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Abstract

We discuss approximability in FPT-time for the class of subset optimization graph problems
where a feasible solution S is a subset of the vertex set of the input graph. This class encom-
passes many well-known problems, such as min dominating set, min vertex cover, max
independent set, min feedback vertex set. We study approximability of such problems
with respect to the dual parameter n − k where n is size of the vertex set and k the stan-
dard parameter. We show that under such parameterization, many of these problems, while
W[·]-hard, admit parameterized approximation schemata.

1 Preliminaries
We say that a minimization (resp., maximization) problem Π, together with a parameter k, is
parameterized r-approximable, if there exists an FPT-time algorithm which computes a solution of
size at most (resp., at least) rk whenever the input instance has a solution of size at most (resp.,
at least) k, otherwise, it outputs an arbitrary solution. This line of research was initiated by three
independent works [13, 8, 10]. For a very interesting overview of older results, see [18].

Here, we handle approximability and inapproximability in FPT-time of a broad class of NPO
graph problems (see [2] for a formal definition of an NPO problem) that we call subset problems.
They can be defined as follows (for a larger definition of subset problems that goes beyond graphs,
one can be referred to [21]).

Definition 1. Consider an NPO graph problem Π defined on a graph G = (V,E). Then Π is a
subset problem, if any feasible solution S for G is a subset of V and if the objective value of S is
equal to |S|.

Let us note that the notion of a subset problem can be extended to also capture problems that
are not defined by means of graphs. For optimum satisfiability, considering that a feasible solution
is a subset of satisfied clauses, maximum or minimum satisfiability can be considered as subset
problems. For problems defined on set systems, such as min set cover or max set packing, we
can consider that the “reference” set of data is the family S of subsets of the ground set U (also
called universe), and feasible solutions are subfamilies of S.

The class of subset graph problems includes some of the most popular combinatorial problems
such as min dominating set, min vertex cover, max independent set, min independent
dominating set, min feedback vertex set, several fixed cardinality problems (as, for example,
max and min k-vertex cover), etc.

The goal of the paper is to handle dual parameterization (defined just below) and parameterized
approximation of subset problems. For simplicity, we restrict ourselves in graph problems but our
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results also apply for satisfiability or set system problems (following the assumptions sketched just
above).

Subset graph problems can be optimally solved in time O∗(2n) (where n is the order of the
input graph) by exhausting all the vertex subsets and outputting an optimum feasible subset.
Notation O∗(·) suppresses polynomial factors in the size of the input, that is, for any constant c,
ncf(n) is in O∗(f(n)).

Given an instance G of a subset problem Π, denoting by n the order of G and by k the
standard parameter of Π (i.e., the cardinality of its optimal solution), we call dual parameter for Π
the parameter n− k. Accordingly, we call dual parametrization of Π, denoted by D-Π, the subset
problem that has the same constraints than Π and standard parameter (cardinality of optimal
solution) kD = n− k. For example, if Π stands for min vertex cover, D-min vertex cover is
max independent set.

Besides the fact that dual parameterization is interesting per se, for numerous problems has
also a natural interpretation, it is even a structural parameter of the instance. For instance:

• for max independent set, the dual parameter n− α(G), where α(G) denotes the stability
number of G, is the size of a minimum vertex cover.

• for min set cover, the dual parameter represents the number of unused sets;

• for min feedback vertex set, the dual parameter is the size of a maximum induced forest;

• for min vertex coloring in a graph of order n, the dual parameter n−χ is the number of
unused colors, i.e., the number of available colors not used by the coloring.

Parameterization by the dual parameter has been studied for many classical (and not only subset)
problems (see, for example, [7, 12]) and for a lot of them it has been proved that although hard with
respect to the standard parameter, they become easy when parameterized by the dual parameter.
The most known such problem is the famous max independent set problem when parameterized
by the size of a minimum vertex cover (this is a folklore result). This is also the case of min vertex
coloring problem (which is not a subset problem) which, although not in XP (unless P 6= NP)
when parameterized by the chromatic number χ, is in FPT when parameterized by n− χ [9, 12].

In Section 2, we show that for another subset graph-problem, the min independent dominat-
ing set, its dual parameterization is also in FPT. On the contrary, min set cover parameterized
by n− k (where n = |S|) is W[1]-hard.

2 Some complexity results for subset problems
As it is done in [6], we first observe that the min independent dominating set problem, while
being known to be W[2]-hard for the standard parameter, is FPT with respect to the dual param-
eter.

Proposition 1. min independent dominating set parameterized by n− k is FPT.

Proof. For min independent dominating set, n − k is the size of a maximum minimal vertex
cover which is at least equal to a minimum vertex cover which is bigger than the treewidth of the
input graph [5]. The fact that min independent dominating set parameterized by treewidth is
in FPT [1], implies that min independent dominating set parameterized by n−k is FPT.

Proposition 2. min set cover is W[1]-hard when parameterized by n− k and W[2]-complete
when parameterized by k.

Proof. On the one hand, min set cover is W[2]-complete when parameterized by the standard
parameter [12]. On the other hand, when parameterized by the dual parameter, min set cover
is W[1]-hard as being a generalization of max independent set. Indeed, min vertex cover
can be seen as a restriction of min set cover, where elements are edges, and there is one set per
vertex of the graph, which contains all the edges incident to this vertex. Besides, the complement
of a vertex cover is an independent set. Therefore, this restricted version of set cover is equivalent
to finding an independent set of size n− k parameterized by n− k (one may rename n− k by k′),
which is known to be W[1]-hard.
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Similar negative results hold also for dual parameterizations of several well-known subset graph
problems. For instance:

• the dual parameterization of min vertex cover is the size of a maximum independent set
and min vertex cover parameterized by α(G) is W[1]-complete [6];

• min feedback vertex set isW[1]-complete when parameterized by the dual parameter [9,
14, 17] (the dual parameterization of min feedback vertex set is called max vertex
induced forest).

3 Using polynomial approximation to design FPT approxi-
mation schemata for W[·]-hard subset problems

For a subset problem Π, D-Π will denote in the sequel the dual parameterization of Π. In the
following theorem, we give a sufficient condition under which, given a subset problem Π, problem
D-Π admits an approximation schema running in FPT-time with respect to the standard parameter
of Π. Informally, the approximation ratio is computed with the dual parameter but the FPT
running time is function of the standard parameter.

Theorem 1. Consider a subset problem Π with standard parameter k and set kD = n−k, where n
is the size of an input of Π. Then:

1. if Π is a minimization problem and is approximable in polynomial time within ratio at
most (log n)g(k), for some function g, problem D-Π parameterized by k admits a parame-
terized approximation schema;

2. if Π is a maximization problem, problem D-Π parameterized by k admits a parameterized
approximation schema.

Proof. In order to prove Item 1, consider a problem Π satisfying the conditions of the item, its
dual version D-Π, a ρ-approximation algorithm A for Π and denote by k′ the cardinality of the
solution returned by A. The complement of this solution is a solution of size k′D = n− k′ for D-Π,
while the size of the optimum is kD = n − k. Thus, the approximation ratio guaranteed for D-Π
is (recall that D-Π is a maximization problem):

k′D
kD

=
n− k′

n− k
>
n− ρk
n− k

(1)

Fix some constant ε > 0. Then, in order that the last fraction in (1) is greater than 1− ε, it must
hold that:

n >

(
ρ− 1 + ε

ε

)
k (2)

If n does not satisfy (2), then the simple O∗(nk)-time algorithm that builds all the subsets of
size up to k and chooses the one which constitutes the best solution, runs in FPT time as long
as ρ 6 logg(k) n. Indeed, in this case, n 6 ((ρ−1+ε)/ε)k 6 (((logn)

g(k)−1+ε)/ε)k. Thus, the O∗(nk)
trivial algorithm for Π is also O∗((k/ε)k(log n)kg(k)) which is FPT. Indeed, for any function h,
O((log n)h(k))) is O(F (k)p(n)), for some function F and polynomial p [19].

Proof of Item 2 is similar. Now, D-Π is a minimization problem. With the same notation as in
the proof of Item 1, we distinguish the following two cases.

1. n > ((1+ε)k−k′)/ε. This implies:
k′D
kD

=
n− k′

n− k
6 1 + ε

so A yields a 1+ ε-approximation (recall that the objective value, i.e., the value of an optimal
solution, is the dual parameter).

2. n < ((1+ε)k−k′)/ε 6 (1+ε)k/ε. In this case, the exhaustive search in O∗(2n) is also O∗(2(1+ε)k/ε),
hence FPT.
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This completes the proof of the theorem.

Note that, for minimization problems approximable in polynomial time within ratios that are
functions of k (i.e., of the optimum), Item 1 of Theorem 1 applies without any restriction on the
values of these ratios. On the other hand, for maximization problems (Item 2), such a case implies
the existence of parameterized approximation schemata that are subexponential in k.

Observe that min independent dominating set does not meet the conditions of Theorem 1.
Indeed, the best known polynomial time achievable approximation ratio for min independent
dominating set is ∆ + 1, where ∆ is the maximum degree of the input graph and can be
aribatrily larger than O(log n), and it is inapproximable within ∆1−ε, for any ε > 0 in polynomial
time [15].

The scope of Theorem 1 encompasses more problems than subset problems, for instance, color-
ing problems. Of course, the classical min vertex coloring problem does not meet the conditions
of Item 1, since it is inapproximable in polynomial time within better than n1−ε, for any ε > 0 [22].
Moreover, as it is proved in [3], D-min vertex coloring is APX-hard. So, a parameterized
approximation schema by means of Theorem 1 is impossible for min vertex coloring. Consider
two edge-coloring problems: the classical min edge coloring and the max edge coloring1

problem. The former is polynomially approximable within ratio 4/3 [20] and the latter one within
ratio 2 [16]. Thus, by Theorem 1, both problems admit FPT approximation schemata when pa-
rameterized by the dual parameter m − k (where m denotes the size of the edge set of the input
graph).

We now give two corollaries of Theorem 1.

Corollary 1. D-min set cover, D-min dominating set, D-min feedback vertex set, D-min
edge coloring, D-max edge coloring parameterized by k, admit parameterized approximation
schemata.

Recall that as it has been mentioned in Section 1, even max sat and min sat can be seen
as subset problems. Moreover, min sat is polynomially approximable within constant ratio [4].
Thus, the following holds.

Corollary 2. D-max sat and D-min sat parameterized by k are approximable by parameterized
approximation schemata.

The results of Corollaries 1 and 2 offer interesting insights on the possible relations between
classical polynomial approximation and parameterized approximation that deserve further inves-
tigation.

4 Some words about “differential” parameterization
Another interesting parameter, not systematically studied yet, is the differential parameter. It can
be defined by ω− k, where ω is the worst-case solution value of an instance [11]. Informally, given
an instance I of a combinatorial problem Π, ω(I) is the optimal value of a problem Π′ defined on
the same set of instances and having the same feasibility constraints as Π, but Π′ has the opposite
goal.

Although for some minimization subset problems, differential and dual parameters coincide
(min vertex cover, min set cover, min dominating set, etc., are such problems), this is
not the case for any problem. For min independent dominating set, for example, the value of
a worst solution on an instance I is the size of a maximum independent set (that is the largest
of the independent dominating sets in I). Thus, min independent dominating set, while
in FPT when parameterized by the dual parameter (Proposition 1), becomes W[1]-hard when
parameterized by the differential parameter [6].

On the other hand, for many maximization subset problems as max independent set, max
clique, knapsack, etc., the wost solution (of value 0) is the empty set. There, the differential
parameter coincides with the standard one.

1Given an edge-weighted graph G, the weight of a color M (that is a matching of G) is defined as the weight of
the “heaviest” edge of M and the objective is to determine a partition of the edges of G into matchings, minimizing
the sum of their weights.
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In max minimal vertex cover, the worst solution value is the size τ(G) of a minimum vertex
cover. Thus, denoting by k its standard parameter, its differential parameter is k − τ(G). The
following easy proposition holds for this problem.

Proposition 3. max minimal vertex cover parameterized by the differential parameter is
W[1]-hard.

Proof. Given a graph G, let ι(G) be the size of a minimum independent dominating set and k
the size of a maximum minimal vertex cover. As k + ι(G) = n = α(G) + τ(G), it holds that
k − τ(G) = α(G) − ι(G). Recall that min independent dominating set parameterized by
α(G) − ι(G) is W[1]-hard [6]; this implies that it is so when parameterized by k − τ(G). If
max minimal vertex cover was in FPT when parameterized by k − τ(G), one by taking the
complement of the solution, would be able to determine a minimum independent dominating set
in time parameterized by k − τ(G) = α(G) − ι(G), a contradiction (unless FPT = W[1]) since
min independent dominating set parameterized by α(G)− ι(G) is W[1]-hard.

A more systematic study of the complexity of exactly or approximately solving problems pa-
rameterized by the differential parameter (when such parameterization makes sense) seems to us
an interesting direction of future research.

5 Final remarks
We studied here parameterized approximability of subset problems, which constitute a very nat-
ural and popular class of combinatorial problems. We have sketched a systematic approach for
approximating subset problems when parameterized by the dual parameter, i.e., parameter “size
of the instance minus standard parameter”. We showed that such parameterization is able to
produce non-trivial parameterized approximation results that, in many cases, can also fit another
polynomial-time approximation paradigm: the differential approximation. Studying parameter-
ized approximability of problems with respect to any parameter for which they are known to be
hard is very important and adds deeper insights on the parameterized intractability of the world
of combinatorial problems.

Finally, a particularly interesting problem is the existence of a dual prameterized approximation
schema for min vertex coloring. As we have mentioned in Section 3 (above Corollary 1),
such a schema is not achievable by application of Theorem 1. Is such schema achievable by ad
hoc methods? Can we prove that, under some credible complexity hypothesis, such a result is
impossible. This, to our opinion, is a rather difficult open question that deserves further research.

Acknowledgement. The very pertinent comments and suggestions of an anonymous Reviewer
are gratefully acknowledged.
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