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Abstract
A perfect matching cut is a perfect matching that is also a cutset, or equivalently a perfect matching
containing an even number of edges on every cycle. The corresponding algorithmic problem, Perfect
Matching Cut, is known to be NP-complete in subcubic bipartite graphs [Le & Telle, TCS ’22] but
its complexity was open in planar graphs and in cubic graphs. We settle both questions at once by
showing that Perfect Matching Cut is NP-complete in 3-connected cubic bipartite planar graphs
or Barnette graphs. Prior to our work, among problems whose input is solely an undirected graph,
only Distance-2 4-Coloring was known NP-complete in Barnette graphs. Notably, Hamiltonian
Cycle would only join this private club if Barnette’s conjecture were refuted.
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1 Introduction

Deciding if an input graph admits a perfect matching, i.e., a subset of its edges touching
each of its vertices exactly once, notoriously is a tractable task. There is indeed a vast
literature, starting arguably in 1947 with Tutte’s characterization via determinants [41], of
polynomial-time algorithms deciding Perfect Matching (or returning actual solutions)
and its optimization generalization Maximum Matching.

In this paper, we are interested in another containment of a spanning set of disjoint edges
–perfect matching– than as a subgraph. As containing such a set of edges as an induced
subgraph is a trivial property1 (only shared by graphs that are themselves disjoint unions of
edges), the meaningful other containment is as a semi-induced subgraph. By that we mean
that we look for a bipartition of the vertex set or cut such that the edges of the perfect
matching are “induced” in the corresponding cutset (i.e., the edges going from one side of
the bipartition to the other), while we do not set any requirement on the presence or absence
of edges within each side of the bipartition.

1 Note however that the induced variant of Maximum Matching is an interesting problem that happens
to be NP-complete [39].
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This problem was in fact introduced as the Perfect Matching Cut (PMC for short)
problem2 by Heggernes and Telle who show that it is NP-complete [17]. As the name Perfect
Matching Cut suggests, we indeed look for a perfect matching that is also a cutset. Le and
Telle further show that PMC remains NP-complete in subcubic bipartite graphs of arbitrarily
large girth, whereas it is polynomial-time solvable in a superclass of chordal graphs, and
in graphs without a particular subdivided claw as an induced subgraph [27]. An in-depth
study of the complexity of PMC when forbidding a single induced subgraph or a finite set
of subgraphs has been carried out [13, 30].

We look at Le and Telle’s hardness constructions and wonder what other properties
could make PMC tractable (aside from chordality, and forbidding a finite list of subgraphs
or induced subgraphs). A simpler reduction for bipartite graphs is first presented. Let us
briefly sketch their reduction (without thinking about its correctness) from Monotone
Not-All-Equal 3-SAT, where given a negation-free 3-CNF formula, one seeks a truth
assignment that sets in each clause a variable to true and a variable to false. Every variable is
represented by an edge, and each 3-clause, by a (3-dimensional) cube with three anchor points
at three pairwise non-adjacent vertices of the cube. One endpoint of the variable gadget is
linked to the anchor points corresponding to this variable among the clause gadgets. Note
that this construction creates three vertices of degree 4 in each clause gadget, and vertices of
possibly large degree in the variable gadgets. Le and Telle then reduce the maximum degree
to at most 3, by appropriately subdividing the cubes and tweaking the anchor points, and
replacing the variable gadgets by cycles.

Notably the edge subdivision of the clause gadgets creates degree 2-vertices, which are
not easy to “pad” with a third neighbor (even more so while keeping the construction
bipartite). And indeed, prior to our work, the complexity of PMC in cubic graphs was
open. Let us observe that on cubic graphs, the problem becomes equivalent to partitioning
the vertex set into two sets each inducing a disjoint union of (independent) cycles. The
close relative, Matching Cut, where one looks for a mere matching that is also a cutset,
while NP-complete in general [5], is polynomial-time solvable in subcubic graphs [35, 2].
The complexity of Matching Cut has further been examined in subclasses of planar
graphs [37, 2], when forbidding some (induced) subgraphs [13, 31, 30, 12], on graphs of
bounded diameter [31, 26], and on graphs of large minimum degree [4]. Matching Cut
has also been investigated with respect to parameterized complexity, exact exponential
algorithms [25, 22], and enumeration [15].

It was also open if PMC is tractable on planar graphs. Note that Bouquet and Picouleau
show that a related problem, Disconnected Perfect Matching, where one looks for
a perfect matching that contains a cutset, is NP-complete on planar graphs of maximum
degree 4, on planar graphs of girth 5, and on 5-regular bipartite graphs [3]. They incidentally
call this related problem Perfect Matching Cut but subsequent references [13, 27] use
the name Disconnected Perfect Matching to avoid confusion. We will observe that
PMC is equivalent to asking for a perfect matching containing an even number of edges from
every cycle of the input graph. The sum of even numbers being even, it is in fact sufficient
that the perfect matching contains an even number of edges from every element of a cycle
basis. There is a canonical cycle basis for planar graphs: the bounded faces. This gives rise

2 The authors consider the framework of (k, σ, ρ)-partition problem, where k is a positive integer, and
σ, ρ are sets of non-negative integers, and one looks for a vertex-partition into k parts such that each
vertex of each part has a number of neighbors in its own part in σ, and a number of other neighbors in
ρ; hence, PMC is then the (2,N, {1})-partition problem.
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to the following neat reformulation of PMC in planar graphs: is there a perfect matching
containing an even number of edges along each face?

While Matching Cut is known to be NP-complete on planar graphs [37, 2], it could
have gone differently for PMC for the following “reasons.” Not-All-Equal 3-SAT, which
appears as the right starting point to reduce to PMC, is tractable on planar instances [34]. In
planar graphs, perfect matchings are simpler than arbitrary matchings in that they alone [42]
can be counted efficiently [40, 21]. Let us finally observe that Maximum Cut can be solved
in polynomial time in planar graphs [16].

In fact, we show that the reformulations for cubic and planar graphs cannot help
algorithmically, by simultaneously settling the complexity of PMC in cubic and in planar
graphs, with the following stronger statement.

I Theorem 1. Perfect Matching Cut is NP-hard in 3-connected cubic bipartite planar
graphs.

Not very many problems are known to be NP-complete in cubic bipartite planar graphs.
Of the seven problems defined on mere undirected graphs from Karp’s list of 21 NP-complete
problems [20], only Hamiltonian Path is known to remain NP-complete in this class, while
the other six problems admit a polynomial-time algorithm. Restricting ourselves to problems
where the input is purely an undirected graph,3 besides Hamiltonian Path/Cycle [36, 1],
Minimum Independent Dominating Set was also shown NP-complete in cubic bipartite
planar graphs [29], as well as P3-Packing [24] (hence, an equivalent problem phrased in
terms of disjoint dominating and 2-dominating sets [33]), and Distance-2 4-Coloring [10].
To our knowledge, Minimum Dominating Set is only known NP-complete in subcubic
bipartite planar graphs [14, 23].

It is interesting to note that the reductions for Hamiltonian Path, Hamiltonian
Cycle, Minimum Independent Dominating Set, and P3-Packing all produce cubic
bipartite planar graphs that are not 3-connected. Notoriously, lifting the NP-hardness
of Hamiltonian Cycle to the 3-connected case would require to disprove Barnette’s
conjecture4 (and that would be indeed sufficient [11]). Note that hamiltonicity in cubic
graphs is equivalent to the existence of a perfect matching that is not an edge cut (i.e.,
whose removal is not disconnecting the graph). We wonder whether there is something
inherently simpler about 3-connected cubic bipartite planar graphs, which would go beyond
hamiltonicity (assuming that Barnette’s conjecture is true).

Let us call Barnette a 3-connected cubic bipartite planar graph. It appears that, prior to
our work, Distance-2 4-Coloring was the only vanilla graph problem shown NP-complete
in Barnette graphs [10]. Arguing that Distance-2 4-Coloring is a problem on squares
of Barnette graphs more than it is on Barnette graphs, a case can be made for Perfect
Matching Cut to be the first natural problem proven NP-complete in Barnette graphs.

Provably tight subexponential-time algorithm. Note that our reduction together
with existing results and a known methodology give a fine-grained understanding, under
the Exponential-Time Hypothesis5 (or ETH) [18], on solving Perfect Matching Cut in
planar graphs.

3 Among problems with edge orientations, vertex or edge weights, or prescribed subsets of vertices or
edges, the list is significantly longer, and also includes Minimum Weighted Edge Coloring [7], List
Edge Coloring and Precoloring Extension [32], k-In-A-Tree [8], etc.

4 which precisely states that every polyhedral (that is, 3-connected planar) cubic bipartite graphs admits
a hamiltonian cycle.

5 the assumption that there is a λ > 0 such that no algorithm solves n-variable 3-SAT in time λnnO(1)
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On the algorithmic side, there is a 2O(
√

n)-time algorithm for PMC in n-vertex planar
graphs, as a consequence of a 2O(w)nO(1)-time algorithm for n-vertex graphs given with
a tree-decomposition of width w, and the fact that tree-decompositions of width O(

√
n)

always exist in planar graphs and can be computed in polynomial-time [28]. The 2O(w)nO(1)-
time algorithm can be obtained directly or as a consequence of a result of Pilipczuk [38]
that any problem expressible in Existential Counting Modal Logic (ECML) admits a single-
exponential fixed-parameter algorithm in treewidth. ECML allows existential quantifications
over vertex and edge sets followed by a counting modal formula to be satisfied from every
vertex. Counting modal formulas enrich quantifier-free Boolean formulas with ♦Sϕ, whose
semantics is that the current vertex v has a number of neighbors satisfying ϕ in the ultimately
periodic set S of non-negative integers. One can thus express Perfect Matching Cut in
ECML as

∃X ⊆ V (G),∀v ∈ V (G), G, X, v |= X → ♦{1}(¬X) ∧ ¬X → ♦{1}X,

which states that there is a set X such that every vertex in X has exactly one neighbor
outside X, and vice versa.

On the complexity side, the Sparsification lemma [19], the folklore linear reductions from
bounded-occurrence 3-SAT to bounded-occurrence Monotone Not-All-Equal 3-SAT
and to Monotone Not-All-Equal 3-SAT-E4 [6], and finally our quadratic reduction,
imply that 2Ω(

√
n) time is required to solve PMC in n-vertex planar graphs. Our reduction

(as we will see) indeed has a quadratic blow-up as it creates O(1) vertices per variable and
clause, and O(1) vertices for each of the O(n2) crossings in a (non-planar) drawing of the
variable-clause incidence graph.

Outline of the proof. We reduce the NP-complete problem Monotone Not-All-
Equal 3-SAT with exactly 4 occurrences of each variable [6] to PMC. Observe that flipping
the value of every variable of a satisfying assignment results in another satisfying assignment.
We thus see a solution to Monotone Not-All-Equal 3-SAT simply as a bipartition of
the set of variables.

As we already mentioned, Not-All-Equal 3-SAT restricted to planar instances (i.e.,
where the variable-clause incidence graph is planar) is in P. We thus have to design crossing
gadgets in addition to variable and clause gadgets. Naturally our gadgets are bipartite
graphs with vertices of degree 3, except for some special anchors, vertices of degree 2 with
one incident edge leaving the gadget.

The variable gadget is designed so that there is a unique way a perfect matching cut can
intersect it. It might seem odd that no “binary choice” happens within it. The role of this
gadget is only to serve as a baseline for which side of the bipartition the variable lands in,
while the “truth assignments” take place in the clause gadgets. (Actually the same happens
with Le and Telle’s first reduction [27], where the variable gadget is a single edge, which has
to be in any solution.)

Our variable gadget consists of 36 vertices, including 8 anchor points; see Figure 1. (We
will later explain why we have 8 anchor points and not simply 4, that is, one for each
occurrence of the variable.) Note that in all the figures, we adopt the following convention:

black edges cannot (or can no longer) be part of a perfect matching cut,
red edges are in every perfect matching cut,
each blue edge e is such that at least one perfect matching cut within its gadget includes e,
and at least one excludes e, and
brown edges are blue edges that were indeed chosen in the solution.
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Let us recall that PMC consists of finding a perfect matching containing an even number
of edges from each cycle. Thus we look for a perfect matching M such that every path (or
walk) between v and w contains a number of edges of M whose parity only depends on v

and w. If this parity is even v and w are on the same side, and if it is odd, v and w are on
opposite sides. The 8 anchor points of each variable gadget are forced on the same side. This
is the side of the variable.

At the core of the clause gadget is a subdivided cube of blue edges; see Figure 2. There
are three vertices (u1, u8, u14 on the picture) of the subdivided cube that are forced on the
same side as the corresponding three variables. Three perfect matching cuts are available
in the clause gadget, each separating (i.e., putting on opposite sides) a different vertex of
{u1, u8, u14} from the other two. Note that this is exactly the semantics of a not-all-equal
3-clause. We in fact need two copies of the subdivided cube, partly to increase the degree of
some subdivided vertices, partly for the same reason we duplicated the anchor vertices in
the variable gadgets. (The latter will be explained when we present the crossing gadgets.)
Increasing the degree of all the subdivided vertices complicate further the gadget and create
two odd faces. Fortunately these two odd faces have a common neighboring even face. We
can thus “fix” the parity of the two odd faces by plugging the sub-gadget Dj in the even
face. We eventually need a total of 112 vertices, including 6 anchor points.

Let us now describe the crossing gadgets. Basically we want to replace every intersection
point of two edges by a 4-vertex cycle. This indeed propagates black edges (those that cannot
be in any solution). The issue is that going through such a crossing gadget flips one’s side.
As we cannot guarantee that a variable “wire” has the same parity of intersection points
towards each clause gadget it is linked to, we duplicate these wires. At a previous intersection
point, we now have two parallel wires crossing two other parallel wires, making four crossings.
The gadget simply consists of four 4-vertex cycles; see Figure 3. Check in Figure 7 that
the sides are indeed preserved. This explains why we have 8 anchor points (not 4) in each
variable gadget, and 6 anchor points (not 3) in each clause gadget.

2 Preliminaries

For a graph G, we denote by V (G) its set of vertices and by E(G) its set of edges. If
U ⊆ V (G), the subgraph of G induced by U , denoted G[U ] is the graph obtained from G

by removing the vertices not in U . EG(U) (or E(U) when G is clear) is a shorthand for
E(G[U ]). For M ⊂ E(G), G−M is the spanning subgraph of G obtained by removing the
edges in M (while preserving their endpoints). A connected component of G is a maximal
set U ⊆ V (G) such that G[U ] is connected. A graph G is cubic if every vertex of G has
exactly three neighbors. A graph is bipartite if it contains no odd cycles. We may use k-cycle
as a short-hand for the k-vertex cycle.

Given two disjoint sets X, Y ⊆ V (G) we denote by E(X, Y ) the set of edges between X

and Y . A set M ⊆ E(G) is a cutset6 of G if there is a proper bipartition X ] Y = V (G),
called cut, such that M = E(X, Y ). Note that a cut fully determines a cutset, and among
connected graphs a cutset fully determines a cut. When dealing with connected graphs,
we may speak of the cut of a cutset. For X ⊆ V (G) the set of outgoing edges of X is
E(X, V (G) \X). For a cutset M of a connected graph G, and u, v ∈ V (G), we say that u

and v are on the same side (resp. on opposite sides) of M if u and v are on the same part

6 We avoid using the term “edge cut” since, for some authors, an edge cut is, more generally, a subset of
edges whose deletion increases the number of connected components.
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(resp. on different parts) of the cut of M .
A matching (resp. perfect matching) of G is a set M ⊂ E(G) such that each vertex of G

is incident to at most (resp. exactly) one edge of M . A perfect matching cut is a perfect
matching that is also a cutset. For M ⊆ E(G) and U ⊆ V (G), we say that M is a perfect
matching cut of G[U ] if M ∩ E(U) is so.

A graph is planar if it can be embedded in the plane, i.e., drawn such that edges (simple
curves) may only intersect at their endpoint (the vertices). A plane graph is a planar graph
together with such an embedding. Given a plane graph G, a face of G is a connected
component of the plane after removing the embedding of G. A facial cycle of a plane graph
G is a cycle of G that bounds a face of G. We say that two plane graphs G and H are
translates if the embedding of G is a translate of the embedding of H.

3 Proof of Theorem 1

Before we give our reduction, we start with a handful of useful lemmas and observations,
which we will later need.

3.1 Preparatory lemmas
I Lemma 2. Let G be a graph, and M ⊆ E(G). Then M is a cutset if and only if for every
cycle C of G, |E(C) ∩M | is even.

Proof. Suppose that M is a cutset, and let (A, B) be a cut of M . Every closed walk (and in
particular, cycle) contains an even number of edges of M , since the edges of M go (along the
walk) from A to B, and from B to A.

Now assume that every cycle of G has an even number of edges in common with M .
We build a cut (A, B). For each connected component H of G, we fix an arbitrary vertex
v ∈ V (H), and do the following. For each vertex w ∈ V (H), put w in A if there is a path
from v to w taking an even number of edges from M , and in B if there is a path from v to
w taking an odd number of edges from M . It holds that A ∪B = V (G). By our assumption
on the cycles of G, A ∩ B = ∅. Hence (A, B) is indeed a cut. The cutset of (A, B) is, by
construction, M . J

I Lemma 3. Let G be a plane graph, and M ⊆ E(G). Then M is a cutset if and only if for
any facial cycle C of G, |E(C) ∩M | is even.

Proof. The forward implication is a direct consequence of Lemma 2. The converse comes
from the known fact that the bounded faces form a cycle basis; see for instance [9].

If H is a subgraph of G, let H̃ be the vector of FE(G)
2 with 1 entries at the positions

corresponding to edges of H. Thus, for any cycle C of G, we have C̃ = Σ16i6kF̃i where Fi

are facial cycles of G. And |M ∩E(C)| has the same parity as Σ16i6k|M ∩E(Fi)|, a sum of
even numbers. J

I Lemma 4. Let M be a perfect matching cut of a cubic graph G. Let C be an induced
4-vertex cycle of G. Then, exactly one of the following holds:

(a) E(C) ∩M = ∅ and the four outgoing edges of V (C) belong to M .
(b) |E(C) ∩M | = 2, the two edges of E(C) ∩M are disjoint, and none of the outgoing edges

of V (C) belongs to M .
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Proof. The number of edges of M within E(C) is even by Lemma 3. Thus |E(C)∩M | ∈ {0, 2},
as all four edges of E(C) do not make a matching.

Suppose that E(C)∩M = ∅. As M is a perfect matching, for every v ∈ V (C) there is an
edge in M incident to v and not in E(C). As G is cubic, every outgoing edge of V (C) is in
M .

Suppose instead that |E(C) ∩M | = 2. As M is a matching, the two edges of E(C) ∩M

do not share an endpoint. It implies that all the four vertices of C are touched by these two
edges. Thus no outgoing edge of V (C) can be in M . J

I Corollary 5. Let M be a perfect matching of a cubic graph G. Let C1, C2 two vertex-
disjoint induced 4-vertex cycles of G such that there is an edge between V (C1) and V (C2).
Then E(C1) ∩M 6= ∅ if and only if E(C2) ∩M 6= ∅.

Proof. Suppose E(C1) ∩M 6= ∅. By Lemma 4 on C1, no outgoing edge of V (C1) is in M .
Thus, there is an outgoing edge of V (C2) that is not in M . Applying Lemma 4 on C2, we
have E(C2) ∩M 6= ∅. We get the converse symmetrically. J

I Lemma 6. Let M be a perfect matching cut of a cubic graph G. If a 6-cycle has three
outgoing edges in M , then all six outgoing edges are in M .

Proof. Let C be our 6-cycle. Remember that, as M is a perfect matching cut, |E(C) ∩M |
is even. This means that |E(C) ∩M | is either 0 or 2. If |E(C) ∩M | = 2, four vertices of
C are touched by E(C) ∩M , which rules out that three outgoing edges of V (C) are in M .
Thus E(C) ∩M = ∅ and, G being cubic, every outgoing edge of V (C) is in M . J

I Lemma 7. Let M a perfect matching cut of a cubic bipartite graph G. Suppose C is a
6-cycle v1v2 . . . v6 of G, such that v2v3, v3v4, v5v6 and v6v1 are in some induced 4-cycles.
Then M ∩ E(C) = ∅.

Proof. By applying Lemma 4 on the 4-cycle containing v2v3, and the one containing v6v1, it
holds that v1v2 ∈ M ⇔ v3v4 ∈ M ⇔ v5v6 ∈ M . Thus none of these three edges can be in
M , because C would have an odd number of edges in M . Symmetrically, no edge among
v2v3, v4v5 and v6v1 can be in M . Thus no edge of C is in M . J

I Observation 8. Let G be a graph and M be a perfect matching cut of G. Let u, v be two
vertices of G. Then for any path P between u and v, |E(P ) ∩M | is even if and only if u

and v are on the same side of M . Note that implies that for any paths P, Q from u to v,
|E(P ) ∩M | and |E(Q) ∩M | have same parity.

3.2 Reduction
We will prove Theorem 1 by reduction from the NP-complete Monotone Not-All-Equal
3SAT-E4 [6]. In Monotone Not-All-Equal 3SAT-E4, the input is a 3-CNF formula
where each variable occurs exactly four times, each clause contains exactly three distinct
literals, and no clause contains a negated literal. Here we say that a truth assignment on
the variables satisfies a clause C if at least one literal of C is true and at least least one
literal of C is false. The objective is to decide whether there is a truth assignment that
satisfies all clauses. We can safely assume (and we will) that the variable-clause incidence
graph inc(I) of I has no cutvertex among its “variable” vertices. Indeed the reduction
from Monotone Not-All-Equal 3-SAT to its four-occurrence variant does not create
such cutvertices if they do not exist originally. Now if there is a “variable” cutvertex v in
a Monotone Not-All-Equal 3-SAT-instance J , one can split J into J1 made of one
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connected component X of inc(J)−{v} plus v, and J2 made of inc(J) \X. One can observe
that J is positive if and only if J1 and J2 are positive. As inc(J1) and inc(J2) sum up
to one more vertex than inc(J), such a scheme is a polynomial-time Turing reduction to
subinstances without “variable” cutvertices.

Let I be an instance of Monotone Not-All-Equal 3SAT-E4 with variables x1, x2, . . . ,

xn and clauses m = 4n/3 clauses C1, C2, . . . , Cm. We shall construct, in polynomial time,
an equivalent PMC-instance G(I) that is Barnette.

Our reduction consists of three steps. First we construct a cubic graph H(I) by introducing
variable gadgets and clause gadgets. Then we draw H(I) on the plane, i.e., we map the
vertices of H(I) to a set of points on the plane, and the edges of H(I) to a set of simple curves
on the plane. We shall refer to this drawing as R. Note that, this drawing may not be planar,
i.e., two simple curves (or analogously the corresponding edges) might intersect at a point
which is not their endpoints. Finally, we eliminate the crossing points by introducing crossing
gadgets. (Recall that if the variable-clause incidence graph of a Not-All-Equal 3-SAT
instance is planar, then its satisfiability can be tested in polynomial time [34]; hence, we do
need crossing gadgets.) The resulting graph G(I) is Barnette, and we shall prove that G(I)
has a perfect matching if and only if I is a positive instance of Monotone Not-All-Equal
3SAT-E4. We now describe the above steps.

S1
i S2

i S3
i S4

i S5
i

ti,qbi,qti,pbi,pti,kbi,kti,jbi,j

Figure 1 Variable Gadget Xi corresponding to the variable xi appearing in the clauses
Cj , Ck, Cp, Cq with j < k < p < q.

1. For each variable xi, let Xi denote a fresh copy of the graph shown in Figure 1. Note that
the variable xi appears in exactly four clauses, say, Cj , Ck, Cp, Cq with j < k < p < q.
The variable gadget Xi contains the special vertices ti,j , bi,j , ti,k, bi,k, ti,p, bi,p, ti,q, bi,q

as shown in the figure. We recall that red edges are those forced in any perfect matching
cut, while black edges cannot be in any solution. An essential part of the proof will
consist of justifying the edge colors in our figures.
For each clause Cj = (xa, xb, xc) with a < b < c let Cj denote a new copy of the graph
shown in Figure 2. The clause gadget Cj contains the special vertices t′a,j , b′a,j , t′b,j , b′b,j ,
t′c,j , b′c,j , as shown in the figure. Then for each variable xi that appears in the clause Cj ,
introduce two new edges Eij =

{
ti,jt′i,j , bi,jb′i,j

}
. Let H(I) denote the graph defined as

follows.

V (H(I)) =
n⋃

i=1
V (Xi) ∪

m⋃
j=1

V (Cj)

E(H(I)) =
n⋃

i=1
E(Xi) ∪

m⋃
j=1

E(Cj) ∪
⋃

xi∈Cj

Eij .

We assign to each edge e ∈ Ei,j its variable as var(e) = i. Note that, for a variable gadget
Xi, there are exactly eight outgoing edges of V (Xi).
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u1 = t′
b,j v1

b′
b,j

u2 v2u3 v3u4 v4

u5 v5u6 v6

u7 v7
u8 v8

u9 v9

u10 v10

u11 v11

u12 v12

u13 v13

u14 v14

u15 v15

u16 v16
u17 v17u18 v18

u19 v19u20 v20

b′
a,j t′

a,j

t′
c,j b′

c,j

D1
j D2

j D3
j

Dj

d1
d2
d3

w1 w2 w3 w4

w5 w6

F1 F ′
1

F2 F ′
2

F3 F ′
3

F4 F ′
4

F5 F ′
5

F6 F ′
6

Figure 2 Clause gadget Cj = (xa, xb, xc) with a < b < c. A red edge is selected in any perfect
matching cut. A blue edge is selected in some perfect matching cut. A black edge is never selected
in any perfect matching cut.

2. In the next step, we generate a drawing R of H(I) on the plane according to the following
procedure.
a. For each variable xi, we embed Xi as a translate of the variable gadget of Figure 1

into [0, 1]× [2i, 2i + 1].
b. For each clause Cj , we embed Cj as a translate of the clause gadget of Figure 2 into

[2, 3]× [2j, 2j + 1].
c. Two edges incident to vertices in the same variable gadget or same clause gadget do

not intersect in R. For two variables xi, xi′ and clauses Cj , Cj′ with xi ∈ Cj , xi′ ∈ Cj′ ,
exactly one of the following holds:
i. For each pair of edges (e, e′) ∈ Eij × Ei′j′ , e and e′ intersect exactly once in R.

When this condition is satisfied, we call (Eij , Ei′j′) a crossing quadruple. Moreover,
we ensure that the interior of the subsegment of e ∈ Eij between its two intersection
points with edges of Ei′j′ is not crossed by any edge;

ii. There is no pair of edges (e, e′) ∈ Eij × Ei′j′ such that e and e′ intersect in R;

3. For each crossing quadruples (Eij , Ei′j′) replace the four crossing points shown in Figure 3a
by the crossing gadget shown in Figure 3b.
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u1

u2

v1

v2

u′1 u′2

v′1 v′2

(a) Crossing quadruples.

u1

u2

v1

v2

u′1 u′2

v′1 v′2

(b) Replacement of step 3 (b).

Figure 3 Replacement of a crossing by a crossing gadget.

Let G(I) denote the resulting graph. We shall need the following definitions.

I Definition 9. Any edge of G(I) whose both endpoints are not contained withing the same
gadget (variable, clause, or crossing) is a connector edge. Any endpoint of a connector edge
is called a connector vertex. For a connector edge e incident to a crossing gadget, var(e) is
the index of the variable gadget it was originally going to. To each connector edge uv, we
associate the variable var(uv) to both u and v, denoted var(u), var(v).

Now we shall distinguish some 4-cycles of G(I).

I Definition 10. An (induced) 4-cycle C of G(I) is a crossover 4-cycle if it belongs to some
crossing gadget.

I Definition 11. An (induced) 4-cycle C of G(I) is special if C it some Fi or F ′i of some Cj .

The special 4-cycles of a particular clause gadget Cj are highlighted in Figure 2. In the
next section, we show that G(I) is indeed a 3-connected cubic bipartite planar graph.

3.3 G(I) is Barnette
We shall show that the constructed graph is Barnette.

I Lemma 12. The graph G(I) is 3-connected.

Proof. Observe that, for any two adjacent gadgets X ,Y, there are two disjoint connector
edges from X to Y. We consider G(I) after the removal of two vertices u, v.

First assume that u and v are not both connector vertices. Thus two gadgets X and Y
are adjacent in G(I) if and only if they are adjacent in G(I) − {u, v}. And in particular,
each pair of gadgets are then connected in G(I)− {u, v}.

Then G(I)− {u, v} can only be disconnected if there exists, inside a same gadget, two
vertices that are disconnected in G(I)− {u, v}. In particular, this gadget is disconnected by
the removal of u, v, which forces both u and v to be picked inside it. Indeed every gadget is
2-connected. We go through the three kinds of gadgets.
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If it is a variable gadget Xi, then Xi is split in two components each containing a connector
vertex. Let a (resp. b) be a connector vertex in the first (resp. second) component. As no
“variable” vertex is a cutvertex in inc(I), there is a path P in inc(I)− {xi} from “clause
Ca′” to “clause Cb′”, where Ca′ and Cb′ are the clauses corresponding respectively to a

and b (i.e., with the notations of Figure 1, a′, b′ are the second indices of a, b respectively).
Thus a and b are connected in G(I)− {u, v}.
If it is a clause gadget Cj , it is split in two connected components such that one contains
a connector vertex t′i,j and the other contains b′i,j . Thus we can simply follow the path
from t′i,j to ti,j , then to bi,j and finally back to b′i,j to connect the two parts of the clause
gadget.
If it is a crossing gadget X, then the split separates X in two connected components, but
note that there exists a gadget Y incident to both components. Thus, as Y is connected,
the subgraph induced by their union, and hence G(I)− {u, v}, is connected.

We now deal with the case when both u and v are connector vertices. Observe that every
gadget remains connected by removing up to two connector vertices inside it. Therefore
every gadget is connected in G(I)− {u, v}. By the first paragraph, the only interesting case
is when u and v are the endpoints of two distinct connector edges between the same pair of
gadgets. Then, the effect of removing u, v is to remove the link between the two gadgets.

However inc(I) cannot have a bridge, for otherwise it would have a “variable” vertex that
is a cutvertex. In turn, one can see that this implies that the gadget adjacency graph is
bridgeless. J

I Lemma 13. The graph G(I) is Barnette.

Proof. By the plane embedding of the crossing gadgets, G(I) is planar. One can check
that G(I) is cubic, by observing that within each gadget (variable, clause, crossing), all the
vertices have degree 3, except vertices of degree 2, which are exactly those with an incident
edge leaving the gadget. By Lemma 12, G(I) is 3-connected.

We shall thus prove the bipartiteness of G(I). Recall that our construction had three
main components: variable gadgets, clause gadgets and crossing gadgets. For a particular
gadget H, observe that, all the outgoing edges of H lie in the external face of H. Circularly
order the outgoing edges of H by e1, . . . , ep, when going, say, clockwise. Take any two
consecutive outgoing edges ei, ei+1. Let ai(H), ai+1(H) be the vertices of H that are also
incident to ei and ei+1, respectively. We can observe from our construction that the path
from ai to ai+1, denoted as P (H, ai, ai+1) along the external face of H in clockwise order
always has an even number of vertices.

We call the path P (H, ai, ai+1) an exposed path of H. (Observe that a particular gadget
has several exposed paths.) Let F be a bounded face of G(I). If F is a finite face of a
variable, clause, or crossing gadget, then |V (F )| is even because H is bipartite. Otherwise,
F is a union of exposed paths, and the previous arguments imply that |V (F )| is even. J

3.4 Properties of variable and crossing gadgets
I Lemma 14. Let M be a perfect matching cut of G(I). Then for any variable gadget Xi,
M ∩ V (Xi) is the matching formed by the red edges in Figure 1. In particular, M does not
contain any connector edge incident to a variable gadget.

Proof. Consider the variable gadget Xi. By applying Lemma 7 on the 6-cycle S2
i (which

satisfies the requirement of having four particular edges in some 4-cycles), we get that all
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outgoing edges of V (S2
i ) are in M . We can thus apply Lemma 6 on the 6-cycles S1

i and S3
i ,

and obtain that all outgoing edges of these cycles are in M .
Now there is an outgoing edge of the 4-cycle S4

i that is in M , hence by Lemma 4, all of
them are. We can finally apply Lemma 6 on the 6-cycle S5

i , and get that all the red edges
of Figure 1 should indeed be in M . In particular, as all the vertices of Xi are touched by red
edges, the connector edges incident to a variable gadget cannot be in M . J

Now we prove a property of the crossover 4-cycles.

I Lemma 15. Let M be a perfect matching cut of G(I) and F be a crossover 4-cycle. Then
|E(F )| = 2.

Proof. Say that a path of 4-vertex cycles is a sequence C1, . . . , Ck of vertex-disjoint 4-cycles
such that Ci is adjacent to Ci+1. Considering step 3 of the construction, observe that for
every crossover 4-cycle C, there is a path of 4-vertex cycles starting at C and ending at
a crossover 4-cycle adjacent to a variable gadget.

By Lemma 14, no edge incident to a variable gadget is in M . Thus any crossover 4-cycle
adjacent to a variable gadget contains an edge of M . Repeated applications of Corollary 5
imply that C contains an edge of M , and we conclude with Lemma 4 applied on C. J

I Corollary 16. For any perfect matching M of G(I), M contains no connector edges.

Proof. We know that any connector edge incident to a crossing gadget or to a variable
gadget is not in M by Lemmas 14 and 15. J

3.5 Properties of clause gadgets
Observe that Dj is an induced subgraph of the variable gadget Cj .

I Lemma 17. Any perfect matching cut of G(I) contains the edges of Dj drawn in red
in Figure 2.

Proof. Observe that the same proof for the variable gadgets already contained all the
arguments. J

We prove a property of the special 4-cycles of a clause gadget.

I Lemma 18. Let M be a perfect matching cut of G(I) and F be a special 4-cycle of Cj.
Then |E(F ) ∩M | = 2, and no outgoing edge of V (F ) is in M .

Proof. We know from Corollary 16 that a connector edge is not in M , and from Lemma 17
that F5 (see Figure 2) has an incident edge not contained in M . Thus every special 4-cycle
is connected by a path of 4-cycles to a 4-cycle incident to an edge not in M . By application
of Lemma 4 and Corollary 5, every special 4-cycle of Cj contains an edge of M . J

I Lemma 19. Let M be a perfect matching cut of G(I) and Cj be a clause gadget. Let
Uj = {u1, . . . , u20}, and Vj = {v1, . . . , v20}. Then no outgoing edge of Uj or of Vj is in M .

Proof. By Lemma 18 and Corollary 16, the only edges that remain to be checked are
u9v9, u10v10, u12v12, u13v13.

Suppose M contains u9v9. As u8u9 is not available, by Lemma 4 on u7u8w1w5, w1w2 6∈M .
Symmetrically, w3w4 6∈M . As by Lemma 18 u8w1, v8w4 and w2w3 are not in M , u9v9 would
be the only edge of u9, u8, w1, w2, w3, w4, v8, v9 to be in M which is absurd by Lemma 2. A
symmetric argument rules out that u13v13 ∈M . Thus we conclude applying Lemma 4 to the
4-cycles u9v9v10u10 and u12v12v13u13. J
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u1 = t′
b,j

u2 u3 u4 u5 u6 u7
u8

u9

u10

u11

u12

u13

u14

u15

u16
u17 u18

u19 u20

(a) Edges of L1
j are in brown.

u1 = t′
b,j

u2 u3 u4 u5 u6 u7
u8

u9

u10

u11

u12

u13

u14

u15

u16
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u19 u20

(b) Edges of L2
j are in brown.

u1 = t′
b,j

u2 u3 u4 u5 u6 u7
u8

u9

u10

u11

u12

u13

u14

u15

u16
u17 u18

u19 u20

(c) Edges of L3
j are in brown.

Figure 4 The three types of perfect matching cuts within a clause gadget.

From now on we assume that, for a clause gadget the two sets Uj = {u1, . . . , u20}, and
Vj = {v1, . . . , v20} are defined. Now we shall prove that for every clause gadget Cj and
perfect matching cut M , the set M ∩E (Uj ∪ Vj) can be of only three types. Before we prove
the corresponding lemma, we introduce the following notations. Let H denote the subgraph
of G(I) induced by the vertices of Uj ∪ Vj of the clause gadget Cj . Let the vertices of H be
named as shown in Figure 2. We define the following sets:

L1
j = {u1u2, u3u4, u5u19, u6u20, u7u8, u9u10, u16u17, u18u11, u12u13, u15u14} ,

L2
j = {u1u2, u3u4, u5u6, u7u8, u19u20, u9u10, u16u15, u17u18, u11u12, u14u13} ,

L3
j = {u2u3, u4u5, u6u7, u8u9, u1u16, u19u17, u20u18, u10u11, u12u13, u15u14} .

For i ∈ {1, 2, 3}, let Ri
j denote the set of edges {vkvl : ukul ∈ Li

j}.

I Definition 20. We say that a perfect matching cut M of G(I) is of type i in Cj with
i ∈ {1, 2, 3}, if M ∩ E(Uj ∪ Vj) = Li

j ∪Ri
j.

I Lemma 21. Let M be a perfect matching cut of G(I) and Cj be a clause gadget. Then
there exists exactly one integer i ∈ {1, 2, 3} such that M is of type i in Cj.

Proof. Let H denote the subgraph of G(I) induced by the vertices of Uj ∪ Vj of the clause
gadget Cj . Let F = {u9v9, u10v10, u12v12, u13v13}. Consider the 4-cycle C induced by
u17, u18, u19, u20. Consider the case when M ∩ E(C) = ∅. In this case, applying Lemma 4
on C, we know that {u19u5, u20u6, u17u16, u18u11} ⊂ M ; see Figure 4a. Since no outgoing
edge of Uj is in M , due to Lemma 19, it is now easy to verify that L1

j ⊂M . In the case where
M ∩ E(C) = {u19u20, u17u18}, applying Lemma 4 on the 4-cycle induced by u5, u6, u19, u20,
we infer that u5u6 ∈M , and once again it is now easy to verify that L2

j ⊂M ; see Figure 4b.
In the last case, M ∩ E(C) = {u19u17, u18u20}. We again apply Lemma 4 on the 4-cycle
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Figure 5 The brown and red edges make the only intersection of a clause gadget with a perfect
matching cut M such that M ∩ Uj = L1

j .

induced by u5, u6, u19, u20, and infer this time that u5u6 6∈M . As no outgoing edge of Uj is
in M , it is now easy to verify that L3

j ⊂M ; see Figure 4c.
Observe that in L1

j , u9u10 ∈ M and u12u13 ∈ M , while for L2
j we have u9u10 ∈ M and

u12u13 6∈ M and for L2
j we have u9u10 6∈ M and u12u13 ∈ M . Thus M ∩ Uj is determined

by the containment of u9u10 and of u12u13 in M . This is also the fact, by symmetry, for
Vj ∩M , when considering the edges v9v10 and v12v13.

At this point, apply Lemma 4 to the two 4-cycles u9, u10, v10, v9 and v17, v18, v19, v20. We
have that u9u10 ∈ M if and only if v9v10 ∈ M , and u12u13 ∈ M if and only if v12v13 ∈ M .
Thus Li

j propagates to Li
j ∪Ri

j . J

As a direct consequence of Lemma 21, we get the following.

I Lemma 22. Let M be a perfect matching cut of G(I) and (A, B) be the cut of M . The
vertices u1, u8, u14 of a clause gadget Cj cannot all be on the same side of M . More precisely:

1. L1
j sets u1 to one side of M , and u8, u14 to the other;

2. L2
j sets u14 to one side of M , and u1, u8 to the other;

3. L3
j sets u8 to one side of M , and u1, u14 to the other.

Note that for a clause gadget Cj , if M is of type 1 (type 2, type 3, respectively) in Cj ,
then the edges in M ∩ E (Cj) are indicated in Figure 5 (Figure 6a, Figure 6b, respectively).

3.6 Relation between variable and clause gadgets
I Lemma 23. Let M be a perfect matching cut of G(I). Then for a variable xi and a clause
Cj with xi ∈ Cj, ti,j , t′i,j , bi,j , b′i,j are on the same side of M .
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(a) Edges (brown and red) implied by L2
j . (b) Edges (brown and red) implied by L3

j .

Figure 6 Same as Figure 5 for L2
j (left) and L3

j (right).

Proof. Let z be any vertex of the cycle S2
i in the variable gadget Xi; see Figure 1. Observe

that there exists a path P (resp. P ′) between z and ti,j (resp. bi,j) such that |M ∩ E(P )|
(resp. |M ∩ E(P ′)|) is even. Hence, due to Observation 8, ti,j and bi,j are on the same side
of M .

Our construction of G(I) ensures that there exists an even non-negative integer k (where
k = 0 if ti,j and t′i,j are adjacent) such that all the following holds:

there are k crossover 4-cycles F1, F2, . . . , Fk and a path P between ti,j and t′i,j where

V (P ) \ {ti,j , t′i,j} ⊂
⋃
l∈k

V (Fl)

for each 1 6 l 6 k, E(P ) ∩ E(Fl) is a 2-edge subpath.

Now due to Lemma 15 we know that for any 1 6 l 6 k, |M ∩ E(Fl)| = 2. The above
arguments further imply that |M ∩ E(Fl) ∩ E(P )| = 1. This implies that |E(P ) ∩M | = k,
which is even. Hence due to Observation 8 we have that ti,j and t′i,j are on the same side
of M .

Using similar reasoning we can infer that b′i,j is on the same side as bi,j . Hence
ti,j , t′i,j , bi,j , b′i,j are all on the same side. J

I Lemma 24. Let M be a perfect matching cut of G(I). Then for any clause gadget Cj

corresponding to the clause Cj = (xa, xb, xc) with a < b < c, the following hold:

(a) t′c,j and u14 are on the same side of M , and
(b) b′a,j and u8 are on the same side of M .

Proof. First we prove (a). Using Figure 2 observe that there exists a path P between t′c,j

and u14 such that P can be written as t′c,j z1 z2 d1 d2 d3 z3 z4 z5 u14 where {z1, z2} ⊂ V (F6)
and {z3, z4, z5} ⊂ V (F5). Note that F5 and F6 are special 4-cycles. Due to Lemma 18, we
have that |M ∩E(F5)| = 2 and |M ∩E(F6)| = 2. This implies there exists exactly one edge
e ∈ {t′c,jz1, z1z2} such that e ∈M . Similarly, there exists exactly one edge e′ ∈ {z3z4, z4z5}
such that e′ ∈M . Moreover, from Lemma 17 it follows that none of {z2d1, d1d2, d2d3, d3z3}
belongs to M . Hence M∩E(P ) = {e, e′}, and |M∩E(P )| is even. Now invoking Observation 8
we conclude that t′c,j and u14 are on the same side of M .
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Figure 7 P 1
j and P 2

j are the only possible restrictions of M to a crossing gadget.

Now we prove (b). Using Figure 2 observe that there exists a path P ′ between b′a,j and u8
such that P ′ can be written as b′c,j z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 u8 where {z1, z2} ⊂ V (F1),
{z3, z4, z5} ⊂ V (F2), {z6, z7, z8} ⊂ V (F3), and {z9, z10, z11} ⊂ V (F4). Now arguing similarly
as in (a) on the special 4-cycles F1, F2, F3, F4, we have that |M ∩ E(P )| is even. By
Observation 8, we conclude that b′a,j and u8 are on the same side of M . J

For any crossing gadget Xj as drawn in Figure 7 we consider the two perfect matching
cuts P 1

j of Figure 7a and P 2
j of Figure 7b on Xj .

I Lemma 25. Let Xj be a crossing gadget of G(I). For any M ∈ {P 1
j , P 2

j }, M is a perfect
matching cut of Xj. Vertices ta, ba, t′a, b′a are always on the same side of M , and tc, bc, t′c, b′c
are always on the same side of M . Moreover, if M = P 1

j , ta and tc are on the same side of
M (in Xj), otherwise they are not.

Proof. We refer to Figure 7 for the notations on Xj . M is a perfect matching cut of Xj

by Lemma 3. Let C be the external facial cycle of Xj . We conclude by Observation 8 on
subpaths of C starting at ta or tc. J

3.7 Existence of perfect matching cut implies satisfiability
In this section, we show that if G(I) has a perfect matching cut then I has a satisfying
assignment. Let M be a perfect matching cut of M and (A, B) be the cut of M . As we
already observed, a potential solution to I can be seen as a partition (VA,VB) of the variables.
We set xi in VA if and only if V (S2

i ) ⊂ A, and we show that P = (VA,VB) satisfies the
Monotone Not-All-Equal 3SAT-E4-instance I.

Assume for contradiction that there exists a clause Cj such that all variables, xa, xb, xc,
of Cj are on the same side of P. Thus all the vertices in ∪i∈{a,b,c}V (S2

i ) are on the same
side of M . Assume without loss of generality that this side is A. Let zi be any vertex of S2

i .
Now fix an integer i ∈ {a, b, c}. Observe, using Figure 1, that there exists a path P

between zi and ti,j such that |M ∩ E(P )| is even. Hence, due to Observation 8, we infer
that ti,j lies in A. Now due to Lemma 23 we have that

{
ti,j , t′i,j , bi,j , b′i,j

}
⊂ A. The above

discussion implies that ⋃
i∈{a,b,c}

{
ti,j , t′i,j , bi,j , b′i,j

}
⊂ A.
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Now invoking Lemma 24, we have that all three vertices in {u1, u8, u14} lie in A. But this
contradicts Lemma 22. Hence we get the following.

I Lemma 26. If G(I) has a perfect matching cut then I is a positive instance.

3.8 Satisfiability implies the existence of a perfect matching cut
In this section, we show that given a Monotone Not-All-Equal 3SAT-E4-instance I

and a partition P = (VA,VB) satisfying I, we can construct a perfect matching cut MP of
G(I), as follows:

for each variable gadget Xi, MP ∩ V (Xi) is the matching imposed by Lemma 14,
for each crossing gadget Xj incident to two edges e, f , we choose P 1

j if var(e) and var(f)
are on the same side of P, and P 2

j otherwise,
for each clause gadget Cj over variables a, b, c, we choose the matching of Figure 5 if b is
not on the same side of P as a and c, the matching of Figure 6a if c is not on the same
side of P as a and b, and the matching of Figure 6b in the last case.

As MP is a perfect matching on each gadget, and as every vertex belongs to some gadget,
MP is a perfect matching of G(I). By construction, MP contains no connector edges. Recall
that any edge that does not have both endpoints inside the same gadget is a connector edge,
we call connector vertex a vertex v incident to a connector edge e, and that var(v) = var(e).

I Lemma 27. For any path Q between two connector vertices u and v, we have |Q ∩MP |
even if and only if var(u) and var(v) are on the same side of P.

Proof. As MP does not contain any connector edges, |Q ∩MP | is defined by the parts of Q

inside a gadget. Let Q1, . . . , Qk be spanning vertex-disjoint subpaths of Q such that for any
i, Qi lies inside a gadget and, there is a connector edge from the last vertex of Qi to the first
one of Qi+1, for every 1 6 i < k. We prove the property by induction on k.

If k = 1, the whole Q lies inside a gadget, and the property is true by Lemma 14 for
variable gadgets, Lemma 22 for clause gadgets and Lemma 25 for crossing gadgets.

Assume the property true for i 6 k − 1, let u′ the last vertex of Qk−1 and v′ the first
vertex of Qk. By induction, var(u) and var(u′) are on the same side of P if and only if
|
⋃

16i6k−1 E(Qi)∩MP | is even, and var(v′) and var(v) are on the same side of P if and only
if |E(Qk)∩MP | is even. As var(u′) = var(v′), we know that var(u′) is on the same side of P
as var(v′), moreover u′v′ 6∈MP . Thus var(u) and var(v) are on the same side of P if and only
if |
⋃

16i6k E(Qi)∩MP | and |E(Qk)∩MP | have the same parity, thus |
⋃

16i6k E(Qi)∩MP |
is even if and only if var(u) and var(v) are on the same side of P. J

I Lemma 28. MP is a perfect matching cut of G(I).

Proof. We already know that MP is a perfect matching. Moreover, MP is a cutset by
Lemma 3. Indeed, let C be any cycle in G(I). If C is contained in a gadget then, as MP is a
cutset when restricted to a gadget, |C ∩MP | is even. Otherwise, C contains a connector
edge uv, so we can see C as the concatenation of the edge uv and a path Q from v to u. We
know that uv 6∈ MP , and var(u) = var(v). By Lemma 27, |E(C) ∩MP | = |E(Q) ∩MP | is
even. J

We finally get Theorem 1, due to Lemmas 13, 26, and 28.
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