terrain Guarding can be moved to the vertices, without
increasing its cardinality nor changing the fact that it guards the entire terrain. Every guard
g lying on the interior of a vertical edge can be moved to the higher endpoint of the edge.
Indeed, any point seen by g is also seen by this new and higher guard. Every guard h lying
on the interior of a horizontal edge can be moved to any one of its endpoints. Indeed, any
point seen by h and at the same level of h or below, is also seen by the new guard (in fact h
sees only points with the same y-coordinate as itself). And by Observation 6, what a guard
sees strictly above itself is irrelevant in orthogonal terrains.

Consequently, Continuous Orthogonal Terrain Guarding is in NP. The dis-
crete and graphic variants are in NP since one can guess which vertices to put a guard
on. Then, checking if a set is guarding the whole terrain can be done in polynomial time,
for instance, by building the following subdivision. We add a vertex at every intersection
between an edge of the terrain and a line defined by two originally-present vertices. We then
subdivide each edge once. By that, we mean that we create a new vertex at the midpoint of
the edge, that we link to both endpoints (and delete the original edge). Now, guarding all
the vertices with the original vertices is equivalent to guarding the whole terrain. Building
the subdivision and checking the visibility of two vertices can be done in polynomial time
in the description (number of vertices times number of digits to represent one of them).

King and Krohn’s reduction. King and Krohn give a reduction with a quadratic blow-up
from Planar 3-SAT to Terrain Guarding [21]. They argue that the order claim entails
some critical obstacle against straightforward hardness attempts. In some sense, the subex-
ponential algorithm running in time nO(

√
n) of Ashok et al. [2] proves them right: unless

the ETH fails, there cannot be a linear reduction from 3-SAT to Terrain Guarding. It
also justifies their idea of starting from the planar variant of 3-SAT. Indeed, this problem
can be solved in time 2O(

√
n).

From far, King and Krohn’s construction looks like a V -shaped terrain. If one zooms
in, one perceives that the V is made of Θ(n) connected subterrains called chunks. If one
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zooms a bit more, one sees that the chunks are made of up to n variable encodings each.
Let us order the chunks from bottom to top; in this order, the chunks alternate between the
right and the left of the V (see Figure 3).

T2 T1

T0

T−1

T−2

Figure 3: The V -shaped terrain and its ordered chunks. The chunk Ti only sees parts of
chunks Ti−1 and Ti+1. The initial chunk T0 contains an encoding of each variable. Below
this level (chunks with a negative index), we will check the clauses of C−. Above this level
(chunks with a positive index), we will deal with the clauses of C+.

The construction is such that only two consecutive chunks interact. More precisely,
a vertex of a given chunk Ti only sees bits of the terrain contained in Ti−1, Ti, and Ti+1.
Half-way to the top is the chunk T0 that can be seen as the initial one. It contains the
encoding of all the variables of the Planar 3-SAT-instance. Concretely, the reasonable
choices to place guards on the chunk T0 are interpreted as setting each variable to either true
or false. Let (C+, C−) be the bipartition of the clauses into two sets with a removal ordering
for the variables ordered as x1, x2, . . . , xn. Let C+

1 , C
+
2 , . . . , C

+
s (resp. C−1 , C

−
2 , . . . , C

−
m−s)

be the order in which the clauses of C+ (resp. C−) disappear in this removal ordering. Every
chunk below T0, i.e., with a negative index, are dedicated to checking the clauses of C− in
the order C−1 , C

−
2 , . . . , C

−
m−s, while every chunk above T0, i.e., with a positive index, will

check if the clauses of C+ are satisfied in the order C+
1 , C

+
2 , . . . , C

+
s . The placement of

the chunks will propagate downward and upward the truth assignment of T0, and simulate
the operations of a removal ordering: checking/removing a clause and its middle variable,
removing a useless variable. Note that for those gadgets, we will have to distinguish if we
are going up (C+) or going down (C−). In addition, the respective position of the positive
and negative literals of a variable appearing in the next clause to check will matter. So, we
will require a gadget to invert those two literals if needed.

To sum up, the reduction comprises the following gadgets: encoding a variable (vari-
able gadget), propagation of its assignment from one chunk to a consecutive chunk (in-
teraction of two variable gadgets), inverting its two literals (inverter), checking a clause
upward and removing the henceforth useless middle variable (upward clause gadget), check-
ing a clause downward and removing the henceforth useless middle variable (downward
clause gadget), removing a variable (upward/downward deletion gadget). Although King
and Krohn rather crucially rely on having different slopes in the terrain, we will mimic their
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construction gadget by gadget with an orthogonal terrain. We start by showing how to
simulate a restricted form of a triangular pocket. This will prove to be a useful building
block.

a

u

p

→ εa → a

Figure 4: Simulation of a right trapezoid pocket and a right triangular pocket. The right
triangular pocket is obtained from the right trapezoid by making the distance ε sufficiently
small.

Triangular pocket simulation. The simulation of a right trapezoid pocket giving rise to the
right triangular pocket is depicted in Figure 4. The idea is that the vertex p at the bottom
of the pit is only seen by four vertices (no vertex outside this gadget will be able to see
p). Among those four vertices, u sees a strict superset of what the others see. Hence, we
can assume with no loss of generality that a guard is placed on u. Now, u sees the part of
the terrain represented in bold. Even if vertex u sees a part of the vertical edge incident
to a (actually the construction could avoid it), this information can be discarded since the
guard responsible for seeing a will see this edge entirely. More generally, by Observation 6,
in rectilinear terrains, what a guard sees strictly above it can be safely ignored. Everything
is therefore equivalent to guarding the terrain with the right trapezoid pocket drawn in the
middle of Figure 4 with a budget of guards decreased by one. If the length of the horizontal
edge incident to a is made small enough, then every guard seeing a will see the whole edge,
thereby simulating the right triangular pocket to the right of the figure. Let us precise
that. We make the construction such that a is not aligned with two other vertices of the
terrain. Therefore every vertex seeing a also sees a small interval to its right. We choose
ε > 0 smaller than the minimum length of these intervals. The previous remarks show the
following substitution lemma:

Lemma 8. Guarding a terrain containing the orthogonal subterrain on the left of Figure 4
with k+1 guards is equivalent to guarding the same terrain in which the orthogonal subterrain
is replaced by the right triangular pocket on the right of Figure 4 with k guards.

The acute angle made by the right triangular pocket and the altitude of the leftmost
and rightmost horizontal edge in this gadget can be set at our convenience. We will represent
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triangular pockets in the upcoming gadgets. The reader should keep in mind that they are
actually a shorthand for a rectilinear subterrain.

uv

→
ε

→

Figure 5: Simulation of a trapezoid pocket and a triangular pocket. The triangular pocket
is obtained from the trapezoid by making the distance ε sufficiently small.

With the same idea, one can simulate a general triangular pocket as depicted in
Figure 5, with the budget decreased by two guards. Again, the non-reflex angle made by
the triangular pocket and the altitude of the leftmost and rightmost horizontal edges can be
freely chosen.

Lemma 9. Guarding a terrain containing the orthogonal subterrain on the left of Figure 5
with k+2 guards is equivalent to guarding the same terrain in which the orthogonal subterrain
is replaced by the triangular pocket on the right of Figure 5 with k guards.

The reason why those triangular pockets do not provide a straightforward reduction
from the general Terrain Guarding problem is that the pocket has to be preceded and
succeeded by horizontal edges.

dx,x

vx

vx

dx

dxTi towards Ti−1

towards Ti+1

Figure 6: A variable gadget. We omit the superscript i on all the labels. Placing a guard
at vertex vx to see dx corresponds to setting variable x to true, while placing it at vertex vx
to see dx corresponds to setting x to false. Both vi+1

x and vi+1
x of Ti+1 (not represented on

this picture) see dx,x of Ti.
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Variable gadget and propagation along the chunks. The variable gadget is depicted in
Figure 6. It is made of three right triangular pockets. Placing a guard on vx (resp. vx) is
interpreted as setting the variable x to true (resp. false).

Ti

Ti+1

towards Ti−1

vx
vx

dx

dx

dx,x

vy

dy,y vy
dy

dy

vx

dx
vx

dx
vy

vy
dy

dy

Figure 7: Propagating variable assignments upward and downward. Note that the positive
literal alternates being above or below the negative literal. We represent two variables x
and y to illustrate how the corresponding gadgets are not interfering. In all the figures,
red (thinner) dashed lines delineate the visibility cone of a vertex (typically blocked by a
close-by vertex), while the black (bolder) dashed lines show an important visibility relation.

Figure 7 represents the propagation of a variable assignment from one chunk to the
next chunk. On all the upcoming figures, we adopt the convention that red dashed lines
materialize a blocked visibility (the vertex cannot see anything below this line) and black
dashed lines highlight important visibility which sets apart the vertex from other vertices.
Say, one places a guard at vertex vix to see (among other things) the vertex dix. Now, dix
and dix,x remain to be seen. The only way of guarding them with one guard is to place it at
vertex vi+1

x . Indeed, only vertices on the chunk Ti+1 can possibly see both. But the vertices
higher than vi+1

x cannot see them because their visibility is blocked by vi+1
x or a vertex to

its right, while the vertices lower than vi+1
x are too low to see the very bottom of those two

triangular pockets. The same mechanism (too high → blocked visibility, too low → too flat
angle) is used to ensure that the different variables do not interfere.

Symmetrically, the only vertex seeing both dix,x and dix is vi+1
x . So, placing a guard

at vix forces to place the other guard at vi+1
x . Observe that the chosen literal goes from

being above (resp. below) in chunk Ti to being below (resp. above) in chunk Ti+1. We call
a vertex of the form d••, e••, f•• , or w•, a d-vertex, and one of the form v•• or g••, a v-vertex.
We will construct the terrain so that:

• each non v-vertex has its visibility essentially contained in the one of a v-vertex, and

• seeing all the d-vertices with v-vertices is enough to see the entire terrain.
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By essentially contained, we mean that the potential regions that the non v-vertex sees and
the v-vertex does not are irrelevant; in the sense that several other vertices (at least one of
which is required in a solution) also see these regions. Hence, the problem will boil down to
red-blue domination: selecting some v-vertices (red) to dominate all the d-vertices (blue).
The red-blue visibility graph corresponding to the propagation of variable assignments is
represented in Figure 8. It can be observed that:

Lemma 10. The only way of guarding the 3z d-vertices on chunk T i (corresponding to z
variables) with 2z guards is to place z guards on v-vertices of chunk Ti and z guards on
v-vertices of chunk Ti+1 in a consistent way: the assignment of each variable is preserved.

Proof. The only red-blue dominating sets of size at most two of {dix, dix,x, dix} are {vix, vi+1
x }

and {vix, v
i+1
x }, for every variable present on the chunks Ti and Ti+1 (see Figure 8). This

readily generalizes to z variables. Furthermore, this guards the entire subterrain associated
to these variables.

. . . . . .

TiTi−1

vix

vixvi−1
x

vi−1
x

vi+1
x

vi+1
xdix

dix,x

dixdi−1
x

di−1
x,x

di−1
x

viy

viyvi−1
y

vi−1
y

vi+1
y

vi+1
ydiy

diy,y

diydi−1
y

di−1
y,y

di−1
y

Figure 8: The red-blue domination graph for variable-assignment propagation. The v-
vertices are in red, and the d-vertices, in blue. One should place guards at some red vertices
to dominate all the blue vertices. In this example, the shaded vertices correspond to setting
x to true and y to false, consistently performed over three consecutive chunks.

A set of guards is said non-dominated if for every i and x, the vertices vix and vix
receive at least one guard. In other words, its intersection with {vix, vix} is of size at least
one. The global construction will be such that for every vertices vix and vix, there is a vertex
di−1
x,x . This will be helpful to get the following lemma:

Lemma 11. Every guarding set can be turned into a no-larger non-dominated guarding set.

Proof. Besides vix and vix, only three other vertices guard di−1
x,x : d

i−1
x,x itself and the two other

vertices forming its right triangular pocket. The visibility of di−1
x,x is contained in the one

of vix or vix. The construction will be such that the two other vertices do not see anything
important that vix (or vix) does not see. They will see on the other side of the valley a fraction
of a vertical edge minus its lower endpoint. So we can conclude by Observation 6.
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A set of guards is said legal if for every i and x, the vertices vix and vix receive exactly
one guard. The number of guards allowed, together with Lemma 11, will enable us to focus
on legal guard placements. We say that a legal placement is consistent if there is no pair of
guards at vix and vi′x . Lemma 10 shows that legal consistent placements are the only ones
that do not require more guards than the number of variable gadgets. Notice that a legal
consistent placement naturally corresponds to a truth assignment of all the variables.

Inverter gadget. We also need an alternative way of propagating a variable assignment
such that in the same-variable gadget of two consecutive chunks, the positive literal remains
on top (or remains at the bottom). This gadget is called inverter. It requires an extra guard
compared to the usual propagation. The inverter gadget allows us to position the three
literals of the clause to check and delete at the right spots.

vx

vx

vx

vx

gx

gx dx,x
ex fx

ex fxTi
towards Ti−1

Ti+1

Figure 9: The inverter gadget. We omit the superscripts i and i + 1. If a guard should be
placed on at least one vertex among v`x and v`x (for ` ∈ {i, i + 1}), then the two ways of
seeing the four vertices eix, f

i
x, e

i
x, f ix with three guards are {vix, gix, v

i+1
x } and {vix, gix, vi+1

x }.

It consists of a right triangular pocket whose bottom vertex is dix,x surrounded by
two rectangular pockets whose bottom vertices eix, f ix and eix, f

i
x are only seen among the

v-vertices by vi+1
x , vix and vi+1

x , vix, respectively. On top of the rectangular pockets, gix sees
both eix and f ix, whereas g

i
x sees both eix and f ix. Actually, gi` is only one of the four vertices

seeing both ei` and f
i
` (which includes ei` and f

i
` themselves). We choose gi` as a representative

of this class. What matters to us is that the four vertices seeing both ei` and f
i
` do not see

anything more than the rectangular pocket; the other parts of the terrain that they might
guard are seen by any v-vertex on chunk Ti+1 anyway.

The pockets are designed so that vix and vi+1
x (resp. vix and vi+1

x ) together see the
whole edge eixf ix (resp. eixf

i
x) and therefore the entire pocket. Again, the only two v-vertices

to see dix,x are vi+1
x and vi+1

x . The e- and f -vertices are added to the blue vertices and the
g-vertices are added to the red vertices, since the latter sees more than the former, and since
seeing the e- and f -vertices are sufficient to also see the g-vertices. The red-blue domination
graph is depicted in Figure 10.

http://jocg.org/


Journal of Computational Geometry jocg.org

Ti

vix

gix

gix

vix

f ix

eix

dix,x

eix

f ix

vi+1
x

vi+1
x

Figure 10: The red-blue domination graph for the inverter gadget.

Lemma 12. The only legal ways to guard an inverter gadget of Ti with three guards is to
place them consistently on vix, gix, vi+1

x or vix, g
i
x, v

i+1
x .

Proof. Recall that a legal guard placement is one that puts exactly one guard in {vix, vix} for
every i and x. The two only ways of seeing both rectangular pockets with an extra guard
is then to place the three guards at vix, gix, vi+1

x or vix, g
i
x, v

i+1
x ; hence the propagation of the

truth assignment.

We extend the notion of legal consistent assignment to the ones placing exactly one
guard in {gix, gix} corresponding to the chosen literal.

Clause gadgets. So far, the gadgets that we presented can be used going up along the
chunks of positive index as well as going down along the chunks of negative index. For the
clause gadgets, we will have to distinguish the downward clause gadget when we are below
T0 (and going down) and the upward clause gadget when we are above T0 (and going up).
The reason we cannot design a single gadget for both situations is that the middle variable
which needs be deleted is in one case, in the lower chunk, and in the other case, in the higher
chunk.

Downward clause gadget. To check a clause downward on three consecutive vari-
ables x, y, z, we place on chunk Ti, thanks to a preliminary use of inverter gadgets, the three
literals satisfying the clause at the relative positions 1, 4, and 5 when the six literals of x, y, z
are read from top to bottom. Figure 11 shows the downward clause gadget for the clause
x ∨ y ∨ ¬z. On the chunk Ti−1 just below, we find the usual encoding of variables x and
z, which propagates the truth assignment of those two variables. The variable gadget of y
is replaced by the right triangular pocket whose bottom is di−1

y,y , and a general triangular
pocket whose bottom wC is only seen among the v-vertices by vi−1

`1
(on chunk Ti−1) and

vi`2 and vi`3 (on chunk Ti), where C = `1 ∨ `2 ∨ `3. On chunk Ti−1 and below, no v-vertex
corresponding to variable y can be found.

Hence, the vertex wC is only guarded if the choices of the guards at the v-vertices
correspond to an assignment satisfying C. The vertex wC has its visibility contained in the
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wC

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

1
2

3
4

5
6

Ti

Ti−1

Figure 11: The downward clause gadget for C = x ∨ y ∨ ¬z. We use the usual propagation
for variables x and z. The variable y disappears from Ti−1 and downward. The inverters
have been used to place, on Ti, the literals of C at positions 1, 4, and 5. The vertex wC is
seen only by viy, viz, and v

i−1
x (circled); hence it is seen if and only if the chosen assignment

satisfies C.

one of a v-vertex, hence it is a blue vertex. The red-blue domination graph associated to a
downward clause is represented in Figure 12.

TiTi−1

viz

viz

viy

viy

vix

vix

wC

di−1
y,y

vi−1
z

vi−1
z

vi−1
x

vi−1
x

Figure 12: The red-blue domination graph for the downward clause gadget for C = x∨y∨¬z.
The double arcs symbolize that, due to the propagator, the variable-assignment of x and z
should be the same between Ti and Ti−1. The only assignment that does not dominate wC

is x, y, z, as it should.

Lemma 13. A legal consistent guard placement does not require an additional guard to see
the whole downward clause gadget of C if and only if C is satisfied by the corresponding
assignment.

Proof. The only new vertex to see is wC on chunk, say Ti+1. Let C be `1 ∨ `2 ∨ `3. This
will be done if at least one of vi+1

`1
, vi`2 , v

i
`3

contains a guard, which happens if and only if
the legal consistent placement corresponds to an assignment satisfying C.
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Upward clause gadget. To check a clause upward on three consecutive variables
x, y, z, we place on chunk Ti, thanks to a preliminary use of inverter gadgets, the three
literals satisfying the clause at the relative positions 1, 3, and 6 when the six literals of
x, y, z are read from top to bottom. We exclude the three right triangular pockets for the
encoding of the middle variable y. At the same altitude as the v-vertex corresponding to
the literal of y satisfying the clause, we have a designated vertex wC . On the chunk Ti+1,
we find the usual encoding of variables x and z, which propagates the truth assignment of
those two variables, but the encoding of variable y is no longer present (in this chunk and in
all the chunks above). Figure 13 shows the upward clause gadget for the clause x ∨ ¬y ∨ z.

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

wC

Ti

Ti+1

Figure 13: The upward clause gadget for C = x ∨ ¬y ∨ z. We use the usual propagation
for variables x and z. The variable y disappears from Ti+1 and upward. The inverters have
been used to place, on Ti, the literals of C at positions 1, 3, and 6. The vertex wC is seen
only by viy, v

i+1
x , and vi+1

z (circled); hence it is seen if and only if the chosen assignment
satisfies C.

The vertex wC is only seen among the v-vertices by vi`2 (on chunk Ti) and vi+1
`1

and
vi+1
`3

(on chunk Ti+1), where C = `1 ∨ `2 ∨ `3. The particularity of two consecutive chunks
encoding an upward clause gadget is that Ti is not entirely below Ti+1. In fact, all the
encodings of variables above y on chunk Ti+1 are above all the encodings of variables above
y on chunk Ti. The latter are above all the encodings of variables below y on chunk Ti+1,
which are, in turn, above all the encodings of variables below y on chunk Ti. Again, the
vertex wC is only guarded if the choices of the guards at the v-vertices correspond to an
assignment satisfying C, as depicted in Figure 14.

Lemma 14. A legal consistent guard placement does not require an additional guard to
see the whole upward clause gadget of C if and only if C is satisfied by the corresponding
assignment.

Proof. The only new vertex to see is wC on chunk, say Ti. Let C be `1 ∨ `2 ∨ `3. This will
be done if at least one of vi`2 , v

i+1
`1

, vi+1
`3

contains a guard, which happens if and only if the
legal consistent placement corresponds to an assignment satisfying C.

Variable deletion gadgets. Finally, we design variable deletion gadgets. Recall that we
sometimes need to remove a variable which does not appear in any clauses anymore (and was
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Ti Ti+1

viz

viz

viy

viy

vix

vix

wC

vi+1
z

vi+1
z

vi+1
x

vi+1
x

Figure 14: The red-blue domination graph for the upward clause gadget for C = x∨¬y ∨ z.
The double arcs symbolize that, due to the propagator, the variable-assignment of x and z
should be the same between Ti and Ti+1. The only assignment that does not dominate wC

is x, y, z, as it should.

never a middle variable). As for clause gadgets, we have to distinguish downward deletion
gadget and upward deletion gadget. Both gadgets can be thought as a simplification of the
corresponding clause gadget where we flatten the region which should normally contain wC .

Ti

Ti+1

towards Ti−1

dx,x
vy

vy
dy

dy

vx

dx
vx

dx
vy

vy
dy

dy

Figure 15: Downward deletion of the variable x (and propagation of the variable y). On
chunk Ti−1, the encoding of variable x has totally disappeared: there is not even a di−1

x,x .

On all the chunks below the downward deletion of a variable x, there is no encoding
of variable x. And, on all the chunks above the upward deletion of a variable x, there is no
encoding of variable x. The gadgets are represented in Figure 15 and Figure 16, respectively.

This ends the list of gadgets.
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Ti

Ti+1

towards Ti−1

vx
vx

vy
vy

dy

dy

vy
vy

dy

dy

Figure 16: Upward deletion of the variable x (and propagation of the variable y). On chunk
Ti−1 is the usual encoding of variable x with three right triangular pockets.

Putting pieces together. The gadgets are assembled as in the reduction of King and
Krohn. From the initial chunk T0 and going up (resp. going down), one realizes step by step
(chunk by chunk) the elementary operations to check the clauses of C+ (resp. C−) in the
order C+

1 , C
+
2 , . . . C

+
s (resp. C−1 , C

−
2 , . . . C

−
m−s) including propagation, inversion of literals,

upward clause checking (resp. downward clause checking), and upward variable deletion
(resp. downward variable deletion). Each chunk has O(n) vertices. Each clause takes O(1)
chunks to be checked. So the total number of chunks is O(m) = O(n) (recall that by the
sparsification lemma, we can assume that m = Θ(n)) and the total number of vertices is
O(n2).

The total budget is fixed as one per right triangular pocket, two per general triangular
pocket, one per variable encoding including the slightly different one at inverters and the
one just before an upward deletion (see encoding of variable x on chunk Ti in Figure 16), and
one extra per inverter. Note that the lone d•x,x at downward clause gadget and downward
deletion do not count as variable gadget and they do not increase the budget. To give an
unambiguous definition of the number of variable encodings, we count the number of pairs
i, x such that the vertices vix and vix exist.

So far, we did not mention the issue related to the encoding of the terrain. As in the
construction of King and Krohn, we need flatter and flatter angles between two consecutive
chunks as we go up the valley (see Figure 3). However, we only need these angles to be a bit
flatter (not, for instance, twice as flat as the previous chunk interaction). Hence, as for their
construction, we can place all the vertices of the terrain on an integer grid of polynomial
size. This implies that we only need logarithmically long digits to represent each vertex.

Proof of Theorem 3. By Lemmas 8 and 9, we know that guards inside the triangular pock-
ets can be placed (and the budget reduced accordingly). The correctness of the reduction
is similar to the one by King and Krohn.

A solution to the Planar 3-SAT can be transformed into a solution for the Or-
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thogonal Terrain Guarding-instance. We place a guard at every vertex vi` and every
vertex gi` such that ` is a satisfied literal. This exactly fits the total budget. By Lem-
mas 10 and 12, all the variable and inverter gadgets are seen since we chose consistent
literals. By Lemmas 13 and 14, all the vertices wCj are seen, since the assignment satisfies
all the clauses. Thus, all the convex vertices of the terrain are seen, as well as all the con-
vex edges eixf ix and eixf

i
x. This implies that all the vertical edges and consequently all the

reflex vertices are seen. One can then check that all the remaining horizontal edges are fully
guarded.

We now focus on the reverse direction, namely: if there is a solution to the Orthog-
onal Terrain Guarding-instance, then there is an assignment satisfying all the clauses.
By Lemma 11, we can assume that the solution is non-dominated, that is, each pair {vix, vix}
contains at least one guard. By Lemma 12 and the budget allowing one extra guard by
inverter gadgets, any non-dominated solution should actually be legal. Now, by Lemmas 10
and 12, the guarding set has further to be consistent. Therefore, on chunk T0, one can read
out a truth assignment, consistently kept along the chunks. This truth assignment satisfies
all the clauses by Lemmas 13 and 14. Hence, the Planar 3-SAT-instance is satisfiable.

Proof of Theorem 4. This shows that Orthogonal Terrain Guarding and Dom-
inating Set on the visibility graph of rectilinear terrains are NP-hard. Recall that the
continuous variant of Orthogonal Terrain Guarding is equivalent to its discrete coun-
terpart. The membership in NP of all those variants was established in the first paragraphs
of this section. It remains to prove that Dominating Set on the visibility graph of strictly
rectilinear terrains is NP-hard. Our reduction almost directly extends to this variant. The
only issue is with the general triangular pocket gadget. Indeed, when the two guards are
placed inside the pocket, all the internal vertices are guarded. In Orthogonal Terrain
Guarding, one still needed to see the interior of the tiny top horizontal edge. But this
is no longer required in Dominating Set. We observe that the general triangular pocket
is only used in the downward clause gadget. We explain how we can make the downward
clause gadget without the general triangular pocket. From the gadget depicted in Figure 11,
we make the following modifications. The three literals of the clause are now at positions
2, 4, and 5 on chunk Ti. The third literal, that is, the one of the middle variable which
does not satisfy the clause has its v-vertex slightly lowered in such a way that it does not
see anything meaningful on chunk Ti−1. On chunk Ti−1, the right triangular pocket with
bottom di−1

y,y is simply removed, and the triangular pocket with bottom wC is replaced by
a right triangular pocket which sees among the v-vertices vi`1 , v

i
`2
, vi`3 and nothing else, for

C = `1 ∨ `2 ∨ `3 (see Figure 17).

The one drawback of this new construction is the removal of vertex di−1
y,y which forced

to take one v-vertex between viy, viy. We can now place no guard at those vertices, provided
that we place two guards at vi+1

y and vi+1
y . However, this can only help if there is also a

downward clause gadget between chunks Ti+1 and Ti. Therefore, we just have to observe
the rule of not putting two downward clause gadgets in a row (for instance by separating
them with some simple propagation).
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vy

vz

vz
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vx

vy

vz

vz

vx

1
2

3 4
5

6
Ti

Ti−1

Figure 17: Variant of the downward clause gadget for C = x ∨ y ∨ ¬z without general
triangular pocket. We use the usual propagation for variables x and z. The variable y
disappears from Ti−1 and downward. The inverters have been used to place, on Ti, the
literals of C at positions 2, 4, and 5. The vertex wC is seen only by vix, viy, and viz (circled);
hence it is seen if and only if the chosen assignment satisfies C.

3 Improved ETH-Hardness for (Orthogonal) Terrain Guarding

This section is devoted to proving Theorem 5. We explain how to turn the quadratic
reductions from Planar 3-SAT into cubic reductions from 3-SAT by taking a step back.
This step back is the reduction from 3-SAT to Planar 3-SAT by Lichtenstein [25], or
rather, the instances of Planar 3-SAT it produces. The idea of Lichtenstein in his classic
paper is to replace each intersection of a pair of edges in the incidence graph of the formula
by a constant-size planar gadget, called crossover gadget (see Figure 18).

Due to the sparsification of Impagliazzo et al. [17], even instances of 3-SAT with a
linear number of clauses cannot be solved in subexponential time, under the ETH. Hence,
the number of edges in the incidence graph of the formula can be assumed to be linear in the
number N of variables. Thus there are at most a quadratic number Θ(N2) of intersections;
which implies a replacement of the intersections by a quadratic number of constant-size
crossover gadgets. More concretely, the original N variables (resp. Θ(N) clauses) are placed
horizontally at the bottom of a Θ(N) × Θ(N) construction grid (resp. vertically at the
left of that grid). Those original variables and clauses are joined in a rectilinear fashion.
Crossover gadgets are placed on a superset of the edge intersections and subset of the grid
(see Figure 19). There is a noose (blue closed curve on the figure) going through all the
variables and defining the partition (C+, C−). Let C− be the part containing the original
clauses and C+ be the other part.

We wish to reduce the number of chunks that we actually need to check all the
clauses. In the reduction by King and Krohn, each single clause incurs a constant number
of chunks: to place the literals at the right position and to check the clause. However, the
only requirement for a clause to be checked is that it operates on consecutive variables.
Therefore, one can check several clauses in parallel if they happen to be on disjoint and
consecutive variables. Checking a set of variable-disjoint clauses in parallel means that we
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ξa1 a2

b1

b2

γ β

αδ

Figure 18: The crossover gadget of Lichtenstein for the crossing edges a1a2 and b1b2. The
large labeled nodes represent variables, and the small unlabeled nodes represent clauses.
The clauses ensure that the value of a1 and a2 (resp. b1 and b2) are the same. The thick
blue curved line delimits on one side, the clauses of C+, and on the other side, the clauses
of C−.

put the simple propagation/literal inverters/clause gadgets necessary to check a clause, on
a constant number of chunks. In particular, between chunks, say, Ti and Ti+1, we may have
multiple clause checker gadgets.

A first observation is that the Θ(N2) clauses of the crossover gadgets can be checked
in parallel with only O(1) chunks. Indeed, the constant number of clauses within each
crossover gadget operates on pairwise-disjoint sets of variables. They are also consecutive
within each gadget with the variable ordering a1, γ, b1, β, ξ, δ, b2, α, a2. We deal first with the
remaining clauses of C+. At this point, there are still potentially Θ(N2) equality constraints
in C+. In Figure 19, the equality constraints are materialized by thick black edges going from
one crossover to another. We say that an equality constraint is vertical if the corresponding
edge contains a vertical section, and that it is horizontal otherwise. Hence a horizontal
equality constraint is actually represented by a horizontal segment (without bend). The
column of a vertical equality constraint is the column of its (unique) vertical section.

We first check in parallel all the vertical equality constraints of the first column
(there are four in Figure 19, between rows 1 and 2, rows 3 and 4, rows 5 and 6, and rows 7
and 8). We can then check in parallel all the horizontal equality constraints whose segment
ends to the left of the second column (there is just one in the figure, on row 2). Now, the
vertical equality constraints of the second column can be checked in parallel (one in the
figure, between rows 1 and 2). We then check at once all the horizontal equality constraints
whose segment ends to the left of the third column (four, on rows 2, 4, 6, and 8 to 7), and
so on. We therefore only need Θ(N) chunks for C+.

For C−, we do the same starting from the last column and going down column by

http://jocg.org/


Journal of Computational Geometry jocg.org

C1

C2

C3

w x y z

Figure 19: Reduction from 3-SAT to Planar 3-SAT, reproduction of Figure 4.3. in
Tippenhauer’s master thesis [28] which follows Lichtenstein’s original paper. Notice that
some crossover gadgets are used on places without edge intersection, in order to route the
blue closed curve (indicating the separation (C+, C−)), with C− containing the Cis and C+

being on the unbounded face.

column. After Θ(N) chunks, we are left with the original variables and clauses which are
only O(N). Thus we finish with O(N) additional chunks. A chunk contains O(N2) variable
encodings, hence O(N2) vertices. So the total number of vertices of a terrain produced from
a 3-SAT formula on N variables is O(N3). This implies that there is no algorithm running
in time 2o(n1/3) for (Orthogonal) Terrain Guarding on terrains with n vertices, unless
the ETH fails.

4 Perspectives

We have proved that Orthogonal Terrain Guarding is NP-complete, as well as its
variants. We showed how to get improved ETH-based lower bounds for Terrain Guarding
and Orthogonal Terrain Guarding, by designing a cubic reduction from 3-SAT out of
the quadratic reduction from Planar 3-SAT. This establishes that there is no 2o(n1/3)-time
algorithm for those problems, unless the ETH fails.

Besides closing the gap between this lower bound and the existing 2O(
√
n logn)-

algorithm, the principal remaining open questions concern the parameterized complexity
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of terrain guarding.

• (1) Is Terrain Guarding FPT parameterized by the number of guards?

• (2) Is Orthogonal Terrain Guarding FPT parameterized by the number of
guards?

A negative answer to the second question would come as a real surprise in light of the
kO(k)nO(1)-time algorithm solving Dominating Set on the visibility graph of strictly or-
thogonal terrains.
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