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Abstract
We study the following geometric separation problem: Given a set R of red points and a set B
of blue points in the plane, find a minimum-size set of lines that separate R from B. We show
that, in its full generality, parameterized by the number of lines k in the solution, the problem is
unlikely to be solvable significantly faster than the brute-force nO(k)-time algorithm, where n is
the total number of points. Indeed, we show that an algorithm running in time f(k)no(k/ log k),
for any computable function f , would disprove ETH. Our reduction crucially relies on selecting
lines from a set with a large number of different slopes (i.e., this number is not a function of k).

Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT
in the number of lines, we show the following preliminary result. Separating R from B with a
minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time
O∗(9|B|) (assuming that B is the smaller set).
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1 Introduction

We study the parameterized complexity of the following Red-Blue Separation problem:
Given a set R of red points and a set B of blue points in the plane and a positive integer k,
find a set of at most k lines that together separate R from B (or report that such a set does
not exist). Separation here means that each cell in the arrangement induced by the lines
in the solution is either monochromatic, i.e., contains points of one color only, or empty.
Equivalently, R is separated from B if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line in the solution. Note here that we
opt for strict separation that is, no point in R∪B is on a separating line. Let n := |R ∪B|.

∗ Research partially supported by EPSRC grant EP/N029143/1. An extended abstract of this paper
appeared in [3].
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The variant where the separating lines sought must be axis-parallel will be simply referred
to as Axis-Parallel Red-Blue Separation.

Background and related work. Geometric separability problems have been studied
extensively in computational geometry. Linear separability of two point sets in the plane,
i.e., the case k = 1 for Red-Blue Separation is, perhaps, the simplest version and can
be solved in O(n) time by reduction to linear programming, as observed by Megiddo [26];
the same linear time bound holds for separating two point sets by a hyperplane in any fixed
dimension. For the case where k = 2, Red-Blue Separation is solvable in O(n logn)
time [16]. When k is part of the input, the problem was shown to be NP-hard first by
Megiddo [27] and again much later (under the name minimum linear classification) with
a similar reduction by Lu et al. [21]. It is also known to be APX-hard [5] even for the
axis-parallel variant. By a simple reduction to set cover, Red-Blue Separation admits
a O(logn)-approximation [21], while for Axis-Parallel Red-Blue Separation there
is also a 2-approximation [5]. None of the hardness results above imply hardness in the
parameterized setting and we are not aware of any previous results on the parameterized
complexity of the problem.

In a more applied setting, Axis-Parallel Red-Blue Separation is directly motivated
by the problem of discretization of continuous variables, which is used in extraction of
decision rules from decision tables in the area of data analysis and data mining, see, for
example, [9, 19, 32, 33]. In its two-dimensional version, one is given a decision table with
points (objects) of two real-valued coordinates (attributes) and a binary decision function.
The function can be seen as assigning one of two colors to each point. Discretization boils
down to partitioning the attribute values into intervals by finding a minimum-size set of
axis-parallel lines (cuts on the axes) that is consistent with the decision table. Consistency
is equivalent to asking for the corresponding lines to partition the plane into regions such
that any two points in the same region have the same color. For heuristics that do not offer
any approximation guarantees, see [7, 19, 33].

There is quite some work on other types of separators. For example, separability of
two point sets in the plane by a circle can be decided in linear time [34] (by a reduction
to linear separability in R3), while separability by a wedge or a strip can be decided in
O(n logn) time [17] and this is optimal [1]. Additionally, van Kreveld et al. [37] showed
how to compute all orientations for which a separating rectangle exists in O(n logn) time
and Sheikhi et al. [35] gave a worst-case optimal O(n2)-time algorithm that computes all
orientations for which an L-shaped separator exists. Closer to the optimization problem we
study, Edelsbrunner and Preparata [8] gave an O(n logn)-time algorithm for computing a
convex polygon with a minimum number of edges that separates two point sets (if it exists),
while Fekete [10] showed the problem to be NP-hard for general simple polygons. For the
latter, Mitchell [31] gave a polynomial-time O(logn)-approximation algorithm.

The following closely related monochromatic points separation problem has also been
studied: Given a set of points in the plane, find a smallest set of lines that separates every
point from every other point in the set (i.e., each cell in the induced arrangement must
contain at most one point). It has been shown to be NP-hard [11], APX-hard [5] and, in the
axis-parallel case, to admit a 2-approximation [5]. Very recently, the problem has been also
shown to admit an OPT logOPT-approximation [14]. Note here that it is trivially FPT in
the number of lines, as the number of cells in the arrangement of k lines is at most Θ(k2).

Geometric separators have been studied also in a more combinatorial setting, where a
separator for a set of geometric objects is a subset of small size that intersects few of the
objects and whose removal disconnects the intersection graph of the original set into two
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parts of roughly equal size. When such separators exist, they can be used in the design
of divide and conquer algorithms for various fundamental geometric problems. There is a
fair amount of work on geometric separators, a full account of which is outside the scope of
this paper. Indicatively, we mention the early work on sphere separators in two and three
dimensions by Miller and Thurston [30], their generalization in higher dimensions by Miller et
al. [29], where an alternative proof of the planar separator theorem based on circle separators
was also presented, and the work on hypercube separators by Smith and Wormald [36].
Algorithmically, their applications include nearest neighbor search [29], TSP and rectilinear
Steiner tree in higher dimensions [36], mesh partitioning and compression [2, 28], geometric
hitting set [6] and protein folding [12].

Finally, a different notion of separation comes in the form of ham-sandwich cuts. In the
discrete, two-dimensional setting, given two point sets in the plane, a ham-sandwich cut
is a line that simultaneously bisects both sets, that is, it has at most half of the points of
each set on either side. The existence of such a cut is guaranteed by the well-known Ham-
Sandwich theorem, see, for example, Matoušek [25], while it can be computed in optimal
O(n) time [20].

Results in this paper. We first show that Red-Blue Separation is W[1]-hard in the
solution size k and that it cannot be solved in f(k)no(k/ log k) time (for any computable
function f) unless ETH fails. Our reduction is from Structured 2-Track Hitting
Set, see Section 3, which has been recently used for showing hardness for another classical
geometric optimization problem [4]. Then, in Section 4, we show that Axis-Parallel
Red-Blue Separation is FPT in the size of either of R and B. Our algorithm is simple
and is based on reducing the problem to 9|B|+2 instances of 2-SAT (assuming, w.l.o.g., that
B is the smaller set).

2 Preliminaries

For positive integers x, y, let [x] be the set of integers between 1 and x, and [x, y] the set of
integers between x and y.

For a totally ordered (finite) set X, an X-interval is any subset of X of consecutive
elements. In the 2-Track Hitting Set problem, the input consists of an integer k, two
totally ordered ground sets A and B of the same cardinality, and two sets SA of A-intervals
and SB of B-intervals. The elements of A and B are in one-to-one correspondence φ : A→ B

and each pair (a, φ(a)) is called a 2-element. The goal is to decide if there is a set S of k
2-elements such that the first projection of S is a hitting set of SA, and the second projection
of S is a hitting set of SB . We will refer to the interval systems (A,SA) and (B,SB) as track
A and track B.

Structured 2-Track Hitting Set (S2-THS for short) is the same problem with
k color classes over the 2-elements and a restriction on the one-to-one mapping φ; see Figure 1
for an illustration. Given two integers k and t, A is partitioned into (C1, C2, . . . , Ck) where
Cj = {aj1, a

j
2, . . . , a

j
t} for each j ∈ [k]. A is ordered: a1

1, a
1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 ,

. . . , akt . We define C ′j := φ(Cj) and bji := φ(aji ) for all i ∈ [t] and j ∈ [k]. We now impose
that φ is such that, for each j ∈ [k], the set C ′j is a B-interval. That is, B is ordered:
C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for some permutation on [k], σ ∈ Sk. For each j ∈ [k], the order of

the elements within C ′j can be described by a permutation σj ∈ St such that the ordering
of C ′j is: bjσj(1), b

j
σj(2), . . . , b

j
σj(t). The goal is to find k 2-elements, one per color class, that

together hit all the A- and the B-intervals.
In what follows, it will be convenient to see an instance of S2-THS as a tuple I = (k ∈
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N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where SA is a set of A-intervals and SB
is a set of B-intervals. We denote by [aji , a

j′

i′ ] (resp. [bji , b
j′

i′ ]) all the elements a ∈ A (resp.
b ∈ B) such that aji ≤A a ≤A a

j′

i′ (resp. bji ≤B b ≤B bj
′

i′ ).

a1
1 a1

2 a1
3 a1

4 a1
5 a1

6

C1

a2
1 a2

2 a2
3 a2

4 a2
5 a2

6

C2

a3
1 a3

2 a3
3 a3

4 a3
5 a3

6

C3

a4
1 a4

2 a4
3 a4

4 a4
5 a4

6

C4
A

b34 b32 b33 b36 b31 b35

C ′3

b12 b14 b11 b15 b16 b13

C ′1

b43 b46 b45 b42 b41 b14

C ′4

b21 b25 b22 b24 b26 b23

C ′2
B

σσ1

≤A:

≤B :

Figure 1 An illustration of the k+ 1 permutations σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St of an instance
of Structured 2-Track Hitting Set, with k = 4 and t = 6.

ETH-based lower bounds. The Exponential Time Hypothesis (ETH) is a conjecture by
Impagliazzo et al. [18] asserting that there is no 2o(n)-time algorithm for 3-SAT on instances
with n variables.

The Multicolored Subgraph Isomorphism problem can be defined in the following
way. One is given a graph with n vertices partitioned into l color classes V1, . . . , Vl such that
only k of the

(
l
2
)
sets Eij = E(Vi, Vj) are non empty (where E(Vi, Vj) is the set of edges

with one endpoint in Vi and the other endpoint in Vj). The goal is to pick one vertex in
each color class so that the selected vertices induce k edges. Observe that l corresponds to
the number of vertices of the pattern graph. The technique of color coding and a result by
Marx imply that:

I Theorem 1 ([23]). Multicolored Subgraph Isomorphism cannot be solved in time
f(k)no(k/ log k) where k is the number of edges of the solution and f any computable function,
unless the ETH fails.

Bonnet and Miltzow showed the following conditional lower bound for Structured
2-Track Hitting Set by a reduction from Multicolored Subgraph Isomorphism
linearly preserving the parameter:

I Theorem 2 ([4]). Structured 2-Track Hitting Set is W [1]-hard and, unless the
ETH fails, cannot be solved in time f(k)no(k/ log k) for any computable function f .

The same lower bound has been shown for the very close problem 2-Track Hitting Set
by Marx and Pilipczuk [24]. They use this intermediate result to show that covering a given
set of points in the plane with k axis-parallel rectangles taken from a prescribed set cannot
be solved in time f(k)no(k/ log k), even if the rectangles are almost squares. Bonnet and
Miltzow used Theorem 2 to show the same lower bound for Point Guard Art Gallery
and Vertex Guard Art Gallery, where one wants to guard a simple polygon with k

points, and k vertices, respectively. In this paper, we again utilize S2-THS for a reduction
to Red-Blue Separation. Thus, it seems as though (Structured) 2-Track Hitting
Set can be a good starting point for a wide variety of geometric problems and yield almost
tight lower bounds, like Grid Tiling [22] has been doing in the last decade for geometric
problems optimally solvable in nΘ(

√
k).



É. Bonnet, P. Giannopoulos, M. Lampis XX:5

3 Parameterized hardness for arbitrary slopes

In this section, we show that Red-Blue Separation is unlikely to be FPT with respect to
the number of lines k and establish that, unless the ETH fails, the nO(k)-time brute-force
algorithm is almost optimal.

Let us say a few words about the difficulty of showing such a result for Red-Blue
Separation, compared to its mere NP-hardness. The W [1]-hardness of a problem is very
often obtained by a reduction from a (W[1]-hard) graph problem such as Multicolored
Clique. Sometimes, the reduction is from a constraint satisfaction problem (CSP), like
variants of SAT. In either cases, this supposes to encode binary, ternary, or r-ary (with
r > 3) relations (adjacency matrix, associated hypergraph of a CSP, etc.). The two following
paragraphs argue that it is challenging to do so for Red-Blue Separation without blowing-
up the size of the parameter.

A set of k lines creates at most h(k) :=
(
k+1

2
)

+ 1 cells. Therefore, any YES-instance can
be covered by h(k) pairwise-disjoint monochromatic convex sets. This prevents one from
encoding an adjacency matrix on n vertices with bichromatic gadgets. Indeed, the number of
monochromatic convex sets necessary to cover such an encoding could not be bounded by a
function of k. On the other hand, one does not seem to achieve much with a monochromatic
encoding.

A more concrete issue with encoding an adjacency matrix is the following. Suppose we
try to reduce directly from Multicolored Subgraph Isomorphism (or its special case
Multicolored Clique), and we want a horizontal line L(u) to represent the choice of a
vertex u within one set, a vertical line L(v) to represent the choice of a vertex v in another
set, and the lines are compatible iff uv is an edge. Here is the pitfall: if uv and uw are
edges, then L(u) should form a feasible solution with L(v) and with L(w); but then, it can
be observed that every vertical line in between L(v) and L(w) also completes L(u) into a
feasible solution (which is undesirable as soon as there are vertices between v and w which
are not adjacent to u).

We overcome those issues by reducing from Structured 2-Track Hitting Set. De-
constructing S2-THS, one finds intervals, a permutation of the color classes σ, and k permu-
tations σj ’s of the elements within the classes. Intervals, thanks to their geometric nature,
can be realized by two red points which have to be separated from a diagonal of blue points
(see Figure 3), while permutation σ, being on k elements, can be designed straightforwardly
without blowing-up the size of the solution (see Figure 4). For these gadgets, we would like
to force the chosen lines to be axis-parallel. We obtain this by surrounding them with long
alleys made of long red paths parallel and next to long blue paths (see Figure 2). The main
challenge is to get the permutations σj ’s on t elements. To attain this, we match a selected
line Li (corresponding to an element of index i ∈ [t]) to a specific angle αi, which leads to
the intended position of the element of index σj(l) = i, for some l ∈ [t] (see Figure 6). Note
that the depicted gadget actually links the element of index i to elements equal to or smaller
than the element indexed at σj(l). By combining two of these gadgets we can easily obtain
only the intended position (see Figure 7).

I Theorem 3. Red-Blue Separation is W [1]-hard w.r.t. the number of lines k, and
unless ETH fails, cannot be solved in time f(k)no(k/ log k) for any computable function f .

Proof. We reduce from S2-THS, which is W [1]-hard and has the above lower bound under
ETH [4]. Let I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) be an instance of
S2-THS. We will build an instance J = (R,B, 6k + 14) of Red-Blue Separation such
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(a) A horizontal long alley. Separating this
subset of points with one line requires the
line to be almost horizontal.

G

(b) Zoom in gadget G. The horizontal (resp.
vertical) lines are entering the gadget to the
left (resp. at the top) and exiting it to the
right (resp. at the bottom) with almost the
same y-coordinates (resp. x-coordinates).
Possible lines are thin dotted while an actual
choice of two lines is shown in bold.

G

(c) We put four long alleys to the left, top,
right, and bottom of gadget G where we want
the selected lines to be almost axis parallel.

Figure 2 The long alley gadget and its use in combination with another gadget.

that I is a YES-instance for S2-THS if and only if R and B can be separated with 6k+ 14
lines.

The points in R and B will have rational coordinates. More precisely, most points will
be pinned to a z-by-z grid where z is polynomial in the size of I. The rest will have
rational coordinates with nominator and denominator polynomial in z. Let Γ be the z-by-z
grid corresponding to the set of points with coordinates in [z] × [z]. We call horizontally
(resp. vertically) consecutive points from a to b in row y (resp. in column x) a set of points
of Γ with coordinates (a, y), (a + 1, y), . . . (b − 1, y), (b, y) for a, b, y ∈ [z] and a < b (resp.
(x, a), (x, a+ 1), . . . (x, b− 1), (x, b) for a, b, x ∈ [z] and a < b).

Long alley gadgets. In the gadgets encoding the intervals (see next paragraph), we will
need to restrict the selected separating lines to be almost horizontal or almost vertical.
To enforce that, we use the long alley gadgets. A horizontal long alley gadget is made of `
horizontally consecutive red points from a to a+`−1 in row y, and ` horizontally consecutive
blue points from a to a + ` − 1 in row y′, with a, a + ` − 1, y 6= y′ ∈ [z] (see Figure 2a). A
vertical long alley is defined analogously. Long alleys are called so because `� |y−y′| thus,
separating the red points from the blue points of a horizontal (resp. vertical) long alley with
a budget of only one line, requires the line to be almost horizontal (resp. vertical). The use
of the long alleys will be the following. Let G be a gadget for which we wish the separating
lines to be almost horizontal or vertical. Say, G occupies a tiny square subgrid of Γ. We
place four long alley gadgets to the left, top, right, and bottom of G: horizontal ones to
the left and right, vertical ones to the top and bottom (as depicted in Figure 2c). The left
horizontal (resp. bottom vertical) long alley starts at the x-coordinate (resp. y coordinate)
of 1, whereas the right horizontal (resp. top vertical) long alley ends at the x-coordinate
(resp. y coordinate) of z; see Figure 7, where the long alleys are depicted by thin rectangles.

Note that we will not surround each and every gadget of the construction by four long
alleys. At some places, it will indeed be crucial that the lines can have arbitrary slopes.

Interval gadgets and encoding track A. The elements of A are represented by a diagonal
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of kt blue points. More precisely, we add the points (x0, y0), (x0 + 4, y0 + 4), (x0 + 8, y0 +
8), . . . , (x0 + 4kt− 4, y0 + 4kt− 4) to B for some offset x0, y0 ∈ [z] that we will specify later.
An almost horizontal (resp. vertical) line just below (resp. just to the left of) the s-th blue
point of this diagonal translates as selecting the s-th element of A in the order fixed by ≤A.

For each interval [aji , a
j′

i′ ] in SA (for some i, i′ ∈ [t], j, j′ ∈ [k]), that is, the interval
between the s = ((j − 1)t + i)-th and the s′ = ((j′ − 1)t + i′)-th elements of A, we add
two red points: one at (x0 + 4s− 7, y0 + 4s′ − 5) and one at (x0 + 4s′ − 5, y0 + 4s− 7) (see
Figure 3a for one interval gadget and Figure 3b for track A). Let R([aji , a

j′

i′ ]) be this pair
of red points. Informally, one red point has its projection on the x-axis just to the left of
the s-th blue point and its projection on the y-axis just above the s′ − 1-st blue point; the
other one has its projection on the x-axis just to the right of the s′ − 1-st blue point and
its projection on the y-axis just below the s-th blue point. For technical reasons, we add,
for every j ∈ [k], the pair R([aj1, a

j
t ]) encoding the interval formed by all the elements of the

j-th color class of A. Adding these intervals to SA does not constrain the problem more.
Indeed, by definition of Structured 2-Track Hitting Set, one is required to take one
pair of elements per color class.

We surround this encoding of track A, which we denote by G(A), with 4k long alleys,
whose width is 4t, from x-coordinates x0 + 4(j − 1)t − 4 to x0 + 4jt − 4 for vertical alleys
(from y-coordinates y0 + 4(j − 1)t− 4 to y0 + 4jt− 4 for horizontal alleys). Note that half
of the points of one alley coincides with half of the points of the next alley. We alternate
red-blue1 alleys and blue-red alleys for two contiguous alleys, so that we do not place at the
same position a red point and a blue point.

We start with a red-blue alley for the left horizontal and top vertical groups of alleys,
and with a blue-red alley for the right horizontal and bottom vertical. This last detail is not
in any way crucial but permits the construction to be defined uniquely and consistently with
the choices of Figure 2c. This, together with the description of long alleys in the previous
paragraph, fully defines the 4k long alleys (see Figure 7). It can be observed that the blue
points of the diagonal with index t, 2t, 3t, . . . , kt (that is, those sharing a coordinate with
the long alleys) do not play any role. They can be removed or kept.

The general intention is that in order to separate two red points (encoding the same
interval) from the blue diagonal with a budget of two almost axis-parallel lines, one should
take two lines (one almost horizontal and one almost vertical) corresponding to the selection
of the same element of A which hits the corresponding interval. In particular, taking two
almost horizontal lines (resp. two almost vertical lines) is made impossible due to those
vertical (resp. horizontal) long alleys. More precisely, the intended pairs of lines separating
the red points R([aji , a

j′

i′ ]) from the blue diagonal are of the form x = x0+4ŝ−6, y = y0+4ŝ−6
for ŝ ∈ [(j − 1)t+ i, (j′ − 1)t+ i′]. Furthermore, the 4k long alleys force a pair of (almost)
horizontal and vertical lines corresponding to one element per color class to be taken.

For any s ∈ [tk], i ∈ [t], and j ∈ [k], such that s = (j−1)t+ i, let HL(s) be the horizontal
line of equation y = y0 +4s−6 and VL(s) the vertical line of equation x = x0 +4s−6. They
correspond to selecting aji , the i-th element in the j-th color class of A. The goal of the
remaining gadgets is to ensure that when the lines HL(s) and VL(s) (with s = (j − 1)t+ i)
are chosen, additional lines corresponding to selecting element bji of B have to be expressly
selected. We define HL := {HL(s) | s ∈ [tk]} and VL := {VL(s) | s ∈ [tk]}.

Encoding inter-class permutation σ. To encode the permutation σ of the k color classes

1 i.e., for horizontal (resp. vertical) alleys, the red points are above (resp. to the left of) the blue points.
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a1
a2
a3
a4
a5
a6
a7
a8
a9

(a) The interval gadget corresponding to
[a1, a9] = {a1, . . . , a9}. In thin dotted,
the mapping between elements and potential
lines. In bold, the choice of the lines cor-
responding to picking a4. If one wants to
separate these points with two lines, one al-
most horizontal and one almost vertical, the
choice of the former imposes the latter.

(b) The interval gadgets put together. A rep-
resentation of one track. Separating these
points with the fewest axis-parallel lines re-
quires taking the horizontal and vertical lines
associated to a minimum hitting set.

Figure 3 To the left, one interval. To the right, several put together to form one track.

of I, we allocate a square subgrid of the same dimension as the space used for the encoding
of track A, roughly 4tk-by-4tk, and we place it to the right of A as depicted in Figure 7.
This square subgrid is naturally and regularly split into k2 smaller square subgrids of equal
dimension (roughly 4t-by-4t). This decomposition can be seen as the k color classes of
I, or equivalently, the k-by-k crossing2 obtained by drawing horizontal lines between two
contiguous horizontal long alleys and vertical lines between two contiguous vertical long
alleys. We only put points in exactly one smaller square subgrid per column and per row.
Let σ := σ(1)σ(2) . . . σ(k) and Cell(a, b) be the smaller square subgrid in the a-th row and
b-th column of the k-by-k crossing. For each j ∈ [k], we put in Cell(σ(j), j) a diagonal of
t− 1 blue points and two red points corresponding to the full interval [aj1, a

j
t ] (see Figure 4).

We denote by G(σ) those sets of red and blue points in the encoding of σ. We surround
G(σ) by 2k vertical long alleys similar to the 2k long alleys surrounding G(A). Notice that
G(σ) and G(A) share the same 2k surrounding horizontal long alleys.

The way the gadget G(σ) works is quite intuitive. Given k choices of horizontal lines
originating from a separation in G(A) and a budget of k extra lines for the separation within
G(σ), the only option is to copy with the vertical line the choice of the horizontal line. It
results in a vertical propagation of the initial choices accompanied by the desired reordering
of the color classes (see Figure 5). The vertical line matching the choice of HL(s) in the
corresponding cell of G(σ) is denoted by VL′(s). Let VL′ := {VL′(s) | s ∈ [tk]}. Note that
corresponding lines in VL and in VL′ have a different order from left to right.

Encoding of the intra-class permutations σj’s and track B. If the encoding of permu-
tation σ is conceptually simple, the number of intended lines separating red and blue points
in G(σ) has to be linear in the number of permuted elements. Since we wish to encode a
permutation σj (for every j ∈ [k]) on t elements, we cannot use the same mechanism as it
would blow-up our parameter dramatically and would not result in an FPT reduction.

2 we use this term informally to avoid confusion with what we have been calling grids so far.
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Cell(3, 1)

Cell(1, 2)

Cell(4, 3)

Cell(5, 4)

Cell(2, 5)

1

2

3

4

5

3 1 4 5 2
Figure 4 Encoding permutation σ = 31452. The choices within the five color classes are trans-

ferred from almost horizontal lines to almost vertical ones. This way, we obtain the desired reorder-
ing of the color classes.

Cell(3, 1)

Cell(1, 2)

Cell(4, 3)

Cell(5, 4)

Cell(2, 5)

1

2

3

4

5

3 1 4 5 2

G(A) G(σ)

Figure 5 Interaction between the gadgets G(A) and G(σ) with the permutation σ = 31452.

For the gadget G≈v(σj) partially encoding the permutation σj , we will crucially use the
fact that separating lines can have arbitrary slopes. Slightly to the right (at distance at least
`) of the vertical line bounding the right end of G(σ) and far in the south direction, we place
a gadget G(B) encoding track B similarly to the encoding of track A up to some symmetry
that we will make precise later. We also incline the whole encoding of track B with a small,
say 5, degree angle, in a way that its top-left corner is to the right of its bottom-left corner.
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We round up the real coordinates that this rotation incurs to rationals at distance less
than, say, (kt)−10. We denote by v̂ the distance along the y-axis between G(σ) and G(B).
Eventually v̂ will be chosen very large, much larger than Θ(kt), which is the size of G(A),
G(B), G(σ). Below G(σ) at a distance 2v̂ along the y-axis, we place gadgets G≈v(σj)’s; from
left to right, we place G≈v(σσ(1)), G≈v(σσ(2)), . . . , G≈v(σσ(k)) such that for every i ∈ [k],
G≈v(σσ(i)) falls below the i-th column of the k-by-k crossing of G(σ). Gadgets G≈v(σj)’s
are represented by small round shapes in Figure 7. Notwithstanding what is drawn on the
overall picture, the G≈v(σj)’s can be all placed at the same y-coordinates. Let y1 := y0− 2v̂
(the exact value of y1 is not crucial). Also, we represent track B slanted by a 45 degree
angle, instead of the actual 5 degree angle, to be able to fit everything on one page and
convey the main ideas of the construction. In general, for the figure to be readable, the true
proportions are not respected. The size of every gadget is much smaller than the distance
between two different groups of gadgets, so that every line entering a gadget traverses it in
an axis-parallel fashion.

Gadget G≈v(σj) is built in the following way. For each i ∈ [t] and j ∈ [k], we draw a
fictitious point pji at the intersection of the close to vertical line corresponding to picking
element bji in gadget G(B) with the bottom end of G(B). Read from left to right, the pji ’s
have the same order as the bji ’s in (B,≤B). For every s = (j − 1)t + i (with j ∈ [k] and
i ∈ [t]), let qji be the point of y-coordinate y1 on the line VL′(s). We define the line SL(s) as
going through pji and qji , and set SL := {SL(s) | s ∈ [tk]}. We add two blue points just to
the left and just to the right of qji at distance ε := z−10. We also add two blue points on line
SL(s), one to the left of qji and one to the right of qji . Finally, we place two red points for
each G≈v(σj) at the bottom-left and top-right of the gadget, in a way that the bottom-left
red point is below all the lines SL(s) of the gadget, and the top-right red point is above all
those lines. Furthermore, the former (resp. latter) red point is to the left of the leftmost
(resp. to the right of the rightmost) line VL′(s) of G≈v(σj) (see Figure 6). Note that in the
figure, the lines in SL form a large angle with the y-axis, while in fact they are quite close
to a 5 degree angle and behave like relatively vertical3 lines within G(B) (since G(B) is also
inclined by 5 degrees).

Assuming that line VL′(s = (j − 1)t + i) has been selected, it might be observed from
Figure 6 that separating the red points from the blue points in G≈v(σj) with a budget of
one additional line requires to take a line crossing VL′(s) at (or very close to) qji and with a
higher or equal slope to SL(s). It is not quite what we wanted. What we achieved so far is
only to link the choice of aji with the choice of an element smaller or equal to bji . We will
use a gadget G≈v(σj), which is symmetric to G≈h(σj), to get the other inequality so that
choosing some lines corresponding to aji actually forces to take some lines corresponding to
bji .

We add a gadget G(id) below the G≈v(σj)’s. G(id) is obtained by mimicking G(σ) for
the identity permutation. We surround G(id) by 2k new horizontal long alleys. The hor-
izontal line matching the choice of VL′(s) in G(id) is denoted by HL′(s). At a distance
ĥ ≈ v̂/(cos(5◦) · sin(5◦)) to the right of G(id) we place gadgets G≈h(σj)’s analogously to the
G≈v(σj)’s. The fictitious points p′ji (analogous of pji ) used for the construction of the lines
SL′(s) (analogous of SL(s)) are located at the right end of G(B) and ordered as B when read
from top to bottom. The slight difference in the construction of G(B) from the B-intervals
(compared to G(A) from the A-intervals) is that the diagonal of blue points go from the
top-left corner to the bottom-right corner (instead of bottom-left to top-right). Similarly to

3 By that, we mean that the lines are close to vertical for axes aligned with the encoding of track B.
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1 2 3 4 5 6 7 8 123 45 67 8

zone of the points qji

zone of the
points pji

Figure 6 Half-encoding of permutation σj = 73285164 of the j-th color class. Observe that the
choice of the, say, sixth almost horizontal candidate line only forces to take the slanted line depicted
in bold or a line having the same intersection with the almost horizontal line but a larger slope. For
the sake of legibility, the angles between the vertical lines and the slanted lines are exaggerated.

our previous definitions, we define HL′ := {HL′(s) | s ∈ [tk]} and SL′ := {SL′(s) | s ∈ [tk]}.
Note that the choice of ĥ makes the lines of SL′ form a close to 5 degree angle with the
x-axis and so arrive relatively horizontal within G(B).

Putting the pieces together. We already hinted at how the different gadgets are com-
bined together. We choose the different typical values so that: kt � v̂ < ĥ � z. For
instance, v̂ := 100((kt)2 + 1) and z := 100(ĥ5 + 1). An important and somewhat hidden
consequence of z being much greater than v̂ and ĥ is that the bulk of the construction (say,
all the gadgets which are not long alleys) occupies a tiny space in the top-left corner of
Γ. We set the length ` of the long alleys to 100(k2 + 1). Point (x0, y0) corresponds to the
bottom-left corner of the square in bold with a diagonal close to the overall top-left corner.

Slightly outside grid Γ we place 14 pairs of long alleys (7 horizontal and 7 vertical) of
width, say, (kt)−10 to force the 14 lines in bold in Figure 7. Note that, on the figure, we do
not explicitly represent those long alleys but only the lines they force. The purpose of those
new long alleys is to separate groups of gadgets from each other. Going clockwise all around
the grid Γ, we alternate red-blue and blue-red alleys so that two consecutive long alleys do
not need a further separation. The even parity of those alleys make this alternation possible.
Each one of the 64 faces that those 14 lines define is called a super-cell.

The four lines in bold surrounding G(B) are close (say, at distance 10t) to the north,
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G(A) G(σ)

G(id)

G(B)

G≈v(σj)

G≈h(σj)

Figure 7 The overall picture. The thin rectangles are long alleys, the bold large squares with a
diagonal are the encoding of track A, in the top left corner, and track B, slanted by 45 degrees (for
the sake of fitting the whole construction on one page; in reality the encoding of B is only inclined
by 5 degrees). The smaller squares with a diagonal are simple interval gadgets and the small round
gadgets are half-encodings of the permutations σi’s. The four super-cells filled with grey contain 4k
long alleys slanted by 5 degrees. The (super-)cells filled with red and blue match their color, and
are monochromatic once the 14 lines imposed by the outermost long alleys have been selected.

south, west, and east ends of that gadget. On the four super-cells adjacent to the super-cell
containing G(B), shown in gray, we place 4k long alleys each of width 4t, analogously to
what was done for G(A), but slanted by a 5 degree angle (as the gadget G(B)). As for track
A, these alleys force, relatively to the orientation of G(B), one close to horizontal line and
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one close to vertical line per color class. The long alleys are placed just next to G(B) and
are not crossed by any other candidate lines.

This finishes the construction. We ask for a separation of R and B with 6k + 14 lines.
We now show the correctness of the reduction.

If I is a YES-instance for S2-THS, then 6k + 14 lines are sufficient. Let F
be the set of 14 lines forced by the outermost long alleys (lines in bold in Figure 7). Let
(a1
u1
, b1u1

), (a2
u2
, b2u2

), . . . , (akuk
, bkuk

) be a solution of S2-THS (u1, u2, . . . , uk ∈ [t]). Let sj :=
(j − 1)t+ uj for every j ∈ [k]. F ∪

⋃
j∈[k]{HL(sj),VL(sj),VL′(sj),HL′(sj), SL(sj), SL′(sj)}

is a set of 6k + 14 lines. We claim that it is a solution.
Due to F , we only need to check that the red and blue points of the same super-cell

are separated. The constant number of outermost long alleys are well separated: see the
alternating coloring of Figure 7. As the other long alleys also alternates red-blue and blue-
red, the super-cells containing k long alleys are all well separated.

This leaves us 6 super-cells to check: namely those of G(A), G(B), G(σ), G(id), the
G≈v(σj)’s, and the G≈h(σj)’s. The points in G(σ) and G(id) are separated as in Figure 3a,
since the choice of VL′(sj) matches the choices of HL(sj) and HL′(sj). As it can be observed
by looking at Cell(4, 3) and Cell(5, 4) of Figure 4, there is no interaction between the red
and blue points of diagonally adjacent faces of the k-by-k crossing (in G(σ) and G(id)).

Since a1
u1
, a2
u2
, . . . , akuk

(resp. b1u1
, b2u2

, . . . , bkuk
) is a hitting set of SA (resp. SB), the points

in G(A) (resp. G(B)) are separated as in Figure 3b. Indeed for each interval I ∈ SA (resp I ∈
SB), there is a j ∈ [k] such that ajuj

hits I (resp. bjuj
hits I), and the two red points encoding

I are in the two quadrants defined by HL(sj) and VL(sj) (resp. defined by SL(sj) and
SL′(sj)) where there is no blue point.

Similarly the two red points of a gadget G≈v(σj) (resp. G≈h(σj)) are separated from
the blue points: they are in the two regions defined by VL′(sj) and SL(sj) (resp. HL′(sj)
and SL′(sj)) where there is no blue point. Two consecutive gadgets G≈v(σj) and G≈v(σj+1)
(resp. G≈h(σj) and G≈h(σj+1)) do not interact. In fact, all the blue points land in the
quadrangular faces touching two consecutive gadgets.

If 6k + 14 lines are sufficient, then I is a YES-instance for S2-THS. Let S be a
feasible solution consisting of at most 6k + 14 lines. The lines of S should separate all the
straight-line segments whose one extremity is at a red point and the other is at a blue point.
We call such a segment a red/blue segment or a red/blue pair (or simply pair).

First, we can assume that F ⊆ S, where F is the set of 14 lines forced by the 28
outermost long alleys. Indeed, in each of those long alleys there should be a line of S
separating at least two red/blue segments, such that the two segments and the line have not
a common intersection. For every line L satisfying this property, the line in F responsible
from separating this long alley separates a superset of the red/blue pairs separated by L;
and therefore can be chosen.

We will now focus on a particular subset of red/blue pairs. Consider the set X of the
red/blue segments within each of the 12k remaining long alleys between two points with
the same x-coordinate (resp. y-coordinate) in a horizontal alley (resp. vertical alley), and
by generalizing in the natural way this notion for the close to horizontal (resp. vertical)
alleys surrounding G(B). There are ` such red/blue pairs per long alley, hence |X | = 12k`.
We partition the 12k long alleys into eight groups: AW , AE , AN , AS , the axis-parallel long
alleys to the west, east, north, and respectively, south of Γ, and BW , BE , BN , BS the slightly
slanted long alleys to the west, east, north, and respectively, south of G(B).
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I Lemma 4. No line separates strictly more than 2` red/blue pairs of X . Furthermore, the
only way for a line to separate 2` red/blue pairs of X is to separate all the red/blue pairs of
X of two long alleys belonging to a pair in {(AW ,AE), (AN ,AS), (BW ,BE), (BN ,BS)} (and
no other pair of X ).

Proof. Within the same group of long alleys, a line separates at most ` red/blue pairs of
X . Indeed, say, the group of long alleys consists of horizontal alleys. Then a line cannot
separate two red/blue pairs sharing the same x-coordinate. Furthermore, it can be observed
that to separate within the same group exactly ` red/blue pairs of X , the line has to separate
the red/blue pairs of the same long alley.

We also observe that a line intersects a positive number of red/blue pairs of X in at most
two groups among AW , AE , AN , and AS (resp. BW , BE , BN , and BS) and at most three
of the eight groups.

If a line intersects red/blue pairs of X in three groups, then those groups have to be (a)
BW , BE , and AW , or (b) BW , BE , and AE , or (c) BN , BS , and AN , or (d) BN , BS , and
AS . Here we use the fact that ĥ � z. Hence, all the other gadgets are much closer to the
long alleys in AW and AN than to the long alleys in AE and AS . Thus, a line separating
red/blue pairs in, say, AE and BE looks horizontal between BE and the west end of Γ, and
therefore cannot separate red/blue pairs in AW .

The cases (a), (b), (c), and (d) being symmetric, we only treat case (a). A line corre-
sponding to case (a), cannot separate 2` red/blue pairs of X . Here we use the fact that the
distance between two groups of gadgets is much larger than the size of the gadgets. So a
line L separating some red/blue pairs in AW and BW looks horizontal between BW and BE .
As the long alleys of BW and BE are slanted by a 5 degree angle, L cannot separate more
than 100k < ` red/blue pairs of X in BW ∪ BE . Indeed, a close to horizontal line cannot
separate more than a constant (smaller than 50) number of red/blue pairs of X per long
alley of BW ∪ BE .

At this point, one can eventually observe that the only ways to separate 2` red/blue pairs
of X with one line, is to separate ` pairs in AW (resp. BW ) and ` pairs in AE (resp. BE), or
` pairs in AN (resp. BN ) and ` pairs in AS (resp. BS). By a previous remark, the separated
pairs within a group come from the same long alley. J

As the remaining budget is 6k lines, it follows from Lemma 4 that all the lines of S \ F
have to separate exactly 2` pairwise-disjoint red/blue pairs of X . Furthermore, in S \ F ,
there are 2k almost horizontal lines separating one long alley in AW and the other in AE , 2k
almost vertical lines separating one long alley in AN and the other in AS , k lines separating
one long alley in BW and the other in BE , and k lines separating one long alley in BN and
the other in BS .

Let us draw a small parenthesis. Despite what is represented in Figure 7, the line of
S separating the h-th topmost long alley of AW (resp. the v-th leftmost long alley of AN )
does not necessarily separate the h-th topmost long alley of AE (resp. the v-th leftmost
long alley of AS). Instead, this line separates one long alley of AE (resp. AS); it does
not matter which one. Therefore, the exact position of the long alleys of AE ∪ AS is not
crucial. What is important is that there are 2k horizontal long alleys very far east, and 2k
vertical long alleys very far south. We nevertheless chose to align those alleys with the ones
in AW ∪ AN , since we think it leads to a more intuitive construction for the reader. This
closes the parenthesis.

Let us focus on the k lines of S separating the k topmost long alleys of AW . For each
j ∈ [k], we denote by Lj the one separating the j-th bottommost of those k long alleys. As
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we already observed those lines behave like horizontal lines in the smallest subgrid enclosing
all the gadgets which are not in AE ∪ AS (nor the 14 outermost long alleys). For each
j ∈ [k], let ajuj

be the element of A corresponding to Lj (with the correspondence described
in Figure 3a). In particular, by the position of the k topmost long alleys of AW , it is indeed
true that the k lines L1,L2, . . . ,Lk translates to exactly one element per color class of track
A. We show, using the following lemma, that a1

u1
, a2

u2
, . . . , akuk

is a hitting set of (A,SA).

I Lemma 5. The only ways to separate a simple interval gadget with one horizontal line
and one vertical line is to make them meet at the diagonal defined by the blue points.

Proof. If the lines meet above the diagonal, then the bottom red point is not separated from
the blue point just to the right of the vertical line. If the lines meet below the diagonal, then
the top red point is not separated from the blue point just to the left of the vertical line. J

Recall that we added for convenience the pairs of red points R([aj1, a
j
t ]), for each j ∈ [k].

We consider the simple interval gadget that each pair induces, that is, the two red points
and the diagonal of blue points contained in the smallest square subgrid enclosing them.
Because of the long alleys in AW and AN , we have a budget of exactly one horizontal line
and one vertical line to separate each of those k simple intervals. By Lemma 5, the k vertical
lines of S separating the k leftmost long alleys of AN have to agree with the choices of the
horizontal lines Lj ’s. More formally, the j-th bottommost horizontal line intersects the j-th
leftmost vertical line at the diagonal defined by the blue points.

This implies that all the intervals of SA are hit by the ajuj
’s. Indeed, if an interval I is

not hit, the smallest square subgrid γI enclosing the corresponding pair of red points would
not be intersected by S; and those red points would not be separated from any diagonal
blue point in γI .

We now show that the choice of the lines corresponding to the elements a1
u1
, a2

u2
, . . . , akuk

will force to take the lines corresponding to the elements b1u1
, b2u2

, . . . , bkuk
. Still by Lemma 5,

G(σ) transmits the choices of the Lj ’s downwards with the desired permutation σ of the color
classes, while G(id) transmits unchanged the choices of the vertical lines separating G(σ) to
the left.

Similarly to the simple argument of Lemma 5, once the axis-parallel line has been selected
in a gadget G≈v(σj) or G≈h(σj), to separate the two red points from the four blue points on
or close to the intended line (that is, SL(s) when VL′(s) has been selected, or SL′(s) when
HL′(s) has been selected), one should choose the intended line itself or any line having the
same intersection with the axis-parallel line and closer to this axis (see Figure 6). The way
the gadgets G≈v(σj)’s, G≈h(σj)’s, and G(B) are placed, it results in, for each color class j of
track B, selecting a relatively horizontal line somewhere to the left of the line corresponding
to bjuj

, and selecting a relatively vertical line somewhere below the line corresponding to bjuj

(see Figure 8).
Though, by Lemma 5, those two lines have to meet at the diagonal formed by the blue

points. The only way to realize that is that both lines agree on the choice of bjuj
. This

concludes to prove that choosing the lines corresponding to a1
u1
, a2
u2
, . . . , akuk

to separate
G(A) forces to select the lines corresponding to b1u1

, b2u2
, . . . , bkuk

to separate G(B). Finally,
as we already observed for track A, the bjuj

’s have to be a hitting set of (B,SB); otherwise,
the non hit interval would induce some non separated red/blue pairs.

As a1
u1
, a2
u2
, . . . , akuk

is a hitting set of (A,SA) and b1u1
, b2u2

, . . . , bkuk
is a hitting set of

(B,SB), I is a YES-instance. J
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Figure 8 In bold, the horizontal and vertical lines in G(B) corresponding to selecting some
element bj

i of B. The grey regions materialize the potential positions for the slanted line in G≈v(σj)
and the slanted line in G≈h(σj) once the lines corresponding to selecting aj

i have been chosen.

4 FPT algorithm parameterized by the size of the smaller set

In this section, we focus on Axis-Parallel Red-Blue Separation. This version can
be reduced to the problem of stabbing with axis-parallel lines the axis-parallel rectangles
spanned by a point in R and a point in B. In general, however, when parameterized by the
number of lines in the solution, stabbing axis-parallel rectangles with axis-parallel lines is
W[1]-hard [13]. It is also known to be FPT when the rectangles are disjoint [15]. We have
not been able to adapt the hardness proof to our special version of the problem nor to show
it is FPT, so the parameterized complexity of Axis-Parallel Red-Blue Separation
w.r.t. the number of lines remains open.

Here, we present a simple FPT algorithm for Axis-Parallel Red-Blue Separation
parameterized by min{|R|, |B|}. In the following, w.l.o.g., we assume that B is the smaller
set. Arguably, this parameterization is somewhat less interesting from a practical point of
view. Indeed, as the hardness reduction for the general problem in the previous section
suggests, the difficult cases seem to be the ones where R and B are (more or less) balanced
in size. Nevertheless, we believe that this positive result has its merits as it is non-trivial and
provides a first step towards understanding the complexity of Axis-Parallel Red-Blue
Separation.

I Theorem 6. An optimal solution of Axis-Parallel Red-Blue Separation can be
computed in O(n logn+ n|B|9|B|) time.

We first give a high-level description of the algorithm. It begins by subdividing the plane
into at most |B| + 1 vertical strips, each consisting of the area “between” two horizontally
successive blue points, and at most |B| + 1 horizontal strips, each consisting of the area
“between” two vertically successive blue points (see Figure 9a). Since each strip can contain
only red points in its interior, an optimal solution uses at most two lines inside a single
strip (Lemma 9(a)). We can therefore guess (by exhaustive enumeration) the number of
lines used in each strip in an optimal solution. This gives a running time of roughly 9|B|.
A second observation is that if an optimal solution uses two lines in a strip, these can be
placed as far away from each other as possible (Lemma 9(b)). To complete the solution
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pb

p

(a) The cell decomposition (solid lines), a guess of how
S intersects it (dashed lines), and an interesting cell
(in gray) for a point pb (bottom-right corner). The red
point p cannot be in the south-east quadrant of this
cell which translates to the 2-clause y2

p ∨ ¬x4
p. Indeed,

it should be that the horizontal line of S is below it or
that the vertical line is to its right.

p
p′

(b) Two consecutive red points in a
horizontal strip Rh(i). If the corre-
sponding line of S is below p, then
it is also below p′ which translates to
yi

p → yi
p′ .

p

p′

(c) Two consecutive red points in a
vertical strip Rv(j). If the corre-
sponding line of S is to the left of p,
then it is also to the left of p′ which
translates to xi

p → xi
p′ .

Figure 9 Illustration of the algorithm and the two kinds of clauses of the 2-SAT instance.

we must decide where to place the lines in strips that contain only one line of an optimal
solution. We consider every pair of blue and red points whose separation may depend on
the exact placement of these lines. The key idea is that the separation of two such points
can be expressed as a 2-CNF constraint. If the upcoming formal exposition seems a bit
more complicated than this informal idea, it is because we have to deal with points sharing
the same x- or y-coordinates.

We now proceed to a formal description of our algorithm, beginning with some definitions.
For a point p ∈ R2, let p(x) and p(y) be its x-coordinate and y-coordinate, respectively. Also,
let X,Y be the sets of x, y coordinates of the points in B. In order to ease presentation later
on, with a slight terminology abuse, we add −∞,+∞ to both X and Y . Let X(i), Y (i) be
the respective i-th elements of these sets in increasing order with 0 6 i, and let k = |X| − 2
and l = |Y | − 2; k 6 |B| and l 6 |B|.

I Definition 7. The vertical strips are defined as Vi = {p ∈ R2 | X(i) 6 p(x) 6 X(i + 1)}
for i ∈ [0, k].

I Definition 8. The horizontal strips are defined as Hi = {p ∈ R2 | Y (i) 6 p(y) 6 Y (i+1)}
for i ∈ [0, l].

The horizontal and vertical strips defined above essentially partition the plane into open
monochromatic (red) or empty regions, while the boundaries of the strips may contain both
red and blue points. As a result, we have the following properties of an optimal solution.

I Lemma 9. (a) An optimal solution of Axis-Parallel Red-Blue Separation contains
at most two lines in each horizontal or vertical strip. (b) In the case where a strip has two
lines, these lines can be assumed to be placed in a way such that all red points in the interior
of the strip lie between them.

Proof. Recall that our notion of separation forbids lines from passing through input points.
As the interior of every strip contains only red points, in any solution, every line that is
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Figure 10 For the specification where the leftmost and rightmost vertical strips contain no lines
while every other strip contains exactly one line, the line in the middle vertical strip must be placed
between the two red points, otherwise the corresponding solution is not feasible.

between two other lines within a strip can be safely removed without affecting feasibility.
Moreover, two lines within a strip can be translated in opposite directions towards the
boundaries of the strip such that they enclose between them all red points that lie in the
interior of the strip but no blue point. J

We are now ready to give the proof of the main theorem of this section.

Proof of Theorem 6. We describe an FPT algorithm which guesses how many lines an
optimal solution uses in each strip and then produces a 2-SAT instance of size O(|B|n) in
order to check if its guess is feasible. We assume that we have access to two lists containing
the input points sorted lexicographically by their (x, y) and (y, x) coordinates; producing
these lists takes O(n logn) time.

Let S be some optimal solution. We first guess how many lines of S are in each horizontal
and each vertical strip. Since, by Lemma 9, S contains at most two lines per strip, and there
are l + 1 6 |B| + 1 horizontal strips and k + 1 6 |B| + 1 vertical strips, there are at most
3|B|+1 possibilities to guess from for each direction thus, O(9|B|) in total.

In what follows, we assume that we have fixed how many lines of S are in each strip.
We describe an algorithm deciding in polynomial time if such a specification gives a feasible
solution. Since a specification fully determines the number of lines of a solution, the algo-
rithm simply goes through all specifications and selects one with minimum cost among all
feasible ones.

Note here that unlike in the case of strips that, according to a specification, contain
exactly two lines (Lemma 9), for a strip that contains exactly one line, this line cannot
always be placed in an ‘extremal’ (i.e., rightmost or leftmost) position within the strip; see
Figure 10 for an example.

We now produce a 2-SAT instance which will be satisfiable if and only if a given speci-
fication is feasible. We first define the variables: for each horizontal strip Hi that contains
exactly one line from S and for each red point p ∈ Hi, we define a variable yip. Its informal
meaning is “the line of S in Hi is below point p”. Note that when p lies on the upper (lower)
boundary of Hi, yip is set to true (false) by default. Similarly, for each vertical strip Vj that
contains exactly one line from S and for each red point p ∈ Vj , we define a variable xjp. Its
informal meaning is “the line of S in Vj is to the left of p”. It is set to true (false) by default
when p lies on the right (left) boundary of Vj . We have constructed O(n) variables (at most
four for each point of R).
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Next, we construct 2-CNF clauses imposing the informal meaning described. For each
stripHi that contains exactly one horizontal line from S and each pair of red points p, p′ ∈ Hi

that are consecutive in lexicographic (y, x) order, we add the clause (yip → yip′). Note that
we can skip pairs that have a point lying on the upper or lower boundary of Hi as the
corresponding variable has been already set to true or false respectively and the clause is
satisfied; see the description in the previous paragraph. Similarly, for each strip Vj that
contains exactly one vertical line from S and each pair of red points p, p′ ∈ Vj that are
consecutive in lexicographic (x, y) order, we add the clause (xjp → xjp′); as before, pairs that
have a point lying on the left or right boundary of Vj do not produce any clauses. Observe
that given any solution, we can construct from its lines an assignment following the informal
meaning described above that satisfies all clauses added so far, while from any satisfying
assignment we can find lines according to the informal meaning. We call the O(n) clauses
constructed so far the coherence part of our instance.

What remains is to add some further clauses to our instance to ensure not only that
each satisfying assignment encodes a solution, but also that the solution is feasible, that is,
it separates all pairs of red and blue points.

Consider a cell Cij = Hi ∩Vj , where i ∈ [0, l] and j ∈ [0, k]. A red point p ∈ Cij is called
Cij-separable for a point pb ∈ B, if p can be separated from pb by a vertical or horizontal
line running through the interior of Cij . We will sometimes call p just separable when Cij
and pb are obvious from the context. We say that Cij is interesting for a point pb ∈ B if the
following conditions hold: (i) Cij contains at least one red point that is Cij-separable for
pb; (ii) at least one of Hi or Vj contains at most one horizontal or one vertical line from S

respectively; (iii) if X(j + 1) < pb(x) or pb(x) < X(j), then there is no vertical line from S

in a strip between pb and Vj ; and (iv) if Y (i+ 1) < pb(y) or pb(y) < Y (i), then there is no
horizontal line from S in a strip between pb and Hi. Note that even if Cij is interesting for
pb, it may contain a red point p that is already separated from pb by a line going through
Cij : this happens exactly when Hi or Vj contains two horizontal or vertical lines from S

respectively and p lies either in the interior of Cij or on its boundary but not on the same
side of Hi or Vj as pb.

The motivation behind these definitions is that the cells that are interesting for pb contain
exactly the red points that need to be separated from pb by lines going through the cells
and whose positions cannot be predetermined. We therefore have to add some clauses to
express these constraints.

For each pb ∈ B and each cell Cij that is interesting for pb we construct a clause for every
red point p ∈ Cij that is separable and not already separated from pb. Initially, the clause
is empty. If the specification says that there is exactly one line from S in Hi, we add to
the clause a literal as follows: if y(pb) > Y (i+ 1), we add ¬yip (meaning that the horizontal
line is above p, and hence separates p from pb); if y(pb) 6 Y (i), we add yip. Furthermore,
if the specification says that there is exactly one line from S in Vj , we add to the clause a
literal as follows: if x(pb) > X(i + 1), we add the literal ¬xjp; if x(pb) 6 X(i), we add xjp.
Observe that this process produces clauses of size at most two. It may produce an empty
clause, rendering the 2-SAT unsatisfiable, in the case where there is no line of S in Hi or
Vj , but this is desirable since in this case no feasible solution matches the specification. A
point p ∈ R can belong to (at most) four cells Cij but it can be Cij-separable only for (at
most) three of the cells for any point pb ∈ B. Thus, we have at most three clauses for each
pair of a blue and a red point. In total, we have constructed O(|B||R|) clauses in this way
and the 2-SAT formula has O(n) variables and O(|B|n) clauses. Since 2-SAT can be solved
in linear time, we obtain the promised running time for our algorithm.
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To complete the proof we rely on the informal correspondence between assignments to
the 2-SAT instance and Axis-Parallel Red-Blue Separation solutions. In particular,
if there exists a solution that agrees with the guessed specification, this solution can easily
be translated to an assignment that satisfies the coherence part of the 2-SAT formula.
Furthermore, for any blue point pb and any separable and not already separated red point
p in a cell Cij that is interesting for pb, the solution must be placing at least one line
going through Cij in a way that separates pb from p (this follows from the fact that the
cell is interesting). Hence, the corresponding 2-SAT clauses are also satisfied. Conversely,
given an assignment to the 2-SAT instance, we construct an Axis-Parallel Red-Blue
Separation solution following the informal meaning of the variables. We first note that for
every blue point pb, every red point is Cij-separable for pb for at least one cell Cij . Observe
that for any cell Cij that is not interesting for pb and contains at least one separable point,
we have that either all red points in the cell are separated from pb by lines outside the cell or
all separable red points in the cell are separated from pb by the four lines running through the
cell. Furthermore, if Cij is interesting for pb, then all separable (and not already separated)
red points in the cell are separated from pb because of the additional 2-SAT clauses we
added in the second part of the construction. J

5 Open problems

The most intriguing open problem is settling the complexity of Axis-Parallel Red-Blue
Separation w.r.t. the number of lines. We conjecture it to be FPT. Other problems include
the complexity of Red-Blue Separation when the lines can have three different slopes
and of Axis-Parallel Red-Blue Separation in 3-dimensions.

Acknowledgements. The authors would like to thank Sergio Cabello and Christian
Knauer for fruitful discussions.
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