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Abstract14

In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class15

of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that16

the problem remains NP -hard for most graphs H, we study its fixed-parameter tractability and17

make progress towards a dichotomy between FPT and W [1]-hard cases. We first show that MIS18

remains W [1]-hard in graphs forbidding simultaneously K1,4, any finite set of cycles of length at19

least 4, and any finite set of trees with at least two branching vertices. In particular, this answers20

an open question of Dabrowski et al. concerning C4-free graphs. Then we extend the polynomial21

algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a22

disjoint union of cliques. We also provide a framework for solving several other cases, which is a23

generalization of the concept of iterative expansion accompanied by the extraction of a particular24

structure using Ramsey’s theorem. Iterative expansion is a maximization version of the so-called25

iterative compression. We believe that our framework can be of independent interest for solving26

other similar graph problems. Finally, we present positive and negative results on the existence27

of polynomial (Turing) kernels for several graphs H.28
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1 Introduction36

Given a simple graph G, a set of vertices S ⊆ V (G) is an independent set if the vertices of37

this set are all pairwise non-adjacent. Finding an independent set with maximum cardinality38

is a fundamental problem in algorithmic graph theory, and is known as the MIS problem39

(MIS, for short) [14]. In general graphs, it is not only NP -hard, but also not approximable40
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23:2 Parameterized Complexity of Independent Set in H-Free Graphs

within O(n1−ε) for any ε > 0 unless P = NP [22], and W [1]-hard [12] (unless otherwise41

stated, n always denotes the number of vertices of the input graph). Thus, it seems natural42

to study the complexity of MIS in restricted graph classes. One natural way to obtain such43

a restricted graph class is to forbid some given pattern to appear in the input. For a fixed44

graph H, we say that a graph is H-free if it does not contain H as an induced subgraph.45

Unfortunately, it turns out that for most graphs H, MIS in H-free graphs remains NP -hard,46

as shown by a very simple reduction first observed by Alekseev:47

I Theorem 1 ([1]). Let H be a connected graph which is neither a path nor a subdivision of48

the claw. Then MIS is NP-hard in H-free graphs.49

On the positive side, the case of Pt-free graphs has attracted a lot of attention during50

the last decade. While it is still open whether there exists t ∈ N for which MIS is NP -hard51

in Pt-free graphs, quite involved polynomial-time algorithms were discovered for P5-free52

graphs [18], and very recently for P6-free graphs [15]. In addition, we can also mention the53

recent following result: MIS admits a subexponential algorithm running in time 2O(
√
tn logn)

54

in Pt-free graphs for every t ∈ N [3].55

The second open question concerns the subdivision of the claw. Let Si,j,j be a tree56

with exactly three vertices of degree one, being at distance i, j and k from the unique57

vertex of degree three. The complexity of MIS is still open in S1,2,2-free graphs and58

S1,1,3-free graphs. In this direction, the only positive results concern some subcases: it is59

polynomial-time solvable in (S1,2,2, S1,1,3, dart)-free graphs [16], (S1,1,3, banner)-free graphs60

and (S1,1,3, bull)-free graphs [17], where dart, banner and bull are particular graphs on five61

vertices.62

Given the large number of graphs H for which the problem remains NP -hard, it seems63

natural to investigate the existence of parameterized algorithms1, that is, determining the64

existence of an independent set of size k in a graph with n vertices in time O(f(k)nc) for65

some computable function f and constant c. A very simple case concerns Kr-free graphs,66

that is, graphs excluding a clique of size r. In that case, Ramsey’s theorem implies that67

every such graph G admits an independent set of size Ω(n
1

r−1 ), where n = |V (G)|. In the68

FPT vocabulary, it implies that MIS in Kr-free graphs has a kernel with kr−1 vertices.69

To the best of our knowledge, the first step towards an extension of this observation70

within the FPT framework is the work of Dabrowski et al. [10] (see also Dabrowski’s PhD71

manuscript [9]) who showed, among others, that for any positive integer r, Max Weighted72

Independent Set is FPT in H-free graphs when H is a clique of size r minus an edge. In73

the same paper, they settle the parameterized complexity of MIS on almost all the remaining74

cases of H-free graphs when H has at most four vertices. The conclusion is that the problem75

is FPT on those classes, except for H = C4 which is left open. We answer this question by76

showing that MIS remains W [1]-hard in a subclass of C4-free graphs.77

Finally, we can also mention the case where H is the bull graph, which is a triangle with78

a pending vertex attached to two different vertices. For that case, a polynomial Turing kernel79

was obtained [21] then improved [13].80

1 For the sake of simplicity, “MIS” will denote the optimisation, decision and parameterized version of
the problem (in the latter case, the parameter is the size of the solution), the correct use being clear
from the context.
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1.1 Our results81

In Section 2, we present three reductions proving W [1]-hardness of MIS in graph excluding82

several graphs as induced subgraphs, such as K1,4, any fixed cycle of length at least four, and83

any fixed tree with two branching vertices. We propose a definition of a graph decomposition84

whose aim is to capture all graphs which can be excluded using our reductions.85

In Section 3, we extend the polynomial algorithm of Alekseev when H is a disjoint union86

of edges to an FPT algorithm when H is a disjoint union of cliques.87

In Section 4, we present a general framework extending the technique of iterative expansion,88

which itself is the maximization version of the well-known iterative compression technique.89

We apply this framework to provide FPT algorithms when H is a clique minus a complete90

bipartite graph, or when H is a clique minus a triangle.91

Finally, in Section 5, we focus on the existence of polynomial (Turing) kernels. We first92

strenghten some results of the previous section by providing polynomial (Turing) kernels in93

the case where H is a clique minus a claw. Then, we prove that for many H, MIS on H-free94

graphs does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Our results allows to95

obtain the complete dichotomy polynomial/polynomial kernel (PK)/no PK but polynomial96

Turing kernel/W [1]-hard for all possible graphs on four vertices, while only five graphs on97

five vertices remain open for the FPT/W [1]-hard dichotomy.98

1.2 Notation99

For classical notation related to graph theory or fixed-parameter tractable algorithms, we100

refer the reader to the monographs [11] and [12], respectively. For an integer r ≥ 2 and101

a graph H with vertex set V (H) = {v1, . . . , vnH
} with nH ≤ r, we denote by Kr \H the102

graph with vertex set {1, . . . , r} and edge set {ab : 1 ≤ a, b ≤ r such that vavb /∈ E(H)}. For103

X ⊆ V (G), we write G \X to denote G[V (G) \X]. For two graphs G and H, we denote by104

G]H the disjoint union operation, that is, the graph with vertex set V (G)∪V (H) and edge105

set E(G) ∪ E(H). We denote by G+H the join operation of G and H, that is, the graph106

with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For107

two integers r, k, we denote by Ram(r, k) the Ramsey number of r and k, i.e. the minimum108

order of a graph to contain either a clique of size r or an independent set of size k. We write109

for short Ram(k) = Ram(k, k). Finally, for `, k > 0, we denote by Ram`(k) the minimum110

order of a complete graph whose edges are colored with ` colors to contain a monochromatic111

clique of size k.112

2 W [1]-hardness113

2.1 Main reduction114

We have the following:115

I Theorem 2. For any p1 ≥ 4 and p2 ≥ 1, MIS remains W [1]-hard in graphs excluding116

simultaneously the following graphs as induced subgraphs:117

K1,4118

C4, . . . , Cp1119

any tree T with two branching vertices2 at distance at most p2.120

2 A branching vertex in a tree is a vertex of degree at least 3.

CVIT 2016
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Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Figure 1 Gadget T Gi,j representing a tile and its adjacencies with T Gi,j−1 and T Gi,j+1, for
p = 1. Each circle is a clique on n vertices (dashed cliques are the cycle cliques). Black, blue and
red arrows represent respectively type Th, Tr and Tc edges (bold arrows are between two gadgets).
Figures 2a and 2b represent some adjacencies in more details.

Proof. Let p = max{p1, p2}. We reduce from Grid Tiling, where the input is composed of121

k2 sets Si,j ⊆ [m]× [m] (0 ≤ i, j ≤ k − 1), called tiles, each composed of n elements. The122

objective of Grid Tiling is to find an element s∗i,j ∈ Si,j for each 0 ≤ i, j ≤ k− 1, such that123

s∗i,j agrees in the first coordinate with s∗i,j+1, and agrees in the second coordinate with s∗i+1,j ,124

for every 0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). In such case, we125

say that {s∗i,j , 0 ≤ i, j ≤ k − 1} is a feasible solution of the instance. It is known that Grid126

Tiling is W [1]-hard parameterized by k [8].127

Before describing formally the reduction, let us give some definitions and ideas. Given128

s = (a, b) and s′ = (a′, b′), we say that s is row-compatible (resp. column-compatible) with129

s′ if a ≥ a′ (resp. b ≥ b′)3. Observe that a solution {s∗i,j , 0 ≤ i, j ≤ k − 1} is feasible if130

and only if s∗i,j is row-compatible with s∗i,j+1 and column-compatible with s∗i+1,j for every131

0 ≤ i, j ≤ k − 1 (incrementations of i and j are done modulo k). Informally, the main132

idea of the reduction is that, when representing a tile by a clique, the row-compatibility133

(resp. column-compatibility) relation (as well at its complement) forms a C4-free graph when134

considering two consecutive tiles, and a claw-free graph when considering three consecutive135

tiles. The main difficulty is to forbid the desired graphs to appear in the “branchings” of136

tiles. We now describe the reduction.137

138

139

2.1.1 Tile gadget.140

For every tile Si,j = {si,j1 , . . . , si,jn }, we construct a tile gadget TGi,j , depicted in Figure 1.141

To define this gadget, we first describe an oriented graph with three types of arcs (type142

3 Notice that the row-compatibility (resp. column-compatibility) relation is not symmetrical.
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ented by dashed circles in Figure 1).

b b

b b

b

b
b

b

b

b

si,j1 si,j2

si,j3 si,j5

si,j4

si,j+1
5

si,j+1
1 si,j+1

4

si,j+1
3 si,j+1

2

si,j1
si,j2
si,j3
si,j4
si,j5

si,j+1
1

si,j+1
2

si,j+1
3

si,j+1
4

si,j+1
5

1 2 3 4 5

1
2
3
4
5

1 2 3 4 5

1
2
3
4
5

(b) Two consecutive tiles and the representation of their
adjacencies (representing type Tr adjacencies).

Figure 2 Some example of adjacencies within the first reduction.

Th, Tr and Tc, which respectively stands for half graph, row and column, this meaning will143

become clearer later), and then explain how to represent the vertices and arcs of this graph144

to get the concrete gadget. Consider first a directed cycle on 4p+ 4 vertices c1, . . . , c4p+4145

with arcs of type Th. Then consider four oriented paths on p+ 1 vertices: P1, P2, P3 and P4.146

P1 and P3 are composed of arcs of type Tc, while P2 and P4 are composed of arcs of type Tr.147

Put an arc of type Tc between:148

the last vertex of P1 and c1,149

c2p+3 and the first vertex of P3,150

and an arc of type Tr between:151

cp+2 and the first vertex of P2,152

the last vertex of P4 and c3p+4.153

Now, replace every vertex of this oriented graph by a clique on n vertices, and fix an arbitrary154

ordering on the vertices of each clique. For each arc of type Th between c and c′, add a half155

graph4 between the corresponding cliques: connect the ath vertex of the clique representing156

c with the bth vertex of the clique representing c′ iff a > b. For every arc of type Tr from a157

vertex c to a vertex c′, connect the ath vertex of the clique representing c with the bth vertex158

of the clique representing c′ iff si,ja is not row-compatible with si,jb . Similarly, for every arc of159

type Tc from a vertex c to a vertex c′, connect the ath vertex of the clique representing C160

with the bth vertex of the clique representing c′ iff si,ja is not column-compatible with si,jb .161

The cliques corresponding to vertices of this gadget are called the main cliques of TGi,j ,162

and the cliques corresponding to the central cycle on 4p + 4 vertices are called the cycle163

cliques. The main cliques which are not cycle cliques are called path cliques. The cycle cliques164

adjacent to one path clique are called branching cliques. Finally, the clique corresponding to165

4 Notice that our definition of half graph slighly differs from the usual one, in the sense that we do not
put edges relying two vertices of the same index. Hence, our construction can actually be seen as the
complement of a half graph (which is consistent with the fact that usually, both parts of a half graph
are independent sets, while they are cliques in our gadgets).

CVIT 2016
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the vertex of degree one in the path attached to c1 (resp. cp+2, c2p+3, c3p+4) is called the166

top (resp. right, bottom, left) clique of TGi,j , denoted by Ti,j (resp. Ri,j , Bi,j , Li,j). Let167

Ti,j = {ti,j1 , . . . , ti,jn }, Ri,j = {ri,j1 , . . . , ri,jn }, Bi,j = {bi,j1 , . . . , bi,jn }, and Li,j = {`i,j1 , . . . , `i,jn }.168

For the sake of readability, we might omit the superscripts i, j when it is clear from the169

context.170

I Lemma 3. Let K be an independent set of size 8(p+ 1) in TGi,j. Then:171

(a) K intersects all the cycle cliques on the same index x;172

(b) if K ∩ Ti,j = {txt}, K ∩Ri,j = {rxr}, K ∩Bi,j = {bxb
}, and K ∩ Li,j = {`x`

}. Then:173

si,jx`
is row-compatible with si,jx which is row-compatible with si,jxr

, and174

si,jxt
is column-compatible with si,jx which is column-compatible with si,jxb

.175

Proof. Observe that the vertices of TGi,j can be partitionned into 8(p+ 1) cliques (the main176

cliques), hence an independent set of size 8(p + 1) intersects each main clique on exactly177

one vertex. Let C1, C2 and C3 be three consecutive cycle cliques, and suppose K intersects178

C1 (resp. C2, C3) on the xth1 (resp. xth2 , xth3 ) index. By definition of the gadget, it implies179

x1 ≤ x2 ≤ x3. By applying the same argument from C3 along the cycle, we obtain x3 ≤ x1,180

which proves (a). The proof of (b) directly comes from the definition of the adjacencies181

between cliques of type Tr and Tc, and from the fact that K intersects all cycle cliques on182

the same index. J183

2.1.2 Attaching gadgets together.184

For i, j ∈ {0, . . . , k − 1}, we connect the right clique of TGi,j with the left clique of TGi,j+1185

in a “type Tr spirit”: for every x, y ∈ [n], connect ri,jx ∈ Ri,j with `i,j+1
y ∈ Li,j+1 iff si,jx186

is not row-compatible with si,j+1
y . Similarly, we connect the bottom clique of TGi,j with187

the top clique of TGi+1,j in a “type Tc spirit”: for every x, y ∈ [n], connect bi,jx ∈ Bi,j with188

ti+1,j
y ∈ Ti+1,j iff si,jx is not column-compatible with si+1,j

y (all incrementations of i and j189

are done modulo k). This terminates the construction of the graph G.190

2.1.3 Equivalence of solutions.191

We now prove that the input instance of Grid Tiling is positive if and only if G has an192

independent set of size k′ = 8(p+1)k2. First observe thatG has k2 tile gadgets, each composed193

of 8(p+ 1) main cliques, hence any independent set of size k′ intersects each main clique on194

exactly one vertex. By Lemma 3, for all i, j ∈ {0, . . . , k − 1}, K intersects the cycle cliques195

of TGi,j on the same index xi,j . Moreover, if K ∩Ri,j = {ri,jx } and K ∩ Li,j+1 = {`i,j+1
x′ },196

then, by construction of G, si,jx is row-compatible with si,j+1
x′ . Similarly, if K ∩Bi,j = {bi,jx }197

and K ∩ Ti+1,j = {ti+1,j
x′ }, then, by construction of G, si,jx is column-compatible with si+1,j

x′ .198

By Lemma 3, it implies that si,jxi,j
is row-compatible with si,j+1

xi,j+1
and column-compatible with199

si+1,j
xi+1,j

(incrementations of i and j are done modulo k), thus {xi,jxi,j
: 0 ≤ i, j ≤ k − 1} is a200

feasible solution. Using similar ideas, one can prove that a feasible solution of the grid tiling201

instance implies an independent set of size k′ in G.202

2.1.4 Structure of the obtained graph.203

Let us now prove that G does not contain the graphs mentionned in the statement as an204

induced subgraph:205
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(i) K1,4: we first prove that for every 0 ≤ i, j ≤ k − 1, the graph induced by the cycle206

cliques of TGi,j is claw-free. For the sake of contradiction, suppose that there exist three207

consecutive cycle cliques A, B and C containing a claw. W.l.o.g. we may assume that208

bx ∈ B is the center of the claw, and aα ∈ A, bβ ∈ B and cγ ∈ C are the three endpoints.209

By construction of the gadgets (there is a half graph between A and B and between B210

and C), we must have α < x < γ. Now, observe that if x < β then aα must be adjacent211

to bβ , and if β < x, then bβ must be adjacent to cγ , but both case are impossible since212

{aα, bβ , cγ} is supposed to be an independent set. Similarly, we can prove that the graph213

induced by each path of size 2(p+ 1) linking two consecutive gadgets is claw-free. Hence,214

the only way for K1,4 to appear in G would be that the center appears in the cycle215

clique attached to a path, for instance in the clique represented by the vertex c1 in the216

cycle. However, it can easily be seen that in this case, a claw must lie either in the graph217

induced by the cycle cliques of the gadget, or in the path linking TGi,j with TGi−1,j ,218

which is impossible.219

(ii) C4, . . . , Cp1 . The main argument is that the graph induced by any two main cliques does220

not contain any of these cycles. Then, we show that such a cycle cannot lie entirely in221

the cycle cliques of a single gadget TGi,j . Indeed, if this cycle uses at most one vertex222

per main clique, then it must be of length at least 4p+ 4. If it intersects a clique C on223

two vertices, then either it also intersect all the cycle cliques of the gadget, in which case224

it is of length 4p+ 5, or it intersects an adjacent clique of C on two vertices, in which225

case these two cliques induce a C4, which is impossible. Similarly, such a cycle cannot lie226

entirely in a path between the main cliques of two gadgets. Finally, the main cliques of227

two gadgets are at distance 2(p+ 1), hence such a cycle cannot intersect the main cliques228

of two gadgets.229

(iii) any tree T with two branching vertices at distance at most p2. Using the same argument230

as for the K1,4 case, observe that the claws contained in G can only appear in the cycle231

cliques where the paths are attached. However, observe that these cliques are at distance232

2(p+ 1) > p2, thus, such a tree T cannot appear in G.233

J234

As a direct consequence of Theorem 2, we get the following by setting p1 = p2 = |V (H)|+1:235

I Corollary 4. If H is not chordal, or contains as an induced subgraph a K1,4 or a tree with236

two branching vertices, then MIS in H-free graphs is W [1]-hard.237

2.2 Capturing Hard Graphs238

We introduce two variants of the hardness construction of Theorem 2, which we refer to as239

the first construction. The second construction is obtained by replacing each interaction240

between two main cliques by an anti-matching, except the one interaction in the middle of241

the path cliques which remains a half-graph (see Figure 3, middle). In an anti-matching, the242

same elements in the two adjacent cliques define the only non-edges. The correctness of this243

new reduction is simpler since the propagation of a choice is now straightforward. Observe244

however that the graph C4 appears in this new construction. For the third construction, we245

start from the second construction and just add an anti-matching between two neighbors246

of each branching clique among the cycle cliques (see Figure 3, right). This anti-matching247

only constrains more the instance but does not destroy the intended solutions; hence the248

correctness.249

CVIT 2016
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Figure 3 A symbolic representation of the hardness constructions. To the left, only half-graphs
(blue) are used between the cliques, as in the proof of Theorem 2. In the middle and to the right,
the half-graphs (blue) are only used once in the middle of each path of cliques, and the rest of the
interactions between the cliques are anti-matchings (red). The third construction (right) is a slight
variation of the second (middle) where for each branching clique, we link by an anti-matching its
two neighbors among the cycle cliques.

To describe those connected graphs H which escape the disjunction of Theorem 2 (for250

which there is still a hope that MIS is FPT), we define a decomposition into cliques, similar251

yet different from clique graphs or tree decompositions of chordal graphs (a.k.a k-trees).252

I Definition 5. Let T be a graph on ` vertices t1, . . . , t`. We say that T is a clique253

decomposition of H if there is a partition of V (H) into (C1, C2, . . . , C`) such that:254

for each i ∈ [`], H[Ci] is a clique, and255

for each pair i 6= j ∈ [`], if H[Ci ∪ Cj ] is connected, then titj ∈ E(T ).256

Observe that, in the above definition, we do not require T to be a tree. Two cliques Ci and257

Cj are said adjacent if H[Ci ∪ Cj ] is connected. We also write a clique decomposition on T258

(of H) to denote the choice of an actual partition (C1, C2, . . . , C`).259

Let T1 be the class of trees with at most one branching vertex. Equivalently, T1 consists260

of the paths and the subdivisions of the claw.261

I Proposition 6. For a fixed connected graph H, if no tree in T1 is a clique decomposition262

of H, then MIS in H-free graphs is W [1]-hard.263

Proof. This is immediate from the proof of Theorem 2 since H cannot appear in the first264

construction. J265

At this point, we can focus on connected graphs H admitting a tree T ∈ T1 as a clique266

decomposition. The reciprocal of Proposition 6 cannot be true since a simple edge is a267

clique decomposition of C4. The next definition further restricts the interaction between two268

adjacent cliques.269

I Definition 7. Let T be a graph on ` vertices t1, . . . , t`. We say that T is a strong clique270

decomposition of H if there is a partition of V (H) into (C1, C2, . . . , C`) such that:271

for each i ∈ [`], H[Ci] is a clique, and272

for each pair i 6= j ∈ [`], H[Ci ∪ Cj ] is a clique iff titj ∈ E(T ).273

An equivalent way to phrase this definition is that H can be obtained from T by adding274

false twins. Adding a false twin v′ to a graph consists in duplicating one of its vertex v (i.e.,275

v and v′ have the same neighbors) and then adding an edge between v and v′.276
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We define almost strong clique decompositions which informally are strong clique decom-277

positions where at most one edge can be missing in the interaction between two adjacent278

cliques.279

I Definition 8. Let T be a graph on ` vertices t1, . . . , t`. We say that T is an almost strong280

clique decomposition of H if there is a partition of V (H) into (C1, C2, . . . , C`) such that:281

for each i ∈ [`], H[Ci] is a clique, and282

for each pair i 6= j ∈ [`], [H[Ci ∪Cj ] is a clique or H[Ci ∪Cj ] is a clique of size at least 3283

minus an edge] iff titj ∈ E(T ).284

Finally, a nearly strong clique decomposition is slightly weaker than an almost strong285

clique decomposition: at most one interaction between two adjacent cliques can induce a286

C4-free graph.287

Let P be the set of all the paths. Notice that T1 \ P is the set of all the subdivisions of288

the claw.289

I Theorem 9. Let H be a fixed connected graph. If no P ∈ P is a nearly strong clique290

decomposition of H and no T ∈ T1 \ P is an almost strong clique decomposition of H, then291

MIS in H-free graphs is W [1]-hard.292

Proof. The idea is to mainly use the second construction and the fact that MIS in C4-free293

graphs is W [1]-hard (due to the first construction). For every fixed graph H which cannot294

be an induced subgraph in the second construction, MIS is W [1]-hard. To appear in this295

construction, the graph H should have296

either a clique decomposition on a subdivision of the claw, such that the interaction297

between two adjacent cliques is the complement of a (non necessarily perfect) matching,298

or299

a clique decomposition on a path, such that the interaction between two adjacent cliques300

is the complement of a matching, except for at most one interaction which can be a301

C4-free graph.302

We now just observe that in both cases if, among the interactions between adjacent cliques,303

one complement of matching has at least two non-edges, then H contains an induced C4.304

Hence the two items can be equivalently replaced by the existence of an almost strong clique305

decomposition on a subdivision of the claw, and a nearly strong clique decomposition on a306

path, respectively. J307

Theorem 9 narrows down the connected open cases to graphs H which have a nearly strong308

clique decomposition on a path or an almost strong clique decomposition on a subdivision of309

the claw.310

In the strong clique decomposition, the interaction between two adjacent cliques is311

very simple: their union is a clique. Therefore, it might be tempting to conjecture that312

if H admits T ∈ T1 as a strong clique decomposition, then MIS in H-free graphs is FPT.313

Indeed, those graphs H appear everywhere in both the first and the second W [1]-hardness314

constructions. Nevertheless, we will see that this conjecture is false: even if H has a strong315

clique decomposition T ∈ T1, it can be that MIS is W [1]-hard. The simplest tree of T1 \ P is316

the claw. We denote by Ti,j,k the graph obtained by adding a universal vertex to the disjoint317

union of three cliques Ki ]Kj ]Kk. The claw is a strong clique decomposition of Ti,j,k (for318

every natural numbers i, j, k).319

I Theorem 10. MIS in T1,2,2-free graphs is W [1]-hard.320
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Figure 4 The two ways the cricket appears in the third construction. The red edges between two
adjacent cliques symbolize an anti-matching, whereas the blue edge symbolizes a C4-free graph.

Proof. We show that T1,2,2 does not appear in the third construction (Figure 3, right). We321

claim that, in this construction, the graph T1,1,2, sometimes called cricket, can only appear322

in the two ways depicted on Figure 4 (up to symmetry).323

Claim: The triangle of the cricket cannot appear within the same main clique.324

Proof. Otherwise the two leaves (i.e., vertices of degree 1) of the cricket are in two distinct325

adjacent cliques. But at least one of those adjacent cliques is linked to the main clique of the326

triangle by an anti-matching. This is a contradiction to the corresponding leaf having two327

non-neighbors in the main clique of the triangle. J328

We first study how the cricket can appear in a path of cliques. Let C be the main clique329

containing the universal vertex of the cricket. This vertex is adjacent to three disjoint cliques330

K1 ]K1 ]K2. Due to the previous claim, the only way to distribute them is to put K1 in331

the previous main clique, K1 in the same main clique C, and K2 in the next main clique.332

This is only possible if the interaction between C and the next main clique is a half-graph.333

In particular, this implies that the interaction between the previous main clique and C is an334

anti-matching. This situation corresponds to the left of Figure 4.335

This also implies that the cricket cannot appear in a path of cliques without a half-graph336

interaction (anti-matchings only). We now turn our attention to the vicinity of a triangle of337

main cliques, which is proper to the third construction. By our previous remarks, we know338

that the universal vertex of the cricket has to be alone in a main clique (by symmetry, it does339

not matter which one) of the triangle. Now, the only way to place K1 ]K1 ]K2 is to put the340

two K1 in the two other main cliques of the triangle, and the K2 in the remaining adjacent341

main clique. Indeed, if the K2 is in a main clique of the triangle, the K1 in the third main342

clique of the triangle would have two non-edges towards to K2. This is not possible with an343

anti-matching interaction. Therefore, the only option corresponds to the right of Figure 4.344

To obtain a T1,2,2, one needs to find a false twin to one of the leaves of the cricket. This345

is not possible since, in both cases, the two leaves are in two adjacent cliques with an anti-346

matching interaction. Therefore, adding the false twin would create a second non-neighbor347

to the remaining leaf. J348

The graph T1,1,1 is the claw itself for which MIS is solvable in polynomial time. The349

parameterized complexity for the graph T1,1,2 (the cricket) remains open. As a matter350

of fact, this question is unresolved for T1,1,s-free graphs, for any integer s > 2. Solving351

those cases would bring us a bit closer to a full dichotomy FPT vs W [1]-hard. Although,352
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Theorem 10 suggests that this dichotomy will be rather subtle. In addition, this result infirms353

the plausible conjecture: if MIS is FPT in H-free graphs, then it is FPT in H ′-free graphs354

where H ′ can be obtained from H by adding false twins.355

The toughest challenge towards the dichotomy is understanding MIS in the absence356

of paths of cliques5. In Theorem 19, we make a very first step in that direction: we show357

that for every graph H with a strong clique decomposition on P3, the problem is FPT. In358

the previous paragraphs, we dealt mostly with connected graphs H. In Theorem 11, we359

show that if H is a disjoint union of cliques, then MIS in H-free graphs is FPT. In the360

language of clique decompositions, this can be phrased as H has a clique decomposition on361

an independent set.362

3 Positive results I: disjoint union of cliques363

For r, q ≥ 1, let Kq
r be the disjoint union of q copies of Kr.364

I Theorem 11. Maximum Independent Set is FPT in Kq
r -free graphs.365

The proof is inspired by the case r = 2 by Alekseev [2].366

Proof. We will prove by induction on q that a Kq
r -free graph has an independent set of size367

k or has at most Ram(r, k)qknqr independent sets. This will give the desired FPT-algorithm,368

as the proof shows how to construct this collection of independent sets. Note that the case369

q = 1 is trivial by Ramsey’s theorem.370

Let G be a Kq
r -free graph and let < be any fixed total ordering of V (G). For any vertex371

x, define x+ = {y, x < y} and x− = V (G) \ x+.372

Let C be a fixed clique of size r in G and let c be the smallest vertex of C with respect373

to <. Let V1 be the set of vertices of c+ which have no neighbor in C. Note that V1 induces374

a Kq−1
r -free graph, so by induction either it contains an independent set of size k, and so375

does G, or it has at most Ram(r, k)(q−1)kn(q−1)r independent sets. In the latter case, let S1376

be the set of all independent sets of G[V1].377

Now in a second phase we define an initially empty set SC and do the following. For each378

independent set S1 in S1, we denote by V2 the set of vertices in c− that have no neighbor in379

S1. For every choice of a vertex x amongst the largest Ram(r, k) vertices of V2 in the order,380

we add x to S1 and modify V2 in order to keep only vertices that are smaller than x (with381

respect to <) and non adjacent to x. We repeat this operation k times (or less if V2 becomes382

empty) and, at the end, we either find an independent set of size k or add S1 to SC . By383

doing so we construct a family of at most Ram(r, k)k independent sets for each S1, so in384

total we get indeed at most Ram(r, k)kqn(q−1)r independent sets for each clique C. Finally385

we define S as the union over all r-cliques C of the sets SC , so that S has size at most the386

desired number.387

We claim that if G does not contain an independent set of size k, then S contains all388

independent sets of G. It suffices to prove that for every independent set S, there exists a389

clique C for which S ∈ SC . Let S be an independent set, and define C to be a clique of size390

r such that its smallest vertex c (with respect to <) satisfies the conditions:391

no vertex of C is adjacent to a vertex of S ∩ c+, and392

c is the smallest vertex such that a clique C satisfying the first item exists.393

5 Actually, even the classical complexity of MIS in the absence of long induced paths is not well understood
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Note that several cliques C might satisfy these conditions. In that case, pick one such clique394

arbitrarily. These two conditions ensures that S ∩ c+ is an independent set in the set V1395

defined in the construction above. Thus it will be picked in the second phase as some S1 in396

S1 and for this choice, each time V2 is considered, the fact that C is chosen to minimize its397

smallest element c guarantees that there must be a vertex of S in the Ram(r, k) last vertices398

in V2, otherwise we could find within those vertices an r-clique contradicting the choice of C.399

So we are insured that we will add S to the collection SC , which concludes our proof. J400

4 Positive results II401

4.1 Key ingredient: Iterative expansion and Ramsey extraction402

In this section, we present the main idea of our algorithms. It is a generalization of iterative403

expansion, which itself is the maximization version of the well-known iterative compression404

technique. Iterative compression is a useful tool for designing parameterized algorithms for405

subset problems (i.e. problems where a solution is a subset of some set of elements: vertices406

of a graph, variables of a logic formula...etc.) [8, 20]. Although it has been mainly used for407

minimization problems, iterative compression has been successfully applied for maximization408

problems as well, under the name iterative expansion [6]. Roughly speaking, when the409

problem consists in finding a solution of size at least k, the iterative expansion technique410

consists in solving the problem where a solution S of size k − 1 is given in the input, in411

the hope that this solution will imply some structure in the instance. In the following, we412

consider an extension of this approach where, instead of a single smaller solution, one is given413

a set of f(k) smaller solutions S1, . . . , Sf(k). As we will see later, we can further add more414

constraints on the sets S1, . . . , Sf(k). Notice that all the results presented in this sub-section415

(Lemmas 13 and 16 in particular) hold for any hereditary graph class (including the class of416

all graphs). The use of properties inherited from particular graphs (namely, H-free graphs in417

our case) will only appear in Sections 4.2 and 4.3.418

I Definition 12. For a function f : N → N, the f-Iterative Expansion MIS takes as419

input a graph G, an integer k, and a set of f(k) independent sets S1, . . . , Sf(k), each of size420

k − 1. The objective is to find an independent set of size k in G, or to decide that such an421

independent set does not exist.422

I Lemma 13. Let G be a hereditary graph class. MIS is FPT in G iff f-Iterative423

Expansion MIS is FPT in G for some computable function f : N→ N.424

Proof. Clearly if MIS is FPT , then f-Iterative Expansion MIS is FPT for any com-425

putable function f . Conversely, let f be a function for which f-Iterative Expansion MIS426

is FPT , and let G be a graph with |V (G)| = n.427

We show by induction on k that there is an algorithm that either finds an independent set428

of size k, or answers that such a set does not exist, in FPT time parameterized by k. The429

initialization can obviously be computed in constant time. Assume we have an algorithm for430

k − 1. Successively for i from 1 to f(k), we construct an independent set Si of size k − 1431

in G \ (S1, . . . , Sj−1). If, for some i, we are unable to find such an independent set, then it432

implies that any independent set of size k in G must intersect S1 ∪ · · · ∪ Si. We thus branch433

on every vertex v of this union, and, by induction, find an independent set of size k − 1 in434

the graph induced by V (G) \N [v]. If no step i triggered the previous branching, we end435

up with f(k) vertex-disjoint independent sets S1, . . . , Sf(k), each of size k − 1. We now436

invoke the algorithm for f-Iterative Expansion MIS to conclude. Let us analyze the437
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running time of this algorithm: each step either branch on at most f(k)(k − 1) subcases438

with parameter k − 1, or concludes in time Af (n, k), the running time of the algorithm for439

f-Iterative Expansion MIS. Hence the total running time is O∗(f(k)k(k − 1)kAf (n, k)),440

where the O∗(.) suppresses polynomial factors.441

J442

We will actually prove a stronger version of this result, by adding more constraints on443

the input sets S1, . . . , Sf(k), and show that solving the expansion version on this particular444

kind of input is enough to obtain the result for MIS.445

I Definition 14. Given a graph G and a set of k − 1 vertex-disjoint cliques of G, C =446

{C1, . . . , Ck−1}, each of size q, we say that C is a set of Ramsey-extracted cliques of size q if447

the conditions below hold. Let Cr = {crj : j ∈ {1, . . . , q}} for every r ∈ {1, . . . , k − 1}.448

For every j ∈ [q], the set {crj : r ∈ {1, . . . , k− 1}} is an independent set of G of size k− 1.449

For any r 6= r′ ∈ {1, . . . , k − 1}, one of the four following case can happen:450

(i) for every j, j′ ∈ [q], crjcr
′

j′ /∈ E(G)451

(ii) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j 6= j′452

(iii) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j < j′453

(iv) for every j, j′ ∈ [q], crjcr
′

j′ ∈ E(G) iff j > j′454

In the case (i) (resp. (ii)), we say that the relation between Cr and Cr′ is empty (resp.455

full6). In case (iii) or (iv), we say the relation is semi-full.456

Observe, in particular, that a set C of k − 1 Ramsey-extracted cliques of size q can457

be partitionned into q independent sets of size k − 1. As we will see later, these cliques458

will allow us to obtain more structure with the remaining vertices if the graph is H-free.459

Roughly speaking, if q is large, we will be able to extract from C another set C′ of k − 1460

Ramsey-extracted cliques of size q′ < q, such that every clique is a module7 with respect to461

the solution x∗1, . . . , x∗k we are looking for. Then, by guessing the structure of the adjacencies462

between C′ and the solution, we will be able to identify from the remaining vertices k sets463

X1, . . . , Xk, where each Xi has the same neighborhood as x∗i w.r.t. C′, and plays the role of464

“candidates” for this vertex. For a function f : N→ N, we define the following problem:465

I Definition 15. The f-Ramsey-extracted Iterative Expansion MIS problem takes466

as input an integer k and a graph G whose vertices are partitionned into non-empty sets467

X1 ∪ · · · ∪Xk ∪ C1 ∪ · · · ∪ Ck−1, where:468

{C1, . . . , Ck−1} is a set of k − 1 Ramsey-extracted cliques of size f(k)469

any independent set of size k in G is contained in X1 ∪ · · · ∪Xk470

if G has an independent set of size k, then there is one which has a non-empty intersection471

with Xi, for every i ∈ {1, . . . , k}472

∀i ∈ {1, . . . , k}, ∀v, w ∈ Xi and ∀j ∈ {1, . . . , k − 1}, N(v) ∩ Cj = N(w) ∩ Cj = ∅ or473

N(v) ∩ Cj = N(w) ∩ Cj = Cj474

the following bipartite graph B is connected: V (B) = B1 ∪ B2, B1 = {b1
1, . . . , b

1
k},475

B2 = {b2
1, . . . , b

2
k−1} and b1

jb
2
r ∈ E(B) iff Xj and Cr are adjacent.476

The objective is to find an independent set S in G of size at least k such that S ∩Xi 6= ∅ for477

all i ∈ {1, . . . , k}, or to decide that such an independent set does not exist.478
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Figure 5 The structure of the f-Ramsey-extracted Iterative Expansion MIS inputs.

I Lemma 16. Let G be a hereditary graph class. If there exists a computable function479

f : N → N such that f-Ramsey-extracted Iterative Expansion MIS is FPT in G,480

then g-Iterative Expansion MIS is FPT in G, where g(x) = Ram`(f(x)2x(x−1)) ∀x ∈ N,481

with `x = 2(x−1)2 .482

Proof. Let f : N→ N be such a function, and let G, k and S = {S1, . . . , Sg(k)} be an input483

of g-Iterative Expansion MIS. Recall that the objective is to find an independent set484

of size k in G, or to decide that such an independent set does not exist. If G contains485

an independent set of size k, then either there is one intersecting some sets of S, or every486

independent set of size k avoids the sets in S. In order to capture the first case, we branch487

on every vertex v of the sets in S, and make a recursive call with parameter G \N [v], k − 1.488

In the remainder of the algorithm, we thus assume that any independent set of size k in G489

avoids every set of S.490

We choose an arbitrary ordering of the vertices of each Sj . Let us denote by srj the rth491

vertex of Sj . Notice that given an ordered pair of sets of k − 1 vertices (A,B), there are492

`k = 2(k−1)2 possible sets of edges between these two sets. Let us denote by c1, . . . , c2(k−1)2493

the possible sets of edges, called types. We define an auxiliary edge-colored graph H whose494

vertices are in one-to-one correspondence with S1, . . . , Sg(k), and, for i < j, there is an495

edge between Si and Sj of color γ iff the type of (Si, Sj) is γ. By Ramsey’s theorem, since496

H has Ram`k
(f(k)2k(k−1)) vertices, it must admit a monochromatic clique of size at least497

h(k) = f(k)2k(k−1). W.l.o.g., the vertex set of this clique corresponds to S1, . . . , Sh(k). For498

p ∈ {1, . . . , k − 1}, let Cp = {spj , . . . , s
p
h(k)}. Observe that the Ramsey extraction ensures499

that each Cp is either a clique or an independent set. If Cp is an independent set for some r,500

6 Remark that in this case, the graph induced by Cr ∪ Cr′ is the complement of a perfect matching.
7 A set of vertices M is a module if every vertex v /∈M is adjacent to either all vertices of M , or none.
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then we can immediately conclude, since h(k) ≥ k. Hence, we suppose that Cp is a clique for501

every p ∈ {1, . . . , k − 1}. We now prove that C1, . . . , Ck−1 are Ramsey-extracted cliques of502

size k−1. First, by construction, for every j ∈ {1, . . . , h(k)}, the set {spj : p = 1, . . . , k−1} is503

an independent set. Then, let c be the type of the clique obtained previously, represented by504

the adjacencies between two sets (A,B), each of size k − 1. For every p ∈ {1, . . . , k − 1}, let505

ap (resp. bp) be the ath vertex of A (resp. B). Let p, q ∈ {1, . . . , t}, p 6= q. If any of apbq and506

aqbp are edges in type c, then there is no edge between Cp and Cq, and their relation is thus507

empty. If both edges apbq and aqbp exist in c, then the relation between Cp and Cq is full.508

Finally if exactly one edge among apbq and aqbp exists in c, then the relation between Cp509

and Cq is semi-full. This concludes the fact that C = {C1, . . . , Ch(k)} are Ramsey-extracted510

cliques of size k − 1.511

Suppose that G has an independent set X∗ = {x∗1, . . . , x∗k}. Recall that we assumed512

previously that X∗ is contained in V (G) \ (C1 ∪ · · · ∪ Ck−1). The next step of the algorithm513

consists in branching on every subset of f(k) indices J ⊆ {1, . . . , h(k)}, and restrict every set514

Cp to {spj : j ∈ J}. For the sake of readability, we keep the notation Cp to denote {spj : j ∈ J}515

(the non-selected vertices are put back in the set of remaining vertices of the graph, i.e.516

we do not delete them). Since h(k) = f(k)2k(k−1), there must exist a branching where the517

chosen indices are such that for every i ∈ {1, . . . , k} and every p ∈ {1, . . . , k− 1}, x∗i is either518

adjacent to all vertices of Cp or none of them. In the remainder, we may thus assume that519

such a branching has been made, with respect to the considered solution X∗ = {x∗1, . . . , x∗k}.520

Now, for every v ∈ V (G) \ (C1, . . . , Ck−1), if there exists p ∈ {1, . . . , k − 1} such that521

N(v) ∩ Cp 6= ∅ and N(v) ∩ Cp 6= Cp , then we can remove this vertex, as we know that it522

cannot correspond to any x∗i . Thus, we know that all the remaining vertices v are such that523

for every p ∈ {1, . . . , k − 1}, v is either adjacent to all vertices of Cp, or none of them.524

In the following, we perform a color coding-based step on the remaining vertices. Inform-525

ally, this color coding will allow us to identify, for every vertex x∗i of the optimal solution, a526

set Xi of candidates, with the property that all vertices in Xi have the same neighborhood527

with respect to sets C1, . . . , Ck−1. We thus color uniformly at random the remaining vertices528

V (G) \ (C1, . . . , Ck−1) using k colors. The probability that the elements of X∗ are colored529

with pairwise distinct colors is at least e−k. We are thus reduced to the case of finding530

a colorful8 independent set of size k. For every i ∈ {1, . . . , k}, let Xi be the vertices of531

V (G) \ (C1, . . . , Ck−1) colored with color i. We now partition every set Xi into at most532

2k−1 subsets X1
i , . . . , X2k−1

i , such that for every j ∈ {1, . . . , 2k−1}, all vertices of Xj
i have533

the same neighborhood with respect to the sets C1, . . . , Ck−1 (recall that every vertex of534

V (G) \ (C1, . . . , Ck−1) is adjacent to all vertices of Cp or none, for each p ∈ {1, . . . , k − 1}).535

We branch on every tuple (j1, . . . , jk) ∈ {1, . . . , 2k−1}. Clearly the number of branchings536

is bounded by a function of k only and, moreover, one branching (j1, . . . , jk) is such that537

x∗i has the same neighborhood in C1 ∪ · · · ∪ Ck−1 as vertices of Xji

i for every i ∈ {1, . . . , k}.538

We assume in the following that such a branching has been made. For every i ∈ {1, . . . , k},539

we can thus remove vertices of Xj
i for every j 6= ji. For the sake of readability, we rename540

Xji

i as Xi. Let B be the bipartite graph with vertex bipartition (B1, B2), B1 = {b1
1, . . . , b

1
k},541

B2 = {b2
1, . . . , b

2
k−1}, and b1

i b
2
p ∈ E(B) iff x∗i is adjacent to Cp. Since every x∗i has the same542

neighborhood as Xi with respect to C1, . . . , Ck−1, this bipartite graph actually corresponds543

to the one described in Definition 15 representing the adjacencies between Xi’s and Cp’s.544

We now prove that it is connected. Suppose it is not. Then, since |B1| = k and |B2| = k − 1,545

there must be a component with as many vertices from B1 as vertices from B2. However,546

8 A set of vertices is called colorful if it is colored with pairwise distinct colors.
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in this case, using the fixed solution X∗ on one side and an independent set of size k − 1547

in C1 ∪ · · · ∪ Ck−1 on the other side, it implies that there is an independent set of size k548

intersecting ∪k−1
p=1Cp, a contradiction.549

Hence, all conditions of Definition 15 are now fulfilled. It now remains to find an550

independent set of size k disjoint from the sets C, and having a non-empty intersection with551

Xi, for every i ∈ {1, . . . , k}. We thus run an algorithm solving f-Ramsey-extracted552

Iterative Expansion MIS on this input, which concludes the algorithm. J553

The proof of the following result is immediate, by using successively Lemmas 13 and 16.554

I Theorem 17. Let G be a hereditary graph class. If f-Ramsey-extracted Iterative555

Expansion MIS is FPT in G for some computable function f , then MIS is FPT in G.556

We now apply this framework to two families of graphs H.557

4.2 Clique minus a smaller clique558

I Theorem 18. For any r ≥ 2 and s < r, MIS in (Kr \Ks)-free graphs is FPT if s ≤ 3,559

and W [1]-hard otherwise.560

Proof. The case s = 2 was already known [10]. The result for s ≥ 4 comes from Theorem 2.561

We now deal with the case s = 3. We solve the problem in (Kr+3 \K3)-free graphs, for every562

r ≥ 2 (the problem is polynomial for r = 1, since it it corresponds exactly to the case of563

claw-free graphs). Let G, k be an input of the problem. We present an FPT algorithm for564

f-Ramsey-extracted Iterative Expansion MIS with f(x) = r for every x ∈ N. The565

result for MIS can then be obtained using Theorem 17.566

We thus assume that V (G) = X1∪· · ·∪Xk∪C1∪· · ·∪Ck−1 where all cliques Cp have size567

r. Consider the bipartite graph B representing the adjacencies between {X1, . . . , Xk} and568

{C1, . . . , Ck−1}, as in Definition 15 (for the sake of readability, we will make no distinction569

between the vertices of B and the sets {X1, . . . , Xk} and {C1, . . . , Ck−1}). We may first570

assume that |Xi| ≥ Ram(r, k) for every i ∈ {1, . . . , k}, since otherwise we can branch on571

every vertex v of Xi and make a recursive call with input G \N [v], k − 1. Suppose that G572

contains an independent set S∗ = {x∗1, . . . , x∗k}, with xi ∈ Xi for all i ∈ {1, . . . , k}. The first573

step is to consider the structure of B, using the fact that G is (Kr \K3)-free. We have the574

following:575

Claim: B is a path.576

Proof of claim: We first prove that for every i ∈ {1, . . . , k}, the degree of Xi in B is at most 2.577

Indeed, assume by contradiction that it is adjacent to Ca, Cb and Cc. Since |Xi| ≥ Ram(r, k),578

by Ramsey’s theorem, it either contains an independent set of size k, in which case we are579

done, or a clique K of size r. However, observe in this case that K together with sa1 , sb1 and580

sc1 (which are pairwise non-adjacent) induces a graph isomorphic to Kr+3 \K3.581

Then, we show that for every i ∈ {1, . . . , k − 1}, the degree of Ci in B is at most 2.582

Assume by contradiction that Ci is adjacent to Xa, Xb and Xc. If the instance is positive,583

then there must be an independent set of size three with non-empty intersection with each584

of Xa, Xb and Xc. If such an independent set does not exist (which can be checked in cubic585

time), we can immediately answer NO. Now observe that Ci (which is of size r) together586

with this independent set induces a graph isomorphic to Kr+3 \K3.587

To summarize, B is a connected bipartite graph of maximum degree 2 with k vertices in588

one part, k − 1 vertices in the other part. It must be a path. /589
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W.l.o.g., we may assume that for every i ∈ {2, . . . , k − 1}, Xi is adjacent to Ci−1 and590

Ci, and that X1 (resp. Xk) is adjacent to C1 (resp. Ck−1). We now concentrate on the591

adjacencies between sets Xi’s. We say that an edge xy ∈ E(G) is a long edge if x ∈ Xi,592

y ∈ Xj with |j − i| ≥ 2 and 2 ≤ i, j ≤ k − 1, i 6= j.593

Claim: ∀x ∈ X2 ∪ · · · ∪Xk−1, x is incident to at most (k − 2)(Ram(r, 3)− 1) long edges.594

Proof of claim: To do so, for i, j ∈ {2, . . . , k − 1} such that |j − i| ≥ 2, i 6= j, we prove that595

∀x ∈ Xi, |N(x) ∩Xj | ≤ Ram(r, 3) − 1. Assume by contradiction that x ∈ Xi has at least596

Ram(r, 3) neighbors Y ⊆ Xj . By Ramsey’s theorem, either Y contains an independent set597

of size 3 or a clique of size r. In the first case, Cj together with these three vertices induces598

a graph isomorphic to Kr+3 \K3. Hence we may assume that Y contains a clique Y ′ of size599

r. But in this case, Y ′ together with x, sj−1
1 , sj1 induce a graph isomorphic to Kr+3 \K3 as600

well. /601

Recall that the objective is to find an independent set of size k with non-empty intersection602

with Xi, for every i ∈ {1, . . . , k}. We assume k ≥ 5, otherwise the problem is polynomial.603

The algorithm starts by branching on every pair of non-adjacent vertices (x1, xk) ∈ X1 ×Xk,604

and removing the union of their neihborhoods in X2 ∪ · · · ∪Xk−1. For the sake of readability,605

we still denote by X2, . . . , Xk−1 these reduced sets. If such a pair does not exist or the606

removal of their neighborhood empties some Xi, then we immediately answer NO (for this607

branch). Informally speaking, we just guessed the solution within X1 and Xk (the reason for608

this is that we cannot bound the number of long edges incident to vertices of these sets). We609

now concentrate on the graph G′, which is the graph induced by X2 ∪ · · · ∪Xk−1. Clearly,610

it remains to decide whether G′ admits an independent set of size k − 2 with non-empty611

intersection with Xi, for every i ∈ {2, . . . , k − 1}.612

The previous claim showed that the structure of G′ is quite particular: roughly speaking,613

the adjacencies between consecutive Xi’s is arbitrary, but the number of long edges is614

bounded for every vertex. The key observation is that if there were no long edge at all, then a615

simple dynamic programming algorithm would allow us to conclude. Nevertheless, using the616

previous claim, we can actually upper bound the number of long edges incident to a vertex617

of the solution by a function of k only (recall that r is a constant). We can then get rid of618

these problematic long edges using the so-called technique of random separation [5]. Let619

S = {x2, . . . , xk−1} be a solution of our problem (with xi ∈ Xi for every i ∈ {2, . . . , k − 1}).620

Let us define D = {y : xy is a long edge and x ∈ S}. By the previous claim, we have621

|D| ≤ (Ram(r, 3) − 1)(k − 2)2. The idea of random separation is to delete each vertex of622

the graph with probability 1
2 . At the end, we say that a removal is successful if both of the623

two following conditions hold: (i) no vertex of S has been removed, and (ii) all vertices of624

D have been removed (other vertices but S may have also been removed). Observe that625

the probability that a removal is successful is at least 2−k2Ram(r,3). In such a case, we can626

remove all remaining long edges: indeed, for a remaining long edge xy, we know that there627

exists a solution avoiding both x and y, hence we can safely delete x and y. As previously,628

we still denote by X2, . . . , Xk−1 the reduced sets, for the sake of readability. We thus end629

up with a graph composed of sets X2, . . . , Xk−1, with edges between Xi and Xj only if630

[j − i| = 1. In that case, observe that there is a solution if and only if the following dynamic631

programming returns true on input P (3, x2) for some x2 ∈ X2:632

P (i, xi−1) =


true if i = k

false if Xi ⊆ N(xi−1)∨
xi∈Xi\N(xi−1) P (i+ 1, xi) otherwise.

Clearly this dynamic programming runs in O(mnk) time, where m and n are the number633
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of edges and vertices of the remaining graph, respectively. Moreover, it can easily be turned634

into an algorithm returning a solution of size k − 2 if it exists.635

Finally, similarly to classical random separation algorithms, it is sufficient to repeat this636

process O(2k2Ram(r)) times in order to obtain an FPT one-sided error Monte Carlo algorithm637

with constant success probability. Moreover, such an algorithm can be derandomized up to638

an additional 2kkO(log k) factor in the running time [8].639

J640

4.3 Clique minus a complete bipartite graph641

For every three positive integers r, s1, s2 with s1 + s2 < r, we consider the graph Kr \Ks1,s2 .642

Another way to see Kr \Ks1,s2 is as a P3 of cliques of size s1, r − s1 − s2, and s2. More643

formally, every graph Kr \Ks1,s2 can be obtained from a P3 by adding s1 − 1 false twins of644

the first vertex, r − s1 − s2 − 1, for the second, and s2 − 1, for the third.645

I Theorem 19. For any r ≥ 2 and s1 ≤ s2 with s1 + s2 < r, MIS in Kr \Ks1,s2-free graphs646

is FPT.647

Proof. It is more convenient to prove the result for K3r \Kr,r-free graphs, for any positive648

integer r. It implies the theorem by choosing this new r to be larger than s1, s2, and649

r − s1 − s2. We will show that for f(x) := 3r for every x ∈ N, f-Ramsey-extracted650

Iterative Expansion MIS in K3r \Kr,r-free graphs is FPT. By Theorem 17, this implies651

that MIS is FPT in this class. Let C1, . . . , Ck−1 (whose union is denoted by C) be the652

Ramsey-extracted cliques of size 3r, which can be partitionned, as in Definition 15, into 3r653

independent sets S1, . . . , S3r, each of size k− 1. Let X =
⋃k
i=1 Xi be the set in which we are654

looking for an independent set of size k. We recall that between any Xi and any Cj there are655

either all the edges or none. Hence, the whole interaction between X and C can be described656

by the bipartite graph B described in Definition 15. Firstly, we can assume that each Xi is of657

size at least Ram(r, k), otherwise we can branch on Ram(r, k) choices to find one vertex in658

an optimum solution. By Ramsey’s theorem, we can assume that each Xi contains a clique659

of size r (if it contains an independent set of size k, we are done). Our general strategy is660

to leverage the fact that the input graph is (K3r \Kr,r)-free to describe the structure of X .661

Hopefully, this structure will be sufficient to solve our problem in FPT time.662

We define an auxiliary graph Y with k − 1 vertices. The vertices y1, . . . , yk−1 of Y663

represent the Ramsey-extracted cliques of C and two vertices yi and yj are adjacent iff the664

relation between Ci and Cj is not empty (equivalently the relation is full or semi-full). It665

might seem peculiar that we concentrate the structure of C, when we will eventually discard666

it from the graph. It is an indirect move: the simple structure of C will imply that the667

interaction between X and C is simple, which in turn, will severely restrict the subgraph668

induced by X . More concretely, in the rest of the proof, we will (1) show that Y is a clique,669

(2) deduce that B is a complete bipartite graph, (3) conclude that X cannot contain an670

induced K2
r = Kr ]Kr and run the algorithm of Theorem 11.671

Suppose that there is yi1yi2yi3 an induced P3 in Y , and consider Ci1 , Ci2 , Ci3 the672

corresponding Ramsey-extracted cliques. For s < t ∈ [3r], let Cs→ti := Ci ∩
⋃
s6j6t Sj .673

In other words, Cs→ti contains the elements of Ci having indices between s and t. Since674

|Ci| = 3r, each Ci can be partitionned into three sets, of r elements each: C1→r
i , Cr+1→2r

i675

and C2r+1→3r
i . Recall that the relation between Ci1 and Ci2 (resp. Ci2 and Ci3) is either676

full or semi-full, while the relation between Ci1 and Ci3 is empty. This implies that at least677

one of the four following sets induces a graph isomorphic to K3r \Kr,r:678

C1→r
i1
∪ Cr+1→2r

i2
∪ C1→r

i3
679
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C1→r
i1
∪ Cr+1→2r

i2
∪ C2r+1→3r

i3
680

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

681

C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

682

Hence, Y is a disjoint union of cliques. Let us assume that Y is the union of at least two683

(maximal) cliques.684

Recall that the bipartite graph B is connected. Thus there is b1
h ∈ B1 (corresponding to685

Xh) adjacent to b2
i ∈ B2 and b2

j ∈ B2 (corresponding to Ci and Cj , respectively), such that686

yi and yj lie in two different connected components of Y (in particular, the relation between687

Ci and Cj is empty). Recall that Xh contains a clique of size at least r. This clique induces,688

together with any r vertices in Ci and any r vertices in Cj , a graph isomorphic to K3r \Kr,r;689

a contradiction. Hence, Y is a clique.690

Now, we can show that B is a complete bipartite graph. Each Xh has to be adjacent to691

at least one Ci (otherwise this trivially contradicts the connectedness of B). If Xh is not692

linked to Cj for some j ∈ {1, . . . , k − 1}, then a clique of size r in Xh (which always exists)693

induces, together with C1→r
i ∪ C2r+1→3r

j or with C2r+1→3r
i ∪ C1→r

j , a graph isomorphic to694

K3r \Kr,r.695

Since B is a complete bipartite graph, every vertex of C1 dominates all vertices of X In696

particular, X is in the intersection of the neighborhood of the vertices of some clique of size697

r. This implies that the subgraph induced by X is (Kr ]Kr)-free. Hence, we can run the698

FPT algorithm of Theorem 11 on this graph. J699

5 Polynomial (Turing) kernels700

In this section we investigate some special cases of Section 4.3, in particular when H is a701

clique of size r minus a claw with s branches, for s < r. Although Theorem 19 proves that702

MIS is FPT for every possible values of r and s, we show that when s ≥ r − 2, the problem703

admits a polynomial Turing kernel, while for s ≤ 2, it admits a polynomial kernel. Notice704

that the latter result is somehow tight, as Corollary 27 shows that MIS cannot admit a705

polynomial kernel in (Kr \K1,s)-free graphs whenever s ≥ 3.706

5.1 Positive results707

The main ingredient of the two following results is a constructive version of the Erdös-Hajnal708

theorem for the concerned graph classes:709

I Lemma 20 (Constructive Erdös-Hajnal for Kr \K1,s). For every r ≥ 2 and s < r, there710

exists a polynomial-time algorithm which takes as input a connected (Kr \K1,s)-free graph711

G, and construct either a clique or an independent set of size n
1

r−1 , where n is the number712

of vertices of G.713

Proof. First consider the case s = r − 1, i.e. the forbidden graph is Kr−1 plus an isolated714

vertex. If G contains a vertex v with non-neighborhood N of size at least n
r−2
r−1 , then,715

since G[N ] is Kr−1-free, by Ramsey’s theorem, it must contains an independent set of size716

|N |
1

r−2 = n
1

r−1 , which can be found in polynomial time. We may now assume that the717

maximum non-degree9 of G is n
r−2
r−1 − 1. We construct a clique v1, . . . , vq in G by picking an718

arbitrary vertex v1, removing its non-neighborhood, then picking another vertex v2, removing719

9 The non-degree of a vertex is the size of its non-neighborhood.
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its non-neighborhood, and repeating this process until the graph becomes empty. Using720

the above argument on the maximum non-degree, this process can be applied n

n
r−2
r−1

= n
1

r−1721

times, corresponding to the size of the constructed clique.722

Now, we make an induction on r− 1− s (the base case is above). If G contains a vertex v723

with neighborhood N of size at least n
r−2
r−1 , then, since G[N ] is (Kr−1 \Ks)-free, by induction724

it admits either a clique or an independent set of size |N |
1

r−2 = n
1

r−1 , which can be found725

in polynomial time. We may now assume that the maximum degree of G is n
r−2
r−1 − 1. We726

construct an independent set v1, . . . , vq in G by picking an arbitrary vertex v1, removing727

its neighborhood, and repeating this process until the graph becomes empty. Using the728

above argument on the maximum degree, this process can be applied n

n
r−2
r−1

= n
1

r−1 times,729

corresponding to the size of the constructed independent set. J730

I Theorem 21. ∀r ≥ 2, MIS in (Kr \K1,r−2)-free graphs has a polynomial Turing kernel.731

Proof. The problem is polynomial for r = 2 and r = 3, hence we suppose r ≥ 4. Suppose we732

have an algorithm A which, given a graph J and an integer i such that |V (J)| = O(ir−1),733

decides whether J has an independent set of size i in constant time. Having a polynomial734

algorithm for MIS assuming the existence of A implies a polynomial Turing kernel for the735

problem [8]. To do so, we will present an algorithm B which, given a connected graph G and736

an integer k, outputs a polynomial (in |V (G)|) number of instances of size O(kr−1), such737

that one of them is positive iff the former one is. With this algorithm in hand, we obtain738

the polynomial Turing kernel as follows: let G and k be an instance of MIS. Let V1, . . . ,739

V` be the connected components of G. For every j ∈ {1, . . . , `}, we determine the size of a740

maximum independent set kj of G[Vj ] by first invoking, for successive values i = 1, . . . , k,741

the algorithm B on input (G[Vj ], i), and then A on each reduced instance. At the end of the742

algorithm, we answer Y ES iff
∑`
j=1 ki ≥ k.743

We now describe the algorithm B. Let (G, k) be an input, with n = |V (G)|. By Lemma 20,744

we start by constructing a clique C of size at least n
1

r−1 in polynomial time. We assume that745

|C| > r2, since otherwise the instance is already reduced.746

Let B = N(C). First observe that for every u ∈ B, |NC(u)| ≥ |C| − (r − 3). Indeed, if747

|NC(u)| ≤ |C| − (r − 2), then the graph induced by r − 2 non-neighbors of u in C together748

with u and a neighbor of u in C (which exists since |C| > r2) is isomorphic to Kr \K1,r−2.749

Secondly, we claim that V (G) = C ∪B: for the sake of contradiction, take v ∈ N(B)\C, and750

let u ∈ B be such that uv ∈ E(G). By the previous argument, u has at least |C|−r+3 ≥ r−2751

neighbors in C which, in addition to u and v, induce a graph isomorphic to Kr \K1,r−2.752

The algorithm outputs, for every u ∈ B, the graph induced by B \N [u], and, for every753

u ∈ B and every v ∈ C such that uv /∈ E(G), the graph induced by B \ (N [u] ∪N [v]). The754

correctness of the algorithm follows from the fact that if G has an independent set S of size755

k > 1, then either:756

S ∩ C = ∅, in which case S lies entirely in B \N [u] for any u ∈ S, or757

S ∩ C = {v} for some v ∈ C, in which case S \ {v} lies entirely in B \ (N [u] ∪N [v]) for758

any u ∈ S ∩B.759

We now argue that each of these instances has O(kr−3) vertices. To do so, observe that for760

any u ∈ B, B \N [u] does not contain Kr−2 as an induced subgraph: indeed, since |C| > r2,761

then any set of r−2 vertices of B must have a common neighbor in C. Taking a clique of size762

r − 2 in B together with its common neighbor in C and u would induce a graph isomorphic763

to Kr \K1,r−2. Since each of these instances is Kr−2-free, applying Ramsey’s theorem to764

each of them allows us to either construct an independent set of size k − 1 in one of them765
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(and thus output an independent set of size k in G), or to prove that each of them has at766

most O(kr−3) vertices. At the end, this algorithm outputs O(n2) instances, each having767

O(kr−3) vertices. J768

Since a (Kr \K1,r−1)-free graph is (Kr−1 \K1,r−2)-free, we have the following:769

I Corollary 22. ∀r ≥ 2, MIS in (Kr \K1,r−1)-free graphs has a polynomial Turing Kernel.770

In other words, (Kr \K1,r−1) is a clique of size r−1 plus an isolated vertex. Observe that771

the previous corollary can actually be proved in a very simple way: informally, we can “guess”772

a vertex v of the solution, and return its non-neighborhood together with parameter k − 1.773

Since this non-neighborhood is Kr−1-free, it can be reduced to a O(kr−2)-sized instance.774

This is perhaps the most simple example of a problem admitting a polynomial Turing kernel775

but no polynomial kernel10 (as we will prove later in Theorem 26). By considering the776

complement of graphs, it implies the even simpler following observation: Maximum Clique777

has a O(k2) Turing kernel on claw-free graphs, but no polynomial kernel10.778

I Theorem 23. ∀r ≥ 3, MIS in (Kr \K1,2)-free graphs has a kernel with O(kr−1) vertices.779

Proof. For r = 3, the problem is polynomial, so we assume r ≥ 4. The algorithm consists in780

constructing, by Lemma 20, a clique C of size at least n
1

r−1 in polynomial time. We present781

a reduction rule in the case |C| > (k − 1)(r − 4) + 1. If this rule cannot apply, then it means782

that the number of vertices of the reduced instance is O(kr−1).783

First observe that for every u ∈ N(C), then either |NC(u)| = |C| − 1, or |NC(u)| ≤ r− 4.784

Indeed, suppose that r − 3 ≤ |NC(u)| ≤ |C| − 2. Then u together with r − 3 of its neighbors785

in C and 2 of its non-neighbors in C induce a graph isomorphic to Kr \K1,2, a contradiction.786

Let B = {u ∈ N(C) : |NC(u)| = |C| − 1} and D = {u ∈ N(C) : |NC(u)| ≤ r − 4}.787

We claim that C ∪ B is a complete |C|-multipartite graph. To do so, we prove that788

for u, v ∈ B, NC(u) = NC(v) implies uv /∈ E(G), and NC(u) 6= NC(v) implies uv ∈ E(G).789

Suppose that NC(u) = NC(v) = {x}. If uv ∈ E(G), then u, v, x together with r− 3 vertices790

of C different from x induce a graph isomorphic to Kr \K1,2, which is impossible. Suppose791

now that NC(u) = xu 6= xv = NC(v). If uv /∈ E(G), then u, v, xu together with r−3 vertices792

of C different from xu and xv induce a graph isomorphic to Kr \K1,2, which is impossible.793

Thus, we now write C ∪ B = S1 ∪ · · · ∪ S|C|, where, for every i, j ∈ {1, . . . , |C|}, i 6= j,794

Si induces an independent set, and Si ∪ Sj induces a complete bipartite graph. We assume795

|S1| ≥ |S2| ≥ · · · ≥ |S|C||. Recall that |C| > (k− 1)(r− 4) + 1. Using the same arguments as796

previously, we can show that every vertex of D is adjacent to at most r − 4 different parts797

among C ∪B. More formally: for every u ∈ D, we have |{Si : N(u) ∩ Si 6= ∅}| ≤ r − 4. Let798

q = (k − 1)(r − 4) + 1. The reduction consists in removing Sq+1 ∪ · · · ∪ S|C|. Clearly it runs799

in polynomial time.800

Let G′ denote the reduced instance. Obviously, if G′ has an independent set of size k,801

then G does, since G′ is an induced subgraph of G. It remains to show that the converse is802

also true. Let X be an independent set of G of size k. If X ∩
(
∪|C|i=q+1Si

)
= ∅, then X is also803

an independent set of size k in G′, thus we suppose X ∩
(
∪|C|i=q+1Si

)
= Xr 6= ∅. In particular,804

since C ∪B is a multipartite graph, there is a unique i ∈ {1, . . . , |C|} such that X ∩ Si 6= ∅,805

and i ≥ q + 1. Since every vertex of D is adjacent to at most r − 4 parts of C ∪ B, and806

since q = (k − 1)(r − 4) + 1, there must exist j ∈ {1, . . . , q} such that N(X ∩D) ∩ Sj = ∅.807

Moreover, |Sj | ≥ |Si|. Hence, (X \ Si) ∪ Sj is an independent set of size at least k in G′. J808

10Unless NP ⊆ coNP/poly.
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Observe that a (Kr \K2)-free graph is (Kr+1 \K1,2)-free, hence we have the following,809

which answers a question of [10].810

I Corollary 24. ∀r ≥ 1, MIS in (Kr \K2)-free graphs has a kernel with O(kr−1) vertices.811

5.2 Kernel lower bounds812

I Definition 25. Given the graphs H, H1, . . . , Hp, we say that (H1, . . . ,Hp) is a multipartite813

decomposition of H if H is isomorphic to H1 + · · ·+Hp. We say that (H1, . . . ,Hp) is maximal814

if, for every multipartite decomposition (H ′1, . . . ,H ′q) of H, we have p > q.815

It can easily be seen that for every graph H, a maximal multipartite decomposition of H816

is unique. We have the following:817

I Theorem 26. Let H be any fixed graph, and let H = H1 + · · · + Hp be the maximal818

multipartite decomposition of H. If, for some i ∈ [p], MIS is NP-hard in Hi-free graphs,819

then MIS does not admit a polynomial kernel in H-free graphs unless NP ⊆ coNP/poly.820

Proof. We construct an OR-cross-composition from MIS in Hi-free graphs. For more details821

about cross-compositions, see [4]. Let G1, . . . , Gt be a sequence of Hi-free graphs, and let822

G′ = G1 + · · ·+Gt. Then we have the following:823

α(G′) = maxi=1...t α(Gi), since, by construction of G′, any independent set cannot824

intersect the vertex set of two distinct graphs Gi and Gj .825

G′ is H-free. Indeed, suppose that X ⊆ V (G′) induces a graph isomorphic to H, and826

let Xj = X ∩ V (Gj) for every j ∈ [p]. Then observe that the graphs induced by the827

non-empty sets Xj form a multipartite decomposition of H, and thus there must exist828

j ∈ [p] such that Gj [Xj ] contains Hi as an induced subgraph, a contradiction.829

These two arguments imply a cross-composition from MIS in Hi-free graphs to MIS in830

H-free graphs. J831

The next results shows that the polynomial kernel obtained in the previous section for832

(Kr \K1,s)-free graphs, s ≤ 2, is somehow tight.833

I Corollary 27. For r ≥ 4, and every 3 ≤ s ≤ r − 1, MIS in (Kr \K1,s)-free graphs does834

not admit a polynomial kernel unless NP ⊆ coNP/poly.835

Proof. In that case, observe that the maximal multipartite decomposition of Kr \K1,s is

K̇s +
r−1−s times︷ ︸︸ ︷

K1 + · · ·+K1

where K̇s denotes the clique of size s plus an isolated vertex. Moreover, MIS is NP-hard in836

K̇s-free graphs for s ≥ 3. J837

We conjecture that Theorem 26 actually captures all possible negative cases concerning838

the kernelization of the problem. Informally speaking, our intuition is the natural idea that839

the join operation between graphs seems the only way to obtain α(G) = O(maxi=1,...,t α(Gi)),840

which is the main ingredient of OR-compositions.841

I Conjecture 28. Let H be any fixed graph, and H = H1+· · ·+Hp be its maximal multipartite842

decomposition. Then, assuming that NP 6⊆ coNP/poly, MIS admits a polynomial kernel in843

H-free graphs if and only if it is polynomial in Hi-free graph, for every i ∈ [p].844
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6 Conclusion and open problems845

We started to unravel the FPT/W [1]-hard dichotomy for MIS in H-free graphs, for a fixed846

graph H. At the cost of one reduction, we showed that it is W [1]-hard as soon as H is not847

chordal, even if we simultaneously forbid induced K1,4 and trees with at least two branching848

vertices. Tuning this construction, we reach the conclusion that if a connected H is not849

roughly a "path of cliques" or a "subdivided claw of cliques", then MIS is W [1]-hard. More850

formally, with the definitions of Section 2.2, the remaining connected open cases are when H851

has an almost strong clique decomposition on a subdivided claw or a nearly strong clique852

decomposition on a path. In this language, we showed that for every connected graph H853

with a strong clique decomposition on a P3, there is an FPT algorithm. However, we also854

proved that for a very simple graph H with a strong clique decomposition on the claw, MIS855

is W [1]-hard. This suggests that the FPT/W [1]-hard dichotomy will be somewhat subtle.856

For instance, easy cases for the parameterized complexity do not coincide with easy cases for857

the classical complexity where each vertex can be blown into a clique. For graphs H with a858

clique decomposition on a path, the first unsolved cases are H having:859

an almost strong clique decomposition on P3;860

a nearly strong clique decomposition on P3;861

a strong clique decomposition on P4.862

For graphs H with a clique decomposition on the claw, an interesting open question is the863

case of cricket-free graphs (T1,1,2-free with our notation defined before Theorem 10), and,864

more generally, in T1,1,s-free graphs.865

For disconnected graphs H, we obtained an FPT algorithm when H is a cluster (i.e., a866

disjoint union of cliques). We conjecture that, more generally, the disjoint union of two easy867

cases is an easy case; formally, if MIS is FPT in G-free graphs and in H-free graphs, then it868

is FPT in G ]H-free graphs.869

A natural question regarding our two FPT algorithms of Section 4 concerns the existence870

of polynomial kernels. In particular, we even do not know whether the problem admits a871

kernel for very simple cases, such as when H = K5 \K3 or H = K5 \K2,2.872

A more anecdotal conclusion is the fact that the parameterized complexity of the problem873

on H-free graphs is now complete for every graph H on four vertices, including concerning874

the polynomial kernel question (see Figure 6), whereas the FPT/W [1]-hard question remains875

open for only five graphs H on five vertices (see Figure 7).876
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Figure 6 Status of the problem for graphs H on four vertices. P , P K, P T K respectively
stand for Polynomial, NP -hard but admits a polynomial kernel, and no polynomial kernel unless
NP ⊆ coNP/poly but admits a polynomial Turing kernel.
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Figure 7 The five remaining cases on five vertices (out of 34) for the F P T/W [1]-hard dichotomy.
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