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Abstract
In this work, we initiate the study of the Min-Ones d-SAT problem in the parameterized streaming
model. An instance of the problem consists of a d-CNF formula F and an integer k, and the
objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In the
parameterized streaming model, input is provided as a stream, just as in the usual streaming model.
The key difference is that now the amount of local memory available to the algorithm is Θ(f(k) log n)
(f : N→ N, a computable function) as opposed to the usual streaming model’s O(log n). It is also
expected that the algorithm make a small number of passes (bounded by a function of k) over its
input.

We design a (k + 1)-pass parameterized algorithm that solves Min-Ones d-SAT using space
O
(
(kdck + kd) log n

)
(c > 0, a constant) and a (d + 1)k-pass algorithm that uses space O(k log n).

We also design a streaming kernelization that makes (k + 2) passes and uses space O
(
k6 log n

)
to

produce a kernel with O
(
k6) clauses.
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23:2 Parameterized Streaming Algorithms for Min-Ones d-SAT

To complement these positive results, we show that any k-pass algorithm for Min-Ones d-SAT
(d ≥ 2) requires space Ω

(
max

{
n

1
k /2k, log n

k

})
on instances (F, k). This is achieved via a reduction

from the streaming problem POT Pointer Chasing (Guha and McGregor [ICALP 2008]), which
might be of independent interest. Given this, our (k + 1)-pass parameterized streaming algorithm is
the best possible, inasmuch as the number of passes is concerned.

In contrast to the results of Fafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015],
who independently showed that there are 1-pass parameterized streaming algorithms for Vertex
Cover (a restriction of Min-Ones 2-SAT), we show using lower bounds from Communication
Complexity that for any d ≥ 1, a 1-pass streaming algorithm for Min-Ones d-SAT requires space
Ω(n). This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem.
Additionally, we show that any p-pass algorithm for the problem requires space Ω(n/p).
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1 Introduction

Satisfiability (SAT, for short) does not need an introduction. It is among the most
studied classical NP-complete problems and is also the first problem which was shown to
be NP-complete [6, 23]. SAT (even with bounded number of literals per clause) is a central
problem in both theory and practice, and it, together with its variants, find enormous
applications in various domains of Computer Science (see for example [9, 15, 16, 17, 30] and
references therein). This has led to study of these problem in various paradigms like, classical
Complexity Theory [3], Approximation Algorithms [22, 34], Exact Algorithms [14, 32],
Parameterized Complexity [7, 31], and Heuristics [16]. While SAT is NP-hard in general, its
restriction 2-SAT is a classic example of a polynomial time solvable problem. In this paper
we add to the existing literature on SAT by studying an optimization version of d-SAT in
the framework that combines streaming algorithms and parameterized algorithms. That is,
we study an optimization version of d-SAT in the framework of parameterized streaming
algorithms, where we are allowed to set at most k variables to 1.

Streaming algorithms are meant for processing stream of data. The input to the algorithm
is presented as a sequence of items and the typical assumption is that we have a memory
constraint, due to which the whole input cannot be stored in the memory. Given this, the
restriction is made that the algorithm only uses a small amount of memory, while processing
the input. Since it does not have random access to the input, the algorithm is allowed to
make multiple passes over it. The goal of a streaming algorithm is to process the data
using fewer passes (ideally, just one) and using as little memory as possible. With the
above constraint, the algorithm, after receiving each item, processes the (partial) input,
and only remembers a “sketch” of the input, which is enough to recover a solution to the
whole instance. The time allowed to process the stored sketch and the new item is usually
model dependent (typically we do not limit the time required for the processing). The study
of problems in this model dates back to the 1980s [12, 28], although, the framework was
formally established only in 1996 [2, 20]. The other player in the combined framework is
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Parameterized Complexity – an approach pioneered by Downey and Fellows [8]. For details
on Parameterized Complexity, we refer the reader to the books of Downey and Fellows [8],
Flum and Grohe [13], Niedermeier [29], and the recent book by Cygan et al. [7]. For the
convenience of readers, a small introduction is given in Appendix A.

Our Problem and the Framework We consider the problem Min-Ones-d-SAT in the
parameterized streaming model, which is a minimization variant of d-SAT. In the following,
we formally define the problem, where d ≥ 1.

Min-Ones-d-SAT Parameter: k
Input: A d-CNF formula F and an integer k ∈ N.
Question: Is there a satisfying assignment for F that assigns at most k variables to 1?

We note that the problem 2-SAT admits a poly-time algorithm [4, 10, 25], while its
minimization variant, Min-Ones-2-SAT is NP-hard [33]. Indeed, the problem encompasses
a classic NP-hard problem, Vertex-Cover [33]: the graph in a Vertex-Cover instance
can be seen as a formula in which the vertices are variables and each edge is a monotone
clause containing the two endpoints as (positive) literals.

To the best of our knowledge, the study of parameterized streaming algorithms was first
carried out independently by Fafianie and Kratsch [11], and Chitnis et al. [5]. Fafianie and
Kratsch [11] studied several problems from the viewpoint of kernelization in the streaming
model using constant number of passes over the input. Chitnis et al. [5] studied the problems
Maximal Matching and Vertex-Cover in the parameterized streaming model while
allowing only a single pass over the input. In both the above models the algorithm is allowed
to use space bounded by O(g(k) poly(logn)), where k is the parameter and n is the size
of the input, and g is a computable function. Recall that one of the goals of streaming
algorithms is to make as few passes over the input as possible, while in parameterized
preprocessing, the goal is to upper-bound the size of the preprocessed instance (called a
kernel) by a function of the parameter alone. So we might want to relax the constraint of the
algorithm being allowed a constant number of passes (or a single pass as in the framework
in [5]), to f(k) passes over the input, where f is some computable function depending only
on the parameter k. In the following, we define the notions of streaming-FPT algorithms and
streaming-kernels. Parameterized problems whose input is presented as a stream will be called
streaming-parameterized problems. In the following, let Π be a streaming-parameterized
problem. The problem Π is said to admit an (f(k), g(k))-streaming-FPT algorithm, if
there is an algorithm, that given an instance (x, k) of Π, makes f(k) passes over the input
stream and resolves the instance using g(k) poly(log |x|) space. We say that Π admits an
(f(k), g(k), h(k))-streaming-kernel, if there is an algorithm, that given an instance (x, k) of
Π, makes f(k) passes over the input stream and using space bounded by g(k) poly(log |x|)
outputs an equivalent instance (x′, k′) of Π, such that |x′|+ k′ ≤ h(k). Moreover, if g = h,
then Π is said to admit an (f(k), g(k))-streaming-kernel.

Our Results Our main focus is on the problem Min-Ones-d-SAT. For our problems, a
stream will consist of the integer k, followed by the clauses of the input CNF formula.

For d ≥ 1, we design a (k+1,O
(
(kd + dO(k))k

)
)-streaming-FPT algorithm for Min-Ones-

d-SAT. Our streaming FPT algorithm is obtained by enumerating all minimal solutions to
clauses containing all positive literals. Then, each such minimal solution is “grown” to a
larger solution by adding more variables to it, and then testing if it forms a valid solution.
The above algorithm can also be interpreted as adapting the standard branching algorithm for
Min-Ones-d-SAT, to the streaming model. Our main conceptual message here is: for some
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problems, a branching algorithm can be simulated in the streaming setting. We believe this
approach will be useful in designing other parameterized streaming algorithms. We will later
see, for our case, this also results in an “almost optimal” algorithm (using our lower bound
results). By carefully adapting the standard branching algorithm for Min-Ones-d-SAT, we
also obtain an (O

(
dk
)
,O(k))-streaming-FPT algorithm for Min-Ones-d-SAT.

Next we turn to streaming kernelization. We design a (k+ 2,O
(
k6))-streaming-kernel for

Min-Ones-2-SAT. We note that for d ≥ 3, Min-Ones-d-SAT does not admit a (standard)
polynomial kernel [24], thus if the processing time for each clause is polynomial, then such
a streaming kernel cannot be obtained for Min-Ones-d-SAT. Our streaming kernelization
is based on a combination of a kernelization for d-Hitting Set and the idea of “growing
implication chains” for variables in the streaming model. Our streaming kernel also gives a
new polynomial kernel for Min-Ones-2-SAT that is robust for at least two models.

For d ≥ 1, we show that Min-Ones-d-SAT does not admit a (1, g(k))-streaming-kernel,
for any function g. We obtain this result by a reduction from the Communication Complexity
problem INDEX, for which there is a known lower bound [26]. This contrasts the fact
that Vertex-Cover (a restriction of Min-Ones 2-SAT) admits a single-pass streaming
kernelization [5]. We also show that any p-pass (p is a computable integer-valued function of
the input) streaming algorithm for d-SAT requires space Ω(n/p). This result is obtained by
an appropriate reduction from DISJ, a well-known problem in Communication Complexity.

For d ≥ 2, we show that any k-pass streaming algorithm for Min-Ones-d-SAT requires
Ω
(

max
{
n

1
k /2k, log

(
n
k

)})
bits of space in the worst case. (Recall that k is the maximum

number of variables that can be set to 1.) We obtain this result by combining a well known
lower bound for DISJk [26] from Communication complexity and a space lower bound
for the POT Pointer Chasing problem [18]. This result refutes the existence of any
(k, g(k))-streaming-FPT algorithm for Min-Ones-d-SAT, for any function g, whenever d ≥ 2.
Thus our streaming-FPT algorithm that uses k + 1 passes is pass-optimal, for d ≥ 2.

Finally, we observe that our streaming-FPT algorithms for Min-Ones-d-SAT generalize
to provide streaming-FPT algorithms for a restricted variant of Integer-Programming,
which has at most two variables per constraint.

Related Results Min-Ones-2-SAT was first studied by Gusfield and Pitt [19], who gave a
poly-time 2-approximation algorithm for it. Misra et al. [27] exhibited an equivalence between
Min-Ones-2-SAT and Vertex-Cover via a poly-time parameter-preserving reduction.
Chitnis et al. [5] showed that Vertex-Cover admits a single-pass streaming algorithm
that uses space O

(
k2). As noted earlier, Min-Ones-2-SAT generalizes Vertex-Cover.

Analogously, Min-Ones-d-SAT generalizes d-Hitting-Set. The question of kernelizing the
problem d-Hitting-Set was studied by Abu-Khzam [1], and in the streaming model by
Fafianie and Kratsch [11], who gave a single-pass streaming kernel with O

(
kd
)
sets.

Preliminaries Here we introduce some basic concepts and notation used in the rest of the
paper. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. Let x ∈ {0, 1}n and i ∈ [n]. x[i] denotes
the ith coordinate of x. Consider a set of variables V = {x1, . . . , xn}. A literal is a variable
xi (called an unnegated literal) or its negation ¬xi (called a negated literal). A clause is a
disjunction (OR) of literals, e.g. (x1 ∨¬x2 ∨¬x3). It is called monotone if it consists entirely
of unnegated literals, and is called anti-monotone if it consists entirely of negated literals.
Clauses containing both negated and unnegated literals are called non-monotone.

A conjunction (AND) of clauses is called a CNF formula. When each clause has at most d
literals, it is called a d-CNF formula. An assignment for a CNF formula F over the variable
set V is a subset S ⊆ V . The assignment satisfies a clause if there is a variable in S that
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appears unnegated in the clause or a variable in V \ S that appears negated in the clause.
An assignment which satisfies all clauses in a formula is called a satisfying assignment for
the formula.

2 Streaming FPT Algorithms

In this section, our main focus will be designing a (k + 1,O
(
(kd + dO(k))k logn

)
)-streaming-

FPT algorithm for Min-Ones-d-SAT. An (O
(
dk
)
,O(k))-streaming-FPT algorithm for Min-

Ones-d-SAT can also be obtained by carefully adapting the standard branching algorithm
to the streaming model (see Appendix B.1). Using these algorithms as subrouties, we also
obtain a streaming FPT algorithm for a restricted version of the Integer Programming
problem with at most two variables per constraint (see Appendix C).

The (k+ 1,O
(
(kd + dO(k))k logn

)
)-streaming FPT algorithm begins by a making a single

pass over the formula in which a set of minimal assignments for certain “essential” monotone
clauses in the ormula is obtained. In the next k − 1 passes, these assignments are extended
as much as possible using the implications appearing in the formula. Finally, the algorithm
makes an additional pass to check the formula as a whole is satisfied by one of the extended
assignments.

Let (F, k) be an instance of Min-Ones-d-SAT on variables x1, x2, . . . , xn. The next
result shows how to use a streaming kernelization for the d-Hitting-Set problem (defined
below) to enumerate minimal solutions for a certain hitting set problem.

d-Hitting Set
Input: A family X of sets of size at most d over a universe U and an integer k ∈ N.
Question: Is there S ⊆ U , such that |S| ≤ k and for each X ∈ X , we have X ∩ S 6= ∅?

I Proposition 2.1 (♠2). There is an algorithm Enum-d-HS, that finds the set Sk, of all
minimal d-hitting sets of size at most k, for an instance I = (X , U, k) of d-Hitting Set
in time O

(
dk|I|

)
. Moreover, |Sk| ∈ O

(
dk
)
and the algorithm uses space O

(
k|I|+ kdkbU

)
,

where |I| is the size of I and bU is maximum size of the elements of U in bits.

The following result follows from Observation 1, Theorem 1, and Lemma 7 of [11].

I Proposition 2.2. There is a 1-pass streaming algorithm called Stream-HS for d-Hitting-
Set, which given an instance I = (X , U, k) with umax as the maximum element of U , returns
an (equivalent instance) I ′ = (X ′, U ′ ⊆ U, k) using O

(
kd log |U |

)
bits of memory and O

(
kd
)

time at each step, such that the following conditions are satisfied.
1. |X ′| ∈ O

(
kd
)
and the bit size of I ′ is bounded by O

(
kd log |U |

)
.

2. Elements of U ′ are represented using log |U | bits.
3. S ⊆ U (or U ′) of size at most k is a solution to I if and only if it is a solution to I ′.

We note that in item 1 of Proposition 2.2, the size of I ′ can be bounded by O
(
kd log k

)
,

by relabeling, but we want to preserve the exact variables, so we do not use relabeling.
Next, we apply the algorithm Stream-HS of Proposition 2.2 to obtain a set, which we call

a set of essential monotone clauses, C1, and the set S1 of all minimal assignments (as sets of
variables set to 1) for them of size at most k, as follows.

2 The proofs of the results marked with ♠ can be found in the appendix.

CVIT 2016



23:6 Parameterized Streaming Algorithms for Min-Ones d-SAT

Pass 1. For each monotone clause C = (x1 ∨ x2 ∨ · · · ∨ xd′) (where d′ ≤ d) seen in the
stream, pass the set {x1, x2, . . . , xd′} to Stream-HS. Let It = (Xt, Ut, k) be the output of
Stream-HS once the entire stream has been read. Set C1 = Xt. Using Proposition 2.1,
compute the set S1, of all minimal d-hitting sets of size at most k for It.
The next lemma bounds the time and the space used in Pass 1.

I Lemma 2.3 (♠). Pass 1 can be executed using space bounded by O
(
(kd + dk)k logn

)
while

using time O
(
dkkd logn

)
after reading each clause from the stream.

Let C+ be the set of all monotone clauses of F, let F+ = ∧C∈C+C and F+
1 = ∧C∈C1C.

Recall that C1 is the set of clauses computed in Pass 1. We have the following observation,
which follows from Proposition 2.1 and item 3 of Proposition 2.2.

I Observation 1. S1 is the set of all minimal satisfying assignments of size at most k for
both F+ and F+

1 .

The next observation relates satisfying assignments to F and the family S1.

I Observation 2 (♠). Let S be the set of all minimal satisfying assignments of size at most
k for F. Then for each S ∈ S, there is S′ ∈ S1, such that S′ ⊆ S.

Now we describe the next k − 1 passes. The algorithm constructs a set Sprm of prime
partial assignments, which will be enough to resolve the instance. Initially, we set Sprm = S1.

Pass `. (2 ≤ ` ≤ k) Consider a non-monotone clause C = (xC1 ∨ xC2 · · · ∨ xCd1
∨ ¬yC1 ∨

¬yC2 ∨ . . .¬yCd2
) (where d1 + d2 ≤ d) seen in the stream. For each S ∈ Sprm, such that

{yC1 , yC2 , . . . yCd2
} ⊆ S and {xC1 , xC2 , . . . xCd1

} ∩ S = ∅ we do the following.
If |S| = k, then remove S from Sprm.
Otherwise, |S| ≤ k − 1. Let S ′prm = Sprm, and for i ∈ [d1], let Si = S ∪ {xCi }. Set
Sprm = (S ′prm \ {S}) ∪ {Si | i ∈ [d1]}.

Clearly, Pass `, where 2 ≤ ` ≤ k, on reading a clause C uses time O(|S1|dk). Moreover, it
modifies the sets in Sprm (increasing |Sprm| by at most a factor of d), by either removing a set
S ∈ S1 completely, or adding one more element to S (when the size is less than k). The above
procedure is executed only for k− 1 passes. Thus, it always maintains that |Sprm| ∈ O

(
dO(k))

(see Proposition 2.1) and each set in Sprm has at most k elements (each representable by logn
bits). Thus, the (total) space used by the algorithm is bounded by O

(
(kd + dO(k))k logn

)
.

For simplicity of description, we introduce the following notation. We set S1
prm = S1 and

for each ` ∈ [k], we let S`prm denote the the set Sprm after the execution of Pass `. We let
ρ = (Q1, Q2, . . . , Qt) be the sequence of non-monotone clause in F, where the ordering is
given by the order of their appearance in the stream. For ` ∈ [k] \ {1}, i ∈ [t], we let S`prm(i)
be the set Sprm (after modification, if any) at Pass ` after reading the clause Qi. Furthermore,
we let S`prm(0) be the set S`−1

prm . Next, we prove some results that will be useful in establishing
the correctness of the algorithm.

I Lemma 2.4. Let S be the set of all minimal assignments for F of size at most k. For
each ` ∈ [k] and S ∈ S, there is S′ ∈ S`prm, such that S′ ⊆ S.

Proof. We prove this using induction on `. The claim follows for ` = 1 from Observation 2.
This forms the base case of our induction. Next, we assume that the claim holds for each ` ≤ z
(for some 1 ≤ z ≤ k−1) and then we prove it for ` = z+1. At the beginning of `th pass when
no non-monotone clause is read from the stream, we have for each S ∈ S, there is S′ ∈ S`prm(0),
such that S′ ⊆ S. This follows from the fact that S`prm(0) = S`−1

prm . Next, we assume that at
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Pass `, the claim holds after reading the clause Qi, for each i ≤ p, where p ∈ [t−1]∪{0}. Now
we prove the claim for Qp+1 = (xp+1

1 ∨xp+1
2 · · ·∨xp+1

d1
∨¬yp+1

1 ∨¬yp+1
2 ∨ . . .¬yp+1

d2
). Consider

S ∈ S and let Ŝ ∈ S`prm(p), such that Ŝ ⊆ S. We will show that there is a set S′ ∈ S`prm(p+1),
such that S′ ⊆ S. Let X = {xp+1

1 , xp+1
2 , . . . , xp+1

d1
} and Y = {yp+1

1 , yp+1
2 , . . . , yp+1

d2
}. If Y 6⊆ Ŝ

or X ∩ Ŝ 6= ∅, then Ŝ ∈ S`prm(p+ 1). Hence, S′ = Ŝ is a set such that S′ ⊆ S. Otherwise, we
have Y ⊆ Ŝ and X ∩ Ŝ = ∅. Since S satisfies Qp+1, it must contain a variable, say xp+1

i∗ from
{xp+1

1 , xp+1
2 , . . . , xp+1

d1
}. AsX∩Ŝ = ∅, Ŝ ⊆ S, |S| ≤ k, and xp+1

i∗ ∈ S, we have that |S| ≤ k−1.
For i ∈ [d1], let Ŝi = Ŝ ∪ {xp+1

i }. Recall that S`prm(p+ 1) = (S`prm(p) \ {Ŝ}) ∪ {Ŝi | i ∈ [d1]}.
From the above we can conclude that Ŝi∗ ⊆ S and Ŝi∗ ∈ S`prm(p + 1). This concludes the
proof. J

I Observation 3. For i ∈ [k − 1] and a set S ∈ Siprm, if S ∈ Si+1
prm , then for each

` ∈ {i, i+ 1, . . . , k}, we have S ∈ S`prm.

Proof. Consider i ∈ [k − 1] and a set S ∈ Siprm, such that S ∈ Si+1
prm . Let ` ∈

{i + 2, i + 3 . . . , k} be the lowest integer, such that S /∈ S`prm (if such an ` does not
exist, the claim trivially holds). Since S ∈ S`−1

prm and S /∈ S`prm, there is a non-monotone
clause Q = (x1 ∨ x2 · · · ∨ xd1 ∨ ¬y1 ∨ ¬y2 ∨ . . .¬yd2), such that {y1, y2, . . . , yd2} ⊆ S and
{x1, x2, . . . , xd1} ∩ S = ∅. But we also encountered Q at (`− 1)th pass, and S should have
been modified/deleted, which is a contradiction. J

I Lemma 2.5. Let S be the set of all assignments for F of size at most k. For every S ∈ S,
there is S′ ∈ Sprm, such that S′ ⊆ S and S′ satisfies every clause of F.

Proof. Consider S ∈ S and let S′ ∈ Sprm = Skprm be a set such that S′ ⊆ S. The existence
of S′ is guaranteed by Lemma 2.4. We will show that S′ satisfies all the clauses of F. By
the construction of Sprm, there is a set Ŝ ∈ S1, such that Ŝ ⊆ S′. Thus, S′ satisfies each
monotone clause of F (see Proposition 2.1 and 2.2). Next, consider an anti-monotone clause
C = (¬y1 ∨ ¬y2 ∨ . . .¬yd′) (where d′ ≤ d), and let Y = {y1, y2, . . . , yd′}. Since S satisfies
C, YS = Y \ S is a non-empty set. As S′ ⊆ S, we have S′ ∩ YS = ∅. Thus, S′ satisfies
C. If S′ satisfies all the non-monotone clauses of F, then the claim follows. Otherwise, let
C = (x1 ∨ x2 · · · ∨ xd1 ∨ ¬y1 ∨ ¬y2 ∨ . . .¬yd2) be a non-monotone clause in F which is not
satisfied by S′, and let X = {x1, x2, . . . , xd1} and Y = {y1, y2, . . . , yd2}. Since S′ does not
satisfy C, we have Y ⊆ S′ and X ∩ S′ = ∅. Notice that Y ⊆ S as S′ ⊆ S. As S satisfies C,
we have S∩X 6= ∅. This together with the fact that X ∩S′ = ∅ implies that |S′| ≤ k−1. We
can assume that Ŝ 6= ∅, as Sprm can be assumed to contain only non-empty sets, otherwise,
∅ is a solution to F. The above discussions together with Observation 3 and the fact that
|S′| ≤ k − 1, implies that S′ ∈ Sk−1

prm (and we have S′ ∈ Skprm). But then at the kth pass, we
would have encountered C, and S′ would be replaced by d1 many sets, namely S′ ∪ {xi}, for
each i ∈ [d1]. This concludes the proof. J

We are now ready to state our scheme for the (k + 1)th pass.

Pass k + 1. Consider a clause C seen in the stream. If there is S ∈ Sprm, such that S
does not satisfy C, then remove S from Sprm. When the stream is over, if Sprm 6= ∅, then
return yes, and otherwise, return no.
The discussions above establishes the correctness of the algorithm. Thus, we obtain the

following theorem.

I Theorem 2.6. Min-Ones-d-SAT admits a (k+1, (kd+dO(k))k)-streaming-FPT algorithm.
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By carefully adapting the standard branching algorithm for Min-Ones-d-SAT, we obtain
the following theorem.

I Theorem 2.7 (♠). Min-Ones-d-SAT admits an (O
(
dk
)
,O(k))-streaming-FPT algorithm.

Using Theorem 2.6 and 2.7 we can obtain the following result for a restricted version of
Integer Programming, which has at most two variables per constraint (see Appendix C
for complete details).

I Theorem 2.8 (♠). Bounded IP admits a (k+ 1, kdO(k) + g(k))-streaming-FPT algorithm
and an (O

(
dk
)
, O(k) + g′(k))-streaming-FPT algorithm.

3 Streaming Kernelizations

In this section, we design a (k + 2,O
(
k6))-streaming-kernel for Min-Ones 2-SAT. In the

first pass the algorithm computes a set of monotone clauses as in Section 2. Then, over k
more passes, for each variable x appearing in these clauses, the algorithm a set of variables
which must be set to one if x is set to 1, and the implications that force this. In the last pass,
it collect all the anti-monotone clauses, whose both variables appear in some stored clauses.

We now move to the formal description of our algorithm. Let (F, k) be an instance of
Min-Ones 2-SAT on n variables. In the first pass we apply the algorithm Stream-HS of
Proposition 2.2 to obtain a set of monotone clauses, C1. That is, we do the following.

Pass 1. Obtain a set C1 of monotone clauses of F using the same procedure as the first
pass of Section 2.
Let V be the set of variables appearing in F, V1 be the set of variables appearing in C1.

For each variable v ∈ V1, we maintain a set of variables Pv and a set of clauses Pv. Initially,
Pv = {v} and Pv = ∅, for v ∈ V1. Now we are ready to describe our next k passes.

Pass `. (2 ≤ ` ≤ k + 1) Consider a non-monotone clause C = (x ∨ ¬y) seen in the
stream. For each v ∈ V1 such that y ∈ Pv, x /∈ Pv, C /∈ Pv, and |Pv| ≤ k, add x and C
to the sets Pv and Pv, respectively.

For v ∈ V1 and ` ∈ [k + 1], by Pv(`) we denote the set Pv at the end of pass ` (or at the
beginning of pass `+ 1, when ` = 1). Furthermore, we let P = ∪v∈V1Pv and P = ∪v∈V1Pv.

I Observation 4 (♠). Consider i ∈ [k] and v ∈ V1, such that |Pv(i)| = |Pv(i+ 1)|. Then for
all ` ∈ {i, i+ 1, . . . , k + 1}, we have |Pv(`)| = |Pv(i)|.

I Lemma 3.1. Consider a set S which satisfies all clauses in P. Then, for each v ∈ V1 ∩ S,
we have Pv ⊆ S.

Proof. Consider v ∈ V1∩S and let ρ = (C1 = (x1∨¬y1), C2 = (x2∨¬y2), . . . , Ct = (xt∨¬yt))
be the order in which the clauses in Pv were added. Note that Px = {xi | i ∈ [t]}. We will
show by induction on the index i ∈ [t] that each xi ∈ S. Before reading C1, the only element
in Pv was v. As C1 was added to Pv, it must hold that y1 = v. Since v ∈ S, and S satisfies
each clause in P , S must contain x1. For the induction hypothesis, we suppose that for some
p ∈ [t− 1], we have {xi | i ∈ [p]} ⊆ S. We will now show that xp+1 ∈ S. Since Cp+1 ∈ Pv
and Cp+1 appears after Ci in ρ, for each i ∈ [p], there exists z ∈ {xi | i ∈ [p]}, such that
z = yp+1. But since z ∈ S and S satisfies each clause in P, we have that xp+1 ∈ S. J

Let F′ be the 2-CNF formula containing all the anti-monotone clauses of F and all the
clauses in C1 ∪ P.
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I Lemma 3.2. (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (F′, k) is a
yes-instance of Min-Ones 2-SAT.

Proof. The forward direction follows from the fact that each clause in F′ is also a clause
in F. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F′, k), and
S′ =

⋃
v∈V1∩S Pv. We show that S′ is a solution to Min-Ones-2-SAT in (F, k). Since

V1 ∩ S ⊆ S′, from Proposition 2.2 we have that S′ satisfies each monotone clause of F. From
Lemma 3.1 we have S′ ⊆ S. Thus, S′ satisfies each anti-monotone clause of F (F′ contains
all of them). If S′ satisfies each non-monotone clause of F, then the claim follows. Otherwise,
we have a non-monotone clause C = (x∨¬y) in F, which is not satisfied by S′. We have that
x /∈ S′ and y ∈ S′. Let Vy = {v ∈ V1 | y ∈ Pv}. The construction of S′ implies that there is
v∗ ∈ Vy such that v∗ ∈ S. From the construction of S′ we have that x /∈ Pv∗ . The above
discussions together with Observation 4 implies that we would have encountered C at a pass
i ≤ k, and we did not add x to Pv∗ . This means that |Pv∗ | ≥ k + 1. But this contradicts the
fact that S has size at most k (note that from Lemma 3.1 we have Pv∗ ⊆ S). J

Let V2 = V1 ∪
(⋃

v∈V1
Pv
)
. We will construct a set B of anti-monotone clauses. Initially,

B = ∅. We now describe the (k + 2)th pass of our algorithm, which constructs the set B.

Pass k+2. For each anti-monotone clause C = (¬x∨¬y) in the stream with {x, y} ⊆ V2
and C /∈ B, add C to B. Then forget the sets Pv, where v ∈ V1.

Let F̃ be the 2-CNF formula obtained from F by removing all anti-monotone clauses that
are not in B.

I Lemma 3.3 (♠). (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (F̃, k) is a
yes-instance of Min-Ones 2-SAT.

Notice that we have stored the sets of clauses C1, P, and B, of sizes O
(
k2), O

(
k3), and

O
(
k6), respectively. This results in the instance (F̃, k) of Min-Ones 2-SAT. The above

discussions together with Lemma 3.3 implies the following theorem.

I Theorem 3.4. Min-Ones-2-SAT admits a (k + 2,O
(
k6))-streaming-kernel.

4 Lower Bounds

We begin this section by exhibiting a reduction from the POT Pointer Chasing problem
(defined later) to Min-Ones 2-SAT and use it to prove the following theorem.

I Theorem 4.1. Any streaming algorithm that solves instances (F, k) of Min-Ones d-SAT
(d ≥ 2) in k passes requires space Ω

(
max

{
n1/k/2k, log n

k

})
, where n is the number of variables

in F .

The well-known truncated disjointness problem of Communication Complexity has the
following lower bound.

I Proposition 4.2 (Kushilevitz and Nisan [26], Example 2.12). Let n, k ∈ N with 0 ≤ k ≤ bn/2c.
Any deterministic protocol for DISJk requires Ω

(
log
(
n
k

))
bits of communication overall .

For some background on DISJk and other problems (INDEX and DISJ) appearing
in the proofs below, the reader is referred to Kushilevitz and Nisan’s standard work on
Communication Complexity [26].

Using the bound of Proposition 4.2, it is possible to prove the intuitively obvious notion
that a streaming algorithm which needs to keep track of locations in its input must use space
Ω(logn), where n is the size of its input.
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I Lemma 4.3. Let MOdSSolve be a streaming algorithm for Min-Ones d-SAT (d ≥ 2)
that solves instances (F, k) of Min-Ones d-SAT on n variables using space g(n, k). For
any k ∈ {1, . . . , bn/2c}, if MOdSSolve makes p passes to solve instances (F, k), then
g(n, k) = Ω

(
(1/p) log

(
n
k

))
.

Proof. Consider the following protocol for DISJk, in which Alice receives the set S ⊆
{1, . . . , n} and Bob receives the set T ⊆ {1, . . . , n} (|S|, |T | = k). Alice constructs the
forumla FS =

∧
i∈S ¬xi ∨ ¬xi and Bob constructs the formula FT =

∧
i∈S xi ∨ xi. Observe

that (FS ∧ FT , k) is a YES instance of Min-Ones 2-SAT if and only if S ∩ T = ∅.
Now alice runs MOdSSolve with parameter k and FS as partial input, and passes its

memory rS to Bob. Bob uses resumes execution of MOdSSolve on the memory rS and feed it
the formula FT . With this, the algorithm makes the first pass over FS ∧FT . Bob then passes
the algorithm’s memory rT back to Alice. Using rT , Alice resumes execution of MOdSSolve.
The process is repeated for as many passes as the algorithm requires over FS ∧FT . Once the
algorithm halts, Bob returns its output as his answer.

Since MOdSSolve outputs YES if and only if (FS ∧ FT , k) is a YES instance, the protocol
is valid. The amount of communication per pass between Alice and Bob is at most 2g(n, k),
so the total amount of communication is at most 2pg(n, k). From Proposition 4.2, we have
2pg(n, k) = Ω

(
log
(
n
k

))
, i.e. g(n, k) = Ω

(
(1/p) log

(
n
k

))
. J

The above result shows an Ω(logn) lower bound on the space used by any algorithm that
solves instances (F, k) of Min-Ones d-SAT in Ω(k) passes. This is quite weak, but it is
possible to strengthen the result substantially using a lower bound for the following POT
Pointer Chasing problem.

Consider a complete t-ary tree T with l+ 1 levels rooted at the vertex r. Let the levels be
numbered from 1 to l + 1, with the root being on level 1. For each non-leaf vertex v, define
vi to be the ith child of v (in the lexicographic ordering of its children). Given a function
f : V(T )→ {0, . . . , t− 1}, define f∗(v) = vf(v) for non-leaf vertices v and f∗(v) = f(v) for
leaf vertices. For i ∈ N, (f∗)i(r) denotes the result of applying f∗ to r repeatedly, i times.

POT Pointer Chasing

Instance: (T, f), where T is a complete t-ary tree with l+ 1 levels rooted at r, encoded
as a post-order traversal of its vertices, and f : V(T )→ {0, . . . , t− 1}.
Question: Is (f∗)l(r) = 1?

Figure 1 shows an instance with parameters t = 3 and l = 3. The following result exhibits
a tradeoff between the number of passes made by a streaming algorithm for POT Pointer
Chasing and the space it requires.

I Proposition 4.4 (Guha and McGregor [18], Theorem 1). Any p-pass streaming algorithm
that solves POT Pointer Chasing instances over t-ary trees with (p+ 1) levels requires
space Ω(t/2p) in the worst case.

I Lemma 4.5. Let (T, f) be an instance of POT Pointer Chasing, where T is a t-ary
tree with k + 1 levels. A boolean formula F can be constructed such that (T, f) is a YES
instance of POT Pointer Chasing if and only if (F, k) is a YES instance of Min-Ones
2-SAT.

Proof. The tree T has levels 1, . . . , k + 1, with the root r on level 1 and the leaves on level
k + 1. Since each internal vertex has t children, |V (T )| = tk+1−1

t−1 = O
(
tk
)
. Consider the

following boolean formula F with n = tk−1
t−1 = Θ

(
tk−1) variables.
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1 2 3

4

5 6 7

8

9 10 11

12

13

post-order traversal: 1 2 3 4 5 6 7 8 9 10 11 12 13

stream: 3 3 f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) f(11) f(12) f(13)

level

1

2

3

3

0 1 0 0 0 1 1 0 0

116

4

Figure 1 An instance of POT Pointer Chasing with parameters t = 3 and l = 2. The stream
consists of t, k and the values of f appearing as in the lexicographic post-order traversal of the tree.
In the tree, labels appear in black next to vertices and the corresponding values of f appear in grey.
The chain of pointers leads to the vertex labelled 3, with f(3) = 0.

Let w = f∗(r), i.e. the f(r)th child of r, and Tw be the subtree of T rooted at w. The
variable set of F is {xv | v ∈ V(Tw)}. For each vertex v on level i = 2, . . . k of T , F has the
clause xv → xf∗(v) ≡ ¬xv ∨ xf∗(v). For each leaf vertex v, F has the clause ¬xv ∨¬xv if and
only if f(v) = 0. In addition, F has the clause xw ∨ xw.

We now show that (F, k) is an equivalent instance of Min-Ones 2-SAT. Consider the leaf
vertex z = (f∗)k(r), i.e. the vertex reached by chasing pointers from the root of T . If (T, f)
is a YES-instance, i.e. f(z) = 1, then F can be satisfied by setting k variables (corresponding
to variables on the w–z path in T ) to 1, i.e. (F, k) is a YES instance. In the other case, i.e.
f(z) = 0, F is unsatisfiable: F contains the clause xw ∨ xw, a chain of implications from w

to z, and the clause ¬xz ∨ ¬xz, which cannot be satisfied simultaneously. Thus, (F, k) is a
NO instance. J

Observe that the implication xv → xf(v) can be produced by simply reading off the
value f(v). This is because in the stream, the values of f appear as in the (lexicographic)
post-order traversal of T , and knowing the value f(v) and the position of f(v) in the stream
is enough to determine the f(v)th child of v. Thus, the clauses can be produced on the fly
while making a pass over the post order traversal of T .

We now prove Theorem 4.1.

Proof. Let MOdSSolve be a k-pass streaming algorithm for Min-Ones 2-SAT that uses
space g(n, k) on inputs (F, k) over n variables. Consider an algorithm that takes as input an
instances (T, f) of POT Pointer Chasing over trees with k+ 1 levels, producing instances
(F, k) (over n = Θ

(
tk−1) variables) of Min-Ones 2-SAT on the fly as above, and feeding

them as input to MOdSSolve. Because of Lemma 4.5, the output of A on (F, k) correctly
decides (T, f).

The algorithm makes k passes over its input and the amount of space used overall is
O(g(n, k) + logn). This value is Ω

(
t/2k

)
, by Proposition 4.4. Since n = Θ

(
tk
)
, we have

g(n, k) + logn = Ω
(
n1/k/2k

)
. Consider the case k ≥

√
logn. The expression n1/k/2k is

o(1), so g(n, k) = Ω
(
n1/k/2k

)
holds trivially. In the other case, i.e. k <

√
logn, we have

g(n, k) = Ω(logn) by Lemma 4.3, so g(n, k) + logn = O(g(n, k)), i.e. g(n, k) = Ω
(
n1/k/2k

)
.

Observe that the bound g(n, k) = Ω
(
log n

k

)
holds for any k ≤ bn/2c (Lemma 4.3),

and for k > bn/2c, g(n, k) = Ω
(
log n

k

)
holds trivially. Therefore, we have g(n, k) =

Ω
(
max

{
n1/k/2k, log n

k

})
. J

Suppose a streaming algorithm for Min-Ones 2-SAT uses space O
(
f(k)n1/k−ε) (ε > 0,

a constant) to decide instances (F, k) over n variables. Observe that limn→∞
f(k)n1/k−ε

n1/k/2k = 0
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for any function f . Thus, we have the following corollary.

I Corollary 4.6. Let ε > 0 be a number. Any streaming algorithm for Min-Ones 2-SAT
that uses space O

(
f(k)n1/k−ε) must make at least k + 1 passes over its input.

The preceding corollary shows that the algorithm of Theorem 2.6, which makes k + 1
passes over (F, k), is the best possible inasmuch as the number of passes is concerned. We now
exhibit two lower bounds on the space complexity of Min-Ones 2-SAT using Communication
Complexity similar to those in Lemma 4.3, which apply to Min-Ones d-SAT even when
d = 1.

I Theorem 4.7. There are no 1-pass streaming algorithms for Min-Ones d-SAT (d ≥ 1)
that use space f(k)g(n) (f, g : N→ N, computable functions; g = o(n)) on instances (F, k)
with n variables.

Proof. Observe that any instance (a, b) of INDEX can be encoded as the formula
F =

(∧
a[i]=1 xi

)
∧ (¬xb). (F, 1) is a NO instance if and only if a[b] = 1. Suppose there is a

1-pass algorithm for Min-Ones d-SAT that uses space f(k)g(n) on n-variable inputs with
parameter k. Alice runs the algorithm on

∧
a[i]=1 xi and passes the algorithm’s memory to

Bob. Bob resumes executing the algorithm on the memory and feeds it the additional clause
¬xb. Using the output of the algorithm, Bob can determine the value a[b].

It is known that any deterministic 1-pass protocol for INDEX requires Ω(n) bits of
communication (Kushilevitz and Nisan [26], Example 4.19). Because Alice passes the
algorithm’s memory to Bob, the size of this memory must be Ω(n), i.e. f(1)g(n) = Ω(n).
Thus, there are no 1-pass parameterized streaming algorithms for Min-Ones d-SAT (d ≥ 1)
that use space O(f(k)g(n)) with g = o(n). J

The above theorem shows that even in the case where every clause consists of exactly one
literal, it is not possible to solve an instance of Min-Ones d-SAT in a single pass without
using space Ω(n). Unlike Theorem 4.1, the next result holds in cases where p, the number of
passes made by the algorithm, is a more general function of k.

I Theorem 4.8. Any p-pass streaming algorithm for Min-Ones d-SAT (d ≥ 1) requires
space Ω(n/p).

Proof. The claim follows from the fact that instances of DISJ can be encoded as SAT
formulas in which every clause comprises one literal. Consider the formula F =

∧
(CS ∪ CT ),

where CS = {xi | i ∈ S} and CT = {¬xi | i ∈ T}. S ∩ T = ∅ if and only if F is satisfiable.
By standard arguments from Communication Complexity, any p-pass streaming algorithm
for Min-Ones 2-SAT must use space Ω(n/p). J

5 Conclusion

In this work, we have proved a variety of results that together provide a complete picture
of the parameterized streaming complexity of Min-Ones d-SAT. One of the main results
is the streaming algorithm for Min-Ones d-SAT which solves instances (F, k) in (k + 1)
passes using space O

(
(kdk + kd) logn

)
. The matching (k + 1)-pass lower bound shows that

in terms of the number of passes, this result is the best possible.
It is pertinent to note that such results, i.e. which show a sharp tradeoff between the

space complexity of a parameterized streaming problem and the number of passes allowed,
are quite scarce in the literature. It would be interesting to see which other parameterized
streaming problems exhibit such behaviour.



A. Agrawal et al. 23:13

References
1 Faisal N. Abu-Khzam. Kernelization Algorithms for d-Hitting Set Problems. In Algorithms

and Data Structures, pages 434–445. Springer Berlin Heidelberg, 2007.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating

the Frequency Moments. Journal of Computer and System Sciences, 58(1):137–147, feb
1999. URL: http://linkinghub.elsevier.com/retrieve/pii/S0022000097915452, doi:
10.1006/jcss.1997.1545.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

5 Rajesh Chitnis, Graham Cormode, Mohammadtaghi Hajiaghayi, and Morteza Monemizadeh.
Parameterized Streaming: Maximal Matching and Vertex Cover. In Proceedings of the 26th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1234–1251, 2015.

6 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.

7 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

8 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized complexity. Springer-
Verlag, 2013.

9 Dingzhu Du, Jun Gu, Panos M Pardalos, et al. Satisfiability problem: theory and applications:
DIMACS Workshop, March 11-13, 1996, volume 35. American Mathematical Soc., 1997.

10 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

11 Stefan Fafianie and Stefan Kratsch. Streaming Kernelization. In Mathematical Foundations of
Computer Science (MFCS), pages 275–286, 2014.

12 Philippe Flajolet and G Nigel Martin. Probabilistic counting. In Proceedings of the 24th
Annual Symposium on Foundations of Computer Science (FOCS), pages 76–82, 1983.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

14 Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms. Commun. ACM, 56(3):80–88,
mar 2013.

15 Lance Fortnow. The status of the p versus np problem. Commun. ACM, 52(9):78–
86, September 2009. URL: http://doi.acm.org/10.1145/1562164.1562186, doi:10.1145/
1562164.1562186.

16 Weiwei Gong and Xu Zhou. A survey of sat solver. In AIP Conference Proceedings, volume
1836, 2017.

17 Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algorithms for the satisfiability
(sat) problem. In Handbook of Combinatorial Optimization, pages 379–572. Springer, 1999.

18 Sudipto Guha and Andrew McGregor. Tight Lower Bounds for Multi-pass Stream Computation
Via Pass Elimination. In International Colloquium on Automata, Languages and Programming
(ICALP), volume 5125, pages 760 – 772, 2008.

19 Dan Gusfield and Leonard Pitt. A bounded approximation for the minimum cost 2-sat problem.
Algorithmica, 8(1-6):103–117, 1992.

20 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In External Memory Algorithms, Proceedings of a DIMACS Workshop, pages
107–118, 1998.

21 Dorit S Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir. Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality. Mathematical
Programming, 62(1-3):69–83, 1993.

CVIT 2016

http://linkinghub.elsevier.com/retrieve/pii/S0022000097915452
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jcss.1997.1545
http://doi.acm.org/10.1145/1562164.1562186
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1145/1562164.1562186


23:14 Parameterized Streaming Algorithms for Min-Ones d-SAT

22 David S Johnson. Approximation algorithms for combinatorial problems. Journal of computer
and system sciences, 9(3):256–278, 1974.

23 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

24 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. In Parameterized and Exact Computation, 4th International Workshop, (IWPEC),
pages 264–275, 2009.

25 Melven R Krom. The decision problem for a class of first-order formulas in which all disjunctions
are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

26 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

27 Neeldhara Misra, N. S. Narayanaswamy, Venkatesh Raman, and Bal Sri Shankar. Solving min
ones 2-sat as fast as vertex cover. Theoretical Computer Science, 506:115–121, 2013.

28 J Ian Munro and Mike S Paterson. Selection and sorting with limited storage. In Proceedings
of the 19th Annual Symposium on Foundations of Computer Science (FOCS), pages 253–258,
1978.

29 Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2006.

30 Thomas Stützle, Holger Hoos, and Andrea Roli. A review of the literature on local search
algorithms for max-sat. Rapport technique AIDA-01-02, Intellectics Group, Darmstadt
University of Technology, Germany, 2001.

31 Stefan Szeider. On fixed-parameter tractable parameterizations of sat. In International
Conference on Theory and Applications of Satisfiability Testing, pages 188–202. Springer, 2003.

32 Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial
Optimization—Eureka, You Shrink!, pages 185–207. Springer, 2003.

33 Mihalis Yannakakis. Node- and edge-deletion np-complete problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC), pages 253–264, 1978.

34 Mihalis Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms,
17(3):475–502, 1994.

Appendix

A A Brief Introduction to Parameterized Complexity

A parameterized problem Π is a subset of Γ∗ × N, where Γ is a finite alphabet. An
instance of a parameterized problem is a tuple (x, k), where x is a classical problem
instance and k is an integer, which is called the parameter. The framework of parameterized
complexity was originally introduced to deal with NP-hard problems, with the aim to limit
the exponential growth in the running time expression to the parameter alone. A central
notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a
parameterized problem Π, there is an algorithm that given an instance (x, k), decides whether
or not (x, k) is a YES instance of Π in time f(k) ·p(|x|), where f is a computable function of k
and p is a polynomial in the input size. Another central notion in parameterized complexity
is kernelization, which mathematically captures the efficiency of a data preprocessing. A
typical goal of a kernelization algorithm is to store only “small” amount of information,
which is enough to recover the answer to the original instance. The “smallness” of the stored
information is quantified by the input parameter. Formally, a kernelization algorithm or a
kernel for a parameterized problem Π is given an input (x, k), and the goal is to obtain an
equivalent instance (x′, k′) of Π in polynomial time, such that |x′|+ k′ ≤ g(k). Here, g is
some computable function whose value only depends only on k, and depending on whether it
is a linear, polynomial, or exponential function, the kernel is called a linear, polynomial, or



A. Agrawal et al. 23:15

Algorithm 1, Enum-d-HS
Input: A set X , of subsets of size at most d of a universe U , and an integer k.
Output: The (multi)set Sk, of all minimal d-hitting sets of size at most k.

1 if k < 0 or ∅ ∈ X then
2 return ∅; /* no hitting set possible */
3 if k = 0 and there is a non-empty set F ∈ X then
4 return ∅; /* no hitting set possible */
5 if k = 0 or there is no set in X then
6 return {∅}; /* ∅ is a hitting set for ∅ */
7 Set Sk = ∅;
8 Let X = {x1, x2, . . . , xd′} (where d′ ≤ d) be an arbitrary non-empty set in X ;
9 for i = 1 to d′ do

10 Let Xi = {Y ∈ X | xi /∈ Y };
11 Si =Enum-d-HS(Xi, U \ {xi}, k − 1);
12 for each S ∈ Si do
13 Sk = Sk ∪ {S ∪ {xi}};

14 Remove those sets from Sk which are not minimal solutions to (X , U, k);
15 return Sk;

exponential kernel, respectively. It is well known that a parameterized problem is FPT if and
only if it admits a kernel. Thus, in the literature, the term “kernel” is used for polynomial
kernels (unless stated otherwise). For more details on parameterized complexity, we refer the
reader to the books of Downey and Fellows [8], Flum and Grohe [13], Niedermeier [29], and
the recent book by Cygan et al. [7].

B Missing Proofs from Section 2

Proof of Proposition 2.1
The algorithm Enum-d-HS is given in Algorithm 1. We start by proving the correctness
of the algorithm by induction on k. When k ≤ 0, then the algorithm correctly computes
the set Sk (see Steps 1-6). Let us assume that the algorithm returns the correct output for
all k ≤ t, where t ∈ N. We will now prove that the output of the algorithm is correct for
k = t + 1 ≥ 1. If there is no non-empty set in X , then the algorithm returns the correct
output (Steps 1-2 and 5-6). Hereafter, we assume that Steps 1-6 are not executed (otherwise,
we already have the correct output). Also, we have that k ≥ 1 and there is a non-empty
set X = {x1, x2, . . . , xd′} ∈ X . Any d-hitting set must contain at least one element from X.
By induction hypothesis, for each i ∈ [d′], we (correctly) compute the set Si of all minimal
d-hitting sets of size at most k− 1, for the instance (Xi, U \ {xi}, k− 1). Notice that each set
S ∈ Si, intersects each set in Xi and may not intersect X. Moreover, S ∪ {xi} is a d-hitting
set for (X , U, k). From the above discussion (together with the induction hypothesis), we
obtain that Sik = {S ∪ {xi} | S ∈ Si} is a set containing all minimal d-hitting sets containing
xi for (X , U, k). Thus, ∪i∈[d′]Sik is a set containing all minimal d-hitting sets for (X , U, k).
Moreover, by construction we have that Sk = ∪i∈[d′]Sik with non-minimal solutions removed,
is the output returned by the algorithm at Step 17. This concludes the proof of correctness
of the algorithm.

We now move to the running time analysis of the algorithm. Notice that the running
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time of the algorithm is given by the recurrence: T (k) = d · T (k − 1) + O(|U |+ |X |+ |Sk|).
Also, the size of Sk is given by the recurrence D(k) = d · D(k − 1), where 0 ≤ D(0) ≤ 1.
Thus, the running time of the algorithm is bounded by O

(
dk‖I‖

)
and |Sk| ∈ O

(
dk
)
. Next,

we move to the analysis of the space used by the algorithm. Notice that at any point of time,
in the recursive procedure, memory is allocated for at most k copies of Enum-d-HS. Hence,
the space required by the algorithm can be bounded by O

(
k‖I‖+ kdkbU

)
. J

Proof of Lemma 2.3
From Proposition 2.2, Pass 1 can compute It = (Xt, Ut, k) after reading all the clauses from
the stream using O

(
kd logn

)
space, and using O

(
kd
)
time after reading a clause from the

stream. Furthermore, |Xt| ∈ O
(
kd
)
, and elements of Ut are represented using logn bits

(by Proposition 2.2 and our assumption that variables of F are x1, x2, . . . , xn). Now using
Enum-d-HS of Proposition 2.1, the algorithm computes S1 using space (in bits) bounded by
O
(
(kd + dk)k logn

)
and time bounded by O

(
dkkd logn

)
. J

Proof of Observation 2
Any minimal satisfying assignment S ∈ S is also a satisfying assignment for F+. From
Observation 1 we know that S1 is the set of all minimal satisfying assignments of size at
most k for F+. Hence, it follows that there is S′ ∈ S1, such that S′ ⊆ S. J

B.1 (O
(
dk
)
, O(k))-streaming-FPT Algorithm for Min-Ones-d-SAT

In this section, we design an (O
(
dk
)
,O(k))-streaming-FPT algorithm for Min-Ones-d-

SAT. The algorithm closely follows the standard O
(
dk
)
(n+m)O(1) branching algorithm for

Min-Ones-d-SAT, where n and m are the number of variables and clauses in the input
instance.

Let (F, k) be an instance of Min-Ones-d-SAT. By S, we denote the stream of clauses in
F. We give our (O

(
dk
)
,O(k))-streaming-FPT algorithm Stream-MOS, for Min-Ones-d-SAT

algorithm in Algorithm 2. In the following, we describe various functions of the algorithm
Stream-MOS. We note that each of the functions have access to the stream S and a global
variable called pass-count.

1. The function FinishScan takes no input and returns no output (only updates pass-count).
Its goal is only to read the stream till the end and update pass-count, which stores the
number of passes we have made through S. When we enter this function, the pass number
is updated. If we are already at the end of the stream S, then it exits without doing any
other operation. Otherwise, it read S till the end and exits. The purpose of defining this
function (and maintaining pass-count) is to simplify the analysis of the algorithm.

2. The function TestSatisfiability takes as input a set S, and its objective is to determine
whether or not S satisfies each clause of F. A call to TestSatisfiability, makes a
complete scan through S and we explicitly ensure that whenever it is called, we are at
the beginning of the stream. Whenever we find a clause unsatisfied by S in the stream,
the function calls FinishScan to complete the scanning through remaining clauses of S
and update pass-count, and then it exits after returning 0. In the case when there is no
clause which is not satisfied by S, it makes a call to FinishScan to update pass-count,
and exits after returning 1.

3. The function FindBranchClause takes as input a set S. Its objective is to find a clause C
which cannot be satisfied (by just) setting variables in S to 1. More precisely, it returns
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Algorithm 2, Algorithm Stream-MOS.
Input: A stream of clauses S for an instance (F, k) of Min-Ones-d-SAT.

1 pass-count=0;
2 Function FinishScan()
3 pass-count = pass-count+1;
4 if at end of the stream S then
5 return;
6 while end of the stream S is not reached do
7 Read the next clause in the stream;
8 return;
9 Function TestSatisfiability(Set S)

10 while end of the stream S is not reached do
11 Read the next clause C in the stream;
12 if C is not satisfied by S then
13 FinishScan();
14 return 0;
15 FinishScan();
16 return 1;
17 Function FindBranchClause(Set S)
18 while end of the stream S is not reached do
19 Read the next clause C in the stream, and let X and Y be the sets of

variables in C appearing positively and negatively, respectively;
20 if Y ⊆ S and S ∩X = ∅ then
21 FinishScan();
22 return C;
23 return ♦;
24 Function DetectSolution(Set S)
25 if S > k then
26 return 0;
27 if TestSatisfiability(S)= 1 then
28 return 1;
29 C = FindBranchClause(S);
30 if C 6= ♦ then
31 if |S| = k then
32 return 0;
33 Let X = {x1, x2, . . . , xd′} (where d′ ≤ d) be the set of variables appearing

positively in C;
34 ans = 0;
35 for i = 1 to d′ do
36 ans = ans ∨ DetectSolution(S ∪ {xi});
37 return ans;
38 return 0;
39 Function MainMOS()
40 res = DetectSolution(∅);
41 return res;
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a clause C (if it exists) which satisfies two conditions (to be stated, shortly). Let X and
Y be the sets of variables which appear positively and negatively in C, respectively. It
must hold that Y ⊆ S and X ∩ S = ∅. Notice that for a satisfying assignment S′ for
F, such that S ⊆ S′, it must hold that S′ ∩X 6= ∅. Moreover, as S ∩X = ∅, S′ must
contain at least one more vertex (from X), which is not present in S. We will later see
how we use C to progress our branching procedure. To find C, FindBranchClause makes
a complete scan through S. If it finds a clause C with the desired properties, it makes a
call to FinishScan to complete the scan through S and update pass-count, and then it
exits after returning C. If a clause with the desired properties is not found even when we
reach the end of the stream S, it makes a call to FinishScan to update pass-count, and
then exits after returning ♦ (indicating that a clause with the desired property could not
be found).

4. The function DetectSolution takes as input a set S, and its objective is to determine
whether or not there is a solution for (F, k) which sets each variable in S to 1. This
function is defined because our algorithm is a recursive procedure, and as the algorithm
progresses, we maintain a set of variables that have already been set to 1. We note that at
any point of time we allocate memory only for one such set, and whenever we make calls
to other functions, we send the memory location, instead of a separate copy of the set
itself. At some steps we call other functions with a modified set (with an element added
to S), in this case also we send the memory address after appending the new element
(in the front). The above can be achieved by using appropriate memory pointers. Next,
we describe the working of DetectSolution. If |S| > k, then it (correctly) return 0,
indicating that there is no satisfying assignment of size at most k containing S. Hereafter,
we assume that |S| ≤ k. Now the function checks if S is a satisfying assignment for F,
by making a call to TestSatisfiability with (memory location of) S as the argument.
If TestSatisfiability(S) returns 1, then the function exits after (correctly) returning
1. Otherwise, it makes a call to FindBranchClause with (memory location of) S as the
argument, and stores the output of it in C. Next, it considers the case when C 6= ♦. Let
X and Y be the sets of variables appearing positively and negatively in C, respectively. By
the properties of the clauses returned by FindBranchClause, we know that X∩S = ∅ and
Y ⊆ S. Thus, for any satisfying assignment S′ for F with S ⊆ S′, S′ ∩X 6= ∅ must hold.
As X ∩S = ∅, S′ must contain at least one vertex from X and this vertex does not belong
to S. If |S| = k, then there cannot be a satisfying assignment of size at most k containing
S, as otherwise, it will not satisfy C. Thus, in the above case, the function correctly
returns 0, and exits. Next, the function deals with the case when |S| < k. For any x ∈ X,
it checks if there is a satisfying assignment for F of size at most k containing S ∪ {x}.
This is done by making a recursive call to DetectSolution with (the memory location of)
S ∪{x} as the argument. If for any x ∈ X, DetectSolution(S ∪{x}) returns 1, then the
function exits after (correctly) returning 1. If for no x ∈ X, DetectSolution(S ∪ {x})
returns 1, then the function exits after (correctly) returning 0. If none of the above
statements could be used to return an answer, then the algorithm returns 0 and exits.

5. The function MainMOS is the main function of the algorithm, where the algorithm begins
its execution. The objective of MainMOS is to return 1 if (F, k) is a yes-instance of
Min-Ones-d-SAT and return 0, otherwise. Thus, we have only statement, namely,
DetectSolution(∅) in this function. The correctness of this function follows from the
correctness of DetectSolution.

Next, we state a lemma regarding Stream-MOS, which will be used to establish the main
theorem of this section.
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I Lemma B.1. Stream-MOS correctly resolves an instance Min-Ones-d-SAT (presented as
a stream S, of clauses). Moreover, it uses space bounded by O(k logn) and makes at most
O
(
dk
)
passes over S.

Proof. The correctness of Stream-MOS is immediate from the correctness of each of its
functions (which is apparent from their respective descriptions). We now bound the space
used by the algorithm and the number of passes it makes over S. The space bounds follows
from the facts that at any point of the time, we have at most O(k) active instances of
DetectSolution and whenever we pass a set as an argument to a function, its memory is
passed, rather than a copy of the set itself. To bound the number of passes that the algorithm
makes over S, it is enough to bound pass-count. Recall that pass-count is updated only when
TestSatisfiability or FindBranchClause is called by DetectSolution. In the above, the
pass-count is updated by TestSatisfiability or FindBranchClause by making a call to
FinishScan, which increments pass-count exactly by 1. Observe that the total number of
(recursive) calls to TestSatisfiability or FindBranchClause, made by DetectSolution
is bounded by O

(
dk
)
. Thus, pass-count is bounded by O

(
dk
)
. This concludes the proof. J

The proof of Theorem 2.7 follows from Lemma B.1.

C Streaming FPT Algorithm for Bounded IP

In this section, we consider a restricted integer programming problem called Bounded IP
(to be defined, shortly). We show how to convert an instance of the Bounded IP problem
to an instance of Min-Ones-2-SAT under parameterized streaming constraints, using the
approach of Hochbaum et al. [21]. This allows us to use the algorithms for Min-Ones-2-SAT
to solve Bounded IP. We consider integer programs on n variables and m constraints that
have the following form.

Minimize:
n∑
j=1

wjxj ,

subject to: aixpi + bixqi ≥ ci (i ∈ [m], pi, qi ∈ [n]),
0 ≤ xj ≤ uj (j ∈ [n]),
xj integer (j ∈ [n]),

where the coefficients appearing in the constraints are integers and for j ∈ [n], wj ∈ N.
Such integer programs (hereafter called bounded-IPs) were considered by Hochbaum et

al. [21], and they showed that by applying a transformation to the variables of the program,
the problem of finding a feasible solution becomes equivalent to 2-SAT. We consider the
following problem.

Bounded IP
Input: A bounded-IP P, where we want to minimize

∑n
j=1 wjxj , subject to aixpi+bixqi ≥

ci, for i ∈ [m] and 0 ≤ xj ≤ uj , for j ∈ [n], and an integer k ∈ N.
Question: Is there a is feasible solution for P, such that

∑n
j=1 wjxj ≤ k?

Let (P, k) be an instance of bounded-IP, where P is provided as a stream of wi, for i ∈ [n],
followed by the constraints. As a constraint arrives, we show how we create 2-CNF clauses for
it. This will give us an instance of (F, k), such that (P, k) is a yes-instance of Bounded IP if
and only if (F, k) is a yes-instance of Min-Ones-2-SAT. We note that both the construction
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and the equivalence of the instances follows from [21], therefore, we only briefly explain the
construction of F.

We use the approach described in Section 4 of [21] to construct F. Consider the variable
constraint 0 ≤ xp ≤ up, for p ∈ [n]. By replacing xp with up binary variables xp,l (l ∈ [up]) and
introducing the constraints xp,l ≥ xp,l+1 (l ∈ [up− 1]), we obtain an injective correspondence
between xp and (xp,1, . . . , xp,ui): xp =

∑up
l=1 xp,l. To model these constraints, we add the

clause (xp,l ∨ ¬xp,l+1) to F, for each l ∈ [up − 1].
Let aixp + bixq ≥ ci be a constraint. We only state the case where ap, bq > 0 (for more

details, see [21]). For i ∈ [m] and l ∈ {0, . . . , up}, let αi,l = d(ci − lai)/bie−1. The constraint
can be expressed by adding the clauses to F as follows.(

xp,l+1 ∨ xq,αk,l+1

)
, for every l ∈ {0, . . . up − 1} with 0 ≤ αi,l < uq.

xp,l+1, for every l ∈ {0, . . . , up − 1} with αk,l ≥ uq.
xq,αi,l for l = up with αk,up ≥ 0.

Next, we state how weights (and the function to be minimized) are encoded. Note
that the weights appearing in the objective function are nonnegative integers. Let xp be a
variable with wp > 1. To express the effect of setting xp to 1 on the objective function, we
introduce wp − 1 additional variables yp,1, . . . , yp,wi−1 and the clauses (¬xp ∨ yp,j) to F, for
all j ∈ [wi − 1].

Producing the clauses as a stream. Under the reasonable assumption that the clauses
of P can each be stored in working memory, i.e. in O(f(k) logn) bits of space, and by
the construction of F, it is easy to see that as a constraint of P arrives, we can construct
the of corresponding clauses for that constraint in space bounded by O(g(k) logn). The
above discussions together with the algorithms of Section 2 and B.1, implies the proof of
Theorem 2.8.
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