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Abstract In this paper, we investigate the complexity of Maximum Inde-8

pendent Set (MIS) in the class of H-free graphs, that is, graphs excluding9

a fixed graph as an induced subgraph. Given that the problem remains NP -10

hard for most graphs H, we study its fixed-parameter tractability and make11

progress towards a dichotomy between FPT and W [1]-hard cases. We first12

show that MIS remains W [1]-hard in graphs forbidding simultaneously K1,4,13

any finite set of cycles of length at least 4, and any finite set of trees with at14

least two branching vertices. In particular, this answers an open question of15

Dabrowski et al. concerning C4-free graphs. Then we extend the polynomial16

algorithm of Alekseev when H is a disjoint union of edges to an FPT algo-17

rithm when H is a disjoint union of cliques. We also provide a framework for18
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solving several other cases, which is a generalization of the concept of iterative19

expansion accompanied by the extraction of a particular structure using Ram-20

sey’s theorem. Iterative expansion is a maximization version of the so-called21

iterative compression. We believe that our framework can be of independent22

interest for solving other similar graph problems. Finally, we present positive23

and negative results on the existence of polynomial (Turing) kernels for several24

graphs H.25

Keywords Parameterized Algorithms · Independent Set · H-Free Graphs26

1 Introduction27

Given a simple graph G, a set of vertices S ⊆ V (G) is an independent set if28

the vertices of this set are all pairwise non-adjacent. Finding an independent29

set with maximum cardinality is a fundamental problem in algorithmic graph30

theory, and is known as the MIS problem (MIS, for short) [15]. In general31

graphs, it is not only NP -hard, but also not approximable within O(n1−ε) for32

any ε > 0 unless P = NP [28], and W [1]-hard parameterized by the solution33

size [14] (unless otherwise stated, n always denotes the number of vertices of34

the input graph). Thus, it seems natural to study the complexity of MIS in35

restricted graph classes. One natural way to obtain such a restricted graph36

class is to forbid some given pattern to appear in the input. For a fixed graph37

H, we say that a graph is H-free if it does not contain H as an induced38

subgraph. Unfortunately, it turns out that for most graphs H, MIS in H-39

free graphs remains NP -hard, as shown by a very simple reduction observed40

independently by Poljak [24] and Alekseev [1]:41

Theorem 1 ([1, 24]) Let H be a connected graph which is neither a path nor42

a subdivision of the claw. Then MIS is NP-hard in H-free graphs.43

On the positive side, the case of Pt-free graphs has attracted a lot of atten-44

tion during the last decade. While it is still open whether there exists t ∈ N45

for which MIS is NP -hard in Pt-free graphs, quite involved polynomial-time46

algorithms were discovered for P5-free graphs [20], and very recently for P6-47

free graphs [16]. In addition, we can also mention the recent following result:48

MIS admits a subexponential algorithm running in time 2O(
√
tn logn) in Pt-free49

graphs for every t ∈ N [3].50

The second open question concerns subdivisions of the claw. Let Si,j,k be a51

tree with exactly three vertices of degree one, being at distance i, j and k from52

the unique vertex of degree three. The complexity of MIS is still open in S1,2,2-53

free graphs and S1,1,3-free graphs. In this direction, the only positive results54

concern some subcases: it is polynomial-time solvable in (S1,2,2, S1,1,3, dart)-55

free graphs [18], (S1,1,3, banner)-free graphs and (S1,1,3, bull)-free graphs [19],56

where dart, banner and bull are particular graphs on five vertices.57

Given the large number of graphs H for which the problem remains NP -58

hard, it seems natural to investigate the existence of fixed-parameter tractable59
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(FPT) algorithms1, that is, determining the existence of an independent set of60

size k in a graph with n vertices in time f(k)nc for some computable function61

f and constant c. A very simple case concerns Kr-free graphs, that is, graphs62

excluding a clique of size r. In that case, Ramsey’s theorem implies that every63

such graph G admits an independent set of size Ω(n
1

r−1 ), where n = |V (G)|.64

In the FPT vocabulary, it implies that MIS in Kr-free graphs has a kernel65

with O(kr−1) vertices.66

To the best of our knowledge, the first step towards an extension of this67

observation within the FPT framework is the work of Dabrowski et al. [12]68

(see also Dabrowski’s PhD manuscript [11]) who showed, among others, that69

for any positive integer r, Max Weighted Independent Set is FPT in70

H-free graphs when H is a clique of size r minus an edge. In the same paper,71

they settle the parameterized complexity of MIS on almost all the remaining72

cases of H-free graphs when H has at most four vertices. The conclusion is73

that the problem is FPT on those classes, except for H = C4 which is left74

open. We answer this question by showing that MIS remains W [1]-hard in75

a subclass of C4-free graphs. On the negative side, it was proved that MIS76

remains W [1]-hard in K1,4-free graphs [17] We can also mention the case where77

H is the bull graph, which is a triangle with a pending vertex attached to two78

different vertices. For that case, a polynomial Turing kernel was obtained [27]79

then improved [9].80

Finally, a subset of this paper’s authors recently settled several other81

cases [5], such as the cricket graph, the P̄ graph, or the path of size four82

where all but one endpoint are replaced by a clique of fixed size.83

1.1 Our results84

In Section 2, we present three reductions proving W [1]-hardness of MIS in85

graphs excluding several graphs as induced subgraphs, such as K1,4, any fixed86

cycle of length at least four, and any fixed tree with two branching vertices.87

We actually show the stronger result that MIS remains W[1]-hard in graphs88

simultaneously excluding these graphs as induced subgraphs. We propose a89

definition of a graph decomposition whose aim is to capture all graphs which90

can be excluded using our reductions.91

In Section 3, we extend the polynomial algorithm of Alekseev when H is92

a disjoint union of edges to an FPT algorithm when H is a disjoint union of93

cliques.94

In Section 4, we present a general framework extending the technique of95

iterative expansion, which itself is the maximization version of the well-known96

iterative compression technique. We apply this framework to provide FPT97

algorithms when H is a clique minus a complete bipartite graph, when H is a98

clique minus a triangle, and when H is the so-called gem graph.99

1 For the sake of simplicity, “MIS” will denote the optimisation, decision and parameter-
ized version of the problem (in the latter case, the parameter is the size of the solution), the
correct use being clear from the context.
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Finally, in Section 5, we focus on the existence of polynomial (Turing)100

kernels. We first strenghten some results of the previous section by providing101

polynomial (Turing) kernels in the case where H is a clique minus a claw.102

Then, we prove that for many H, MIS on H-free graphs does not admit a103

polynomial kernel, unless NP ⊆ coNP/poly.104

Our results allow to obtain the complete quatrochotomy polynomial/polynomial105

kernel (PK)/no PK but polynomial Turing kernel/W [1]-hard for all possible106

graphs on four vertices.107

1.2 Notation108

For classical notation related to graph theory or fixed-parameter tractable109

algorithms, we refer the reader to the monographs [13] and [14], respectively.110

For an integer r > 2 and a graph H with vertex set V (H) = {v1, . . . , vnH
}111

with nH 6 r, we denote by Kr \H the graph with vertex set {1, . . . , r} and112

edge set {ab : 1 6 a, b 6 r such that vavb /∈ E(H)}. For X ⊆ V (G), we113

write G \ X to denote G[V (G) \ X]. For two graphs G and H, we denote114

by G ] H the disjoint union operation, that is, the graph with vertex set115

V (G) ∪ V (H) and edge set E(G) ∪ E(H). We denote by G + H the join116

operation of G and H, that is, the graph with vertex set V (G) ∪ V (H) and117

edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For two integers r, k,118

we denote by Ram(r, k) the Ramsey number of r and k, i.e. the number such119

that every graph with at least Ram(r, k) vertices contains either a clique of120

size r or an independent set of size k. We write for short Ram(k) = Ram(k, k).121

Finally, for `, k > 0, we denote by Ram`(k) the minimum order of a complete122

graph whose edges are colored with ` colors to contain a monochromatic clique123

of size k. The following bounds are known: Ram(r, k) 6
(
r+k−2
r−1

)
=
(
r+k−2
k−1

)
,124

and Ram`(k) 6 k`k.125

2 W [1]-hardness126

2.1 Main reduction127

We show the following:128

Theorem 2 For any p1 > 4 and p2 > 1, MIS remains W [1]-hard in graphs129

excluding simultaneously the following graphs as induced subgraphs:130

– K1,4131

– C4, . . . , Cp1132

– any tree T with two branching vertices2 at distance at most p2.133

Proof. Let p = max{p1, p2}. We reduce from Grid Tiling, where the input134

is composed of k2 sets Si,j ⊆ [m] × [m] (0 6 i, j 6 k − 1), called tiles, each135

2 A branching vertex in a tree is a vertex of degree at least 3.
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Ti,j

Ri,jLi,j

Bi,j

Gadget TGi,j

Li,j+1Ri,j−1

Fig. 1 Gadget TGi,j representing a tile and its adjacencies with TGi,j−1 and TGi,j+1, for
p = 1. Each circle is a main clique on n vertices: dashed cliques are the cycle cliques (those of
them connected to three other cliques are branching cliques), while others are path cliques.
Black, blue and red arrows represent respectively type Th, Tr and Tc edges (bold arrows are
between two gadgets). Figures 2 and 3 represent some adjacencies in more details.

composed of n elements. The objective of Grid Tiling is to find an element136

s∗i,j ∈ Si,j for each 0 6 i, j 6 k− 1, such that s∗i,j agrees in the first coordinate137

with s∗i,j+1, and agrees in the second coordinate with s∗i+1,j , for every 0 6138

i, j 6 k− 1 (here and henceforth, i+ 1 and j+ 1 are taken modulo k). In such139

case, we say that {s∗i,j , 0 6 i, j 6 k − 1} is a feasible solution of the instance.140

It is known that Grid Tiling is W [1]-hard parameterized by k [10, 21].141

Before describing formally the reduction, let us give some definitions and142

ideas. Given s = (a, b) and s′ = (a′, b′), we say that s is row-compatible (resp.143

column-compatible) with s′ if a > a′ (resp. b > b′)3. Observe that a solution144

{s∗i,j , 0 6 i, j 6 k − 1} is feasible if and only if s∗i,j is row-compatible with145

s∗i,j+1 and column-compatible with s∗i+1,j for every 0 6 i, j 6 k − 1.146

We will represent each tile by a gadget partitioned into a constant number147

of cliques of size n. The vertices of each clique are in one-to-one correspondence148

with the elements of the corresponding tile. Overall the cliques will be arranged149

in a grid-like structure with degree three. By that we mean that a clique will be150

linked to at most three other cliques. While most of the cliques will have only151

two neighboring cliques, a clique linked to three other cliques will be called152

branching clique. The row-compatibility (resp. column-compatibility) will be153

encoded with a relatively simple interaction between two adjacent cliques. The154

main difficulty will be to prevent the undesired induced subgraphs to appear155

in the vicinity of branching cliques. We now formally describe the reduction.156

3 Notice that the row-compatibility (resp. column-compatibility) relation is not symmet-
ric.
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Fig. 2 Adjacencies between cycle cliques (represented by dashed circles in Figure 1).
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Fig. 3 Two consecutive tiles and the representation of their adjacencies (representing type
Tr adjacencies).

2.1.1 Tile gadget.157

For every tile Si,j = {si,j1 , . . . , si,jn }, we construct a tile gadget TGi,j , depicted158

in Figure 1. Notice that this gadget shares some ideas with the W [1]-hardness159

proof for MIS in K1,4-free graphs by Hermelin et al. [17]. To define this gadget,160

we first describe an oriented graph with three types of arcs (type Th, Tr and161

Tc, which respectively stands for half-graph, row and column, and this naming162

will become clearer later), and then explain how to represent the vertices and163

arcs of this graph to get the concrete gadget. Consider first a directed cycle on164

4p+ 4 vertices c1, . . . , c4p+4 with arcs of type Th. Then consider four oriented165

paths on p+ 1 vertices: P1, P2, P3 and P4. P1 and P3 are composed of arcs of166

type Tc, while P2 and P4 are composed of arcs of type Tr. Put an arc of type167

Tc between:168

– the last vertex of P1 and c1,169

– c2p+3 and the first vertex of P3,170

and an arc of type Tr between:171
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– cp+2 and the first vertex of P2,172

– the last vertex of P4 and c3p+4.173

Now, we replace every vertex of this oriented graph by a clique on n vertices,174

and fix an arbitrary ordering on the vertices of each clique. The ith vertex175

in this ordering is said to have index i. For each arc of type Th between c176

and c′, add a half-graph4 between the corresponding cliques: connect the ath177

vertex of the clique representing c with the bth vertex of the clique representing178

c′ whenever a > b. For every arc of type Tr from a vertex c to a vertex c′,179

connect the ath vertex of the clique representing c with the bth vertex of the180

clique representing c′ iff si,ja is not row-compatible with si,jb . Similarly, for181

every arc of type Tc from a vertex c to a vertex c′, connect the ath vertex of182

the clique representing C with the bth vertex of the clique representing c′ iff183

si,ja is not column-compatible with si,jb .184

The cliques corresponding to vertices of this gadget are called the main185

cliques of TGi,j , and the cliques corresponding to the central cycle on 4p+ 4186

vertices are called the cycle cliques. The main cliques which are not cycle187

cliques are called path cliques. The cycle cliques adjacent to one path clique188

are called branching cliques. We call cycle of cliques the set of all cycle cliques189

present in the same gadget TGi,j . Two cycle of cliques are said consecutive190

if they lie on two gadgets TGi,j and TGi,j+1, or TGi,j and TGi+1,j . A path191

of cliques is any subgraph induced by the cliques corresponding to vertices192

forming a directed path in the oriented preliminary graph.193

Finally, the clique corresponding to the vertex of degree one in the path at-194

tached to c1 (resp. cp+2, c2p+3, c3p+4) is called the top (resp. right, bottom, left)195

clique of TGi,j , denoted by Ti,j (resp. Ri,j , Bi,j , Li,j). Let Ti,j = {ti,j1 , . . . , ti,jn },196

Ri,j = {ri,j1 , . . . , ri,jn }, Bi,j = {bi,j1 , . . . , bi,jn }, and Li,j = {`i,j1 , . . . , `i,jn }. For the197

sake of readability, we might omit the superscripts i, j when it is clear from198

the context.199

Lemma 1 Let K be an independent set of size 8(p+ 1) in TGi,j. Then:200

(a) K intersects all the cycle cliques on the same index x ∈ [n];201

(b) if K∩Ti,j = {txt
}, K∩Ri,j = {rxr

}, K∩Bi,j = {bxb
}, and K∩Li,j = {`x`

}.202

Then:203

– si,jx`
is row-compatible with si,jx which is row-compatible with si,jxr

, and204

– si,jxt
is column-compatible with si,jx which is column-compatible with si,jxb

.205

Proof. Observe that the vertices of TGi,j can be partitioned into 8(p + 1)206

cliques (the main cliques), hence an independent set of size 8(p+ 1) intersects207

each main clique on exactly one vertex. Let C1, C2 and C3 be three consecutive208

cycle cliques, and suppose K intersects C1 (resp. C2, C3) on the xth1 (resp. xth2 ,209

xth3 ) index. By definition of the gadget, it implies x1 6 x2 6 x3. By applying210

4 Notice that our definition of half-graph slighly differs from the usual one, in the sense
that we do not put edges relying two vertices of the same index. Hence, our construction
can actually be seen as the complement of a half-graph (which is consistent with the fact
that usually, both parts of a half-graph are independent sets, while they are cliques in our
gadgets).
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the same argument from C3 along the cycle, we obtain x3 6 x1, which proves211

(a). The proof of (b) directly comes from the definition of the adjacencies212

between cliques of type Tr and Tc, and from the fact that K intersects all213

cycle cliques on the same index.214

2.1.2 Attaching gadgets together.215

For i, j ∈ {0, . . . , k − 1}, we connect the right clique of TGi,j with the left216

clique of TGi,j+1 in a “type Tr spirit”: for every x, y ∈ [n], connect ri,jx ∈ Ri,j217

with `i,j+1
y ∈ Li,j+1 iff si,jx is not row-compatible with si,j+1

y . Similarly, we218

connect the bottom clique of TGi,j with the top clique of TGi+1,j in a “type219

Tc spirit”: for every x, y ∈ [n], connect bi,jx ∈ Bi,j with ti+1,j
y ∈ Ti+1,j iff si,jx220

is not column-compatible with si+1,j
y (all incrementations of i and j are done221

modulo k). This terminates the construction of the graph G.222

2.1.3 Equivalence of solutions.223

We now prove that the input instance of Grid Tiling is positive if and only224

if G has an independent set of size k′ = 8(p+1)k2. First observe that G has k2225

tile gadgets, each composed of 8(p + 1) main cliques, hence any independent226

set of size k′ intersects each main clique on exactly one vertex. By Lemma 1,227

for all i, j ∈ {0, . . . , k − 1}, K intersects the cycle cliques of TGi,j on the228

same index xi,j . Moreover, if K ∩ Ri,j = {ri,jx } and K ∩ Li,j+1 = {`i,j+1
x′ },229

then, by construction of G, si,jx is row-compatible with si,j+1
x′ . Similarly, if230

K ∩ Bi,j = {bi,jx } and K ∩ Ti+1,j = {ti+1,j
x′ }, then, by construction of G, si,jx231

is column-compatible with si+1,j
x′ . By Lemma 1, it implies that si,jxi,j

is row-232

compatible with si,j+1
xi,j+1

and column-compatible with si+1,j
xi+1,j

(incrementations233

of i and j are done modulo k), thus {xi,jxi,j
: 0 6 i, j 6 k − 1} is a feasible234

solution. Using similar ideas, one can prove that a feasible solution of the grid235

tiling instance implies an independent set of size k′ in G.236

2.1.4 Structure of the obtained graph.237

Let us now prove that G does not contain the graphs mentioned in the state-238

ment as an induced subgraph:239

No K1,4. We first prove that for every 0 6 i, j 6 k− 1, the graph induced240

by the cycle cliques of TGi,j is claw-free. For the sake of contradiction, suppose241

that there exist three consecutive cycle cliques A, B and C containing a claw.242

W.l.o.g. we may assume that bx ∈ B is the center of the claw, and aα ∈ A,243

bβ ∈ B and cγ ∈ C are the three endpoints. By construction of the gadgets244

(there is a half-graph between A and B and between B and C), we must have245

α < x < γ. Now, observe that if x < β then aα must be adjacent to bβ , and246

if β < x, then bβ must be adjacent to cγ , but both case are impossible since247

{aα, bβ , cγ} is supposed to be an independent set.248
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Similarly, each subgraph induced by P , a path of size 2(p + 1) of cliques249

linking two consecutive cycles of cliques, is claw-free. Hence, for K1,4 to appear250

in G its center would have to lie in a branching clique. However, in that case,251

a claw must exist either in the cycle of cliques or in P , which we already ruled252

out.253

No C4, . . . ,Cp1 . The main argument is that the graph induced by any254

two main cliques does not contain any of these cycles. Then, we show that255

such a cycle cannot lie entirely in the cycle cliques of a single gadget TGi,j .256

Indeed, if this cycle uses at most one vertex per main clique, then it must257

be of length at least 4p + 4. If it intersects a clique C on two vertices, then258

either it also intersect all the cycle cliques of the gadget, in which case it is of259

length 4p+ 5, or it intersects an adjacent clique of C on two vertices, in which260

case these two cliques induce a C4, which is impossible. Similarly, such a cycle261

cannot lie entirely in a path between the main cliques of two gadgets. Finally,262

the main cliques of two gadgets are at distance at least 2(p+ 1), hence such a263

cycle cannot intersect the main cliques of two gadgets.264

No tree T with two branching vertices at distance at most p2.265

Using the same argument as for the K1,4 case, observe that the claws con-266

tained in G can only appear in the cycle cliques where the paths are attached.267

However, observe that these cliques are at distance 2(p + 1) > p2, thus, such268

a tree T cannot appear in G.269

As a direct consequence of Theorem 2, we get the following by setting270

p1 = p2 = |V (H)|+ 1:271

Corollary 1 If H is not chordal, or contains as an induced subgraph a K1,4272

or a tree with two branching vertices, then MIS in H-free graphs is W [1]-hard.273

2.2 Capturing Hard Graphs274

We introduce two variants of the hardness construction of Theorem 2, which275

we refer to as the first construction. The second construction is obtained by276

replacing each interaction between two main cliques by an anti-matching, ex-277

cept the one interaction in the middle of the path cliques which remains a278

half-graph (see Figure 4, middle). In an anti-matching, the same elements in279

the two adjacent cliques define the only non-edges. The correctness of this280

new reduction is simpler since the propagation of a choice is now straightfor-281

ward. Observe however that the graph C4 appears in this new construction.282

For the third construction, we start from the second construction and just add283

an anti-matching between two neighbors of each branching clique among the284

cycle cliques (see Figure 4, right). This anti-matching only constrains more the285

instance but does not destroy the intended solutions; hence the correctness.286

To describe those connected graphs H which escape the disjunction of287

Theorem 2 (for which there is still a hope that MIS is FPT), we define a288

decomposition into cliques, similar yet different from clique graphs or tree289

decompositions of chordal graphs (a.k.a k-trees).290
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Fig. 4 A symbolic representation of the hardness constructions. To the left, only half-graphs
(blue) are used between the cliques, as in the proof of Theorem 2. In the middle and to the
right, the half-graphs (blue) are only used once in the middle of each path of cliques, and the
rest of the interactions between the cliques are anti-matchings (red). The third construction
(right) is a slight variation of the second (middle) where for each branching clique, we link
by an anti-matching its two neighbors among the cycle cliques.

Definition 1 Let T be a graph on ` vertices t1, . . . , t`. We say that T is a291

clique decomposition of H if there is a partition of V (H) into (C1, C2, . . . , C`)292

such that:293

– for each i ∈ [`], H[Ci] is a clique, and294

– for each pair i 6= j ∈ [`], if H[Ci ∪ Cj ] is connected, then titj ∈ E(T ).295

Observe that, in the above definition, we do not require T to be a tree.296

Two cliques Ci and Cj are said adjacent if H[Ci ∪ Cj ] is connected. We also297

write a clique decomposition on T (of H) to denote the choice of an actual298

partition (C1, C2, . . . , C`).299

Let T1 be the class of trees with at most one branching vertex. Equivalently,300

T1 consists of paths and subdivisions of the claw.301

Proposition 1 For a fixed connected graph H, if no tree in T1 is a clique302

decomposition of H, then MIS in H-free graphs is W [1]-hard.303

Proof. This is immediate from the proof of Theorem 2 since H cannot appear304

in the first construction.305

At this point, we can focus on connected graphs H admitting a tree T ∈ T1306

as a clique decomposition. The reciprocal of Proposition 1 cannot be true since307

a simple edge is a clique decomposition of C4. The next definition further308

restricts the interaction between two adjacent cliques.309

Definition 2 Let T be a graph on ` vertices t1, . . . , t`. We say that T is a310

strong clique decomposition of H if there is a partition of V (H) into (C1, . . . , C`)311

such that:312

– for each i ∈ [`], H[Ci] is a clique,313

– for each titj ∈ E(T ), H[Ci ∪ Cj ] is a clique, and314

– for each titj /∈ E(T ), there is no edge between Ci and Cj .315
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An equivalent way to phrase this definition is that H can be obtained316

from T by adding false twins. Adding a false twin v′ to a graph consists of317

duplicating one of its vertex v (i.e., v and v′ have the same neighbors) and318

then adding an edge between v and v′.319

We define almost strong clique decompositions which informally are strong320

clique decompositions where at most one edge can be missing in the interaction321

between two adjacent cliques.322

Definition 3 Let T be a graph on ` vertices t1, . . . , t`. We say that T is an323

almost strong clique decomposition of H if there is a partition of V (H) into324

(C1, . . . , C`) such that:325

– for each i ∈ [`], H[Ci] is a clique,326

– for each titj ∈ E(T ), H[Ci ∪Cj ] is a clique potentially deprived of a single327

edge, and is connected, and328

– for each titj /∈ E(T ), there is no edge between Ci and Cj .329

Finally, a nearly strong clique decomposition is slightly weaker than an330

almost strong clique decomposition: at most one interaction between two ad-331

jacent cliques is only required to be C4-free. Formally:332

Definition 4 Let T be a graph on ` vertices t1, . . . , t` with a special edge333

tatb. We say that T is a nearly strong clique decomposition of H if there is a334

partition of V (H) into (C1, . . . , C`) such that:335

– for each i ∈ [`], H[Ci] is a clique,336

– H[Ca ∪ Cb] is C4-free,337

– for each titj ∈ E(T ) \ {tatb}, H[Ci ∪Cj ] is a clique potentially deprived of338

a single edge, and is connected, and339

– for each titj /∈ E(T ), there is no edge between Ci and Cj .340

Let P be the set of all the paths. Notice that T1 \ P is the set of all the341

subdivisions of the claw.342

Theorem 3 Let H be a fixed connected graph. If no P ∈ P is a nearly strong343

clique decomposition of H and no T ∈ T1 \ P is an almost strong clique de-344

composition of H, then MIS in H-free graphs is W [1]-hard.345

Proof. The idea is to mainly use the second construction and the fact that MIS346

in C4-free graphs is W [1]-hard (due to the first construction). For every fixed347

graph H which cannot be an induced subgraph in the second construction,348

MIS is W [1]-hard. To appear in this construction, the graph H should have349

– either a clique decomposition on a subdivision of the claw, such that the350

interaction between two adjacent cliques is the complement of a (non nec-351

essarily perfect) matching, or352

– a clique decomposition on a path, such that the interaction between two353

adjacent cliques is the complement of a matching, except for at most one354

interaction which can be a C4-free graph.355



12 Édouard Bonnet et al.

We now just observe that in both cases if, among the interactions between356

adjacent cliques, one complement of matching has at least two non-edges, then357

H contains an induced C4. Hence the two items can be equivalently replaced358

by the existence of an almost strong clique decomposition on a subdivision of359

the claw, and a nearly strong clique decomposition on a path, respectively.360

Theorem 3 narrows down the connected open cases to graphs H which361

have a nearly strong clique decomposition on a path or an almost strong clique362

decomposition on a subdivision of the claw.363

In the strong clique decomposition, the interaction between two adjacent364

cliques is very simple: their union is a clique. Therefore, it might be tempting365

to conjecture that if H admits T ∈ T1 as a strong clique decomposition, then366

MIS in H-free graphs is FPT. Indeed, those graphs H appear in both the first367

and the second W [1]-hardness constructions. Nevertheless, we will see that368

this conjecture is false: even if H has a strong clique decomposition T ∈ T1,369

it can be that MIS is W [1]-hard. The simplest tree of T1 \ P is the claw. We370

denote by Ti,j,k the graph obtained by adding a universal vertex to the disjoint371

union of three cliques Ki]Kj ]Kk. The claw is a strong clique decomposition372

of Ti,j,k (for every natural numbers i, j, k).373

Theorem 4 MIS in T1,2,2-free graphs is W [1]-hard.374

Proof. We show that T1,2,2 does not appear in the third construction (Fig-375

ure 4, right). We claim that, in this construction, the graph T1,1,2, sometimes376

called cricket, can only appear in the two ways depicted on Figure 5 (up to377

symmetry).378

Claim 5. The triangle of the cricket cannot appear within the same main379

clique.380

Proof of claim: Otherwise the two leaves (i.e., vertices of degree 1) of the381

cricket are in two distinct adjacent cliques. But at least one of those adjacent382

cliques is linked to the main clique of the triangle by an anti-matching. This383

is a contradiction to the corresponding leaf having two non-neighbors in the384

main clique of the triangle. /385

We first study how the cricket can appear in a path of cliques. Let C be386

the main clique containing the universal vertex of the cricket. This vertex is387

adjacent to three disjoint cliques K1]K1]K2. Due to the previous claim, the388

only way to distribute them is to put K1 in the previous main clique, K1 in the389

same main clique C, and K2 in the next main clique. This is only possible if the390

interaction between C and the next main clique is a half-graph. In particular,391

this implies that the interaction between the previous main clique and C is an392

anti-matching. This situation corresponds to the left of Figure 5.393

This also implies that the cricket cannot appear in a path of cliques without394

a half-graph interaction (anti-matchings only). We now turn our attention395

to the vicinity of a triangle of main cliques, which is proper to the third396

construction. By our previous remarks, we know that the universal vertex of397
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Fig. 5 The two ways the cricket appears in the third construction. The red edges between
two adjacent cliques symbolize an anti-matching, whereas the blue edge symbolizes a C4-
free graph. In the left hand-side, one neighbor of the universal vertex with degree 2 could
alternatively be in the same clique as the universal vertex.

the cricket has to be either alone in a main clique (by symmetry, it does not398

matter which one) of the triangle, or with exactly one of its neighbors of degree399

2. Now, the only way to place K1 ]K1 ]K2 is to put the two K1 in the two400

other main cliques of the triangle, and the K2 (or the single vertex rest of it) in401

the remaining adjacent main clique. Indeed, if the K2 is in a main clique of the402

triangle, the K1 in the third main clique of the triangle would have two non-403

edges towards to K2. This is not possible with an anti-matching interaction.404

Therefore, the only option corresponds to the right of Figure 5.405

To obtain a T1,2,2, one needs to find a false twin to one of the leaves of406

the cricket. This is not possible since, in both cases, the two leaves are in two407

adjacent cliques with an anti-matching interaction. Therefore, adding the false408

twin would create a second non-neighbor to the remaining leaf.409

The graph T1,1,1 is the claw itself for which MIS is solvable in polynomial410

time. The parameterized complexity for the graph T1,1,2 (the cricket) remains411

open. As a matter of fact, this question is unresolved for T1,1,s-free graphs,412

for any integer s > 2. Solving those cases would bring us a bit closer to a413

full dichotomy FPT vs W [1]-hard. Although, Theorem 4 suggests that this414

dichotomy will be rather subtle. In addition, this result infirms the plausible415

conjecture: if MIS is FPT in H-free graphs, then it is FPT in H ′-free graphs416

where H ′ can be obtained from H by adding false twins.417

The toughest challenge towards the dichotomy is understanding MIS in418

the absence of paths of cliques5. In Theorem 11, we make a very first step419

in that direction: we show that for every graph H with a strong clique de-420

composition on P3, the problem is FPT. In the previous paragraphs, we dealt421

mostly with connected graphs H. In Theorem 6, we show that if H is a disjoint422

union of cliques, then MIS in H-free graphs is FPT. In the language of clique423

decompositions, this can be phrased as H has a clique decomposition on an424

edgeless graph.425

5 Actually, even the classical complexity of MIS in the absence of long induced paths is
not well understood
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3 Positive results I: disjoint union of cliques426

For r, q > 1, let Kq
r be the disjoint union of q copies of Kr. The proof of the427

following theorem is inspired by the case r = 2 by Alekseev [2].428

Theorem 6 Maximum Independent Set is FPT in Kq
r -free graphs.429

Proof. We will prove by induction on q that a Kq
r -free graph has an inde-430

pendent set of size k or has at most Ram(r, k)qknqr independent sets. This431

will give the desired FPT-algorithm, as the proof shows how to construct this432

collection of independent sets. Note that the case q = 1 is trivial by Ramsey’s433

theorem. We also assume r ≥ 3, since the case r = 2 corresponds to Alekseev’s434

algorithm[2].435

Let G be a Kq
r -free graph and let < be any fixed total ordering of V (G)436

such that the largest vertex in this ordering belongs to a clique of size r (the437

case where G is Kr-free is trivial by Ramsey’s theorem). Since a clique of size r438

can be found in polynomial time, such an ordering can be found in polynomial439

time. For any vertex x, define x+ = {y, x < y} and x− = V (G) \ x+.440

Let us first explain how we will generate independent sets. We will prove441

next that the algorithm generates all of them. Let C be a fixed clique of size r442

in G and let c be the largest vertex of C with respect to <. Let V1 be the set443

of vertices of c+ which have no neighbor in C. Note that V1 induces a Kq−1
r -444

free graph, so by induction either it contains an independent set of size k,445

and so does G, or it has at most Ram(r, k)(q−1)kn(q−1)r independent sets. In446

the latter case, let S1 be the set of all independent sets of G[V1]. Now in a447

second phase we define an initially empty set SC and do the following. For448

each independent set S1 in S1 (including the empty set), we denote by V2 the449

set of vertices in c− that have no neighbor in S1. For every choice of a vertex x450

amongst the largest Ram(r, k) vertices of V2 in the order, we add x to S1 and451

modify V2 in order to keep only vertices that are smaller than x (with respect452

to <) and non adjacent to x. We repeat this operation k − 1 times (or until453

V2 becomes empty). At the end, we either find an independent set of size k (if454

V2 is still not empty) or add S1 to SC (when V2 becomes empty). By doing so455

we construct a family of at most Ram(r, k)k independent sets for each S1, so456

in total we get indeed at most Ram(r, k)kqn(q−1)r independent sets for each457

clique C. Finally we define S as the union over all r-cliques C of the sets SC ,458

so that S has size at most the desired number.459

We claim that if G does not contain an independent set of size k, then S460

contains all independent sets of G. It suffices to prove that for every indepen-461

dent set S, there exists a clique C for which S ∈ SC . Let S be an independent462

set, and define C to be a clique of size r such that its largest vertex c (with463

respect to <) satisfies the conditions:464

– no vertex of C is adjacent to a vertex of S ∩ c+, and465

– c is the smallest vertex such that a clique C satisfying the first item exists.466

First remark that such a clique always exist, since we assumed that the largest467

vertex clast of < is contained in a clique of size r, which means that S ∩ c+last468
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is empty and thus the first item is vacuously satisfied. Secondly, note that469

several cliques C might satisfy the two previous conditions. In that case, pick470

one such clique arbitrarily. This definition of C and c ensures that S∩ c+ is an471

independent set in the set V1 defined in the construction above (it might be472

empty). Thus, it will be picked in the second phase as some S1 in S1 and for473

this choice, each time V2 is considered, the fact that C is chosen to minimize its474

largest element c guarantees that there must be a vertex of S in the Ram(r, k)475

largest vertices in V2, otherwise we could find within those vertices an r-clique476

contradicting the choice of C (we can find an r-clique satisfying both points477

such that the maximum vertex is smaller than c). So it ensures that we will478

add S to the collection SC , which concludes our proof.479

4 Positive results II480

4.1 Key ingredient: Iterative expansion and Ramsey extraction481

In this section, we present the main idea of our algorithms. It is a general-482

ization of iterative expansion, which itself is the maximization version of the483

well-known iterative compression technique. Iterative compression is a useful484

tool for designing parameterized algorithms for subset problems (i.e. problems485

where a solution is a subset of some set of elements: vertices of a graph, vari-486

ables of a logic formula...etc.) [10, 25]. Although it has been mainly used for487

minimization problems, iterative compression has been successfully applied488

for maximization problems as well, under the name iterative expansion [7].489

Roughly speaking, when the problem consists of finding a solution of size at490

least k, the iterative expansion technique consists of solving the problem where491

a solution S of size k − 1 is given in the input, in the hope that this solution492

will imply some structure in the instance. In the following, we consider an493

extension of this approach where, instead of a single smaller solution, one is494

given a set of f(k) smaller solutions S1, . . . , Sf(k). As we will see later, we can495

further add more constraints on the sets S1, . . . , Sf(k). Notice that all the re-496

sults presented in this sub-section (Lemmas 2 and 3 in particular) hold for any497

hereditary graph class (including the class of all graphs). The use of properties498

inherited from particular graphs (namely, H-free graphs in our case) will only499

appear in Sections 4.2 and 4.3.500

Definition 5 For a function f : N → N, the f-Iterative Expansion MIS501

problem takes as input a graph G, an integer k, and a set of f(k) vertex-502

disjoint independent sets S1, . . . , Sf(k), each of size k− 1. The objective is to503

find an independent set of size k in G, or to decide that such an independent504

set does not exist.505

Lemma 2 Let G be a hereditary graph class. MIS is FPT in G iff f-Iterative506

Expansion MIS is FPT in G for some computable function f : N→ N.507
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Proof. Clearly if MIS is FPT, then f-Iterative Expansion MIS is FPT508

for any computable function f . Conversely, let f be a function for which f-509

Iterative Expansion MIS is FPT, and let G be a graph with |V (G)| = n.510

We show by induction on k that there is an algorithm that either finds an511

independent set of size k, or answers that such a set does not exist, in FPT time512

parameterized by k. The initialization can obviously be computed in constant513

time. Assume we have an algorithm for k−1. Successively for i from 1 to f(k),514

we construct an independent set Si of size k − 1 in G \ (S1, . . . , Si−1). If, for515

some i, we are unable to find such an independent set, then it implies that any516

independent set of size k in G must intersect S1∪· · ·∪Si−1. We thus branch on517

every vertex v of this union, and, by induction, find an independent set of size518

k− 1 in the graph induced by V (G) \N [v]. If no step i triggered the previous519

branching, we end up with f(k) vertex-disjoint independent sets S1, . . . , Sf(k),520

each of size k− 1. We now invoke the algorithm for f-Iterative Expansion521

MIS to conclude. Let us analyze the running time of this algorithm: each522

step either branches on at most f(k)(k− 1) subcases with parameter k− 1, or523

concludes in time Af (n, k), the running time of the algorithm for f-Iterative524

Expansion MIS. Hence the total running time is O∗(f(k)k(k− 1)kAf (n, k)),525

where the O∗(.) suppresses polynomial factors.526

We will actually prove a stronger version of this result, by adding more527

constraints on the input sets S1, . . . , Sf(k), and show that solving the expan-528

sion version on this particular kind of input is enough to obtain the result for529

MIS.530

Definition 6 Given a graph G and a set of k− 1 vertex-disjoint cliques of G,531

C = {C1, . . . , Ck−1}, each of size q, we say that C is a set of Ramsey-extracted532

cliques of size q if the conditions below hold. Let Cr = {crj : j ∈ {1, . . . , q}}533

for every r ∈ {1, . . . , k − 1}.534

– For every j ∈ [q], the set {crj : r ∈ {1, . . . , k − 1}} is an independent set of535

G of size k − 1.536

– For any r 6= r′ ∈ {1, . . . , k− 1}, one of the four following case can happen:537

(i) for every j, j′ ∈ [q], crjc
r′

j′ /∈ E(G)538

(ii) for every j, j′ ∈ [q], crjc
r′

j′ ∈ E(G) iff j 6= j′539

(iii) for every j, j′ ∈ [q], crjc
r′

j′ ∈ E(G) iff j < j′540

(iv) for every j, j′ ∈ [q], crjc
r′

j′ ∈ E(G) iff j > j′541

In the case (i) (resp. (ii)), we say that the relation between Cr and Cr′ is542

empty (resp. full6). In case (iii) or (iv), we say the relation is semi-full.543

Observe, in particular, that a set C of k − 1 Ramsey-extracted cliques of544

size q can be partitioned into q independent sets of size k − 1. As we will see545

later, these cliques will allow us to obtain more structure with the remaining546

vertices if the graph is H-free. Roughly speaking, if q is large, we will be able to547

6 Remark that in this case, the graph induced by Cr ∪Cr′ is the complement of a perfect
matching.
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extract from C another set C′ of k− 1 Ramsey-extracted cliques of size q′ < q,548

such that every clique is a module7 with respect to the solution x∗1, . . . , x∗k we549

are looking for. Then, by guessing the structure of the adjacencies between C′550

and the solution, we will be able to identify from the remaining vertices k sets551

X1, . . . , Xk, where each Xi has the same neighborhood as x∗i w.r.t. C′, and552

plays the role of “candidates” for this vertex. For a function f : N → N, we553

define the following problem:554

Definition 7 The f-Ramsey-extracted Iterative Expansion MIS prob-555

lem takes as input an integer k and a graph G whose vertices are partitioned556

into non-empty sets X1 ∪ · · · ∪Xk ∪ C1 ∪ · · · ∪ Ck−1, where:557

– {C1, . . . , Ck−1} is a set of k − 1 Ramsey-extracted cliques of size f(k)558

– any independent set of size k in G is contained in X1 ∪ · · · ∪Xk559

– ∀i ∈ {1, . . . , k}, ∀v, w ∈ Xi and ∀j ∈ {1, . . . , k − 1}, N(v) ∩ Cj = N(w) ∩560

Cj = ∅ or N(v) ∩ Cj = N(w) ∩ Cj = Cj561

– the following bipartite graph B is connected: V (B) = B1 ∪ B2, B1 =562

{b11, . . . , b1k}, B2 = {b21, . . . , b2k−1} and b1jb
2
r ∈ E(B) iff Xj and Cr are adja-563

cent.564

The objective is the following:565

– if G contains an independent set S such that S ∩ Xi 6= ∅ for all i ∈566

{1, . . . , k}, then the algorithm must answer “YES”. In that case the solu-567

tion is called a rainbow independent set.568

– if G does not contain an independent set of size k, then the algorithm must569

answer “NO”.570

Observe that in the case the graph contains an independent set of size k but571

no rainbow independent set, the algorithm is allowed to answer either yes or572

no. Eventually, this will imply a one-sided error Monte-Carlo algorithm with573

constant error probability for MIS. Definition 7 is illustrated by Figure 6.574

Lemma 3 Let G be a hereditary graph class. If there exists a computable func-575

tion f : N → N such that f-Ramsey-extracted Iterative Expansion576

MIS is FPT in G, then g-Iterative Expansion MIS is FPT in G, where577

g(x) = Ram`x(f(x)2x(x−1)) ∀x ∈ N, with `x = 2(x−1)
2

.578

Proof. Let f : N→ N be such a function, and let G, k and S = {S1, . . . , Sg(k)}579

be an input of g-Iterative Expansion MIS. Recall that the objective is to580

find an independent set of size k in G, or to decide that α(G) < k. We prove it581

by induction on k. If G contains an independent set of size k, then either there582

is one intersecting some set of S, or every independent set of size k avoids the583

sets in S. In order to capture the first case, we branch on every vertex v of584

the sets in S, and make a recursive call with parameter G \N [v], k− 1. In the585

remainder of the algorithm, we thus assume that any independent set of size586

k in G avoids every set of S.587

7 A set of vertices M is a module if every vertex v /∈ M is adjacent to either all vertices
of M , or none.
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Fig. 6 The structure of the f-Ramsey-extracted Iterative Expansion MIS inputs.

We choose an arbitrary ordering of the vertices of each Sj . Let us denote588

by srj the rth vertex of Sj . Notice that given an ordered pair of sets of k − 1589

vertices (A,B), there are `k = 2(k−1)
2

possible sets of edges between these two590

sets. Let us denote by c1, . . . , c2(k−1)2 the possible sets of edges, called types.591

We define an auxiliary edge-colored graph H whose vertices are in one-to-one592

correspondence with S1, . . . , Sg(k), and, for i < j, there is an edge between Si593

and Sj of color γ iff the type of (Si, Sj) is γ. By Ramsey’s theorem, since H has594

Ram`k(f(k)2k(k−1)) vertices, it must admit a monochromatic clique of size at595

least h(k) = f(k)2k(k−1). W.l.o.g., the vertex set of this clique corresponds to596

S1, . . . , Sh(k). For p ∈ {1, . . . , k−1}, let Cp = {sp1, . . . , s
p
h(k)}. Observe that the597

Ramsey extraction ensures that each Cp is either a clique or an independent598

set. If Cp is an independent set for some p, then we can immediately conclude,599

since h(k) > k. Hence, we suppose that Cp is a clique for every p ∈ {1, . . . , k−600

1}. We now prove that C1, . . . , Ck−1 are Ramsey-extracted cliques of size h(k).601

First, by construction, for every j ∈ {1, . . . , h(k)}, the set {spj : p = 1, . . . , k−1}602

is an independent set. Then, let c be the type of the monochromatic clique603

of H obtained previously, represented by the adjacencies between two sets604

(A,B), each of size k− 1. For every p ∈ {1, . . . , k− 1}, let ap (resp. bp) be the605

pth vertex of A (resp. B). Let p, q ∈ {1, . . . , k − 1}, p 6= q. If none of apbq and606

aqbp are edges in type c, then there is no edge between Cp and Cq, and their607

relation is thus empty. If both edges apbq and aqbp exist in c, then the relation608



Parameterized Complexity of Independent Set in H-Free Graphs 19

between Cp and Cq is full. Finally if exactly one edge among apbq and aqbp609

exists in c, then the relation between Cp and Cq is semi-full. This concludes610

the fact that C = {C1, . . . , Ck−1} are Ramsey-extracted cliques of size h(k).611

Suppose that G has an independent set X∗ = {x∗1, . . . , x∗k}. Recall that612

we assumed previously that X∗ is contained in V (G) \ (C1 ∪ · · · ∪ Ck−1). The613

next step of the algorithm consists of branching on every subset of f(k) indices614

J ⊆ {1, . . . , h(k)}, and restrict every set Cp to {spj : j ∈ J}. For the sake615

of readability, we keep the notation Cp to denote {spj : j ∈ J} (the non-616

selected vertices are put back in the set of remaining vertices of the graph,617

i.e. we do not delete them). Since h(k) = f(k)2k(k−1), there must exist a618

branch where the chosen indices are such that for every i ∈ {1, . . . , k} and619

every p ∈ {1, . . . , k − 1}, x∗i is either adjacent to all vertices of Cp or none620

of them. In the remainder, we may thus assume that such a branch has been621

made, with respect to the considered solution X∗ = {x∗1, . . . , x∗k}. Now, for622

every v ∈ V (G) \ (C1, . . . , Ck−1), if there exists p ∈ {1, . . . , k − 1} such that623

N(v) ∩ Cp 6= ∅ and N(v) ∩ Cp 6= Cp , then we can remove this vertex, as624

we know that it cannot correspond to any x∗i . Thus, we know that all the625

remaining vertices v are such that for every p ∈ {1, . . . , k − 1}, v is either626

adjacent to all vertices of Cp, or none of them.627

In the following, we perform a color coding-based step on the remaining ver-628

tices. Informally, this color coding will allow us to identify, for every vertex x∗i629

of the optimal solution, a set Xi of candidates, with the property that all ver-630

tices in Xi have the same neighborhood with respect to sets C1, . . . , Ck−1. We631

thus color uniformly at random the remaining vertices V (G) \ (C1, . . . , Ck−1)632

using k colors. The probability that the elements of X∗ are colored with pair-633

wise distinct colors is at least e−k.634

This random process can be derandomized using the so-called notion of635

perfect hash families. A (n, k)-perfect hash family is a family of functions636

F from [n] to [k] (which can be seen as colorings) such that for every set637

S ∈
(
[n]
k

)
, there exists f ∈ F such that the restriction of f on S is injective.638

It is known [23] that a (n, k)-perfect hash family of size ekkO(log k) log n can639

be constructed in time ekkO(log k)n log n. Hence, instead of coloring V (G) \640

(C1, . . . , Ck−1) uniformly at random, we branch on every coloring f ∈ F and641

run the remainder of the algorithm. The definition of (n, k)-perfect hash family642

ensures that there is a coloring f such that X∗ is a rainbow independent set643

with respect to f . Notice that this derandomization step implies a branching644

into h(k) log n subcases, for some computable function h. However, the depth645

of the branching tree (i.e. the maximum number of times this branching will646

be made in every computation path) is bounded by a function of k only. Since647

(log n)k ≤ g(k)n for some function g [26], the deterministic version of the648

algorithm is still FPT.649

We are thus reduced to the case of finding a rainbow independent set. For650

every i ∈ {1, . . . , k}, let Xi be the vertices of V (G) \ (C1, . . . , Ck−1) colored651

with color i. We now partition every set Xi into at most 2k−1 subsets X1
i , . . . ,652

X2k−1

i , such that for every j ∈ {1, . . . , 2k−1}, all vertices of Xj
i have the same653
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neighborhood with respect to the sets C1, . . . , Ck−1 (recall that every vertex654

of V (G) \ (C1, . . . , Ck−1) is adjacent to all vertices of Cp or none, for each p ∈655

{1, . . . , k− 1}). We branch on every tuple (j1, . . . , jk) ∈ {1, . . . , 2k−1}. Clearly656

the number of branches is bounded by a function of k only and, moreover, one657

branch (j1, . . . , jk) is such that x∗i has the same neighborhood in C1∪· · ·∪Ck−1658

as vertices of Xji
i for every i ∈ {1, . . . , k}. We assume in the following that659

such a branching has been made. For every i ∈ {1, . . . , k}, we can thus remove660

vertices of Xj
i for every j 6= ji. For the sake of readability, we rename Xji

i661

as Xi. Let B be the bipartite graph with vertex bipartition (B1, B2), B1 =662

{b11, . . . , b1k}, B2 = {b21, . . . , b2k−1}, and b1i b
2
p ∈ E(B) iff x∗i is adjacent to Cp.663

Since every x∗i has the same neighborhood as Xi with respect to C1, . . . , Ck−1,664

this bipartite graph actually corresponds to the one described in Definition 7665

representing the adjacencies between Xi’s and Cp’s. We now prove that it is666

connected. Suppose it is not. Then, since |B1| = k and |B2| = k−1, there must667

be a component with as many vertices from B1 as vertices from B2. However,668

in this case, using the fixed solution X∗ on one side and an independent set669

of size k − 1 in C1 ∪ · · · ∪ Ck−1 on the other side, it implies that there is an670

independent set of size k intersecting ∪k−1p=1Cp, a contradiction.671

Hence, all conditions of Definition 7 are now fulfilled. It now remains to672

find an independent set of size k disjoint from the sets C, and having a non-673

empty intersection with Xi, for every i ∈ {1, . . . , k}. We thus run an algorithm674

solving f-Ramsey-extracted Iterative Expansion MIS on this input,675

which concludes the algorithm.676

The proof of the following result is immediate, by using successively Lem-677

mas 2 and 3.678

Theorem 7 Let G be a hereditary graph class. If f-Ramsey-extracted679

Iterative Expansion MIS is FPT in G for some computable function f ,680

then MIS is FPT in G.681

We now apply this framework to two families of graphs H.682

4.2 Clique minus a smaller clique683

Theorem 8 For any r > 2 and 2 6 s < r, MIS in (Kr \Ks)-free graphs is684

FPT if s 6 3, and W [1]-hard otherwise.685

Proof. The case s = 2 was already known [12]. The result for s > 4 comes686

from Theorem 2. We now deal with the case s = 3. We solve the problem687

in (Kr+3 \ K3)-free graphs, for every r > 2 (the problem is polynomial for688

r = 1, since it it corresponds exactly to the case of claw-free graphs). Let G, k689

be an input of the problem. We present an FPT algorithm for f-Ramsey-690

extracted Iterative Expansion MIS with f(x) = r for every x ∈ N. The691

result for MIS can then be obtained using Theorem 7.692

We thus assume that V (G) = X1 ∪ · · · ∪ Xk ∪ C1 ∪ · · · ∪ Ck−1 where693

all cliques Cp have size r. Consider the bipartite graph B representing the694
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adjacencies between {X1, . . . , Xk} and {C1, . . . , Ck−1}, as in Definition 7 (for695

the sake of readability, we will make no distinction between the vertices of696

B and the sets {X1, . . . , Xk} and {C1, . . . , Ck−1}). We may first assume that697

|Xi| > Ram(r, k) for every i ∈ {1, . . . , k}, since otherwise we can branch on698

every vertex v of Xi and make a recursive call with input G \ N [v], k − 1.699

Hence, for every i ∈ {1, . . . , k}, we may assume that Xi contains a clique on r700

vertices (indeed, if it does not, then it must contain an independent set of size701

k, in which case we are done). Suppose now that G contains an independent702

set S∗ = {x∗1, . . . , x∗k}, with xi ∈ Xi for all i ∈ {1, . . . , k}. The first step is to703

consider the structure of B, using the fact that G is (Kr \K3)-free. We have704

the following:705

Claim 9. B is a path, or we can conclude in polynomial time.706

Proof of claim: We first prove that for every i ∈ {1, . . . , k}, the degree of Xi707

in B is at most 2. Indeed, assume by contradiction that it is adjacent to Ca,708

Cb and Cc. Since |Xi| > Ram(r, k), by Ramsey’s theorem, it either contains709

an independent set of size k, in which case we are done, or a clique K of size710

r. However, observe in this case that K together with sa1 , sb1 and sc1 (which are711

pairwise non-adjacent) induces a graph isomorphic to Kr+3 \K3.712

Then, we show that for every i ∈ {1, . . . , k − 1}, the degree of Ci in B713

is at most 2. Assume by contradiction that Ci is adjacent to Xa, Xb and714

Xc. If the instance is positive, then there must be an independent set of size715

three with non-empty intersection with each of Xa, Xb and Xc. If such an716

independent set does not exist (which can be checked in cubic time), we can717

immediately answer NO. Now observe that Ci (which is of size r) together718

with this independent set induces a graph isomorphic to Kr+3 \K3.719

To summarize, B is a connected bipartite graph of maximum degree 2 with720

k vertices in one part, k − 1 vertices in the other part. It must be a path. /721

W.l.o.g., we may assume that for every i ∈ {2, . . . , k − 1}, Xi is adjacent722

to Ci−1 and Ci, and that X1 (resp. Xk) is adjacent to C1 (resp. Ck−1). We723

now concentrate on the adjacencies between sets Xi. We say that an edge724

xy ∈ E(G) is a long edge if x ∈ Xi, y ∈ Xj with |j−i| > 2 and 2 6 i, j 6 k−1,725

i 6= j.726

Claim 10. ∀x ∈ X2∪· · ·∪Xk−1, x is incident to at most (k−2)(Ram(r, 3)−1)727

long edges.728

Proof of claim: In order to prove it, let us show that for i, j ∈ {2, . . . , k − 1}729

such that |j− i| > 2, i 6= j, and for every x ∈ Xi, |N(x)∩Xj | 6 Ram(r, 3)−1.730

Assume by contradiction that there exists x ∈ Xi which has at least Ram(r, 3)731

neighbors Y ⊆ Xj . By Ramsey’s theorem, either Y contains an independent732

set of size 3 or a clique of size r. In the first case, Cj together with these three733

vertices induces a graph isomorphic to Kr+3 \K3. Hence we may assume that734

Y contains a clique Y ′ of size r. But in this case, Y ′ together with x, sj−11 , sj1735

induce a graph isomorphic to Kr+3 \K3 as well. /736
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Recall that the objective is to find an independent set of size k with non-737

empty intersection with Xi, for every i ∈ {1, . . . , k}. We assume k > 5, other-738

wise the problem is polynomial. The algorithm starts by branching on every739

pair of non-adjacent vertices (x1, xk) ∈ X1 ×Xk, and removing the union of740

their neihborhoods in X2 ∪ · · · ∪ Xk−1. For the sake of readability, we still741

denote by X2, . . . , Xk−1 these reduced sets. If such a pair does not exist or742

the removal of their neighborhood empties some Xi, then we immediately an-743

swer NO (for this branch). Informally speaking, we just guessed the solution744

within X1 and Xk (the reason for this is that we cannot bound the number745

of long edges incident to vertices of these sets). We now concentrate on the746

graph G′, which is the graph induced by X2 ∪ · · · ∪Xk−1. Clearly, it remains747

to decide whether G′ admits an independent set of size k− 2 with non-empty748

intersection with Xi, for every i ∈ {2, . . . , k − 1}.749

The previous claim showed that the structure of G′ is quite particular:750

roughly speaking, the adjacencies between consecutive Xi’s is arbitrary, but751

the number of long edges is bounded for every vertex. The key observation is752

that if there were no long edge at all, then a simple dynamic programming753

algorithm would allow us to conclude. Nevertheless, using the previous claim,754

we can actually upper bound the number of long edges incident to a vertex755

of the solution by a function of k only (recall that r is a constant). We can756

then get rid of these problematic long edges using the so-called technique of757

random separation [6]. Let S = {x2, . . . , xk−1} be a solution of our problem758

(with xi ∈ Xi for every i ∈ {2, . . . , k− 1}). Let us define D = {y : xy is a long759

edge and x ∈ S}. By the previous claim, we have |D| 6 (Ram(r, 3)−1)(k−2)2.760

The idea of random separation is to delete each vertex of the graph with761

probability 1
2 . At the end, we say that a removal is successful if both of the762

two following conditions hold: (i) no vertex of S has been removed, and (ii)763

all vertices of D have been removed (other vertices but S may have also been764

removed). Observe that the probability that a removal is successful is at least765

2−k
2Ram(r,3). In such a case, we can remove all remaining long edges (more766

formally, we remove their endpoints): indeed, for a remaining long edge xy, we767

know that there exists a solution avoiding both x and y, hence we can safely768

delete x and y.769

Similarly to the color coding step of Lemma 3, this can be derandomized770

using (n, t)-universal sets: a (n, t)-universal set is a family U of subsets of [n]771

such that for any S ⊆ [n] of size t, the family {A ∩ S : A ∈ U} contains all772

2t subsets of S. It is known [23] that for any n, t > 1, one can construct an773

(n, t)-universal set of size 2ttO(log t) log n in time 2ttO(log t)n log n. Let U be774

an (n, t)-universal set for t = k + (Ram(r, 3)− 1)(k − 2)2. Instead of deleting775

vertices of G randomly, branch on every set U ∈ U , and for each branch, delete776

vertices from U . Then there must be a branch where D ⊆ U and S 6⊆ U , hence777

vertices of D are deleted while those of S are not. As previously, this implies778

branching into h(k) log n subcases for some computable function of k, but since779

the depth of the branching tree is a function of k only, the running time of the780

deterministic version is still FPT.781
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We still denote by X2, . . . , Xk−1 the reduced sets, for the sake of read-782

ability. We thus end up with a graph composed of sets X2, . . . , Xk−1, with783

edges between Xi and Xj only if [j− i| = 1. In that case, observe that there is784

a solution if and only if the following dynamic programming returns true on785

input P (3, x2) for some x2 ∈ X2:786

P (i, xi−1) =


true if i = k
false if Xi ⊆ N(xi−1)∨
xi∈Xi\N(xi−1)

P (i+ 1, xi) otherwise.

Informally, this dynamic programming relies on the fact that the only ad-787

jacencies between sets Xi are between consecutive sets, hence we only need788

to remember the previous choice when constructing a solution from i = 2 to789

k − 1. Hence, P (i, xi−1) represents whether there exists a rainbow solution in790

∪k−1j=i−1Xj containing xi−1 ∈ Xi−1. Clearly this dynamic programming runs791

in O(mnk) time, where m and n are the number of edges and vertices of792

the remaining graph, respectively. Moreover, it can easily be turned into an793

algorithm returning a solution of size k − 2 if it exists.794

795

4.3 Clique minus a complete bipartite graph796

For every three positive integers r, s1, s2 with s1 + s2 < r, we consider the797

graph Kr \Ks1,s2 . Another way to see Kr \Ks1,s2 is as a P3 of cliques of size798

s1, r−s1−s2, and s2. More formally, every graph Kr \Ks1,s2 can be obtained799

from a P3 by adding s1 − 1 false twins of the first vertex, r − s1 − s2 − 1, for800

the second, and s2 − 1, for the third.801

Theorem 11 For any r > 2 and s1 6 s2 with s1+s2 < r, MIS in Kr\Ks1,s2-802

free graphs is FPT.803

Proof. It is more convenient to prove the result for K3r \Kr,r-free graphs, for804

any positive integer r. It implies the theorem by choosing this new r to be805

larger than s1, s2, and r− s1 − s2. We will show that for f(x) := 3r for every806

x ∈ N, f-Ramsey-extracted Iterative Expansion MIS in K3r \Kr,r-free807

graphs is FPT. By Theorem 7, this implies that MIS is FPT in this class. Let808

C1, . . . , Ck−1 (whose union is denoted by C) be the Ramsey-extracted cliques809

of size 3r, which can be partitioned, as in Definition 7, into 3r independent810

sets S1, . . . , S3r, each of size k−1. Let X =
⋃k
i=1Xi be the set in which we are811

looking for an independent set of size k. We recall that between any Xi and any812

Cj there are either all the edges or none. Hence, the whole interaction between813

X and C can be described by the bipartite graph B described in Definition 7.814

Firstly, we can assume that each Xi is of size at least Ram(r, k), otherwise we815

can branch on Ram(r, k) choices to find one vertex in an optimum solution816

(and decrease k by one). By Ramsey’s theorem, we can assume that each Xi817

contains a clique of size r (if it contains an independent set of size k, we are818
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done). Our general strategy is to leverage the fact that the input graph is819

(K3r \Kr,r)-free to describe the structure of X . Hopefully, this structure will820

be sufficient to solve our problem in FPT time.821

We define an auxiliary graph Y with k−1 vertices. The vertices y1, . . . , yk−1822

of Y represent the Ramsey-extracted cliques of C and two vertices yi and yj823

are adjacent iff the relation between Ci and Cj is not empty (equivalently824

the relation is full or semi-full). It might seem peculiar that we concentrate825

the structure of C, when we will eventually discard it from the graph. It is826

an indirect move: the simple structure of C will imply that the interaction827

between X and C is simple, which in turn, will severely restrict the subgraph828

induced by X . More concretely, in the rest of the proof, we will (1) show that829

Y is a clique, (2) deduce that B is a complete bipartite graph, (3) conclude830

that X cannot contain an induced K2
r = Kr ] Kr and run the algorithm of831

Theorem 6 (which is even stronger than simply solving the colored version of832

the problem: Theorem 6 returns YES if and only if the instance contains an833

independent set of size k).834

Suppose that there is yi1yi2yi3 an induced P3 in Y , and consider Ci1 ,835

Ci2 , Ci3 the corresponding Ramsey-extracted cliques. For s < t ∈ [3r], let836

Cs→ti := Ci ∩
⋃
s6j6t Sj . In other words, Cs→ti contains the elements of Ci837

having indices between s and t. Since |Ci| = 3r, each Ci can be partitioned838

into three sets, of r elements each: C1→r
i , Cr+1→2r

i and C2r+1→3r
i . Recall that839

the relation between Ci1 and Ci2 (resp. Ci2 and Ci3) is either full or semi-full,840

while the relation between Ci1 and Ci3 is empty. This implies that at least one841

of the four following sets induces a graph isomorphic to K3r \Kr,r:842

– C1→r
i1
∪ Cr+1→2r

i2
∪ C1→r

i3
843

– C1→r
i1
∪ Cr+1→2r

i2
∪ C2r+1→3r

i3
844

– C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C1→r
i3

845

– C2r+1→3r
i1

∪ Cr+1→2r
i2

∪ C2r+1→3r
i3

846

Hence, Y is a disjoint union of cliques (since it is P3-free). Let us assume that847

Y is the union of at least two (maximal) cliques.848

Recall that the bipartite graph B is connected. Thus there is b1h ∈ B1849

(corresponding to Xh) adjacent to b2i ∈ B2 and b2j ∈ B2 (corresponding to850

Ci and Cj , respectively), such that yi and yj lie in two different connected851

components of Y (in particular, the relation between Ci and Cj is empty).852

Recall that Xh contains a clique of size at least r. This clique induces, together853

with any r vertices in Ci and any r vertices in Cj , a graph isomorphic to854

K3r \Kr,r; a contradiction. Hence, Y is a clique.855

Now, we can show that B is a complete bipartite graph. Each Xh has to be856

adjacent to at least one Ci (otherwise this trivially contradicts the connected-857

ness of B). If Xh is not linked to Cj for some j ∈ {1, . . . , k− 1}, then a clique858

of size r in Xh (which always exists) induces, together with C1→r
i ∪C2r+1→3r

j859

or with C2r+1→3r
i ∪ C1→r

j , a graph isomorphic to K3r \Kr,r.860

Since B is a complete bipartite graph, every vertex of C1 dominates all861

vertices of X In particular, X is in the intersection of the neighborhood of the862

vertices of some clique of size r. This implies that the subgraph induced by X863
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Fig. 7 The gem.

is (Kr ]Kr)-free. Hence, we can run the FPT algorithm of Theorem 6 on this864

graph.865

4.4 The gem866

Let the gem be the graph obtained by adding a universal vertex to a path on867

four vertices (see Figure 7). Using our framework once again, we are able to868

obtain the following result:869

870

Theorem 12 There is an FPT algorithm for MIS in gem-free graphs.871

Proof. Let f(x) := 1 for every x ∈ N. We prove that f-Ramsey-extracted872

Iterative Expansion MIS admits an FPT algorithm in gem-free graphs.873

By the definition of f , we have Cp = {cp} for every p ∈ {1, . . . , k − 1}. Recall874

that the objective is to find a rainbow independent set in G, or to decide that875

α(G) < k. Since the bipartite graph B representing the adjacencies between876

{X1, . . . , Xk} and {c1, . . . , ck−1} is connected, it implies that for every i ∈877

{1, . . . , k}, there exists p ∈ {1, . . . , k − 1} such that cp dominates all vertices878

of Xi. Since G is gem-free, it implies that G[Xi] is P4-free for every i ∈879

{1, . . . , k}. Since P4-free graphs (a.k.a cographs) are perfect, the size of a880

maximum independent set equals the size of a clique cover. If G[Xi] contains881

an independent set of size k (which can be tested in polynomial time), then we882

are done. Otherwise, we can, still in polynomial time, partition the vertices of883

Xi into at most k−1 sets X1
i , . . . , Xqi

i , where G[Xj
i ] induces a clique for every884

j ∈ {1, . . . , qi}. We now perform a branching for every tuple (j1, . . . , jk), where885

ji ∈ {1, . . . , qi} for every i ∈ {1, . . . , k}, which, informally, allows us to guess886

the clique Xji
i which contains the element of the rainbow independent set we887

are looking for. For the sake of readability, we allow ourselves this slight abuse888

of notation: we rename Xji
i into simply Xi. Thus, for every i ∈ {1, . . . , k},889

G[Xi] is a clique.890

Now, let i, j ∈ {1, . . . , k}, i 6= j. Let us analyse the adjacencies between Xi891

and Xj . We say that {a, b, c, d} ⊆ Xi ∪Xj is a balanced diamond if a, b ∈ Xi892

(a 6= b), c, d ∈ Xj (c 6= d) and all vertices {a, b, c, d} are pairwise adjacent but893

{b, d}. We have the following claim:894

Claim 13. If the graph induced by Xi ∪Xj has a balanced diamond, then Xi895

and Xj are twins in B.896
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X0
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i X3

i X4
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i X6
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jX5

jX4
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jX2
i

X1
jX0

j

Fig. 8 Schema of the adjacencies between Xi and Xi when they do not contain a balanced
diamond (q = 6). An edge represent a complete relation between the corresponding subsets.

Proof of claim: Suppose they are not. W.l.o.g. we assume that Xi is adjacent897

to {cp} while Xj is not, for some p ∈ {1, . . . , k − 1}. Then the vertices of the898

balanced diamond together with cp induce a gem. /899

The remainder of the proof consists of “cleaning” the adjacencies (Xi, Xj)900

having no balanced diamond (but at least one edge between them). In that901

case, observe that Xi and Xj can respectively be partitioned into X0
i , X1

i ,902

. . . , Xq
i and X0

j , X1
j , . . . , Xq

j (where X0
i and X0

j are potentially empty) such903

that Xr
i ∪ Xr

j induces a clique for every r ∈ {1, . . . , q}, and there is no edge904

between Xr
i and Xr′

j whenever r 6= r′ or r = 0 or r′ = 0 (see Figure 8). In905

each branch of the next branching rule, the sets {X1, . . . , Xk} will be modified906

into {X ′1, . . . , X ′k}. For the sake of readability, we chose to state the rule as a907

random one, and then explain how to derandomize it.908

909

Branching rule: Let i, j ∈ {1, . . . , k}, i 6= j such that Xi ∪ Xj has no910

balanced diamond. Then perform the following branching:911

– Branch 1: X ′i = X0
i and X ′z = Xz for z ∈ [k] \ {i}912

– Branch 2: X ′j = X0
j and X ′z = Xz for z ∈ [k] \ {j}913

– Branch 3: pick a set T ⊆ {1, . . . , q} uniformly at random, then:914

– X ′i =
⋃
r∈T X

r
i915

– X ′j =
⋃
r/∈T X

r
j916

– X ′z = Xz for z ∈ [k] \ {i, j}917

Consider the graph G(X1, . . . , Xk) having one vertex per set Xi, and an918

edge between Xi and Xj if these two sets are adjacent. We now prove the919

following:920

Claim 14. The graph G(X ′1, . . . , X
′
k) has one edge less than G(X1, . . . , Xk)921

Proof of claim: In all three branches, observe that there is no edge between922

X ′i and X ′j . /923

Claim 15. If G has no independent set of size k, then no graph obtained after924

the branching contains an independent set of size k.925

Proof of claim: Observe that in all branches,
⋃k
z=1X

′
z ⊆

⋃k
z=1Xz, that is,926

each graph obtained in each branch is an induced subgraph of G. /927
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Claim 16. If G has a rainbow independent set, then with probability at least928

1
2 , at least one branch leads to a graph having a rainbow independent set.929

Proof of claim: Suppose that G contains a rainbow independent set S∗. If930

S∗ intersects X0
i , then S∗ also exists in the graph of the first branch. If S∗931

intersects X0
j , then S∗ also exists in the graph of the second branch. The last932

case is where S∗ intersects Xr1
i and Xr2

j , for some r1, r2 ∈ {1, . . . q}. In that933

case, there is a probability of 1
2 that r1 ∈ T and r2 /∈ T , which concludes the934

proof of the claim /935

The derandomization of this branching rule uses uses once again (n, t)-936

universal sets. However, this case is simpler since we actually need a (q, 2)-937

universal set, which can be easily constructed as follows. For every i ∈ {1, . . . , dlog qe},938

define Ti to be the set of all integers r ≤ q whose binary representation con-939

tains a one at the ith bit. Then let U = {Ti, i = 1...dlog qe}. This family is940

of size dlog ne and can be constructed in O(n log n) time. The deterministic941

version of the previous branching rule contains the same first two branches,942

and replaces the random third one by |U| branches, where, instead of picking943

T ⊆ {1, . . . , q} at random, we branch on every T ∈ U . Now, Claims 14 and944

15 remain the same, while Claim 16 can be replaced by the fact that if G has945

a rainbow independent set, then at least one branch leads to a graph having946

a rainbow independent set. Its correctness follows from the fact that by con-947

struction of U , for every r1, r2 ∈ {1, . . . , q}, r1 6= r2, there exists T ∈ U such948

that r1 ∈ T and r2 /∈ T . As in Lemma 3, this implies branching into O(log n)949

subcases, but since the depth of the branching tree is a function of k only, the950

running time of the deterministic version is still FPT.951

We apply the previous branching rule exhaustively, hence we now assume952

it cannot apply. For the sake of readability, we keep the notation X1, . . . , Xk in953

order to denote our instance, even after an eventual application of the previous954

branching rule. For every Xi, Xj with i 6= j, there is either (i) no edge between955

Xi and Xj , or (ii) a balanced diamond induced by Xi ∪Xj . Hence, Claim 13956

implies that each connected component of the graph induced by
⋃k
i=1Xi is a957

module with respect to the clique {c1, . . . , ck−1}. In particular, each connected958

component is dominated by some cp, with p ∈ {1, . . . , k − 1}, and is thus P4-959

free (otherwise, a P4 together with this vertex cp induce a gem), which means960

that we can decide in polynomial time whether G contains an independent set961

of size k, by deciding the problem in every connected component separately962

(since MIS is polynomial-time solvable in P4-free graphs). This concludes the963

proof, since by Claim 14, the previous branching rule can be applied at most964 (
k
2

)
times.965

5 Polynomial (Turing) kernels966

In this section we investigate some special cases of Section 4.3, in particular967

when H is a clique of size r minus a claw with s branches, for s < r. Although968

Theorem 11 proves that MIS is FPT for every possible values of r and s, we969
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show that when s > r − 2, the problem admits a polynomial Turing kernel,970

while for s 6 2, it admits a polynomial kernel. Notice that the latter result971

is somehow tight, as Corollary 4 shows that MIS cannot admit a polynomial972

kernel in (Kr \K1,s)-free graphs whenever s > 3.973

5.1 Positive results974

The main ingredient of the two following results is a constructive version of975

the Erdős-Hajnal theorem for the concerned graph classes:976

Lemma 4 (Constructive Erdős-Hajnal for Kr \ K1,s) For every r >977

2 and s < r, there exists a polynomial-time algorithm which takes as input978

a connected (Kr \ K1,s)-free graph G, and constructs either a clique or an979

independent set of size n
1

r−1 , where n is the number of vertices of G.980

Proof. First consider the case s = r− 1, i.e. the forbidden graph is Kr−1 plus981

an isolated vertex. If G contains a vertex v with non-neighborhood N of size982

at least n
r−2
r−1 , then, since G[N ] is Kr−1-free, by Ramsey’s theorem, it must983

contains an independent set of size |N |
1

r−2 = n
1

r−1 , which can be found in984

polynomial time. We may now assume that the maximum non-degree8 of G985

is n
r−2
r−1 − 1. We construct a clique v1, . . . , vq in G by picking an arbitrary986

vertex v1, removing its non-neighborhood, then picking another vertex v2,987

removing its non-neighborhood, and repeating this process until the graph988

becomes empty. Using the above argument on the maximum non-degree, this989

process can be applied n

n
r−2
r−1

= n
1

r−1 times, corresponding to the size of the990

constructed clique.991

Now, we make an induction on r − 1 − s (the base case is above). If G992

contains a vertex v with neighborhood N of size at least n
r−2
r−1 , then, since G[N ]993

is (Kr−1 \Ks)-free, by induction it admits either a clique or an independent994

set of size |N |
1

r−2 = n
1

r−1 , which can be found in polynomial time. We may995

now assume that the maximum degree of G is n
r−2
r−1 − 1. We construct an996

independent set v1, . . . , vq in G by picking an arbitrary vertex v1, removing997

its neighborhood, and repeating this process until the graph becomes empty.998

Using the above argument on the maximum degree, this process can be applied999

n

n
r−2
r−1

= n
1

r−1 times, corresponding to the size of the constructed independent1000

set.1001

Theorem 17 For every r > 2, MIS in (Kr \K1,r−2)-free graphs has a poly-1002

nomial Turing kernel.1003

Proof. The problem is polynomial for r = 2 and r = 3, hence we suppose1004

r > 4. Suppose we have an algorithm A which, given a graph J and an integer1005

i such that |V (J)| = O(ir−1), decides whether J has an independent set of1006

8 The non-degree of a vertex is the size of its non-neighborhood.
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size i in constant time. Having a polynomial algorithm for MIS assuming the1007

existence of A implies a polynomial Turing kernel for the problem [10]. To1008

do so, we will present an algorithm B which, given a connected graph G and1009

an integer k, outputs a polynomial (in |V (G)|) number of instances of size1010

O(kr−1), such that one of them is positive iff the former one is. With this1011

algorithm in hand, we obtain the polynomial Turing kernel as follows: let G1012

and k be an instance of MIS. Let V1, . . . , V` be the connected components of1013

G. For every j ∈ {1, . . . , `}, we determine the size of a maximum independent1014

set kj ofG[Vj ] by first invoking, for successive values i = 1, . . . , k, the algorithm1015

B on input (G[Vj ], i), and then A on each reduced instance. At the end of the1016

algorithm, we answer Y ES iff
∑`
j=1 ki > k.1017

We now describe the algorithm B. Let (G, k) be an input, with n = |V (G)|.1018

We first invoke Lemma 4. If the algorithm outputs an independent set of size1019

at least s = n
1

r−1 , then either k 6 s and we are done (we output a trivially1020

positive instance), or k > n
1

r−1 which implies that the instance is a kernel with1021

O(kr−1) vertices. Hence, we assume that the algorithm outputs a clique C of1022

size at least n
1

r−1 . We assume that |C| > r2, since otherwise the instance is1023

already reduced.1024

Let B = N(C). First observe that for every u ∈ B, |NC(u)| > |C|− (r−3).1025

Indeed, if |NC(u)| 6 |C| − (r − 2), then the graph induced by r − 2 non-1026

neighbors of u in C together with u and a neighbor of u in C (which exists since1027

|C| > r2) is isomorphic to Kr \K1,r−2. Secondly, we claim that V (G) = C∪B:1028

for the sake of contradiction, take v ∈ N(B) \ C, and let u ∈ B be such that1029

uv ∈ E(G). By the previous argument, u has at least |C| − r + 3 > r − 21030

neighbors in C which, in addition to u and v, induce a graph isomorphic to1031

Kr \K1,r−2.1032

The algorithm outputs, for every u ∈ B, the graph induced by B \ N [u]1033

(with parameter k − 1), and, for every u ∈ B and every v ∈ C such that1034

uv /∈ E(G), the graph induced by B\(N [u]∪N [v]) (with parameter k−2). The1035

correctness of the algorithm follows from the fact that if G has an independent1036

set S of size k > 1, then either:1037

– S ∩C = ∅, in which case S \ {u} lies entirely in B \N [u] for any u ∈ S, or1038

– S ∩ C = {v} for some v ∈ C, in which case S \ {u, v} lies entirely in1039

B \ (N [u] ∪N [v]) for any u ∈ S ∩B.1040

We now argue that each of these instances has O(kr−3) vertices. To do so,1041

observe that for any u ∈ B, B \ N [u] does not contain Kr−2 as an induced1042

subgraph: indeed, since |C| > r2, then any set of r − 1 vertices of B must1043

have a common neighbor in C (since the union of the non-neighborhoods of1044

these r − 1 vertices in C is of size at most (r − 1)(r − 3)). Now, take (for the1045

sake of contradiction) any clique K of size r − 2 in B \ N [u], and consider1046

a common neighbor x ∈ C of K ∪ {u}. Then K ∪ {u, x} induces a graph1047

isomorphic to Kr \K1,r−2, which is impossible. Since each of these instances1048

is Kr−2-free, applying Ramsey’s theorem to each of them allows us to either1049

construct an independent set of size k − 1 in one of them (and thus output1050

an independent set of size k in G), or to prove that each of them has at most1051
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O(kr−3) vertices. At the end, this algorithm outputs O(n2) instances, each1052

having O(kr−3) vertices.1053

Since a (Kr \K1,r−1)-free graph is (Kr′ \K1,r′−2)-free for r′ = r + 1, we1054

have the following:1055

Corollary 2 For every r > 2, MIS in (Kr \K1,r−1)-free graphs has a poly-1056

nomial Turing Kernel.1057

In other words, (Kr \ K1,r−1) is a clique of size r − 1 plus an isolated1058

vertex. Observe that the previous corollary can actually be proved in a very1059

simple way: informally, we can “guess” a vertex v of the solution, and return its1060

non-neighborhood together with parameter k−1. Since this non-neighborhood1061

is Kr−1-free, it can be reduced to a O(kr−2)-sized instance. This is perhaps1062

the most simple example of a problem admitting a polynomial Turing kernel1063

but no polynomial kernel, unless NP ⊆ coNP/poly (as we will prove later in1064

Theorem 19). By considering the complement of graphs, it implies the follow-1065

ing even simpler observation: Maximum Clique has a O(k2) Turing kernel1066

on claw -free graphs, but no polynomial kernel, under the same complexity-1067

theoretic assumption.1068

Theorem 18 For every r > 3, MIS in (Kr \K1,2)-free graphs has a kernel1069

with O(kr−1) vertices.1070

Proof. For r = 3, the problem is polynomial, so we assume r > 4. We first1071

invoke Lemma 4. If the algorithm outputs an independent set of size at least1072

s = n
1

r−1 , then either k 6 s and we are done (we output a trivially positive1073

instance), or k > n
1

r−1 which implies that the instance is a kernel with O(kr−1)1074

vertices. Hence, we assume that the algorithm outputs a clique C of size at1075

least n
1

r−1 . We assume that this clique is maximal. We present a reduction1076

rule in the case |C| > (k − 1)(r − 4) + 1. If this rule cannot apply, then it1077

means that the number of vertices of the reduced instance is O(kr−1).1078

First observe that for every u ∈ N(C), then either |NC(u)| = |C| − 1, or1079

|NC(u)| 6 r − 4 (recall that NC(u) = N(u) ∩ C). Indeed, first observe that1080

NC(u) < |C|, since C is maximal. Then, suppose that r − 3 6 |NC(u)| 61081

|C| − 2. Then u together with r − 3 of its neighbors in C and 2 of its non-1082

neighbors in C induce a graph isomorphic to Kr \K1,2, a contradiction. Let1083

B = {u ∈ N(C) : |NC(u)| = |C| − 1} and D = {u ∈ N(C) : |NC(u)| 6 r − 4}.1084

We claim that C ∪ B is a complete |C|-partite graph. To do so, we prove1085

that for u, v ∈ B, NC(u) = NC(v) implies uv /∈ E(G), and NC(u) 6= NC(v)1086

implies uv ∈ E(G). Suppose that NC(u) = NC(v) = C \ {x}. If uv ∈ E(G),1087

then u, v, x together with r − 3 vertices of C different from x induce a graph1088

isomorphic to Kr \ K1,2, which is impossible. Suppose now that NC(u) =1089

C \ {xu}, NC(v) = C \ {xv}, with xu 6= xv. If uv /∈ E(G), then u, v, xu1090

together with r − 3 vertices of C different from xu and xv induce a graph1091

isomorphic to Kr \K1,2, which is impossible.1092

Thus, we now write C ∪ B = S1 ∪ · · · ∪ S|C|, where, for every i, j ∈1093

{1, . . . , |C|}, i 6= j, Si induces an independent set, and Si ∪ Sj induces a1094
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complete bipartite graph. We assume |S1| > |S2| > · · · > |S|C||. Recall that1095

|C| > (k − 1)(r − 4) + 1. Using the same arguments as previously, we can1096

show that every vertex of D is adjacent to at most r−4 different parts among1097

C ∪ B: if a vertex u ∈ D is adjacent to r − 3 parts, then taking one ver-1098

tex in each of these parts together with u and 2 non-neighbors of u in C1099

induces a graph isomorphic to Kr \ K1,2. Hence, for every u ∈ D, we have1100

|{Si : N(u) ∩ Si 6= ∅}| 6 r − 4. Let q = (k − 1)(r − 4) + 1. The reduction1101

consists of removing Sq+1 ∪ · · · ∪ S|C|. Clearly it runs in polynomial time.1102

Let G′ denote the reduced instance. We now prove the safeness of this1103

reduction rule. Obviously, if G′ has an independent set of size k, then G does,1104

since G′ is an induced subgraph of G. It remains to show that the converse is1105

also true. Let X be an independent set of G of size k. If X ∩
(
∪|C|i=q+1Si

)
=1106

∅, then X is also an independent set of size k in G′, thus we suppose X ∩1107 (
∪|C|i=q+1Si

)
= Xr 6= ∅, which implies that |X ∩ D| ≤ k − 1. In particular,1108

since C∪B is a complete multipartite graph, there is a unique i ∈ {1, . . . , |C|}1109

such that X ∩ Si 6= ∅, and i > q + 1. Since every vertex of D is adjacent to at1110

most r − 4 parts of C ∪B, and since q = (k − 1)(r − 4) + 1, there must exist1111

j ∈ {1, . . . , q} such that N(X ∩ D) ∩ Sj = ∅. Moreover, |Sj | > |Si|. Hence,1112

(X \ Si) ∪ Sj is an independent set of size at least k in G′.1113

Recall that we apply this reduction rule as long as |C| > (k−1)(r−4) + 1.1114

If it is not the case, then the instance has O(kr−1) vertices, since, by Lemma 4,1115

we have |C| > n
1

r−1 , and thus n 6 (kr+ 5)r−1, which concludes the proof.1116

Observe that a (Kr \K2)-free graph is (Kr+1 \K1,2)-free, hence we have1117

the following, which answers a question of [12].1118

Corollary 3 For every r > 1, MIS in (Kr \K2)-free graphs has a kernel with1119

O(kr−1) vertices.1120

5.2 Kernel lower bounds1121

We now give a sufficient criteria for a graph H to preclude any polynomial1122

kernel for MIS in H-free graphs. In a nutshell, we characterize graphs which1123

cannot appear in the “straightforward” cross-composition consisting in taking1124

the complete join of several instances.1125

Definition 8 Given a graph H, a join is a bipartition of V (H) into two non-1126

empty subsets (A,B) such that for every a ∈ A and b ∈ B, ab ∈ E(H).1127

Theorem 19 Let H be any fixed graph such that (i) MIS is NP-hard in H-1128

free graphs, and (ii) H has no join. Then MIS does not admit a polynomial1129

kernel in H-free graphs unless NP ⊆ coNP/poly.1130

Proof. We construct an OR-cross-composition from MIS in H-free graphs. For1131

more details about cross-compositions, see [4]. Let G1, . . . , Gt be a sequence of1132

H-free graphs, and let G′ = G1 + · · ·+Gt (recall that + is the join operation,1133
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that it, there are all possible edges between V (Gi) and V (Gj), i 6= j). Then1134

we have the following:1135

– α(G′) = maxi=1...t α(Gi), since, by construction of G′, any independent set1136

cannot intersect the vertex set of two distinct graphs Gi and Gj .1137

– G′ is H-free. Indeed, suppose that X ⊆ V (G′) induces a graph isomorphic1138

to H, and let Xj = X ∩ V (Gj) for every j ∈ [t]. Since every Gi is H-free,1139

at least two sets Xj , Xj′ , j 6= j′ are non-empty. But then (Xj ,∪s 6=jXs) is1140

a join in H, a contradiction.1141

These two arguments imply a cross-composition from MIS in H-free graphs1142

to MIS in H-free graphs.1143

Naturally, the previous lower bound also holds for graphs H containing1144

a graph H ′ as an induced subgraph fulfulling the statement of the theorem1145

(since the class of H ′-free graphs is included in the class of H-free graphs).1146

We now use this theorem to show that the polynomial kernel obtained in1147

the previous section for (Kr \K1,s)-free graphs, s 6 2, is somehow tight.1148

Corollary 4 For r > 4, and every 3 6 s 6 r − 1, MIS in (Kr \ K1,s)-free1149

graphs does not admit a polynomial kernel unless NP ⊆ coNP/poly.1150

Proof. Observe that for these values of r and s, (Kr \K1,s) always contain as1151

an induced subgraph the graph H defined as the disjoint union of K1 and K3,1152

which does not have a join, while MIS is NP-hard in H-free (since it contains1153

a triangle K3).1154

It would be interesting to find out whether there exist graphs H not falling1155

into the statement of Theorem 19 for which there is no polynomial kernel. In1156

other words: is Theorem 19 the only way to obtain kernel lower bounds in this1157

case?1158

6 Conclusion and open problems1159

We made some signifiant progress toward the FPT/W [1]-hard dichotomy for1160

MIS in H-free graphs, for a fixed graph H. At the cost of one reduction, we1161

showed that it is W [1]-hard as soon as H is not chordal, even if we simulta-1162

neously forbid induced K1,4 and trees with at least two branching vertices.1163

Tuning this construction, it is also possible to show that if a connected H is1164

not roughly a ”path of cliques” or a ”subdivided claw of cliques”, then MIS1165

is W [1]-hard. More formally, with the definitions of Section 2.2, the remaining1166

connected open cases are when H has an almost strong clique decomposition1167

on a subdivided claw or a nearly strong clique decomposition on a path. In this1168

language, we showed that for every connected graph H with a strong clique1169

decomposition on a P3, there is an FPT algorithm. However, we also proved1170

that for a very simple graph H with a strong clique decomposition on the claw,1171

MIS is W [1]-hard. This suggests that the FPT/W [1]-hard dichotomy will be1172
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somewhat subtle. For instance, easy cases for the parameterized complexity1173

do not coincide with easy cases for the classical complexity where each vertex1174

can be blown into a clique. For graphs H with a clique decomposition on a1175

path, the first unsolved cases are H having:1176

– an almost strong clique decomposition on P3;1177

– a nearly strong clique decomposition on P3;1178

– a strong clique decomposition on P4.1179

For graphs H with a clique decomposition on the claw, an interesting open1180

question is the case of T1,1,s-free graphs (see notation preceding Theorem 4).1181

We observe that a randomized FPT algorithm was later found in the T1,1,2-1182

free (or cricket-free) case [5], while W [1]-hardness on T1,2,2-free is established1183

in this paper (see Theorem 4)1184

For disconnected graphs H, we obtained an FPT algorithm when H is a1185

cluster (i.e., a disjoint union of cliques). We conjecture that, more generally,1186

the disjoint union of two easy cases is an easy case; formally, if MIS is FPT1187

in G-free graphs and in H-free graphs, then it is FPT in G ]H-free graphs.1188

A natural question regarding our two FPT algorithms of Section 4 concerns1189

the existence of polynomial kernels. In particular, we even do not know whether1190

the problem admits a kernel for very simple cases, such as when H = K5 \K31191

or H = K5 \K2,2.1192

A more anecdotal conclusion is the fact that the parameterized complexity1193

of the problem on H-free graphs is now complete for every graph H on four1194

vertices, including concerning the polynomial kernel question (see Figure 9).1195

Observe that the FPT/W [1]-hard dichotomy was recently settled for all graphs1196

on five vertices [5], using tools from this paper.1197
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