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Abstract. Recent years have seen a surge of interest in computa-
tional complexity results in card games. We focus in this paper on
trick-taking card games, extending a study started in 2013. This class
ranges from WHIST and CONTRACT BRIDGE to SKAT and TAROT. We
investigate how the number of cards per suit, the ranks, impacts the
complexity of solving arbitrary positions. We prove that 2 distinct
ranks are sufficient to induce PSPACE-hardness for the question of
determining if a team can make all tricks. This strengthens a 2013
result that assumed at least 5 cards per suit and no constraint on the
number of tricks. Indeed, our analysis indicates that the concept of
card discarding is expressive enough to encode universal quantifica-
tion. Conversely, tractability ensues as soon as a second dimension is
bounded. Our results provide a complete picture of the computational
influence of the rank parameter.

1 Introduction

We can partition the ongoing effort of the Artificial Intelligence com-
munity to address games in two different methodologies. The first
one, experimental in nature, aims at developing algorithms and tech-
niques to play and solve concrete games. Some algorithms such as
CounterFactual Regret minimization (CFR) aim at finding Nash equi-
libria in imperfect information games and have been crucial in solving
a two-player variant of Poker [Bowling et al., 2015]. Other card-
game-related approaches trade convergence guarantees for scalability
and lead to developments such as Perfect Information Monte Carlo
sampling, motivated by trick-taking card games such as CONTRACT

BRIDGE [Ginsberg, 2001] and SKAT [Buro et al., 2009], and Informa-
tion Set Monte Carlo Tree Search which was applied to the Chinese
card game Dou Di Zhu [Cowling et al., 2012].

The second methodology has ties in Theoretical Computer Science
and considers the computational complexity of generalizations of
strategy games. In terms of card games, the first formal complexity
result we can trace is due to Frank and Basin [2001]. Recently, a
surge of interest in the topic has lead to results in games ranging from
UNO [Demaine et al., 2010] to HANABI [Baffier et al., 2016] and
the Russian DURAK [Bonnet, 2016]. In this paper, we continue the
investigation of the complexity of the class of trick-taking card games
started by Bonnet et al. [2013b]. This class encompasses numerous
popular games besides BRIDGE and SKAT: HEARTS, TAROT, and
WHIST are also examples of trick-taking card games.3

Note that contrary to the best defense model assumed by Frank
and Basin [2001]’s NP-completeness result, this paper is inscribed
in a stream of research assuming perfect information and a compact
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input. This is in line with the rest of the research on the complexity of
card games [Wästlund, 2005a,b, Demaine et al., 2010, Bonnet et al.,
2013b, Baffier et al., 2016, Bonnet, 2016]. There are several reasons
for focusing on perfect information. First, it provides a lower bound to
the imperfect information case when compact input is assumed. More
importantly, perfect information trick-taking card games actually do
appear in practice, both among the general population in the form of
DOUBLE DUMMY BRIDGE problems, but also in research as perfect
information Monte Carlo sampling is used as a base component of
virtually every state-of-the-art trick-taking game engine [Levy, 1989,
Ginsberg, 2001, Sturtevant and White, 2006, Long et al., 2010].

The rules of the quintessential trick-taking card game are fairly
simple. A set of players is partitioned into teams and arranged around
a table. Each player is dealt a given number of cards t called hand,
each card being identified by a suit and a rank. The game consists in t
tricks in which every player plays a card. The first player to play in a
given trick is called lead, and the other players proceed in the order
defined by the seating. The single constraint is that players should
follow the lead suit if possible. At the end of a trick, whoever put the
highest ranked card in the lead suit wins the trick and leads the next
trick. When there are no cards remaining, after t tricks, we count the
number of tricks each team won to determine the winner.4

The decision problem in the foundation paper was to determine
whether there is a strategy for the team of the starting player to
ensure winning at least k tricks, for some input integer k [Bonnet
et al., 2013b]. In this paper, we additionally consider the problem
of deciding whether there exists a strategy ensuring all tricks are
collected, i.e. requiring k = t.

It is natural to define fragments of this class of decision problems,
for instance, by limiting the number of hands, the number of different
suits, or even limiting the number of cards within each suit. We re-
call the lattice of such fragments in Section 2. As a relatively simple
improvement of previous work, we show that two cards per suit are
sufficient to induce PSPACE-hardness for the problem of winning k
tricks in Section 3. In Section 4, we prove the stronger result that the
problems remains intractable even if we require team A to make all
tricks. We complement these hardness proofs by tractability results in
Section 5. Finally, we provide a graphical summary of the complex-
ity landscape in trick-taking card games, Section 6, before putting
forward a few open problems.

The contributions of this paper are:

1. Showing that 2 ranks are sufficient for PSPACE-hardness (The-
orem 1) improves over Bonnet et al. [2013b, Theorem 2] who
required at least 5 ranks for their reduction.

2. Theorem 2 goes a step further by proving that even if the opponent
team never leads a card and there are only 2 ranks per suit, the

4 There are more elaborate point-based variants where tricks might have
different values, possibly negative, based on cards comprising them. We
focus on the special case where each card has the same positive value.



concept of discarding is expressive enough to encode universal
quantification.

3. Theorem 3 shows that for any constant N and R, the fragment
B(N, ,R) is tractable, thereby strengthening the B(2, , 4) result
from earlier work [Bonnet et al., 2013b, Prop. 2].

4. Since single-rank fragments are tractable (Prop. 2) and so are
fragments with bounded suits and ranks (Prop. 4), we now have a
complete understanding of the card rank parameter.

2 Definitions and notation
2.1 Trick-taking game
Definition 1. A card c is a pair of two integers representing a suit
(or color) s(c) and a rank r(c). A position p is defined by a tuple of
hands h = (h1, . . . , hη), where a hand is a set of cards, and a lead
turn τ ∈ [1, η]. We further assume that all hands in a given position
have the same size ∀i, j ∈ [1, η], |hi| = |hj | and do not overlap:
i 6= j ⇒ hi ∩ hj = ∅.

An example position with 4 hands and 12 total cards is given in
Figure 1. The position is written as a diagram, so for instance, hand
h3 contains 3 cards {(s1,A), (s1,J), (s2, 2)}.

h1 ?
s1 4
s2 K
s3 A

h2
s1 K Q
s2 A
s3 —

h3
s1 A J
s2 2
s3 —

h4
s1 —
s2 Q
s3 K Q

Figure 1. Example of a trick-taking game position with 4 hands, 3 suits, and
1 as lead turn. If team A controls h1 and h3 and team B controls h2 and h4,

then team A can make all three remaining tricks by starting with (s3, A)

Definition 2. Playing a trick consists in selecting one card from
each hand starting from the lead: cτ ∈ hτ , cτ+1 ∈ hτ+1, . . . , cn ∈
hη, c1 ∈ h1, . . . , cτ−1 ∈ hτ−1. We also require that suits are fol-
lowed, i.e., each played card has the same suit as the first card played
by hand τ or the corresponding hand hi does not have any card in
this suit: s(ci) = s(cτ ) ∨ ∀c ∈ hi, s(c) 6= s(cτ ).

Definition 3. The winner of a trick is the index corresponding to
the card with highest rank among those having the required suit. The
position resulting from a trick with cardsC = {cτ , . . . , cτ−1} played
in a position p can be obtained by removing the selected cards from
the hands and setting the new lead to the winner of the trick.

In the example in Figure 1, the lead is to 1. A possible trick would
be (s3,A), (s1,Q), (s2, 2), (s3,Q); note that only hand h4 can follow
suit, and that 1 is the winner so remains lead.

Definition 4. A team mapping σ is a map from [1 . . . η] to {A,B}
where η is the number of hands. A (perfect information, plain) trick-
taking game is pair consisting of a position and a team mapping
σ.

For simplicity of notation, team mappings will be written as words
over the alphabet {A,B}. For instance, 1 7→ A, 2 7→ B, 3 7→
A, 4 7→ B is written ABAB.

Definition 5. A trick is won by team A if its winner is mapped to A
with σ. The value of a game is the maximum number of tricks that
team A can win against team B.

The value of the game presented in Figure 1 is 3 as team A can
ensure making all remaining tricks with the following strategy known
as squeeze. Start with (s3,A) from h1 and play (s2, 2) from h3, then
start the second trick in the suit where h2 elected to play.

2.2 Decision problem and fragments
The most natural decision problem associated to trick-taking games
is to compute whether the value of a game is larger or equal to a
given value ν. Put another way, is it possible for some team to ensure
capturing more than ν tricks? We will see that the general problem is
PSPACE-hard, but there are several dimensions along which one can
constrain the problem. This should allow to better understand where
the complexity comes from.

Team mappings only allow team mappings belonging to a language
L ⊆ {A,B}∗.

Number of suits the total number of distinct suits s is bounded by a
number s = S, or unbounded s = .

Number of ranks the total number of distinct ranks over all suits r
is bounded by a number r = R, or unbounded r = .

Symmetry for each suit, each hand needs to have the same number
of cards pertaining to that suit.

The fragments of problems respecting such constraints are denoted by
B(L, s, r) when symmetry is not assumed. If symmetry is assumed,
then we denote the class by BM(L, s, r). The largest class, that is,
the set of all problems without any restriction is B( , , ).

Example 1. The class of double-dummy Bridge problems is exactly
B({ABAB}, 4, 13).

Except for the double-dummy team-mapping ABAB, we will not
treat separately team-mappings containing the same number of hands
in different orders. A simpler notation is thus available: we write
B(η, s, r) as short for B({A,B}η, s, r), i.e., the class of problems
with η hands and s suits containing r cards each.

Proposition 1. B( , , ) is in PSPACE.

Proof. The game ends after a polynomial number of moves. It is
possible to perform a minimax search of all possible move sequences
using polynomial space to determine the maximal number of tricks
team A can achieve.

2.3 Generalized Geography
Generalized Geography (GG) is a zero-sum two-player game over a
directed graph with one vertex token. Players take turn moving the
token to an adjacent vertex and thereby removing the origin vertex.
The player who cannot play anymore loses. Figure 2 presents an
instance of GG on a bipartite graph.

Deciding the winner of a GG instance is PSPACE-complete [Schae-
fer, 1978], and GG was used to prove PSPACE-hardness for numerous
games including GO [Lichtenstein and Sipser, 1980], UNO [Demaine
et al., 2010], and more recently, HAVANNAH [Bonnet et al., 2013a].
Lichtenstein and Sipser have shown that GG remains PSPACE-hard
even if the graph is assumed to be planar, bipartite, and of degree 3. GG

was also used to prove both hardness results in the foundation paper



1 2 3

4 5 6

Figure 2. An instance of GG with 1 as the starting vertex.

on the complexity of trick-taking card games [Bonnet et al., 2013b].
Contrary to the previous reduction [Bonnet et al., 2013b, Theorem 2],
the next Section takes advantage of the possibility of bounding the
degree of the graph while retaining hardness.

3 B( , , 2) is PSPACE-complete

We present a polynomial reduction φ from bipartite GG on graphs of
degree 3 to B( , , 2).

An instance of GG on a bipartite graph is given by (G = (VA ∪
VB , EAB ∪EBA), v1) where v1 ∈ VA denotes the initial location of
the token. Let m = mAB +mBA = |EAB |+ |EBA| the number of
edges and n = nA + nB = |VA|+ |VB | the number of vertices. We
construct an instance of B( , , 2) using m+ n(m+ 1) suits, and 2n
hands with m+ 1 cards each as follows.

Each vertex v ∈ VA (resp. ∈ VB) is encoded by a hand hv owned
by team A (resp. B). We add n additional dummy hands, hand hA1

up to hand hAnB
for team A and hB1 up to hand hBnA

for team B.
Each edge (s, t) ∈ EAB (resp. EBA) is encoded by a suit ss,t of

length 2, for instance {AK}. The cards in suit ss,t are dealt such that
hand hs receives K, hand ht receives A. We add n(m+ 1) additional
dummy suits sAi,j for all i ∈ {1, . . . , nB} and j ∈ {1, . . . ,m+ 1}
and sBi,j for all i ∈ {1, . . . , nA} and j ∈ {1, . . . ,m+ 1}.

For all i ∈ {1, . . . , nB (resp. nA)}, hand hAi (resp. hBi ) re-
ceives A in all suits sAi,j for j ∈ {1, . . . ,m + 1}, while hand hi
(resp. hnA+i) receives K in all suits sAi,j for j ∈ {1, . . . ,m −
deg(vi)}. Recall that 1 6 deg(vi) 6 3 and note that the suits sAi,j

with m− 2 6 j might only feature A (with no K).
The goal of team A is to make at least mBA + 1 tricks. Intuitively,

for team A (resp. B) playing in a suit sBi,j (resp. sAi,j ) makes them
lose all the remaining tricks (provided, of course, that hand hBi

(resp. hAi ) has not discarded its corresponding A) so it cannot be
good. The interesting and difficult part of this bridge game would
only occur in playing accurately the suits ss,t between hands hi for
i, s, t ∈ {1, . . . , n}, that is the non dummy suits and the non dummy
hands. Remark that this part simulates GG on the instance (G, v1).

Lemma 1. Player 1 has a winning strategy in (G, v1), then team A
can make mBA + 1 tricks in φ(G, v1).

Proof. Let ψ be the winning strategy of player 1, mapping a path
v1 . . . v ending in VA to a vertex v′ in VB . We define the following
winning strategy for team A in φ(G, v1). When in a hand hAi for
some i, cash all the remaining A (all the remaining tricks). When in
a hand hi for some i, cash all A (they are in suits ss,t). Then ψ tells
you which of the K in a non dummy suit (suits of the form ss,t) to
play. Keeping track of which hands have taken the lead so far (without
counting several times a hand which cashes some A) h1hk2hk3 . . . hi,
play the K in si,t where ψ(v1vk2vk3 . . . vi) is the t-ieth vertex.

As for discarding, hands hi for i ∈ {1, . . . , nA} can throw away
any of the dummy K in suits sBj in any order. Hands hAi for i ∈
{1, . . . , nB} have to be more careful. They can start by discarding

h1 h2 h3
sB1,1 K sB2,1 K sB3,1 K
...

...
...

sB1,6 K sB2,6 K sB3,5 K
s1,4 K s2,6 K s3,5 K
s1,5 K s4,2 A s3,6 K

s6,3 A

h4 h5 h6
sA1,1 K sA2,1 K sA3,1 K
...

...
...

sA1,6 K sB2,6 K sA3,5 K
s1,4 A s1,5 A s2,6 A
s4,2 K s3,5 A s3,6 A

s6,3 K
hA1 hA2 hA3

sA1,1 A sA2,1 A sA3,1 A
sA1,2 A sA2,2 A sA3,2 A
...

...
...

sA1,8 A sA2,8 A sA3,8 A

hB1 hB2 hB3
sB1,1 A sB2,1 A sB3,1 A
sB1,2 A sB2,2 A sB3,2 A
...

...
...

sB1,8 A sB2,8 A sB3,8 A

Figure 3. Reduction from Figure 2.

the A in suits sAi,m−deg(vi)+1 up to sAi,m+1 . Then, they can discard
in the same suit hand hnA+i has discarded its K at some previous
trick. Indeed, hand hnA+i does not discard at most deg(vi) times in
the part of the game in non dummy hands.

From a hand hj , team B cannot play towards a non dummy hand
hi of team A which has already taken the lead, since by construction,
hi has cashed all the A in non dummy suits, and in particular the one
in si,j , so the K owns by team B has gone. Team B, had therefore two
losing options: follow an actual GG game simulation where he will
eventually lose, or play in a dummy suit and lose all the remaining
tricks. All in all, team B cannot cash more than its number of A in
non dummy suits which is equal to mAB . So, team A will make at
least the complement mBA + 1.

The same result also applies to team B. Therefore team A has
a winning strategy in φ(G, v1) if and only if the first player has a
winning strategy in the instance (G, v1) of GG. The reduction is thus
complete, leading to PSPACE-hardness.

Theorem 1. B( , , 2) is PSPACE-complete.

4 BA( , , 2) is PSPACE-complete
We now prove that BA( , , 2) is PSPACE-complete. An approach
similar to the one in Theorem 1, and Bonnet et al. [2013b, Theorem
2], that is, a reduction from a variant of GG via a mapping from
vertices to hands appears to be difficult. Indeed, the all tricks constraint
introduces an important difference: while in Theorem 1, each player’s
GG decisions were mapped to decisions on how to lead the next card,
this symmetry is not possible in BA( , , 2) because team B does



not get to lead any card, except possibly the very first one, until the
instance is solved.

Instead, we reduce from a more fundamental tool, the True (or
Totally) Quantified Boolean Formula (TQBF) problem. We still need
to find a way to provide team B with a means to influence which
team A hand wins the next trick, through team B’s reply to a trick
lead by team A. A Bridge Squeeze [Sterling and Nygate, 1990], as
in Figure 1 can allow the defending team to choose in which suit a
trick is lost. We draw inspiration from this elaborate domain-specific
technique and adapt this insight to the case with more than 4 hands
but only two ranks. This results in a gadget where the defending team
can suggest which attacking hand leads next by offering a bonus trick.
Unfortunately, this is not a strong constraint on the attacking team as
it can miss out on the bonus trick and follow its own preference for
the next lead. A large part of the difficulty in proving that BA( , , 2)
is PSPACE-complete is forcing the attacking team to abide by the
defending team’s suggestions.

4.1 TQBF
The input of TQBF is a fully quantified Boolean formula in prenex
normal form with the propositional part in conjunctive normal form
with at most literals by clause (CNF). That is, the input can be written
as ∃x1∀x2∃x3 . . .∀xnφ(x1, . . . , xn) where φ is a conjunction of m
clauses: φ =

∧m

i=1

∨mi

j=1 l
j
i and lji ∈ {xk, 1 ≤ k ≤ n}∪{¬xk, 1 ≤

k ≤ n}. For example,

∃v1∀v2∃v3∀v4(v1∨v2∨v4)∧ (¬v1∨¬v2∨¬v3)∧ (¬v4∨v2∨v1)

is a valid instance of TQBF. The PSPACE-complete decision problem
associated to TQBF is determining whether the input formula is true.
In our example, the formula is true indeed, which can be seen from
setting v1 = > and then for any choice of v2, setting v3 = ⊥. Then
no matter what value is assigned to v4, the propositional part is true.

Our reduction from TQBF to BA( , , 2) uses 10 types of gadgets.

A Choice This gadget captures the idea of an existential choice (a
decision by Team A).

B Choice This dual gadget captures decisions by team B, it embeds
two kinds of internal gadgets: Unit Choices and Magnifiers.

Conjunction This gadget builds on many B Choice gadgets and
uses Waiting gadgets to synchronize them, each of the latter is
parameterized by a delay.

Disjunction A simple generalization of the A Choice.
Quantifier This gadgets embeds one type of choice gadget which

defines whether we have an existential or universal quantifier.
Variable This is another simple gadget linking literals selected via

the formula gadgets (Conjunction and Disjunction) back to the
quantifier of the corresponding variable.

Conclusion A gadget parameterized by a cost, in which the games
following the semantics of the TQBF formula are supposed to end.

Each gadget features an internal set of hands and sub-gadgets
as well as an internal set of suits. Each gadget also presents two
types of communicating suits that make it possible to connect it to
other gadgets in the reduction: the gadget provides the A of each
entering suit, and provides the K of each exiting suit. To help the
reader, we adopt the convention that those entering and exiting cards
are displayed in bold font. The gadgets are presented in a Table
format where each horizontal line corresponds to an internal hand or
an embedded gadget, and where suits are different across columns
and across horizontal lines splitting padding suits. The first column
determines the type of sub-gadget or whose team the hand belongs to.

4.2 Choice gadgets
The first and simplest gadget is the A-choice gadget (Table 1). It
contains two internal hands, has a single entering suit label s, two
exiting suits s+ and s−, as well as a number of padding suits that
ensure every hand in the reduction has the same number of cards. The
first internal hand is controlled by team A and can make a single trick
in the game, by playing the A in suit s. Team A can then choose to
lead in s+ or in s−, and the gadget is exited. The second internal hand
is controlled by team B and cannot make a single trick under optimal
play by team A. Indeed, as long as the play remains out of the gadget,
it is a dominant for team A to discard one of the padding K, and it
is dominant for team B to discard an A in suit that team A does not
possess.

Table 1. Team A choice gadget: A-choice. The gadget is entered by
playing in suit s and can either exit through suit s+ or suit s−. Team A

chooses whether the gadget is exited via s+ or via s−. In both cases, a single
trick is spent in the gadget.

A ss+s− Padding

A A K K K. . . K
B AAAA. . . A

Creating the B-choice gadget that we need for our reduction is
significantly more involved, since team B has no direct influence on
which suit is lead. We start by creating a unit choice gadget to let
team B influence which suit is lead next via a single trick incentive
(Table 2). Consider the first team B internal hand in this gadget, say
h2. When the gadget is entered via suit s, h2 needs to discard a card.
Discarding a padding A is suboptimal because team A h1 could then
lead the corresponding K for free. Thus, two possibilities are left for
h2, and each leaves h3 with a symmetrical dilemma.

• In the first case, h3 can choose to exit the gadget via suit s+ after
4 tricks or via suit s− after 3 tricks.

• In the second case, h3 can exit via suit s− after 4 tricks or via suit
s+ after 3 tricks.

Table 2. Unit choice gadget for Team B: unit. The gadget is entered by
playing in suit s and can either exit through suit s+ or suit s−. Team B

selects which suit the gadget exits from after 4 tricks are played. However,
team A can choose to force the exit suit at the cost of only winning 3 tricks in

the gadget.

s s+s− Padding

A AK KK. . . K
B A A AA. . . A

A AK K K. . . K
B AAAA. . . A

A AK K K. . . K
B AAAA. . . A

A AK K K. . . K
B AAAA. . . A

As a summary, in this unit choice gadget, team B can suggest
one of the two exit suits and team A earns a bonus trick if it follows
the suggestion. The next step is to increase the incentive associated
to following team B’s suggestion, so as to make accepting the bonus
inescapable for team A. To this end, we create a class magnifying
gadgets parameterized by a weight w. They are defined by induction,



with 2-magn built on unit (Table 3) and w + 1-magn built on
w-magn and more instances of unit (Table 4).

Table 3. Magnifier gadget of weight 2: 2-magn. The gadget is entered by
playing in suit s? and can either exit through suit s0 or suit s1.

s? s0 s1 Padding

unit A KK
A AKA K. . . K
B AAAA. . . A

A AKA K. . . K
B AAAA. . . A

Table 4. Magnifier gadget of weight w + 1, w + 1-magn defined in terms
of w-magn. Vertical bars have been added to help visualize which suits are
shared across gadgets and hands. The gadget is entered by playing in suit s
and can exit through suit si for i ∈ [0, w]. The internal w-magn has exit
suits s1 to sw . Two strategies are of particular interest for team B: always
choose left and always choose right. In the first case, team A can choose to

exit from any suit si with up to 6w − i tricks. In the second case, team A can
choose to exit from any suit si with up to 5w + i tricks.

s s1 s2 . . . sw−1 sw Padding

w-magn A K K . . . K K
unit K A K | | |
unit | | K A K | |
. . . | | | | | |
. . . . . . . . . . . . . . . . . . . . .
. . . | | | | | |
unit | | | | K A K |
unit | | | | | | K A K
A AK A | | | | | | | K. . . K
B | | | | | | | AAAA. . . A

A A K A | | | | | K. . . K
B | | | | | AAAA. . . A

. . . | | | | |

. . . . . . . . . . . . . . . . . . . . . . . .

. . . | | |
A A K A | K. . . K
B | AAAA. . . A

A A KA K. . . K
B AAAA. . . A

s s0 s1 . . . sw−1 sw Padding

If the two suggestions available to team B in a each unit gadget
are mapped to left and right as in Table 4, then one can show that in
team B strategy is dominated by either the strategy always choosing
left or is dominated by the strategy always choosing right. Assuming
a w-magn gadget, these two team B strategies give rise to dual team
A alternatives. In the first case, i.e., team B always select the left
suit in the unit gadget, team A can exit from any suit si with up to
6w − i tricks. In the second case, team A can exit from any suit si
with up to 5w + i tricks.

This construction means that the further teamAwants to stray away
from the leftmost or rightmost path suggested by team B, the larger
the number of bonus tricks team A needs to give up. The fan-out of
the magnifier gadget is as large as its weight, but if we group the left
half of the output together, and the right half of the output, then we
obtain a gadget with only two exits suits where the cost for team A
to switch exit suit is proportional to the weight. More precisely, the
opportunity cost of not following team B suggestion in the resulting
choice gadget is half the weight of the underlying magnifier. For our

reduction, an opportunity cost of β = n + m is sufficient. Table 5
thus defines the B-choice gadget with a single entering suit s and
two exit suits s+ and s−.

Lemma 2. When theB-choice gadget is entered, teamB chooses
one of the following two alternatives:

1. the game exits via suit s+ after 13β tricks or the game exits via
suit s− after 12β tricks.

2. the game exits via suit s− after 13β tricks or the game exits via
suit s+ after 12β tricks.

In either alternative, team A chooses whether to cash n+m bonus
tricks and exit via the suit intended by team B, or not to cash any
bonus tricks and to exit via the other suit.

Table 5. Team B choice gadget: B-choice. The gadget is entered by
playing in suit s and can either exit through suit s+ or suit s−. Team B
selects which suit the gadget exits from after 13β tricks are played, with

β = n+m. However, team A can choose to force the exit suit at the cost of
only winning 12β tricks at most in the gadget.

ss1s2. . . sβsβ+1sβ+2. . . s2βs+s− Padding

2β-magn A K K . . . K K K . . . K
A A A . . . A K K. . . K
B A. . . AA. . . A

A A A . . . A K K. . . K
B A. . . AA. . . A

4.3 Formula gadgets

Now that we have defined choice gadgets for both teams, we can
encode the CNF formula that lies at the heart of the QBF instance we
want to reduce. Conjunctions and disjunctions respectively correspond
to teamB and teamA choices. Our goal is therefore to adapt the team
B choice gadget to have more than two arguments. The first step is to
observe that a m-argument conjunction a1 ∧ a2 ∧ · · · ∧ am−1 ∧ am
can be seen as a sequence of nested 2-argument conjunctions a1 ∧
(a2∧(· · ·∧(am−1∧am) . . . )). This prompts nestingm−1 instances
of a w-choice gadget. Unfortunately, this direct idea would result
in different number of tricks won by team A based on which conjunct
team B elects, even when team A follows each every suggestion. To
prevent the nesting depth of the conjuncts from breaking the symmetry,
we can compensate conjuncts that come early in the nesting through
additional tricks in a waiting gadget.

The waiting gadget is parameterized with a positive integer delay
t, and is written t-wait (Table 6). It has a single entering suit and
a single exiting suit, and a single joint strategy is optimal for both
teams that results in exactly t tricks being won by team A while in
this gadget. In other words, a t-wait just gives t tricks to team A.

Table 6. Waiting gadget with delay t: t-wait. The gadget is entered by
playing in suit s0 exits through suit st. Once the gadget is entered via s0, the
dominating strategy for team A is to lead each one of its As, before leading st.

Team A wins exactly t tricks when the game goes through this gadget.

s0
t−1 times︷ ︸︸ ︷ st Padding

A A A . . . A K K. . . K
B K . . . K AAA. . . A



Combining waiting gadgets with appropriate delay and nested
choices for team B are all the ingredients needed to build a con-
junction gadget (Table 7). If there are m conjuncts, then conj has
one entering suit s and m exiting suit, di for i ∈ [1,m]. Team B
selects which suit the gadget exits from after 13(m− 1)β tricks are
played. However, team A can choose to sacrifice β tricks and force
the exit suit, thereby winning no more than 13(m− 1)β − β tricks
in the gadget.

Table 7. Conjunction gadget with m conjuncts: conj. The gadget is
entered by playing in suit qn+1 and can either exit through suit di for any
i ∈ [1,m]. TeamB selects which suit the gadget exits from after 13β(m−1)
tricks are played. However, team A can choose to force the exit suit at the cost

of winning no more than 13β(m− 2) + 12β tricks in the gadget.

qn+1 d1 d2 d3 . . . dm−2 dm−1dm

B-choice A K K
B-choice | A K K
B-choice | | A K K
. . . . . . . . . . . . . . . . . . . . .
B-choice | | | A K K
B-choice | | | | A K K
13β(m− 2)-wait A K | | |
13β(m− 3)-wait A K | |
13β(m− 4)-wait A K |
. . . . . . . . .
13β-wait A K

qn+1 d1 d2 d3 . . . dm−2 dm−1dm

The disjunction gadget is a comparatively much simpler construc-
tion and one can see it is simply a slightly more general form of the
A-choice gadget. For each disjunct

∨mi

j=1 l
j
i , we create a gadget

entered via suit di and exited after a single trick in any suit corre-
sponding to a literal in the disjunct (Table 8).

Table 8. Disjunction gadget withmi disjuncts: disj. The gadget is entered
by playing in suit di and can exit through either suit lji for any j ∈ [1,mi].

Team A selects which suit the gadget exits from after a single trick is played.

di l1i l2i . . . l
mi
i Padding

A A K K . . . K K. . . K
B . . . AAA. . . AA. . . A

4.4 Quantifier gadgets

The first part of the QBF instance we want to reduce to BA( , , 2) is a
sequence of alternating quantifiers on the formula variables. We show
in Table 9 how to encode each quantifier. If a A-choice gadget
is embedded, then we have an existential quantifier, whereas if a
B-choice gadget is embedded, then we have a universal quantifier.

We have seen in Section 4.2 how to build a choice gadget that lets
team B express a decision preference. In that gadget, Team A can
choose to sacrifice potential tricks in order to keep control of that
decision. We now show how we can ensure that it is losing for Team
A not to follow Team B’s preference.

To do so, we define the Conclusion gadget of cost c, written c-ccl
(Table 11). This gadget has one entry suit per quantifier and the game
is virtually over as soon as it is entered. The conclusion gadget has
two internal hands, one for each team. Beside the A in the entry suit,
the Team A hand has a fixed number c of losing cards and is filled
with winners otherwise. If c tricks have been played before the gadget

Table 9. Quantifier gadget corresponding to variable vi: i-quant. The
gadget embeds a choice gadget and is connected to the rest of the reduction
via 5 suits. The type of choice gadget embedded within it is determined by the
type of quantifier: if we need an existential quantifier, then we embed a Team
A choice gadget, whereas if we need a universal quantifier, then a Team B
choice gadget is embedded. The gadget can be entered from 3 distinct suits
qi, v

i
⊥, v

i
> and can either exit via suit qi+1 or suit ci to conclude the game.

qi vi⊥v
i
> ciqi+1 Padding

choice AKK
A A A K K. . . K
B AAAA. . . A

A A A K K. . . K
B AAAA. . . A

A AA K K K. . . K
B AAAAA. . . A

Table 10. Variable gadgets for vi, written i-var and ¬i-var.

vi> vi⊥ Padding

i-var
A A . . . A K K . . . K
B A . . . A A . . . A

¬i-var A A . . . A K K . . . K
B A . . . A A . . . A

is entered, then Team A will have had enough time to discard of the
losers and would win all the remaining tricks. Otherwise, Team A is
bound to lose at least one trick via a loser left.

Table 11. Conclusion gadget of cost c: c-ccl. The gadget is entered by
playing in any suit ci for i ∈ [1, n] and concludes the game. Team A wins if
and only if such this conclusion gadget is entered after at least c tricks have

been played in the game.

c1 c2 . . . cn
n times︷ ︸︸ ︷ c times︷ ︸︸ ︷ Padding

A A A . . . A K . . . K A . . . A
B A . . . A A . . . A K . . . K

By ensuring that Team A always brings the game to a c-ccl
gadget and tuning the cost c, i.e., setting it high enough, we can
ensure that Team A cannot sustain missing out on any bonus trick in
Team B’s choice gadgets. This gives team B full choice of the exit
suit in these gadgets.

4.5 Assembling the gadgets together
The gadgets can now be assembled together to create the BA( , , 2)
instance corresponding to the input TQBF. For example, the reduction
for formula ∃v1∀v2∃v3∀v4(v1∨v2∨v4)∧(¬v1∨¬v2∨¬v3)∧(¬v4∨
v2 ∨ v1) gives Table 12. We set c := 7n/2 + 13β(m+n/2− 1) + 3.

Theorem 2. The BA( , , 2) fragment is PSPACE-hard.

Proof. We show that the polynomial-time reductionR that we pre-
sented from the PSPACE-hard problem TQBF is sound.
ψ is true ⇒ team A wins. Let us assume that formula ψ :=
∃x1∀x2∃x3 . . .∀xnφ(x1, . . . , xn) is true. We consider the problem
of deciding whether or not ψ is true as a two-player game between an
existential player and a universal player. Let χ be a winning strategy
tree for the existential player. We describe a strategy for team A



Table 12. Example reduction for
∃v1∀v2∃v3∀v4(v1 ∨ v2 ∨ v4) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3) ∧ (¬v4 ∨ v2 ∨ v1).

q1v1
>v1
⊥c1q2v2

>v2
⊥c2q3v3

>v3
⊥c3q4v4

>v4
⊥c4q5d1d2d3l1

1l2
1l3

1l1
2l2

2l3
2l1

3l2
3l3

3

1-quantA A A K K
2-quant | | | A A A K K
3-quant | | | | | | A A A K K
4-quant | | | | | | | | A A A K K
conj | | | | | | | | | | | A K K K
disj | | | | | | | | | | | A | | K K K
disj | | | | | | | | | | | A | | | | K K K
disj | | | | | | | | | | | A | | | | | | K K K

1-var K | | | | | | | | | | A | | | | | | | A
¬1-var K | | | | | | | | | | | A | | | |

2-var | K | | | | | | | A | | | | A
¬2-var | K | | | | | | | A | |
¬3-var | | K | | | | | A |

4-var | | | K | | A |
¬4-var | | | K | A
c-ccl A A A A

q1v1
>v1
⊥c1q2v2

>v2
⊥c2q3v3

>v3
⊥c3q4v4

>v4
⊥c4q5d1d2d3l1

1l2
1l3

1l1
2l2

2l3
2l1

3l2
3l3

3

to make all the tricks in R(ψ). We recall that the hand q1 of the
1-quant gadget leads the first trick. Team A cashes (q1, A) and
discards any K in the padding of each other hand. In general, this will
be the way team A discards.

Existential quantifier. After team A makes a trick with (qi, A)
for an odd i ∈ [1, n] (i.e., entered an existential quantifier gad-
get), team A plays the K towards the A of the hand that also owns
(vi⊥, A) (resp. (vi>, A)) if χ advocates to set the variable xi to true
(resp. to false), cashes this ace, and finally exits the gadget by playing
(qi+1,K). It is important that team A does not cash the A that is
underlined in Table 13 and 14.

Table 13. The remaining cards in the quantifier gadget i-quant, when the
corresponding team decides to set the variable xi to true.

qi vi⊥v
i
> ciqi+1 Padding

choice AKK
A A A K K. . . K
B AAAA. . . A

A A A K K. . . K
B AAAA. . . A

A AA K K K. . . K
B AAAAA. . . A

Table 14. The remaining cards in the quantifier gadget i-quant, when the
corresponding team decides to set the variable xi to false.

qi vi⊥v
i
> ciqi+1 Padding

choice AKK
A A A K K. . . K
B AAAA. . . A

A A A K K. . . K
B AAAA. . . A

A AA K K K. . . K
B AAAAA. . . A

Universal quantifier. After team A makes a trick with (qi, A) for
an even i ∈ [1, n] (i.e., entered a universal quantifier gadget), team
A makes 13β tricks in the internal B-choice gadget, and ends up
exiting either via suit s+ or via suit s− of Table 5, accordingly to the
discards of team B. This, in turn, decides if the remaining cards in
i-quant correspond to Table 13 or 14. We move in the tree χ to the

corresponding child node: xi ← > in the former case and xi ← ⊥ in
the latter.

Up to this point, team A has made 2n+ (13β + 3)n/2 tricks and
enters the conj gadget. Thanks to χ, the joint assignment performed
by team A and team B, defined by which of (vi⊥, A) or (vi>, A) is
remaining, satisfies the 3CNF formula φ.

Conjunction gadget (aka clause-selector) and Disjunction gadget
(aka literal-selector). Team A accepts to exit conj with (di,K),
where i ∈ [m] is chosen by team B, and makes 13β(m − 1) tricks
in the gadget. There is at least one literal lji with j ∈ [1,mi] that has
been set to true by the joint assignment. Team A plays the (lji ,K) for
the (lji , A). From this hand, team A plays the (vkq ,K) with q = ⊥
if lji = ¬xk and q = > if lji = xk for the (vkq , A). Thereby, team A
reenters the k-quant gadget, plays the K towards the underlined
A (that is why it was important not to cash this A earlier), and exits
in the c-ccl gadget. At this point, team A has cashed 2n+ (13β +
3)n/2 + 13β(m− 1) + 3 = 7n/2 + 13β(m + n/2− 1) + 3 = c
tricks. Therefore, all the c Ks in the padding of the Conclusion gadget
has already been discarded. Thus, there are only aces left in the hand;
which means team A wins all the tricks.
ψ is false⇒ team B wins. We now describe a strategy for team

B to prevent team A from doing all the tricks, assuming ψ is false.
Let χ be a winning strategy tree for the universal player. First, the
discards of team B obey the following rule: discard the A in suits
where the K is gone (also, discarding Ks is safe). This rule can be
applied in every gadget but the Unit choice gadget. Also, whenever
a hand h (not leading the next trick) of team A contains only Ks, it
is not necessary anymore for team B to keep the corresponding As,
since h can no longer get the lead.

TeamA can get at most 3n+(13β+3)n/2 tricks from the first run
through the quantifier gadgets. This corresponds to the 2n+ (13β +
3)n/2 tricks as described in the winning strategy for team A (when ψ
is true) plus at most n underlined As (see Table 13 and 14). When team
A assigns a value to a variable xi with an odd i ∈ [1, n] by keeping
either the card (vi⊥, A) or the card (vi>, A), one can move to the
corresponding node in the tree χ. When entering a universal quantifier
i-quant, team B discards in the B-choice gadget (always the
rightmost A or always the leftmost A) in order to either make team
A eventually cash (vi⊥, A) (resp. (vi>, A)) if χ advocates to set xi
to true (resp. to false) or to cost β tricks to team A. When entering
the conj gadget, there is necessarily a clause

∨mi

j=1 l
j
i of φ which is

not satified by the joint assignment of team A and team B. Therefore,
team B discards in the successive B-choice gadgets to reach suit
di of Table 7, or to cost at least β tricks to team A. At this point,
we should observe that neither at this stage nor in the B-choice
gadget of universal quantifiers, can team A contradict the choices of
the discards of team B. Indeed, before finally entering the Conclusion
gadget, team A can only compensate with n underlined As and at
most m− 1 As in the variable gadget. Those at most n+m− 1 < β
extra tricks are not sufficient for teamA to reach the c tricks necessary
to win. Thus, all the (vk>, A) (resp. (vk⊥, A)) such that xk (resp. ¬xk)
is a literal of clause

∨mi

j=1 l
j
i have already been cashed and team A

cannot reach the Conclusion gadget with enough tricks.

5 Tractability results

We now show that bounding the number of hands when bounding the
number of ranks per suit results in a tractable class.

Theorem 3. B(N, ,R) is in P.



Proof. We will show that any position with N hands, s suits, and
R ranks can be solved by minimax with transposition table using
O(R(s + 1)(N+1)R+1) recursive calls to minimax. If N and R are
held constant, then this is polynomial time in terms of s. This will
prove that B(N, ,R) is polynomial.

Assume that we have a bounded numberN of hands and a bounded
number R of ranks.

For each suit i, each card in i is either distributed to a hand indexed
in {1, N} or played in a previous trick. This means that there are
exactly (N + 1)R ways of distributing all the cards in i among the
hands and the deck of previous tricks. Put another way, each suit i
can be mapped into a number di ∈ [1, (N + 1)R] without loss of
information.

For P a position and d ∈ [1, (N + 1)R] a card distribution, let σPd
be the number of suits having this distribution in the input position. Let
τP be the lead turn and νP be the number of tricks won by team A so
far. Keeping in mind that the name of the suit is irrelevant for the ques-
tion of determining if team A can make ν tricks, and observing that
suits with the exact same distribution can play a symmetrical role, we
can represent P as a vector χ(P ) = 〈σP1 , σP2 , ..., σP(N+1)R , τ

P , νP 〉.
This representation does not incur any loss of relevant information.
Indeed, any two intermediate positions P1 and P2 having the same
card distribution up to renaming, χ(P1) = χ(P2), lead to the same
optimal number of tricks won by team A.

When we restrict ourselves to positions P having at most s suits,
N hands, and R ranks, σPd takes no more than s+ 1 values, for any
d, τP takes no more than N values, and νP takes no more than sR

N

distinct values. Therefore, the co-domain of χ has cardinality bounded
by (s+ 1)(s+ 1) . . . (s+ 1)N RS

N
= Rs(s+ 1)(N+1)R

. As a result,
χ can be used to derive a hashing function from any positions with N
hands, at most s suits and R ranks into a transposition table with at
mostRs(s+1)(N+1)R

entries. Although this hashing function admits
collisions, two position having the same hash value are guaranteed to
have the same optimal number of tricks for team A.

To solve an input position P with s suits, N hands, and R ranks,
we can run a minimax search with transposition tables using χ for
hashing. If N and R are held constant, we can prove that the search
runs in time polynomial in s. Indeed, an internal node will only make
recursive calls to minimax if the hash of the corresponding position
is not in the transposition table yet. After the recursive calls return
and the value of the node is computed, this value is added to the
transposition table for the first and unique time. Since the maximum
size of the transposition table is polynomial in s, only a polynomial
number of internal nodes will make a recursive call.

We list here the tractability of a couple straightforward classes, so
as to better see the frontier between known easy classes, known hard
classes, and open problems. The first observation is that assuming a
single rank per suit makes it impossible for the opponent team to win
any trick. This result in all B( , , 1) instance being true.

Proposition 2. B( , , 1) is in PTIME.

The second observation is that a simple criterion tested on each suit
independently suffices to determine if team A can win all tricks in
instances with a single team A hand. Indeed, if team A has a single
hand, then it does not have any discarding opportunity and all its cards
will be lead.

Proposition 3. BA(2, , ) is in PTIME.

Proof. Let s be a suit Let r be the smallest rank of team A in suit s,
and let ri be the highest rank of team B hand hi in s. Let wi be the

number of cards of team A of rank larger than ri. Then team A can
make all tricks in suit s if and only if

∀i, r > ri ∨ wi > |hi(s)|

Proposition 4. B( , S,R) is in PTIME.

Proof. There is a constant number of instances, so they can be pre-
computed.

6 Conclusions and perspectives
A convenient medium to represent and compare the complexity results
on trick-taking card games is to draw a graph between different frag-
ments of B(η, s, r). In this graph, an arrow between two fragments
indicates that one is a subclass of the other. Adding the results obtained
in the paper to the ones obtained by Wästlund [2005a,b] and Bonnet
et al. [2013b] gives the complexity landscape for trick-taking card
games shown in Figure 4. We can see in the landscape that BA( , , 2)
is PSPACE-complete but adding any further constraint on the fragment
would immediately result in the problem being polynomially solvable.

B( , , )

B(6, , )
[Bonnet et al., 2013b]

B( , S, )

B( , , 5)
[Bonnet et al., 2013b]

B( , , 2)
Thm. 1

BA( , , 2)
Thm. 2

B( , , 1)
Prop. 2

B( , S,R)
Prop. 4

BA(N, , 2) BA( , S, 2)

B(N, ,R)
Thm. 3

B(2, , )

BA(2, , )
Prop. 3

B(2, , 4)
[Bonnet et al,

2013]

BM(2, , )
[Wästlund,

2005b]

B(2, 1, )
[Wästlund,

2005a] PTIME

PSPACE-complete

Figure 4. Summary of the hardness and tractability results known for the
fragments of B(η, s, r).

Many actual trick-taking card games also feature a trump suit and
potentially different values for tricks based on which cards were
involved. Such a setting can be seen as a direct generalization of ours,
but remains bounded. Therefore our PSPACE-completeness result
carries over to point-based trick-taking card games involving trumps.

In terms of future work, the most pressing issue is to determine
whether bounding the number of suits would bring the problem to
polynomial-time solvable. Although the proof for Theorem 2 is much
more involved than that of Theorem 1, it appears that the all-trick
constraints does not influence the hardness of trick-taking card games
along the ranks dimension. The problem remains open for the other
two dimensions. In particular, a promising line of inquiry is to settle
the complexities of BA(6, , ) and B(2, , ) so has to contrast them,
respectively, with the hardness of B(6, , ) and the tractability of
BA(2, , ).
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