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Abstract
The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized
by treewidth, that is, running in time 2O(tw)nO(1), for Feedback Vertex Set and connected versions of the classical
graph problems (such as Vertex Cover and Dominating Set). We show that Subset Feedback Vertex Set, Subset
Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway
Cut are unlikely to have such running times. More precisely, we match algorithms running in time 2O(tw log tw)nO(1) with
tight lower bounds under the Exponential-Time Hypothesis (ETH), ruling out 2o(tw log tw)nO(1), where n is the number of
vertices and tw is the treewidth of the input graph. Our algorithms extend to the weighted case, while our lower bounds
also hold for the larger parameter pathwidth and do not require weights. We also show that, in contrast to Odd Cycle
Transversal, there is no 2o(tw log tw)nO(1)-time algorithm for Even Cycle Transversal under the ETH.
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1 Introduction

Many NP-hard graph problems admit polynomial-time algorithms on graphs with bounded treewidth, a measure
of how well a graph accommodates a decomposition into a tree-like structure. In fact, Courcelle’s Theorem [9]
states that any problem definable in MSO2 logic can be solved in linear time on graphs of bounded treewidth.
To obtain a more fine-grained perspective on the dependence on treewidth for certain problems, it is useful
to study the parameterized complexity with respect to treewidth. In particular, we can ask: what is the
“smallest” function f for which we can obtain an algorithm that, given a graph with treewidth tw, has running
time f(tw)nO(1)? For Feedback Vertex Set, standard dynamic programming techniques can be used to
obtain an algorithm running in 2O(tw log tw)nO(1) time, and for a while many believed this to be, in a sense, best
possible. However, this changed in 2011 when Cygan et al. developed the Cut&Count technique, by which
they obtained a single-exponential 3twnO(1)-time randomized algorithm. Following this, Bodlaender et al. [3]
showed there is a deterministic 2O(tw)nO(1)-time algorithm, using a rank-based approach and the concept of
representative sets. The same year, Pilipczuk [25] exhibited a logic fragment whose model checking admits a
single-exponential algorithm parameterized by the treewidth of the input graph, thereby providing a scaled-down
but more fine-grained version of Courcelle’s theorem. Moreover, also in 2011, Lokshtanov et al. [21] developed
a framework yielding 2Ω(tw log tw)nO(1)-time lower bounds under the Exponential Time Hypothesis (ETH). Let
us recall that the ETH asserts that there is a real number δ > 0 such that 3-SAT cannot be solved in time
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2δn on n-variable formulas [17]. Lokshtanov et al.’s paper prompted several authors to investigate the exact
time-dependency on treewidth for a variety of graph modification problems.

For a vertex-deletion problem, the task is to delete at most k vertices so that the resulting graph is in some
target class. Feedback Vertex Set can be viewed as a vertex-deletion problem where the graphs in the
target class consist of blocks with at most two vertices (a block is a maximal subgraph H such that H has no
cut vertices). Bonnet et al. [6] considered the class of problems, generalizing Feedback Vertex Set, where
the target graphs are those consisting of blocks each of which has a bounded number of vertices, and is in some
fixed hereditary, polynomial-time recognizable class P. They showed that such a problem is solvable in time
2O(tw)nO(1) precisely when each graph in P is chordal (when P does not satisfy this condition, an algorithm
with running time 2o(tw log tw)nO(1) would refute the ETH). Baste et al. [2] studied another generalization of
Feedback Vertex Set: the vertex-deletion problem where the target graphs are those having no minor
isomorphic to a fixed graph H. They showed a single-exponential parameterized algorithm in treewidth is
possible precisely when H is a minor of the banner (the cycle on four vertices with a degree-1 vertex attached to
it), but H is not P5 (the path graph on five vertices), assuming the ETH holds.

So-called slightly superexponential parameterized algorithms, running in time 2O(tw log tw)nO(1), are by no
means a formality for problems that are FPT in treewidth. For instance, Pilipczuk [25] showed that deciding if a
graph has a transversal of size at most k hitting all cycles of length exactly ` (or length at most `) for a fixed value
` cannot be solved in time 2o(tw2)nO(1), unless the ETH fails. This lower bound matches a dynamic-programming
based algorithm running in time 2O(tw2)nO(1). Cygan et al. [10] investigated the more general problem of hitting
all subgraphs H of a given graph G, for a fixed pattern graph H, again parameterized by treewidth. For various
H, they found algorithms running in time 2O(twu(H))nO(1), and proved ETH lower bounds in 2Ω(tw`(H))nO(1), for
values 1 < `(H) 6 u(H) depending on H. Another recent example is provided by Sau and Uéverton [26] who
prove similar results for the analogous problem where “subgraphs” is replaced by “induced subgraphs”. Finally,
for the vertex-deletion problem where the target class is a given proper minor-closed class (given by the list
of forbidden minors), it is still open if the double-exponential dependence on treewidth is asymptotically best
possible [1].

Sometimes, only a seemingly slight generalization of Feedback Vertex Set can result in problems with no
single-exponential algorithm parameterized by treewidth. Bonamy et al. [5] showed that Directed Feedback
Vertex Set can be solved in time 2O(tw log tw)nO(1), but not faster under the ETH. In this paper, we consider
another collection of problems that generalize Feedback Vertex Set, and that do not have single-exponential
algorithms parameterized by treewidth. An equivalent formulation of FVS is to find a transversal of all cycles
in a given graph. We consider problems where the goal is to find a transversal of some subset of the cycles of a
given graph. If this subset of cycles is those that intersect some fixed set of vertices S, we obtain the following
problem:

Subset Feedback Vertex Set (Subset FVS) Parameter: tw(G)
Input: A graph G, a subset of vertices S ⊆ V (G), and an integer k.
Question: Is there a set of at most k vertices hitting all the cycles containing a vertex in S?
If we further restrict this set of cycles to those that are odd, we obtain the next problem:

Subset Odd Cycle Transversal (Subset OCT) Parameter: tw(G)
Input: A graph G, a subset of vertices S ⊆ V (G), and an integer k.
Question: Is there a set of at most k vertices hitting all the odd cycles containing a vertex in S?

Both of these problems are NP-complete. By setting S = V (G), one sees that the latter problem generalizes
Odd Cycle Transversal, for which Fiorini et al. [15] presented a 2O(tw)nO(1)-time algorithm.

Alternatively, one can require a transversal of even cycles. We first consider the problem of finding a
transversal of all even cycles since, to the best of our knowledge, the fine-grained complexity of this problem
parameterized by treewidth has not previously been studied.

Even Cycle Transversal (ECT) Parameter: tw(G)
Input: A graph G and an integer k.
Question: Is there a set of at most k vertices hitting all the even cycles of G?

We note that parameterizations by solution size have been studied for these three problems [12,19,23,24,27].
We now move to edge variants of FVS. Note that Feedback Edge Set, where the goal is to find a set
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of edges of weight most k that hits the cycles, can be solved in linear time, since it is equivalent to finding
a maximum-weight spanning forest. Xiao and Nagamochi showed that the subset variants Vertex-Subset
Feedback Edge Set and Edge-Subset Feedback Edge Set, where the deletion set need only hit cycles
containing a vertex or an edge (respectively) of a given set S, can also be solved in linear time [28]. On the
other hand, the latter problem becomes NP-complete when the deletion set cannot intersect S. This problem is
known as Restricted Edge-Subset Feedback Edge Set.

Restricted Edge-Subset Feedback Edge Set (RESFES) Parameter: tw(G)
Input: A graph G, a subset of edges S ⊆ E(G), and an integer k.
Question: Is there a set of at most k edges of E(G) \ S whose removal yields a graph without any cycle
containing at least one edge of S?
The final two NP-complete problems we consider are closely related to Subset Feedback Vertex Set

and Restricted Edge-Subset Feedback Edge Set, respectively (see the remark in Section 1.1). They are
well-established problems with an abundant literature of approximation and parameterized algorithms.

Node Multiway Cut Parameter: tw(G)
Input: A graph G, a subset of vertices T ⊆ V (G), called terminals, and an integer k.
Question: Is there a set of at most k vertices of V (G) \ T hitting every path between a pair of terminals?

Multiway Cut Parameter: tw(G)
Input: A graph G, a subset of vertices T ⊆ V (G), called terminals, and an integer k.
Question: Is there a set of at most k edges hitting every path between a pair of terminals?
The look-alike problem, Multicut, where the task is to separate each pair of terminals in a given set of

pairs (rather than all the pairs in a given set) is NP-complete on trees [16]. Therefore the parameterization by
treewidth cannot help here. In the language of parameterized complexity, Multicut parameterized by treewidth
is paraNP-complete.

1.1 Our contribution
With the exception of Even Cycle Transversal, for which we provide only a lower bound, we show that
all the problems formally defined so far admit a slightly superexponential parameterized algorithm, and that
this running time cannot be improved, unless the ETH fails. We leave as an open problem the existence of a
slightly superexponential algorithm for (Subset) Even Cycle Transversal parameterized by treewidth. We
note that Deng et al. [13] have already shown that Multiway Cut can be solved in time 2O(tw log tw)nO(1). Our
algorithms work for treewidth and weights, while our lower bounds hold for the larger parameter pathwidth and
do not require weights.

On the algorithmic side we show the following:

I Theorem 1. The following problems can be solved in time 2O(tw log tw)nO(1) on n-vertex graphs with treewidth tw:
Subset Feedback Vertex Set,
Subset Odd Cycle Transversal,
Restricted Edge-Subset Feedback Edge Set, and
Node Multiway Cut.

We provide algorithms having the claimed running time for the weighted versions of each of the four problems
in Theorem 1. In these weighted versions, the input graph is given with a weight function w on the vertices
when the solution is a set of vertices, or on the edges when the solution is a set of edges. Furthermore, in the
weighted versions, the problem asks for a solution of weight at most k.

On the complexity side, the main conceptual contribution of the paper is to show that problems seemingly
quite close to Feedback Vertex Set do not admit a single-exponential algorithm parameterized by treewidth,
under the ETH.

I Theorem 2. Unless the ETH fails, the following problems cannot be solved in time 2o(pw log pw)nO(1) on n-vertex
graphs with pathwidth pw:

Subset Feedback Vertex Set,
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Subset Odd Cycle Transversal,
Even Cycle Transversal,
Restricted Edge-Subset Feedback Edge Set,
Node Multiway Cut, and
Multiway Cut.

For the last two problems, our reductions build instances where the number of terminals |T | is Θ(pw). Thus
we also rule out a running time of |T |o(pw). All the reductions are from k × k-(Permutation) Independent
Set/Clique following a strategy suggested by Lokshtanov et al. [22] (see for instance, [2, 5–7, 14]). These
problems cannot be solved in time 2o(k log k), unless the ETH fails.

k × k-Independent Set Parameter: k

Input: A graph H with vertex set V (H) = [k]2 for some integer k.
Question: An independent set of size k hitting each column exactly once.

k × k-Permutation Independent Set Parameter: k

Input: A graph H with vertex set V (H) = [k]2 for some integer k.
Question: An independent set of size k hitting each column and each row exactly once.

A row is a set of vertices of the form {(i, 1), (i, 2), . . . , (i, k)} ⊂ V (H) for some i ∈ [k], while a column is a
set {(1, j), (2, j), . . . , (k, j)} ⊂ V (H) for some j ∈ [k]. The problem k × k-(Permutation) Clique is defined
analogously, where the solution is required to be a clique rather than an independent set.1

Roadmap for the lower bounds. To prove Theorem 2, we start by designing a gadget specification for generic
vertex-deletion problems. We show that any such problem, allowing for gadgets respecting the specification,
has the lower bound given in Theorem 2. This is achieved by a meta-reduction from k × k-Permutation
Independent Set. We give gadgets for Subset FVS, Subset OCT, and ECT that comply with the
specification. We thus obtain the first three items of the theorem in a unified way, with simple and reusable
gadgets. This mini-framework may in principle be useful for other vertex-deletion problems.

In order to show a stronger lower bound for Node Multiway Cut, with the number of terminals in Θ(k),
we depart from the previous specification slightly, although we still use some shared notation and arguments to
bound the pathwidth, where convenient. This reduction is from k × k-Independent Set.

Finally, the reduction to Multiway Cut is more intricate. For this problem it is surprisingly challenging to
discourage the undesirable solutions “cutting close” to every terminal but one, where the deletion set yields
a very large connected component for one terminal, and small components for the rest of the terminals. In
particular, the trick used for the Node Multiway Cut lower bound cannot be replicated. We overcome this
issue by designing a somewhat counter-intuitive edge gadget which encourages the retention of as many pairs of
endpoints linked to two (distinct) terminals as possible. This uses the simple fact that, in a ∆-regular graph, a
clique of size k minimizes the number of edges covered by k vertices: ∆k −

(
k
2
)
vs ∆k for an independent set

of size k. We then reduce from k × k-Permutation Clique. We discuss why getting the same lower bound
for a regular variant of k × k-Permutation Clique is technical, and bypass that difficulty by encoding a
degree-equalizer gadget directly in the Multiway Cut instance. As a side note, we nevertheless prove that a
semi-regular variant of k × k-Clique also has the slightly superexponential lower bound. This proof uses a
constructive version of the Hajnal-Szemerédi theorem on equitable colorings.

A remark on parameter-preserving reductions between the problems. There is an easy reduction from Node
Multiway Cut to Weighted Subset Feedback Vertex Set (WSFVS, for short). It consists of adding
a vertex v of “infinite” weight adjacent to all the terminals of the Multiway Cut instance, which also all
get “infinite” weight. The set S of the WSFVS instance is {v}. The same process yields a reduction from
Multiway Cut to Restricted Edge-Subset Feedback Edge Set, where now the set S of the Restricted

1 Observe that we switch the columns and the rows compared to the original definition of k × k-Clique [22]. While this is of
course equivalent, it will make the representation of some gadgets slightly more conducive to the page format.
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Edge-Subset Feedback Edge Set instance contains all the edges incident to v (recall that these edges are
thus undeletable).

From the latter reduction, we can immediately derive the lower bound for Restricted Edge-Subset
Feedback Edge Set from the lower bound for Multiway Cut (see Theorem 13). However, the hardness
result for Node Multiway Cut (see Theorem 11) does not imply anything for Subset Feedback Vertex
Set. Indeed, to encode the “infinite” weight that makes v and its neighbors undeletable, one would have to
duplicate these vertices many times. This would result in a large biclique, or at the very least a large biclique
minor, and would thereby make the pathwidth or treewidth large. Therefore Theorem 10 is necessary and cannot
be obtained by a simple modification of Theorem 11. Finally, we observe that the straightforward reduction
from Multiway Cut to Node Multiway Cut requires vertex weights, or blows up the treewidth. So again
Theorem 11 cannot be derived from Theorem 12.

Roadmap for the algorithms. To prove Theorem 1, we first present a 2O(tw log tw)n3-time algorithm for the
weighted variant of Subset OCT. With a few modifications, this algorithm can solve the weighted variant of
Subset FVS. We obtain algorithms for the other problems in Theorem 1 by reducing these problems to the
weighted variant of Subset FVS.

Let us explain our approach for Subset OCT on a graph G with S ⊆ V (G). We solve Subset OCT
indirectly by finding a set X ⊆ V (G) of maximum weight that induces a graph with no odd cycles traversing S
(we call such a graph S-bipartite). We prove that a graph has no odd cycle traversing S if and only if for each
block C, either C is bipartite or C has no vertex in S. From this characterization, we prove that it is enough to
store 2O(tw log tw) partial solutions at each bag B of a tree decomposition.

Let B be a bag of the tree decomposition of G and GB be the graph induced by the vertices in B and
its descendant bags in the tree decomposition. A partial solution of GB is a set X ⊆ V (GB) that induces an
S-bipartite graph. We design an equivalence relation ≡B on the partial solutions of GB such that for every
X ≡B Y and W ⊆ V (G) \ V (GB), G[X ∪W ] is S-bipartite if and only if G[Y ∪W ] is S-bipartite. Consequently,
it is enough to keep a partial solution of maximum weight for each equivalence class of ≡B. Intuitively, the
equivalence relation ≡B is based on the information: (1) how the blocks of G[X] intersecting B are connected,
(2) whether important blocks (that have the possibility to create an S-traversing odd cycle later) contain a vertex
of S, and (3) the parity of the paths between the vertices in B. Since ≡B has 2O(tw log tw) equivalence classes,
we deduce from this equivalence relation a 2O(tw log tw)n3-time algorithm with standard dynamic programming
operations.

For the weighted variant of Subset FVS, we can use the same equivalence relation without (3). We reduce
the weighted variant of Node Multiway Cut to Subset FVS as explained in the previous subsection: by
adding a vertex v of infinite weight adjacent to the set of terminals, setting S = {v}, and also giving infinite
weights to the terminals. Furthermore, we reduce the weighted variant of Restricted Edge-Subset Feedback
Edge Set to the weighted variant of Subset FVS by subdividing each edge, setting S as the set subdivided
vertices corresponding to the given subset of edges, and giving infinite weights to the original vertices and the
vertices in S. These two reductions show that both problems admit 2O(tw log tw)n3-time algorithms.

1.2 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give the required graph-theoretic definitions and
notation. In Section 3 we prove all the ETH lower bounds of Theorem 2. More precisely, in Section 3.1 we
introduce a gadget specification for a generic vertex-deletion problem, and we show the slightly superexponential
lower bound for any problem complying with the gadget specification. In Section 3.2 we design gadgets for
Subset FVS, Subset OCT, ECT, and thus obtain the first three items of Theorem 2. In Sections 3.3 and 3.4
we present specific reductions for Node Multiway Cut and Multiway Cut, respectively. In Section 4 we
prove that the weighted variants of Subset OCT, Subset FVS, Restricted Edge-Subset Feedback Edge
Set, and Node Multiway Cut admit 2O(tw log tw)n3-time algorithms.
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2 Preliminaries

We assume all graphs have no loops or parallel edges. Let G be a graph. We denote the vertex set and the edge
set of G by V (G) and E(G), respectively. For a vertex v in G, we use G− v to denote the deletion of v from
G, that is, the graph obtained by removing v and its incident edges. For X ⊆ V (G), we denote by G−X the
graph obtained by removing all vertices in X and their incident edges. For X ⊆ V (G), we denote by G[X] the
subgraph induced by the vertex set X. A subgraph H of G is an induced subgraph of G if H = G[X] for some
vertex subset X of G. For two graphs G1 and G2, G1 ∪G2 is the graph with the vertex set V (G1) ∪ V (G2) and
the edge set E(G1) ∪ E(G2), and G1 ∩ G2 is the graph with the vertex set V (G1) ∩ V (G2) and the edge set
E(G1) ∩E(G2). A set X ⊆ V (G) is a clique if G has an edge between every pair of vertices in X. A graph with
vertex set X ∪ Y that has an edge between every vertex x ∈ X and y ∈ Y is called a biclique, and is denoted
K|X|,|Y |.

For a vertex v in G, we denote by NG(v) the set of neighbors of v in G, and NG[v] := NG(v) ∪ {v}.
For X ⊆ V (G), we let NG(X) := (

⋃
v∈X NG(v)) \ X, and say NG(X) is the (open) neighborhood of X. For

u, v ∈ V (G), we say that u and v are twins if N(u) = N(v). If N [u] = N [v], then we also say that u and v are
true twins; whereas when u and v are non-adjacent twins, we say that u and v are false twins.

A vertex v of G is a cut vertex if the deletion of v from G increases the number of connected components.
We say G is 2-connected if it is connected and has no cut vertices. Note that every connected graph on at most
two vertices is 2-connected. A block of G is a maximal 2-connected subgraph of G.

Let G be a graph. A walk in G is a sequence of vertices where every consecutive pair of a vertices is an edge
of G. The first and last vertices in a walk are called end-vertices. A walk is closed if its two end-vertices are
the same. Given two walks W1 = (v1, . . . , vt) and W2 = (vt, vt+1, . . . , vk) whose internal vertices are pairwise
distinct, we denote by W1 ·W2 the walk (v1, . . . , vt, vt+1, . . . , vk). We say that a walk is odd (resp. even) if the
number of edges used by the the walk is odd (resp. even). Given S ⊆ V (G), we say that a walk is S-traversing
if it contains at least one vertex in S. For a graph H and subgraph B of H, we say that a walk W in H is
a B-walk if the endpoints of W are in B and the internal vertices of W are not in B. A path of a graph is a
walk where each vertex is used at most once. A cycle of a graph is a closed walk where each vertex, except the
end-vertices, is used at most once.

2.1 Treewidth

A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and a family B = {Bt}t∈V (T ) of sets
Bt ⊆ V (G), called bags, satisfying the following three conditions:
1. V (G) =

⋃
t∈V (T )Bt,

2. for every edge uv of G, there exists a node t of T such that u, v ∈ Bt, and
3. for t1, t2, t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from t1 to t3 in T .
The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The treewidth of G is the minimum width
over all tree decompositions of G. A path decomposition is a tree decomposition (P,B) where P is a path. The
pathwidth of G is the minimum width over all path decompositions of G. We denote a path decomposition (P,B)
as (Bv1 , . . . , Bvt), where P is a path v1v2 · · · vt.

To design a dynamic programming algorithm, we use a convenient form of a tree decomposition known as
a nice tree decomposition. A tree T is said to be rooted if it has a specified node called the root. Let T be a
rooted tree with root node r. A node t of T is called a leaf node if it has degree one and it is not the root. For
two nodes t1 and t2 of T , t1 is a descendant of t2 if the unique path from t1 to r contains t2. If a node t1 is a
descendant of a node t2 and t1t2 ∈ E(T ), then t1 is called a child of t2.

A tree decomposition (T,B = {Bt}t∈V (T )) is a nice tree decomposition with root node r ∈ V (T ) if T is a
rooted tree with root node r, and every node t of T is one of the following:
1. a leaf node: t is a leaf of T and Bt = ∅;
2. an introduce node: t has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ ;
3. a forget node: t has exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ ; or
4. a join node: t has exactly two children t1 and t2, and Bt = Bt1 = Bt2 .
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(G,X)

(H,X)
(G,X)⊕ (H,X)

Figure 1 An example of the sum (G, X)⊕ (H, X).

I Theorem 3 (Bodlaender et al. [4]). Given an n-vertex graph G and a positive integer k, one can either output
a tree decomposition of G with width at most 5k + 4, or correctly answer that the treewidth of G is larger than k,
in time 2O(k)n.

I Lemma 4 (folklore; see Lemma 7.4 in [11]). Given a tree decomposition of an n-vertex graph G of width
w, one can construct a nice tree decomposition (T,B) of width w with |V (T )| = O(wn) in time O(k2 ·
max(|V (T )|, |V (G)|)).

2.2 Boundaried graphs
For a graph G and X ⊆ V (G), the pair (G,X) is called a boundaried graph. Two boundaried graphs (G,X)
and (H,X) are said to be compatible if V (G −X) ∩ V (H −X) = ∅ and G[X] = H[X]. For two compatible
boundaried graphs (G,X) and (H,X), the sum of two graphs is the graph obtained from the disjoint union of G
and H by identifying each vertex of X in G with the same vertex in H and removing an edge from multiple
edges that appear in X. We denote the resulting graph by (G,X)⊕ (H,X). See Figure 1 for an example.

3 Superexponential lower bounds parameterized by treewidth

Our reductions for Subset FVS, Subset OCT, and ECT, in Section 3.2, will have the same skeleton. In order
to avoid repeating the same arguments, we show in Section 3.1 the lower bound of Theorem 2 for a meta-problem.
We prove the lower bound for Node Multiway Cut in Section 3.3, and the lower bounds for Multiway Cut
and Restricted Edge-Subset Feedback Edge Set in Section 3.4.

3.1 Lower bound for a generic vertex-deletion problem
The scope of application of Theorem 2 is any hereditary vertex-deletion problem Π; that is, if G−X satisfies
a problem instance P (Π), then G−X ′ also satifies P (Π) for every X ′ ⊇ X. The core of the input is a graph
G and a non-negative integer k′. In addition, we allow any sort of labelings of G, be it subsets of vertices
S1, S2, . . . ⊆ V (G), of edges E1, E2, . . . ,⊆ E(G), pairs of vertices P1, P2, . . . ⊆

(
V (G)

2
)
, etc. The goal is to find

a subset X ⊆ V (G) of k′ vertices such that a property P (Π), dependent on Π, is satisfied on G − X with
its induced labeling. A subset of vertices A ⊆ V (G) is a Π-obstruction if G[A] does not satisfy P (Π). A set
X ⊆ V (G) is Π-legal if G −X satisfies P (Π) (in particular, solutions are Π-legal sets of size k′). As P (Π) is
assumed hereditary, a Π-legal set intersects every Π-obstruction. Finally a Π-legal s-deletion within Y is a set
X ⊆ Y of size s such that G[Y \X] satisfies P (Π).

Common base

The meta-result of Theorem 5 concerns hereditary vertex-deletion problems admitting four types of gadgets.
These gadgets, which will eventually depend on Π, are attached to a common problem-independent base. We
first describe the common base. H• is a set of 2k2 vertices, for some implicit positive integer k. We denote these
vertices by v•(i, j, z) for each i ∈ [k], j ∈ [k], and z ∈ [2]. We imagine the vertices of H• being displayed in a
k-by-k grid with v•(i, j, 1) and v•(i, j, 2) side by side in the i-th row and j-th column.
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The base consists of copies of H• that we denote by H1, H2, . . . and typically index by p. The vertices
of Hp are denoted by vp(i, j, z). The vertices vp(i, j, 1) and vp(i, j, 2) are said to be homologous. We set
Cp,j :=

⋃
i∈[k],z∈[2]{vp(i, j, z)} and refer to it as the j-th column of Hp. Similarly Rp,i :=

⋃
j∈[k],z∈[2]{vp(i, j, z)}

is called the i-th row of Hp. We can attach to the base a list of gadgets as detailed now. The vertices added to
the base are called additional or new.

Column selector gadget

A k-column selector gadget has the following specification. Its vertex set is a single column Cp,j plus O(k)
additional vertices Csel(p, j). The only restriction on the edge set of the gadget is that homologous vertices should
remain non-adjacent. Other than that, any edge can be added within Cp,j . However the open neighborhood of
Csel(p, j) has to be contained in Cp,j .

A problem Π admits a column selector gadget if, for every positive integer k, one can build in time kO(1)

a k-column selector such that the only Π-legal (2k − 2)-deletions within Cp,j ∪ Csel(p, j) are one of the k sets:
Cp,j \ {vp(1, j, 1), vp(1, j, 2)}, Cp,j \ {vp(2, j, 1), vp(2, j, 2)}, . . . , Cp,j \ {vp(k, j, 1), vp(k, j, 2)}.

Row selector gadget

In order to keep small balanced separators, our k-row selector gadget is quite different from the k-column selector.
Its vertex set is a single row Rp,i plus O(1) additional vertices Rsel(p, i). Furthermore no edge can be added
within Rp,i. Again the open neighborhood of Rsel(p, i) has to be contained in Rp,i.

A problem Π admits a row selector gadget if, for every positive integer k, one can build in time kO(1)

a k-row selector such that, for every j 6= j′ ∈ [k], Rsel(p, i) ∪ {vp(i, j, 1), vp(i, j, 2), vp(i, j′, 1), vp(i, j′, 2)} is a
Π-obstruction.

Edge gadget

The vertex set of an edge gadget is of the form {vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)} ∪ Ep(i, j, i′, j′) where
i 6= i′ ∈ [k], j 6= j′ ∈ [k], and Ep(i, j, i′, j′) is a set of O(k) vertices2. There is no restriction on the edge set. As
usual the open neighborhood of Ep(i, j, i′, j′) has to be contained in {vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)}.

A problem Π admits an edge gadget if one can build in time kO(1) an edge gadget such that Ep(i, j, i′, j′) ∪
{vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)} is a Π-obstruction.

Propagation gadget

The vertex set of a propagation gadget is of the form Hp ∪Hp+1 ∪Pp where Pp is a set of kO(1) vertices. There is
a subset P ′p ⊆ Pp of size O(k) such that each vertex of Pp \ P ′p has at most one neighbor in Hp ∪Hp+1 and the
rest of its neighborhood in P ′p. This fairly technical condition aims to give some extra flexibility while keeping
sufficiently small separators between Hp and Hp+1. In particular, if Pp is itself of size O(k), then the condition is
trivially met with P ′p = Pp . The propagation gadget has no edge with both endpoints in Hp ∪Hp+1. Everything
else is permitted, but the open neighborhood of Pp has to be contained in Hp ∪Hp+1.

A problem Π admits a propagation gadget if one can build in time kO(1) a propagation gadget such that for
every i, j 6= j′ ∈ [k], Pp ∪ {vp(i, j, 1), vp(i, j, 2), vp+1(i, j′, 1), vp+1(i, j′, 2)} is a Π-obstruction.

Intended-solution property

A hereditary vertex-deletion problem Π and a description of the four above gadgets for Π have the intended-
solution property if the following holds. On any graph G built by adding to the base H1∪ . . .∪Hp∪ . . . Hm at most
one edge gadget in each Hp, one propagation gadget between consecutive pairs Hp and Hp+1, and some column
and row selector gadgets, every deletion set

⋃
p∈[m],i∈[k],j∈[k]\{ji},z∈[2]{vp(i, j, z)} (with {j1, j2, . . . , jk} = [k])

intersecting every edge gadget is Π-legal.
We can now state the lower bound for the generic hereditary vertex-deletion problems.

2 O(1) vertices will actually suffice for all the gadgets of Section 3.2.
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I Theorem 5. Unless the ETH fails, every vertex-deletion problem Π admitting a column selector, a row
selector, an edge, and a propagation gadget, satisfying the intended-solution property, cannot be solved in time
2o(pw log pw)nO(1) on n-vertex graphs with pathwidth pw.

Proof. From any instance H of k × k-Permutation Independent Set, we build an equivalent Π-instance
(G, k′ = kO(1)) of size kO(1) with pathwidth in O(k). Since under the ETH there is no algorithm solving
k × k-Permutation Independent Set in time 2o(k log k)kO(1), we derive the claimed lower bound.

Construction. We number the edges in E(H) as e1, . . . , em. We start with a base consisting of m copies of H•,
labelled Hp for p ∈ [m] (see description of the common base). The vertices vp(i, j, 1) and vp(i, j, 2) encode the
vertex (i, j) ∈ V (H); recall that we call such a pair homologous. We attach to each column Cp,j , for p ∈ [m] and
j ∈ [k], a column selector gadget (for Π), with additional vertices Csel(p, j). For each pair p ∈ [m], i ∈ [k], we
add a row selector gadget to Rp,i, with additional vertices Rsel(p, i).

For each edge ep = (ip, jp)(i′p, j′p) ∈ E(H) (p ∈ [m]), we attach an edge gadget, with additional vertices
Ep(ip, jp, i′p, j′p), to {vp(ip, jp, 1), vp(ip, jp, 2), vp(i′p, j′p, 1), vp(i′p, j′p, 2)}. For each p ∈ [m−1], we add a propagation
gadget between Hp and Hp+1, with additional vertices Pp. This finishes the construction of G. We set
k′ := 2(k − 1)km.

Correctness. We first assume that there is a solution I to k × k-Permutation Independent Set. That
is, I is an independent set of H with exactly one vertex per column and per row. Say the vertices of I are
(1, j1), (2, j2), . . . (k, jk) with {j1, j2, . . . , jk} = [k]. Then

X :=
⋃
p∈[m]

Hp \ ∪i∈[k]{vp(i, ji, 1), vp(i, ji, 2)}

is a solution to Π. Indeed it is Π-legal since it intersects every edge gadget (if not, the edge gadget would
be between two vertices of I, a contradiction) and Π satisfies the intended-solution property, by assumption.
Furthermore |X| = 2mk(k − 1) = k′.

We now assume that the Π-instance (G, k′) admits a solution (of size k′), say X. The graph G has km
disjoint Π-obstructions Cp,j ∪ Csel(p, j). For each of these sets, at least s := 2(k − 1) vertices must be deleted,
by the specification of the column sector gadget. Since globally only k′ = kms vertices can be deleted, X
intersects each Cp,j ∪ Csel(p, j) at a set Cp,j \ {vp(ij,p, j, 1), vp(ij,p, j, 2)} for some ij,p ∈ [k]. Moreover, the k
row selector gadgets attached to each Hp enforce that {i1,p, i2,p, . . . , ik,p} = [k], and the propagation gadget
Pp enforces that ij,p = ij,p+1 for every j ∈ [k]. This implies that ij,1 = ij,2 = . . . = ij,m for every j ∈ [k],
and we simply denote this common value by ij . We claim that {(i1, 1), (i2, 2), . . . , (ik, k)} is a solution to
the k × k-Permutation Independent Set instance. We have already argued that {i1, i2, . . . , ik} = [k].
Finally there cannot be an edge ep = (ij , j)(ij′ , j′) ∈ E(H) since then the Π-obstruction Ep(ij , j, ij′ , j′) ∪
{vp(ij , j, 1), vp(ij , j, 2), vp(ij′ , j′, 1), vp(ij′ , j′, 2)} would be disjoint from X.

Pathwidth in O(k). Let P ′p be the O(k) vertices of Pp with strictly more than one neighbor in Hp ∪Hp+1. For
every p ∈ [m− 1], we set Yp := P ′p ∪Ep(ip, jp, i′p, j′p)∪Cp,jp ∪Csel(p, jp)∪Cp,j′p ∪Csel(p, j′p)∪

⋃
i∈[k]Rsel(p, i), and

we observe that |Yp| = O(k) (this is where it is important that each Rsel(p, i) has constant size). For each p ∈ [m]
and j ∈ [k − 2], let Zp,j be Cp,j∗ ∪ Csel(p, j∗) where j∗ is the j-th index, by increasing value, in [k] \ {jp, j′p}.
Again we notice that |Zp,j | = O(k).

Here is a path-decomposition of G of width O(k) in case every Pp \ P ′p is empty: Y1, Y1 ∪ Z1,1, Y1 ∪
Z1,2, . . . , Y1 ∪Z1,k−2, Y1 ∪Y2, Y1 ∪Y2 ∪Z2,1, Y1 ∪Y2 ∪Z2,2, . . . , Y1 ∪Y2 ∪Z2,k−2, Y2 ∪Y3, . . . , Yp−2 ∪Yp−1, Yp−2 ∪
Yp−1∪Zp−1,1, Yp−2∪Yp−1∪Zp−1,2, . . . , Yp−2∪Yp−1∪Zp−1,k−2, Yp−1, Yp−1∪Zp,1, Yp−1∪Zp,2, . . . , Yp−1∪Zp,k−2.
Indeed the maximum bag size is O(k) and each edge of G appears in at least one bag. Two crucial properties
used in this path-decomposition are that (1) the removal of P ′p ∪P ′p+1, so in particular of Yp ∪ Yp+1, disconnects
Hp+1 from the rest of G, and (2) there is no edge between Zp,j and Zp,j′ for j 6= j′ ∈ [k − 2] and p ∈ [m].

In the general case, a path-decomposition of width O(k) for G is obtained from the previous decomposition
by observing the following rule. Each time a vertex of Hp appears in a bag for the first time, we introduce and
immediately remove each of its neighbors in Pp \ P ′p one after the other. J
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3.2 Designing ad hoc gadgets
We now build specific gadgets for Subset Feedback Vertex Set, Subset Odd Cycle Transversal, and
Even Cycle Transversal. For these problems, we always use S to denote the prescribed subset of vertices
through which no cycle, no odd cycle, or no even cycle should go, respectively.

3.2.1 Column selector gadgets
We begin with the column selector gadget G1(C) used for Subset FVS and Subset OCT, followed by the
gadget G2(C) used for ECT. The column selector gadget G1(C) attached to a column Cp,j is defined as follows.
It comprises 3k additional vertices. These 3k vertices are all added to S, and they form an independent
set. The first k vertices, dp,j(1, 1), . . . , dp,j(k, 1) ∈ S, are complete to the vertices in

⋃
i∈[k]{vp(i, j, 1)}. The

next k vertices, dp,j(1, 2), . . . , dp,j(k, 2) ∈ S, also twins, are complete to the vertices in
⋃
i∈[k]{vp(i, j, 2)}. We

add dp,j(1), . . . , dp,j(i), . . . , dp,j(k) and, for each i ∈ [k], we link dp,j(i) to all the vertices in {vp(i, j, 1)} ∪⋃
i′∈[k]\{i}{vp(i′, j, 2)}. Finally we make every distinct pair vp(i, j, z), vp(i′, j, z′) adjacent, except if i = i′.

See Figure 2 for an illustration.

vp(1, j, 1)dp,j(1, 1) vp(1, j, 2) dp,j(1, 2)

vp(2, j, 1)dp,j(2, 1) vp(2, j, 2) dp,j(2, 2)

vp(3, j, 1)dp,j(3, 1) vp(3, j, 2) dp,j(3, 2)

dp,j(1) dp,j(2) dp,j(3)

Figure 2 The column selector gadget G1(C). Doubly-circled vertices are in S. Blue edges linking boxes denote bicliques
between the two surrounded vertex sets. The gadget G2(C) is obtained by subdividing each red edge once, and adding a
false twin to dp,j(k, 1) (or equivalently, any dp,j(i, 1)) and a false twin to dp,j(k, 2).

We obtain the column selector gadget G2(C) from G1(C) by adding, for each z ∈ [2], a vertex dp,j(k + 1, z)
complete to

⋃
i∈[k]{vp(i, j, z)}, and by subdividing each edge dp,j(i)vp(i, j, 1) once.

I Lemma 6. G1(C) is a column selector gadget for Subset Feedback Vertex Set and Subset Odd Cycle
Transversal, and G2(C) is a column selector gadget for Even Cycle Transversal.

Proof. The gadgets G1(C) and G2(C) add 3k and 4k + 2, respectively, new vertices, thus O(k). Their edge set
respects the specification of the column selector.

We first show that the only Π-legal (2k − 2)-deletions within G1(C) are the sets Cp,j \ {vp(i, j, 1), vp(i, j, 2)}
(for i ∈ [k]), for Π ∈ {Subset FVS, Subset OCT}. For every p ∈ [m], j ∈ [k], and z ∈ [2], the biclique
Kk,k between

⋃
i∈[k]{vp(i, j, z)} and

⋃
i∈[k]{dp,j(i, z)} ⊆ S forces the removal of all but at most one vertex of⋃

i∈[k]{vp(i, j, z)}, or all the vertices in
⋃
i∈[k]{dp,j(i, z)}. Indeed, recall that the former set is a clique, while the

latter set is an independent set and is contained in the prescribed set S. Hence keeping at least one vertex in⋃
i∈[k]{dp,j(i, z)} and at least two in

⋃
i∈[k]{vp(i, j, z)} results in an odd cycle (a triangle) going through at least

one vertex of S. Thus the only Π-legal (2k − 2)-deletions within G1(C) have to remove exactly k − 1 vertices in⋃
i∈[k]{vp(i, j, 1)} and exactly k − 1 vertices in

⋃
i∈[k]{vp(i, j, 2)}. Let Y denote such a deletion set, and observe

that Y ∩ S = ∅. We further claim that if vp(i, j, 1) is not in Y , then vp(i, j, 2) is also not in Y . Assume, for
the sake of contradiction, that vp(i, j, 1) and vp(i′, j, 2) are two (adjacent) vertices, not in Y , with i 6= i′. Then
dp,j(i) ∈ S forms a surviving triangle with vp(i, j, 1) and vp(i′, j, 2). Thus Y = Cp,j \ {vp(i, j, 1), vp(i, j, 2)} for
some i ∈ [k].
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This finishes the proof that G1(C) is a column selector gadget for Subset FVS and Subset OCT. We
now adapt the arguments for G2(C) and Π = ECT. Now the biclique Kk,k+1 between

⋃
i∈[k]{vp(i, j, z)} and⋃

i∈[k+1]{dp,j(i, z)} ⊆ S forces the removal of all but at most one vertex of
⋃
i∈[k]{vp(i, j, z)}, or all but at most

one vertex of
⋃
i∈[k+1]{dp,j(i, z)}, otherwise there would be a surviving even cycle C4. Since only k − 1 vertices

can be removed from each Π-obstruction
⋃
i∈[k]{vp(i, j, z)} ∪

⋃
i∈[k+1]{dp,j(i, z)} ⊆ S (with z ∈ [2]), the only

Π-legal (2k − 2)-deletions within G2(C) remove all but one vertex in
⋃
i∈[k]{vp(i, j, 1)} and in

⋃
i∈[k]{vp(i, j, 2)}.

The end of the proof is similar to the previous paragraph since the triangle dp,j(i)vp(i, j, 1)vp(i′, j, 2) is now a C4
(recall that we subdivided the edge dp,j(i)vp(i, j, 1) once). J

3.2.2 Row selector gadgets
The row selector G1(R), attached to Rp,i, consists of two additional vertices r1(p, i), r′1(p, i) ∈ S made ad-
jacent to every vertex in

⋃
j∈[k]{vp(i, j, 1)}. The row selector G2(R) consists of three additional vertices

r2(p, i), r′2(p, i), r′′2 (p, i) complete to
⋃
j∈[k]{vp(i, j, 1)}. We put only r′2(p, i) in S, and we add an edge between

r2(p, i) and r′′2 (p, i).

I Lemma 7. G1(R) is a row selector gadget for Subset Feedback Vertex Set and Even Cycle Trans-
versal, and G2(R) is a row selector gadget for Subset Odd Cycle Transversal.

Proof. The gadgets G1(R) and G2(R) add 2 and 3 new vertices, respectively, thus O(1). Their edge set respects
the specification of the row selector.

The set {r1(p, i), r′1(p, i), vp(i, j, 1), vp(i, j′, 1)} is a Π-obstruction, for every pair j 6= j′ ∈ [k], for every
problem Π ∈ {Subset FVS, ECT}. Indeed it induces an even cycle (a C4) and, in the case of Subset FVS,
we note that this cycle goes through two vertices of S. The set {r2(p, i), r′2(p, i), r′′2 (p, i), vp(i, j, 1), vp(i, j′, 1)}
is a Π-obstruction, for every pair j 6= j′ ∈ [k], for Π = Subset OCT. Indeed it contains an odd cycle
r2(p, i)vp(i, j, 1)r′2(p, i)vp(i, j′, 1)r′′2 (p, i) going through r′2(p, i) ∈ S. J

Crucially for the intended-solution property, the odd cycle r2(p, i)vp(i, j, 1)r′′2 (p, i) does not contain any vertex
of S.

3.2.3 Edge gadgets
Let G1(E) be the following edge gadget, that we present for ep = (i, j)(i′, j′). We add an edge between vp(i, j, 1)
and vp(i′, j′, 1). We add a vertex sp adjacent to both vp(i, j, 1) and vp(i′, j′, 1). We add sp to the set S ⊆ V (G).
The edge gadget G2(E) is obtained from G1(E) by subdividing the edge epvp(i′, j′, 1) once.

I Lemma 8. G1(E) is an edge gadget for Subset Feedback Vertex Set and Subset Odd Cycle Trans-
versal, and G2(E) is an edge gadget for Even Cycle Transversal.

Proof. Both gadgets introduce a constant number of additional vertices (1 and 2, respectively, so O(k)), and
their edge set respects the specification. The gadget G1(E) is an odd cycle (a triangle) with a vertex in S, hence
an obstruction for Subset Feedback Vertex Set and Subset Odd Cycle Transversal. The gadget
G2(E) is an even cycle (a C4), hence an obstruction for Even Cycle Transversal. J

3.2.4 Propagation gadgets
We present G1(P), a propagation gadget inserted between Hp and Hp+1. We first add an independent set of
2k vertices. Among them, the k vertices rp,1, . . . , rp,k represent the row indices in Hp and Hp+1, while the k
other vertices cp,1, . . . , cp,k represent the column indices. We link rp,i to all the vertices in

⋃
j∈[k]{vp(i, j, 2)} ∪⋃

j∈[k]{vp+1(i, j, 1)}. Similarly, we link cp,j to all the vertices in
⋃
i∈[k]{vp(i, j, 2)} ∪

⋃
i∈[k]{vp+1(i, j, 1)}. Finally,

we add a vertex cp ∈ S adjacent to all the vertices cp,1, . . . , cp,k.
The gadget G2(P) is defined similarly, except that we subdivide the edge rp,ivp(i, j, 2) once, for each i, j ∈ [k].

Finally the gadget G3(P) adds to G2(P), a vertex c′p,j , for each j ∈ [k]. The vertex c′p,j is linked to cp,j and to cp.

I Lemma 9. G1(P) is a column selector gadget for Subset Feedback Vertex Set, G2(P) is a column
selector gadget for Subset Odd Cycle Transversal, and G3(P) is a column selector gadget for Even Cycle
Transversal.
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Proof. Let P1
p := {rp,1, . . . , rp,k, cp,1, . . . , cp,k, cp}. The gadget G1(P) adds to the base the set P1

p of size 2k + 1,
thus O(k). Hence it trivially satisfies the technical condition of the propagation gadget. The gadget G2(P) adds
a further k2 vertices, stemming from the subdivision of the edges rp,ivp(i, j, 2). These vertices have exactly one
neighbor in Hp ∪Hp+1 and the rest of their neighbors in P1

p , so satisfy the specification. For the same reason,
G3(P) also satisfies the specification. We denote by P2

p the set of 2k + 1 + k2 vertices consisting of P1
p plus the

subdivision vertices, and P3
p the set of 3k+ 1 + k2 vertices added in G3(P). The edge sets of G1(P),G2(P),G3(P)

respect the specification of the propagation selector.
For every i, j 6= j′ ∈ [k], P1

p ∪ {vp(i, j, 2), vp+1(i, j′, 1)} is a Π-obstruction for Π = Subset FVS. Indeed
rp,ivp(i, j, 2)cp,jcjcp,j′vp+1(i, j′, 1) is a cycle (a C6) going through cj ∈ S. Similarly P2

p ∪{vp(i, j, 2), vp+1(i, j′, 1)}
is a Π-obstruction for Π = Subset OCT, the same cycle being now of odd length (a C7), due to the
subdivision of rp,ivp(i, j, 2). Finally P3

p ∪ {vp(i, j, 2), vp+1(i, j′, 1)} is a Π-obstruction for Π = ECT since
rp,iwp(i, j, 2)vp(i, j, 2)cp,jc′p,jcjcp,j′vp+1(i, j′, 1) is an even cycle (a C8), where wp(i, j, 2) is the subdivided vertex
stemming from the edge rp,ivp(i, j, 2). J

3.2.5 Wrap-up

I Theorem 10. Unless the ETH fails, the following problems cannot be solved in time 2o(pw log pw)nO(1) on
n-vertex graphs with pathwidth pw:

Subset Feedback Vertex Set,
Subset Odd Cycle Transversal, and
Even Cycle Transversal.

Proof. We need to check that these problems satisfy the preconditions of Theorem 5. Sections 3.2.1 to 3.2.4 and
Lemmas 6 to 9 show how to build the four types of gadgets. Which problem uses which version of the gadget is
summarized in Table 1. See Figure 3 for a schematic representation of the construction for Subset FVS.

column selector row selector edge gadget propagation gadget

Subset Feedback Vertex Set G1(C) G1(R) G1(E) G1(P)
Subset Odd Cycle Transversal G1(C) G2(R) G1(E) G2(P)

Even Cycle Transversal G2(C) G1(R) G2(E) G3(P)

Table 1 The different gadgets used for the different problems.

Finally we have to check that the problems have the intended-solution property. We shall prove that every
set X :=

⋃
p∈[m],i∈[k],z∈[2]{vp(i, ji, z)}, with {j1, . . . , jk} = [k] and intersecting all the edge gadgets is Π-legal in

any graph G obtained by attaching to the base the four types of gadgets with respect to their specification of
Section 3.1. The set X is a solution to Π ∈ {Subset FVS, Subset OCT, ECT}, if and only if no 2-connected
component (i.e., a block of size at least 3) of G − X is a Π-obstruction. Indeed no cycle can go through a
cut-vertex.

We first note that there is no 2-connected component within G1(C),G2(C),G1(R),G1(E),G2(E) restricted to
G−X. For the latter two gadgets, this is because, by assumption, X intersects every edge gadget. In a gadget
G2(R) restricted to G − X, there is one 2-connected component, namely a triangle; but none of its vertices
belongs to S.

We now observe that every vertex cp is a cut-vertex in G1(P), G2(P), and G3(P) restricted to G −X. So
the remaining 2-connected components of G−X are induced cycles C4 of the form rp,ivp(i, j, 2)cp,jvp+1(i, j, 1)
when G1(P) is used, or induced C5 when G2(P) is used, or triangle and induced cycle C5 when G3(P) is used.
In the first two cases, none of the vertices of the cycles belongs to S. In the third case, no cycle is even. This
establishes that Subset FVS, Subset OCT, and ECT with their respective combination of gadgets have the
intended-solution property. J
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s1 s2 s3

row

column

c1

row

column

c2

Csel Csel Csel Csel Csel Csel Csel Csel Csel

Figure 3 Example of the overall picture for Subset Feedback Vertex Set. The first three edges (in green) in the
reduction from k × k-Permutation Independent Set, with k = 3, to Subset FVS. The doubly-circled vertices are
vertices in S. The column selector gadget Csel, of size O(k), forces that only one pair of homologous vertices is retained in
each column (see Figure 2). We did not represent the row selector gadget.

3.3 Lower bound for Node Multiway Cut
For Node Multiway Cut we will also start from the base

⋃
p∈[m]Hp but we will deviate from the gadget

specification of Section 3.1. We will “communalize” the selector, edge, and propagation gadgets. That way, we
are able to show the claimed lower bound even when the number of terminals is linearly tied to the pathwidth.

I Theorem 11. Unless the ETH fails, Node Multiway Cut cannot be solved in time 2o(pw log pw)nO(1) on
n-vertex graphs with pathwidth pw.

Proof. We now reduce from k × k-Independent Set. Again let H be an m-edge k × k-Independent Set
instance. We build an equivalent Node Multiway Cut instance (G,T, k′ := 2(k − 1)km), with |T | = k + 2, by
adding only 2k+2 new vertices to the base

⋃
p∈[m]Hp. We link every non-homologous pair of vertices within each

column Cp,j (for p ∈ [m], j ∈ [k]). We add two terminals t, t′ ∈ T . For every edge ep = (ip, jp)(i′p, j′p) ∈ E(H),
we make vp(ip, jp, 2) and vp(i′p, j′p, 2) adjacent. We also link t to vp(ip, jp, 2), and t′ to vp(i′p, j′p, 2).

We add k terminals r1, . . . , rk ∈ T . We link every vertex on an i-th row (Rp,i) to ri, except if the vertex is
already adjacent to t or t′. This exception concerns the vertices vp(ip, jp, 2) and vp(i′p, j′p, 2). Finally we add k
(non-terminal) vertices c1, . . . , ck. For each p ∈ [m], j ∈ [k], i ∈ [k], we add an edge between vp(i, j, 1) and ci.
This finishes the construction of G. The set of terminals is T := {t, t′, r1, . . . , rk}. We ask for a deletion set of size
k′ := 2(k − 1)km. The pathwidth of G is O(k), since it is obtained by adding 2k + 2 vertices ({t, t′, r1, . . . , rk})
to a graph satisfying the gadget specification of Section 3.1 (with “empty” row selector and propagation gadgets).

We now show the correctness of this reduction. Assume that the graph H admits an independent set
I := {(i1, 1), (i2, 2), . . . , (ik, k)}. We claim that X :=

⋃
p∈[m],j∈[k],z∈[2]Hm \ {vp(ij , j, z)} is a solution to the

Node Multiway Cut instance. We first observe that the connected component of G−X containing t (and
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similarly t′) does not contain any other terminal. Indeed, since I is an independent set, at most one of vp(ip, jp, 2)
and vp(i′p, j′p, 2) is preserved in G −X when (ip, jp)(i′p, j′p) is an edge of H. Hence each vertex vp(ip, jp, 2) or
vp(i′p, j′p, 2) that exists in G−X has degree 1: it is adjacent only to t or t′. So the connected component in G−X
of t (resp. t′) is a star centered at t (resp. t′) whose leaves are all in

⋃
p∈[m]Hp, hence are non-terminals. We now

observe that there is no path between ri and ri′ (with i 6= i′) in G−X. Such a path would have to go through a
vertex cj . Indeed, no edge within a column Cp,j is preserved in G−X (nor the edges vp(ip, jp, 2)vp(i′p, j′p, 2)), so
there is no other way to go from one row to another. But each vertex cj is adjacent to a single row in G−X,
since we kept only one pair vp(i, j, 1), vp(i, j, 2) per column Cp,j , and we made the same choice in every Hp.

Let us now assume that X is a solution to the Node Multiway Cut instance (G,T, k′). A first observation
is that no edge within a column Cp,j can be present in G−X, otherwise there is a 3-edge path between a pair of
terminals in {r1, . . . , rk, t, t

′}, since every edge within Cp,j is between non-homologous vertices, and every vertex in
Cp,j is adjacent to a terminal. This implies that for each p ∈ [m] and j ∈ [k], we have {vp(ip,j , j, 1), vp(ip,j , j, 2)} ⊆
Cp,j \X for some ip,j ∈ [k]. In fact, since at least 2(k − 1)k vertices of Hp must be removed for each p ∈ [m],
and the solution X has size at most 2(k − 1)km, we have Cp,j \X = {vp(ip,j , j, 1), vp(ip,j , j, 2)}. In particular,
X ⊆

⋃
p∈[m]Hp, so ci /∈ X for each i ∈ [k]. We now show that the ip,j ’s coincide for each p ∈ [m]. Assume

for the sake of contradiction that vp(i, j, 1) and vp′(i′, j, 1) are both present in G −X with p 6= p′ and i 6= i′.
Then rivp(i, j, 1)cjvp′(i′, j, 1)ri′ is a path in G−X, a contradiction. Therefore i1,j = . . . = im,j . Let ij denote
this common value. We claim that {(i1, 1), . . . , (ik, k)} is an independent set in H. Suppose there is an edge
(ij , j)(ij′ , j′) ∈ E(H) for distinct j, j′ ∈ [k]. Then there is a path tvp(ij , j, 2)vp(ij′ , j′, 2)t′ in G for some p ∈ [m],
between the terminals t and t′, a contradiction. J

3.4 Lower bound for Multiway Cut
To obtain the lower bound for Multiway Cut, we reduce from k × k-Permutation Clique.

However, we note that reducing from Semi-Regular k × k-Permutation Clique, where all the vertices
of a column have the same degree towards another column, and there is no edge with both endpoints in the
same row, would make the construction cleaner. So the first reflex is to try and show the same 2o(k log k) lower
bound for this variant. Ensuring the semi-regularity condition can be done rather smoothly; it requires revisiting
the grouping technique from, say, 3-Coloring, and using known results on equitable colorings. An interested
reader can find a complete proof in the appendix. Nonetheless, getting rid of the “horizontal” edges (with both
endpoints in the same row) in order to obtain an instance k × k-Permutation Clique, while preserving the
semi-regularity, is unnecessarily complex. In particular, the reduction from k×k-Clique to k×k-Permutation
Clique presented in the seminal paper [22] does not preserve semi-regularity. To prove the next theorem, we will
instead directly reduce from k × k-Permutation Clique and “regularize” the degree by some ad hoc gadgetry.

I Theorem 12. Unless the ETH fails, Multiway Cut cannot be solved in time 2o(pw log pw)nO(1) on n-vertex
graphs with pathwidth pw.

Proof. We reduce from an instance H of k × k-Permutation Clique, so we may assume that there is no edge
of H with both endpoints in the same row. Let µ be the number of edges of H, and let ∆ be the maximum
degree of vertices of H. We associate each v ∈ V (H) to the non-negative integer δ(v) := ∆− dH(v), where dH(v)
is the degree of v. It is useful to consider the graph H ′ obtained from H by attaching δ(v) pendant leaves to
each v ∈ V (H), where each vertex in V (H) has degree ∆ in H ′. We set m := k2∆, and observe that m > µ

corresponds to the number of edges in H ′.
We build an equivalent Multiway Cut instance (G,T, k′), with |T | = k+ 1, by adding a polynomial number

of vertices to the base
⋃
p∈[µ+k2]Hp. We do not need the vertices vp(i, j, 2), so we rename every vp(i, j, 1) into

simply vp(i, j). Now Rp,i is the set {vp(i, 1), . . . , vp(i, k)} and Cp,j is {vp(1, j), . . . , vp(k, j)}.
We encode weighted edges in the following way. When we say that we add an edge of weight w ∈ N between

two vertices u, v, we mean that we add w “parallel” 2-edge paths between u and v. None of the introduced
vertices are terminals, so the instance behaves equivalently as with the weighted edge. Thus, for the sake of
simplicity, we will treat these parallel paths as a weighted edge. If we require an edge to be “undeletable”,
we give it weight k′ + 1, just above the total budget. All the weights of the construction are encoded with
polynomially many vertices and unit-weight edges. Therefore the lower bound does apply to the unweighted
version of Multiway Cut.
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We set h := 12m − k∆ −
(
k
2
)
and k′ := (h + 1)(k − 1)k(µ + k2) + h. We add k terminals r1, . . . , rk ∈ T ,

and we link every vertex in the i-th row (that is, in a set Rp,i) to ri by an edge of weight h + 1. We add k
non-terminals c1, . . . , ck and for each p ∈ [µ+ k2], j ∈ [k], i ∈ [k], we add an edge of weight k′+ 1 (an undeletable
edge) between vp(i, j) and ci. For every ep = (ip, jp)(i′p, j′p) ∈ E(H) with p ∈ [µ], we add the following edge
gadget between vp(ip, jp) and vp(i′p, j′p). We first build a 5-vertex path where the edge weights are, from one
endpoint to the other, 5, 3, 3, 5. We denote by zp the central vertex, and we link the second vertex, xp, and the
fourth vertex, yp, by an edge of weight 3. We link the first vertex (one endpoint) of the gadget to vp(ip, jp)
and to rip by edges of weight 3, and the last vertex (the other endpoint) to vp(i′p, j′p) and to ri′p by edges
of weight 3. Finally we link zp to an additional terminal t (common to every p ∈ [µ]) by an edge of weight
k′ + 1. See Figure 4 for an illustration of the edge gadget and how it is attached to the terminals. So far we

zp ypxp

vp(ip, jp)

vp(i′p, j′p)

3 3

3

5

5

3

3

rip ri′pt

h+ 1 3

h+ 13
k′ + 1

Figure 4 The edge gadget for Multiway Cut.

have added edge gadgets to the first µ copies H1, . . . ,Hµ. We now describe what we (potentially) add to the
last k2 copies Hµ+1, . . . ,Hµ+k2 . We put an arbitrary total order over V (H), say, the natural 6 where (i, j) is
interpreted as n(i, j) = i+ (j − 1)k. We attach to vµ+n(i,j)(i, j), ri, and t the following simple gadget, called a
degree-equalizer, which can be seen as a degenerate case of an edge gadget with multiplicity δ((i, j)) (henceforth
we simply write δ(i, j) for the sake of legibility). We add a vertex wµ+n(i,j)(i, j), and link it to t by an edge of
weight 11δ(i, j), and to vµ+n(i,j)(i, j) and ri by edges of weight 6δ(i, j) each. This finishes the construction of
(G,T := {r1, . . . , rk, t}, k′ := (h+ 1)(k − 1)k(µ+ k2) + h).

The pathwidth of G is O(k) following the arguments for the Node Multiway Cut construction.
We now show the correctness of the reduction. Assume that there is a clique C := {(i1, 1), . . . , (ik, k)} in H,

with {i1, . . . , ik} = [k]. We build the following edge deletion-set X for the Multiway Cut instance. We start
by including in X all the edges of weight h+ 1 between ri and vp(i, j) (p ∈ [µ+ k2]) such that (i, j) /∈ C. This
represents k(k − 1)(µ+ k2) weighted edges, and (h+ 1)k(k − 1)(µ+ k2) unit-weight edges.

We distinguish three cases for the edge gadget of every ep = (ip, jp)(i′p, j′p) (p ∈ [µ]). If {(ip, jp), (i′p, j′p)}∩C = ∅
(i.e., ep has no endpoint in C), we add to X the four weight-3 edges incident to vp(ip, jp), rip , vp(i′p, j′p), and ri′p ;
a total of 12 edges. If |{(ip, jp), (i′p, j′p)} ∩ C| = 1, say, without loss of generality, that (ip, jp) ∈ C, then we add
the weight-5 edge incident to xp and the two weight-3 edges incident to vp(i′p, j′p) and ri′p . This consists of 11
edges in total. In the symmetric case (i′p, j′p) ∈ C, we would remove the weight-5 edge incident to yp and the two
weight-3 edges incident to vp(ip, jp) and rip . Finally if |{(ip, jp), (i′p, j′p)} ∩ C| = 2, we add the 9 edges of the
weighted triangle xpypzp to X.

For every degree-equalizer gadget attached to Hµ+n(i,j), we add to X the weight-11δ(i, j) edge incident to t
if (i, j) ∈ C, and the two weight-6δ(i, j) edges incident to wµ+n(i,j)(i, j) if (i, j) /∈ C. Note that these numbers of
edges correspond to what we would remove in δ(i, j) copies of an edge gadget where the other endpoint is not in
C. This finishes the construction of X.

There are
(
k
2
)
edges of H ′ with both endpoints in C, there are k∆− 2

(
k
2
)
edges with exactly one endpoint

in C, and m − k∆ +
(
k
2
)
edges with no endpoint in C. So there are 9

(
k
2
)

+ 11(k∆ − 2
(
k
2
)
) + 12(m − k∆ +(

k
2
)
) = 12m − k∆ −

(
k
2
)

= h edges added to X from edge and degree-equalizer gadgets. Thus X has size
(h + 1)k(k − 1)(µ + k2) + h = k′ as imposed. Let G′ be the graph (V (G), E(G) \ X). We show that every
connected component of G′ contains at most one terminal. Observe that in G′ − {t}, each vertex zp is in a
connected component contained in the edge gadget of ep (and, in particular, not containing a terminal). Since t is
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only adjacent (by weighted edges) to the vertices zp and wµ+n(i,j)(i, j), it follows that the connected component
in G′ containing t has no other terminals. Note furthermore that the removal of the edges in X disconnects
every pair vp(ip, jp), vp(i′p, j′p) in the edge gadget of ep = (ip, jp)(i′p, j′p) for p ∈ [µ]. Thus the vertices reachable
from ri in G′ are {cj}∪

⋃
p∈[m] Cp,j , such that j is unique integer of [k] with ij = i, as well as some non-terminal

vertices in some edge and degree-equalizer gadgets. In particular there is no path between ri and ri′ , with i 6= i′,
in G′. Thus X is a solution.

Let us now assume that the Multiway Cut instance (G,T, k′) has a solution X, and let G′ be (V (G), E(G)\
X). A first observation is that there is a path in G′ between any pair of vertices in the j-th column, say vp(i, j)
and vp′(i′, j), since there are undeletable edges between cj and each vertex vp(i, j). Thus there is a component
of G′ containing

⋃
p∈[µ+k2] Cp,j , for each j ∈ [k], and this component contains at most one terminal. With a

budget of (h+ 1)k(k − 1)(µ+ k2) + h, one can remove at most k(k − 1)(µ+ k2) edges of weight h+ 1. Since no
two edges rivp(i, j) and ri′vp(i′, j) can remain in G′, for distinct i, i′ ∈ [k], j ∈ [k], and p ∈ [µ + k2], at least
k(k − 1) edges of weight h + 1 incident to a vertex in Hp must be in X, for each p ∈ [µ + k2], for a total of
at least k(k − 1)(µ+ k2) edges of weight h+ 1. Now the only possibility is that, for each j ∈ [k], there exists
an ij ∈ [k] such that X contains all the edges of weight h+ 1 from

⋃
p∈[µ+k2] Cp,j to {r1, . . . , rk} except those

incident to rij . We set C := {(i1, 1), . . . , (ik, k)}, and we will now show that C is a clique in H. In particular
{i1, . . . , ik} = [k] since there is no edge of H with endpoints in the same row.

First we consider an edge ep = (ip, jp)(i′p, j′p) ∈ E(H) such that {(ip, jp), (i′p, j′p)} ∩ C = ∅. Note that, in this
case, vp(ip, jp) (resp. vp(i′p, j′p)) is, in G′, in the connected component of rijp 6= rip (resp. rij′p 6= ri′p). We then
need to separate the seven pairs: (rip , vp(ip, jp)), (t, vp(ip, jp)), (rip , t), (ri′p , vp(i

′
p, j
′
p)), (t, vp(i′p, j′p)), (ri′p , t), and

(rip , ri′p). This requires 12 edge deletions.
We now consider an edge ep = (ip, jp)(i′p, j′p) ∈ E(H) such that |{(ip, jp), (i′p, j′p)} ∩ C| = 1. We assume

that (ip, jp) ∈ C (the other case is symmetric). In this case, vp(i′p, j′p) is, in G′, in the connected component
of rij′p 6= ri′p . We then need to separate the six pairs: (t, vp(ip, jp)), (rip , t), (ri′p , vp(i

′
p, j
′
p)), (t, vp(i′p, j′p)), (ri′p , t),

and (rip , ri′p). This requires 11 edge deletions: the weight-5 edge incident to xp and the two weight-3 edges
incident to vp(i′p, j′p) and to ri′p .

Finally let us assume that ep = (ip, jp)(i′p, j′p) ∈ E(H) is such that |{(ip, jp), (i′p, j′p)} ∩ C| = 1. Here we
need to separate the five pairs: (t, vp(ip, jp)), (rip , t), (t, vp(i′p, j′p)), (ri′p , t), and (rip , ri′p). This requires 9 edge
deletions: the three weight-3 edges in the triangle xpypzp.

We now turn to the degree-equalizer gadgets. If (i, j) /∈ C, then we need to separate the three pairs
(ri, vµ+n(i,j)(i, j)), (t, vµ+n(i,j)(i, j)), and (ri, t). This requires 12δ(i, j) edge deletions (the weighted edges
riwµ+n(i,j)(i, j) and vµ+n(i,j)(i, j)wµ+n(i,j)(i, j)). If on the contrary (i, j) ∈ C, we only need to separate the two
pairs (t, vµ+n(i,j)(i, j)) and (ri, t). This requires 11δ(i, j) deletions (the weighted edge twµ+n(i,j)(i, j)).

We denote by s the number of edges in H[C]. Since the edge and degree-equalizer gadgets are pairwise edge-
disjoint, what we have shown implies that X contains at least 9s+ 11(k∆−2s) + 12(m−k∆ +s) = 12m−k∆−s
edges in the edge gadgets. As X is of size at most k′, we have that s has to be equal to

(
k
2
)
. This implies that C

is a clique. J

By the simple reduction from Multiway Cut to Restricted Edge-Subset Feedback Edge Set, given
in the introduction, we obtain the following as a corollary.

I Theorem 13. Unless the ETH fails, Restricted Edge-Subset Feedback Edge Set cannot be solved in
time 2o(pw log pw)nO(1) on n-vertex graphs with pathwidth pw.

It is not difficult to adapt the construction of Theorem 12 for the directed variant of Multiway Cut.

I Theorem 14. Unless the ETH fails, Directed Multiway Cut cannot be solved in time 2o(pw log pw)nO(1) on
n-vertex oriented graphs whose underlying graph has pathwidth pw.

4 Slightly superexponential algorithms

In this section, we present 2O(tw log tw)n3-time algorithms for the weighted variants of the considered problems
with the exception of ECT.
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We first present in Theorem 17 a 2O(tw log tw)n3-time algorithm for Subset OCT. Then, we show that with
simple modifications this algorithm can solve Subset FVS. We deduce the algorithms for the other problems by
reducing these problems to the weighted variant of Subset FVS.

Let us focus on the Subset OCT problem. For a graph G and a vertex set S of G, we say that G is
S-bipartite if it has no odd cycle containing a vertex of S. Solving Subset OCT is equivalent to find an
S-bipartite induced subgraph of maximum size. The following characterization of S-bipartite graphs will be
useful.

I Lemma 15. A graph G is S-bipartite if and only if for every block B of G, either B has no vertex of S, or it
is bipartite.

Proof. (⇒) Assume toward a contradiction that G is S-bipartite and that a block B of G contains a vertex
s ∈ S and B is not bipartite. Because B is not bipartite, there exists an odd cycle C in B. Since G is S-bipartite
by assumption, C does not contain s.

Since B is 2-connected and has at least 3 vertices, there exist two paths Psc and Pc′s between s and two
distinct vertices c, c′ of C such that the internal vertices of Psc and Pc′s and the vertices of C are pairwise
distinct. Let Pcc′ and P̂cc′ be the two paths between c and c′ in C. The concatenations C1 = Psc · Pcc′ · Pc′s and
C2 = Psc · P̂cc′ · Pc′s are two S-traversing cycles. Since C is an odd cycle, the parity of Pcc′ and P̂cc′ are not the
same. Hence, one of the two cycles C1 and C2 is an odd S-traversing cycle. This yields a contradiction.

(⇐) Assume that G is not S-bipartite. Then, G contains an odd S-traversing cycle C. This cycle is contained
in a block B of G. Thus G has a block that is not bipartite and that contains at least one vertex in S. J

One can easily modify the proof of the first direction of Lemma 15 to prove the following fact.

B Fact 16. If a graph G is 2-connected and not bipartite, then there exists an odd path and an even path
between every pair of vertices.

I Theorem 17. (Weighted) Subset Odd Cycle Transversal can be solved in time 2O(tw log tw)n3 on
n-vertex graphs with treewidth tw.

Proof. In the following, we fix a graph G, S ⊆ V (G), and a weight function w : V (G)→ R. Using Theorem 3
and Lemma 4, we obtain a nice tree decomposition of G of width at most 5w + 4 in time O(cw · n) for some
constant c. Let (T, {Bt}t∈V (T )) be the resulting nice tree decomposition. For each node t of T , let Gt be the
subgraph of G induced by the union of all bags Bt′ where t′ is a descendant of t.

Let t be a node of T . A partial solution of Gt is a subset X ⊆ V (Gt) such that G[X] is S-bipartite. In
the following, we introduce a notion of auxiliary graph in order to design an equivalence relation ≡t between
partial solutions such that X ≡t Y if, for every W ⊆ V (Gt), G[X ∪W ] is S-bipartite if and only if G[Y ∪W ] is
S-bipartite.

Let X ⊆ V (G) (not necessarily contained in Gt). We denote by Inc(X) the block-cut tree of G[X], that is
the bipartite graph whose vertices are the blocks and the cut vertices of G[X] and where a block B is adjacent
to a cut vertex v if v ∈ V (B). Observe that Inc(X) is by definition a forest.

We say that a vertex v of Inc(X) is active (with respect to t) if:
v is a cut vertex of G[X] in Bt,
v is a block of G[X] that contains at least two vertices in Bt, or
v is a block of G[X] that contains exactly one vertex in Bt that is not a cut vertex.

Note that every vertex in Bt is an active cut vertex or it is in an active block of G[X]. Intuitively, the auxiliary
graph associated with a partial solution X needs to encode how the active blocks of Inc(X) are connected
together.

We construct the auxiliary graphs Auxp(X, t) and Aux(X, t) from Inc(X) with the following operations.
1. We remove recursively the leaves and the isolated vertices that are inactive. Let Auxp(X, t) be the resulting

graph (p for prototype).
2. For every maximal path P of Auxp(X, t) between u and v and with inactive internal vertices of degree 2, we

remove the internal vertices of P and we add an edge between u and v (shrinking degree 2 nodes that are
inactive).
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Figure 5 illustrates the constructions of Auxp(X, t) and Aux(X, t). Observe that Operation 1 removes the
inactive blocks of G[X] that contain one vertex in Bt. Thus, every block in Auxp(X, t) that contains vertices in
Bt are active. By construction, Aux(X, t) is a forest whose vertices are the active vertices of Inc(X) and the
inactive vertices that have degree at least 3 in Auxp(X, t). An important remark is that the algorithm uses
the graphs Aux(X, t) for X ⊆ V (Gt) and in the proof we will use Aux(X, t) and Auxp(X, t) for X ⊆ V (Gt) or
X ⊆ Bt ∪ V (Gt).

By Step 2, any edge uv of Aux(X, t) corresponds to an alternating sequence P of cut vertices and blocks
A1, A2, . . . , Ax so that it forms a path from u = A1 to v = Ax in Inc(X). We define the graph Muv as the union
of the blocks in P . Note that one of A1 and A2 is a cut vertex and one of Ax−1 and Ax is a cut vertex. We say
that these cut vertices are the endpoints of Muv.

Inc(X)

G[X ]

Aux(X, t)

Figure 5 Example of graphs Inc(X) and Aux(X, t) constructed from a graph G[X]. The vertices in Bt are white filled.
The red vertices and edges in Inc(X) are those we remove to obtained Auxp(X, t).

Let X and Y be two partial solutions of Gt. We say that X ≡t Y if X ∩ Bt = Y ∩ Bt, and there is an
isomorphism ϕ from Aux(X, t) to Aux(Y, t) such that the following conditions are satisfied.
1. For every vertex v in Aux(X, t), v is active if and only if ϕ(v) is active.
2. For every vertex v in Aux(X, t), v is a block if and only if ϕ(v) is a block.
3. For every active cut vertex v in Aux(X, t), we have ϕ(v) = v.
4. For every active block B in Aux(X, t):

a. V (B) ∩Bt = V (ϕ(B)) ∩Bt,
b. V (B) ∩ S 6= ∅ if and only if V (ϕ(B)) ∩ S 6= ∅,
c. B is bipartite if and only if ϕ(B) is bipartite.

5. For every edge uv in Aux(X, t):
a. Muv is bipartite if and only if Mϕ(u)ϕ(v) is bipartite,
b. V (Muv) ∩ S 6= ∅ if and only if V (Mϕ(u)ϕ(v)) ∩ S 6= ∅.

6. For every pair (u, v) of vertices in Bt ∩X and every path PX between u and v in G[X], there exists a path
PY in G[Y ] between u and v with the same parity as PX .

B Claim 18. For every node t of T , the equivalence relation ≡t has 2O(tw log tw) equivalence classes.

Proof. Let t be a node and X be a partial solution of Gt. Let k = |Bt|. In the following, we will upper bound
the number of possibilities for the conditions in the definition of ≡t. Notice that there are at most 2k possibilities
for X ∩Bt.

Now, observe that the number of active blocks of G[X] is at most k. Note that if an active block contains
one vertex of Bt, then it is not a cut vertex of G[X], and if an active block intersects at least two vertices of Bt,
then it contains either two cut vertices of G[X] contained in Bt, or it contains at least one vertex of Bt that
is not a cut vertex of G[X]. We consider Inc(X) as a rooted forest (where each tree has a root), and give an
injection φ from the set of active blocks to Bt as follows. For each active block B,
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if it contains a vertex in Bt that is not a cut vertex of G[X], then choose such a vertex v and set φ(B) = v,
and
if all vertices of Bt ∩ V (B) are cut vertices of G[X], then |Bt ∩ V (B)| ≥ 2 and we choose one vertex
v ∈ Bt ∩ V (B) that is a child of B in Inc(X), and set φ(B) = v.

Clearly, φ is an injection, and it shows that the number of active blocks of G[X] is at most k. We deduce that
Aux(X, t) contains at most 2k active vertices as there are at most k active blocks and at most k active cut
vertices.

By construction, all the vertices of degree at most 2 in Aux(X, t) are active vertices of Inc(X). In particular,
the leaves of Aux(X, t) are active vertices. The leaves connected to vertices of degree at least 3 induce an
independent set in Aux(X, t). We can easily show from this fact that there are at most k leaves connected to
vertices of degree 3 (at most the number of part in a partition of k elements). Since Aux(X, t) is a forest, the
number of vertices of degree at least 3 is at most k. We deduce that Aux(X, t) has at most 2k active vertices
and k inactive vertices. Hence, there are at most (2k + 1)(k + 1) possibilities for Condition 1 as it is at most
the number of ways of choosing two numbers one in [0, 2k] and one in [0, k]. By Cayley’s formula [8], the
number of forests on 3k labeled vertices is (3k + 1)3k−1. Thus, there are 2O(tw log tw) non-isomorphic graphs in
{Aux(W, t) |W is a partial solution of Gt}.

For Condition 2, there are 2 possibilities for each vertex in Aux(X, t): either it is a block or a cut vertex.
Thus, there are at most 23k possibilities for this condition.

We claim that there are 2O(k log k) possibilities for Conditions 3 and 4.a. Let v1, . . . , vd be the cut vertices of
G[X] in Bt and X1, . . . , X` be the intersections between Bt and the vertex sets of the active blocks of G[X].
Note that for every distinct Xi and Xj , |Xi ∩Xj | ≤ 1. Moreover, since they came from Inc(X), there is no
cyclic structure; that is, Xi1 − vi2 −Xi3 · · · − viα−1 −Xiα where Xi1 = Xiα and each vij only belongs to Xij

and Xij+1 . This means that the number of possibilities for v1, . . . , vd and X1, . . . , X` is the same as the number
of ways of partitioning a set of k vertices into blocks and cut vertices, as isolated vertices are single blocks.

We claim that the number of ways of partitioning a set of k vertices into blocks and cut vertices is 2O(k log k).
Let T be a set of k vertices. First take a partition P of T . There are at most 2k log k possibilities for P. Choose
among the singletons of P the cut vertices. There are at most 2k possibilities. The other parts of P indicate the
vertex set of blocks after removing cut vertices. We add k new dummy parts to P representing the possible
blocks that may contain only cut vertices. Now, we have at most 2k parts in P . Observe that any forest between
the parts of P that represent the cut vertices and those that represent the blocks induces one way of decomposing
the k vertices into blocks and cut vertices. A dummy part adjacent to the singletons containing the vertices
w1, w2, . . . , w` indicate that {w1, w2, . . . , w`} forms a block. By Cayley’s formula [8], the number of forests on r
labeled vertices is (r+ 1)r−1. So, there are at most (2k+ 1)2k−1 ways. Hence, the number of ways of partitioning
a set of k vertices into blocks and cut vertices is at most 2O(k log k).

For Conditions 4.b and 4.c, there are 3 possibilities for each active block of Aux(X, t). Indeed, since G[X] is
S-bipartite and by Lemma 15, if a block is not bipartite, then it cannot contain vertices in S. Thus, there are at
most 3k possibilities for Condition 4.b and 4.c.

For Condition 5, there are 6 possibilities for each edge uv of Aux(X, t): 3 possibilities for the parity of paths
between the endpoints of Muv and two for the existence of a vertex in S in Muv. Since Aux(X, t) is a forest
with at most 3k vertices, we have at most 63k−1 possibilities for Condition 5.

It remains to upper bound the number of possibilities for Condition 6 on the parities of the paths between
the vertices in Bt. Let u and v be two vertices in X ∩Bt. If there is no path between u and v, then we can see
this in Aux(X, t) as it implies that there is no path between the active vertices associated with u and v.

Assume that u and v are connected in G[X]. Let Puv be a path between u and v in G[X]. Let Bu be the
block of G[X] that contains u and its neighbor in Puv. Similarly, let Bv be the block that contains v and its
neighbor Puv. Observe that we can have Bu = Bv if and only if u and v are in the same block. By construction,
there exists a unique path P between Bu and Bv in Aux(X, t) (this path can have length 0 if Bu = Bv). If there
exists a block B in P that is not bipartite, then by Fact 16, we deduce that there exist an odd path and an even
path between u and v. If such a non-bipartite block B exists, then either B = Bu = Bv or there exists an edge
uv used by P such that Muv contains B. If B = Bu = Bv, then B is an active block of Inc(X) since it contains
at least two vertices in Bt. In this case, Condition 4.b stores the information that B is not bipartite. Otherwise,
if there is an edge uv used by P such that Muv contains B, then Muv is not bipartite and Condition 5 stores
this information.
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Suppose now that every block in P is bipartite. Let H be the subgraph that is the union of the bipartite
blocks in G[X], and let (X1, X2) be a bipartition of H. By assumption the union of the blocks in P is a subgraph
of H. Thus, every path between u and v has the same parity and this only depends on whether u and v belong
to the same part of (X1 ∩Bt, X2 ∩Bt). We deduce that the number of possibilities for Condition 6 are at most
2k.

For each condition on ≡t, we proved that the number of possibilities are 2O(k) or 2O(k log k). Since k = Bt ≤
5tw + 4, we conclude that ≡t has at most 2O(tw log tw) equivalence classes. J

B Claim 19. Let t be a node of T and X,Y be two partial solutions associated with t. If X ≡t Y , then, for
every Z ⊆ V (Gt), the graph G[X ∪ Z] is S-bipartite if and only if G[Y ∪ Z] is S-bipartite.

Proof. Assume that X ≡t Y and let Z ⊆ V (Gt) such that G[Y ∪ Z] is S-bipartite. Let ϕ be the isomorphism
from Aux(X, t) to Aux(Y, t) given by ≡t. We show that G[X ∪ Z] is S-bipartite. This will prove the claim
because ≡t is an equivalence relation. To prove that G[X ∪ Z] is S-bipartite, by Claim 15, it is sufficient to
prove that every block B of G[X ∪ Z] is S-bipartite.

Let GX := G[X], GY := G[Y ], and GZ := G[Z ∪ (Bt ∩X)]. We observe that G[X ∪ Z] := (GX , (Bt ∩X))⊕
(GZ , (Bt ∩X)) and G[Y ∪ Z] := (GY , (Bt ∩X))⊕ (GZ , (Bt ∩X)).

Let B be a block of G[X ∪ Z]. Observe that if B is a block of G[X], then it is S-bipartite because X is a
partial solution. Moreover, if B is a block of G[Z], then it is S-bipartite because G[Y ∪ Z] is S-bipartite.

In the following, we assume that B contains vertices from X and Z. Consequently, B has at least 2 vertices
in Bt. Observe that for every block B′ of GX or GZ , either |V (B′) ∩ V (B)| ≤ 1, or B′ is fully contained in B.
Thus, all the blocks of GX or GZ contained in B are in Auxp(X, t) or Auxp(Z ∪ (X ∩Bt), t).

We will take a corresponding 2-connected subgraph in G[Y ∪ Z]. Let BX be the set that contains the blocks
and the cut vertices of Aux(X, t) contained in B. We take the subset YB of Y that contains (1) ϕ(v) for every
cut vertex v in BY , (2) V (ϕ(B′)) for every blocks B′ in BX and (3) V (Mϕ(u)ϕ(v)) for every edge uv of Aux(X, t)
with u, v ∈ BX . Let F := G[YB ∪ (V (B) ∩ Z)]. Since all the blocks in Aux(X, t) with vertices in S are active,
Condition 4.a of ≡t guarantees that V (B) ∩Bt = V (F ) ∩Bt.

We claim that F is a 2-connected induced subgraph of G[Y ∪ Z] such that
F contains a vertex of S if and only if B contains a vertex of S,
F is bipartite if and only if B is bipartite.

By Lemma 15, this will imply that B is S-bipartite, because F is a subgraph of the S-bipartite graph G[Y ∪ Z].
Let FY := F ∩GY and FZ := F ∩GZ .

(1) (F is 2-connected.) It is not difficult to see that F is connected from the construction of YB and because
Y ≡t X implies that (1) V (B′) ∩Bt = V (ϕ(B′)) ∩Bt for every active block of G[X] and (2) two blocks B′, B̂ of
Aux(X, t) are connected if and only if ϕ(B′) and ϕ(B̂) are connected in Aux(Y, t).

Assume towards a contradiction that F has a cut vertex c. Let a1, a2 be the neighbors of c that are contained
in distinct components of F − c. For each i ∈ {1, 2}, let U ′i be a block of GY or GZ containing aic. Note that
U ′1 and U ′2 are fully contained in F , because every block of GY or GZ containing two vertices of F is contained
in F . Therefore, U ′i appears in Auxp(Y, t) if it is a block of GY and it appears in Auxp(V (GZ), t) otherwise.

Now, we choose U1 and U2 in Aux(Y, t) and Aux(V (GZ), t) related to U ′1 and U ′2, respectively.
(Case 1. U ′1, U ′2 are in the same part of Auxp(Y, t) or Auxp(V (GZ), t).)
Let us assume that both U ′1 and U ′2 are in Auxp(Y, t). A similar argument holds for the other case. As c is
the intersection of U ′1 and U ′2 which are blocks of GY , c is a cut vertex of GY , and it appears in Auxp(Y, t).
Following the path of Auxp(Y, t) with direction from c to U ′i , we choose the first vertex Ui in Aux(Y, t).
(Case 2. U ′1, U ′2 are not in the same part of Auxp(Y, t) or Auxp(V (GZ), t).)
Without loss of generality, we assume that U ′1 is in Auxp(Y, t) and U ′2 is in Auxp(V (GZ), t). We explain how
to choose U1. The symmetric argument is applied to U2. In this case, U ′1 and U ′2 share c, and therefore,
either c is an active cut vertex in GY , or U ′1 is an active block of GY . In the former case, following the path
of Auxp(Y, t) with direction from c to U ′1, we choose the first vertex U1 in Aux(Y, t). In the latter case, we
set U1 := U ′1.

For each i ∈ {1, 2}, if Ui is block in Aux(Y, t), let Vi = ϕ−1(Ui), otherwise, if Ui is a block in Aux(V (GZ), t),
let Vi = Ui. Because of the construction, V1 and V2 are blocks contained in B. We choose a vertex cX in B
corresponding to c in F . If c ∈ Bt ∪ Z, then we set cX = c. Otherwise, c ∈ Y \Bt and c must be a cut vertex in
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GY and either (A) c is a vertex of Aux(Y, t) with neighbors U1 and U2 or (B) U1U2 is an edge of Aux(Y, t) and
c is a vertex of MU1U2 . If (A) holds, then we set cX = ϕ−1(c) and if (B) holds, then we take cX a cut vertex in
Mϕ−1(U1)ϕ−1(U2) (every Muv admits at least one cut vertex by definition).

Since B is 2-connected, there is a path p1p2 · · · pm from V1 − cX to V2 − cX in B − cX . This provides a
sequence B1, B2, . . . , Bm′ of blocks that appear in Aux(X, t) or Aux(V (GZ), t) such that B1 = V1 and Bm′ = V2
and for every i ≤ m′ − 1, either BiBi+1 is an edge in Aux(X, t) or in Aux(V (GZ), t), or Bi and Bi+1 are
contained in distinct parts of GX and GZ and they share a vertex in Bt.

For every i ≤ m′, let B̂i be Bi if Bi is a block in Aux(V (GZ), t) or ϕ(Bi) if Bi is a block in Aux(X, t). Let
i ≤ m′ − 1. If Bi and Bi+1 is an edge of Aux(X, t), then ϕ(Bi)ϕ(Bi+1) = B̂iB̂i+1 is an edge in Aux(Y, t). Now,
suppose that Bi and Bi+1 are contained in distinct parts of GX and GZ and assume w.l.o.g. that Ui is a block
in GY . By Condition 4.a in the definition of ≡t, we have V (Bi) ∩ Bt = V (B̂i) ∩ Bt. We deduce that B̂i and
Bi+1 = B̂i+1 share a vertex in Bt. From the sequence B̂1, . . . , B̂m′ , we conclude that there exists a path in F
between U1 − c and U2 − c in F − c. This contradicts the assumption that c is a cut vertex.

(2) (F contains a vertex of S if and only if B contains a vertex of S.) Observe that for each block U of
Aux(Y, t), U contains a vertex of S if and only if ϕ(U) contains a vertex of S, and for every edge uv of Aux(Y, t),
Muv has a vertex of S if and only if Mϕ(u)ϕ(v) has a vertex of S. Since F ∩GZ = B ∩GZ , we obtain the result.

(3) (F is bipartite if and only if B is bipartite.) Suppose that B is bipartite. We take the bipartition (L,R)
of B. As a connected bipartite graph has a unique bipartition, this is unique up to changing L and R.

As F ∩GZ = B ∩GZ , this gives a bipartition (L′, R′) of F ∩GZ . Let u, v ∈ V (F ) ∩Bt be vertices that are
contained in the same connected component of F ∩GY . Assume u, v are contained in the same part of L′ and
R′. Since u, v are also contained in the same connected component of B ∩GX and they are in the same part of
L and R, all the paths from u to v in B ∩GX have even length. Note that the blocks containing edges of the
path from u to v are all contained in B, and those blocks appear in Auxp(X, t). As B is bipartite, each of these
blocks is bipartite.

Since Aux(Y, t) is isomorphic to Aux(X, t), there is a corresponding sequence of blocks whose last blocks
contain u and v, respectively, and all these blocks are bipartite. By the last condition of the equivalence relation
≡t, there is an even path from u to v in GY . This shows that a bipartition of F ∩GY is compatible with the
bipartition (L′, R′) of F ∩GZ . Thus, F is bipartite. J

We are now ready to describe our algorithm. For each node t of T and I ⊆ Bt, let P[t, I] be the set of all
partial solutions X of Gt where X ∩Bt = I. A reduced set R[t, I] is a subset of P[t, I] satisfying that

for every partial solution X ∈ P[t, I], there exists X ′ ∈ R[t, I] where X ≡t X ′ and w(X ′) ≥ w(X), and
no two partial solutions in R[t, I] are equivalent.

We will recursively compute a reduced set R[t, I] for every node t of T and I ⊆ Bt. Claim 18 guarantees that
|
⋃
I⊆Bt R[t, I]| = 2O(tw log tw).
We describe how to compute a reduced set R[t, I] depending on the type of the node t, and prove the

correctness and the running time of each procedure. We fix a node t and I ⊆ Bt. For each leaf node t and I = ∅,
we assign R[t, I] := ∅. For A ⊆ 2V (Gt), we define reducet(A) as the operation which removes the elements of A
that does not induce S-bipartite graph and then returns a set that contains, for each equivalence class C of ≡t
over A, a partial solution of C of maximum weight.

1) t is an introduce node with child t′ and Bt \Bt′ = {v}:

If v /∈ I, then it is easy to see that R[t′, I] is a reduced set of P[t, I] = P[t′, I]. In this case, we take
R[t, I] = R[t′, I].

Assume now that v ∈ I. We set R[t, I] = reducet(A) with A the set that contains X ∪ {v} for every
X ∈ R[t′, I \ {v}].

We claim that R[t, I] is a reduced set of P[t, I]. Let X ∈ P[t, I]. As v ∈ I, we have that X \ {v} ∈
P[t′, I \ {v}]. Since R[t′, I \ {v}] is a reduced set of P[t′, I \ {v}], there exists X ′ ∈ P[t′, I \ {v}] such that
X ′ ≡t′ X \ {v} and w(X ′) ≥ w(X \ {v}). By the construction of R[t, I], we added X̂ to R[t, I] where
X̂ ≡t X ′ ∪ {v} and w(X̂) ≥ w(X ′ ∪ {v}). It is not difficult to check that X̂ ≡t X by considering Gt and the
sum (Gt′ , Bt \ {v})⊕ (G[Bt], Bt \ {v}) and applying Claim 21.
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2) t is a forget node with child t′ and Bt′ \Bt = {v}:

We set R[t, I] = reducet(R[t′, I] ∪ R[t′, I ∪ {v}]). We easily deduce that R[t, I] is a reduced set of P[t, I]
from the fact that, by definition, P[t, I] = P[t′, I] ∪ P[t′, I ∪ {v}].

3) t is a join node with two children t1 and t2:

We set R[t, I] = reducet(A) where A is the set that contains X1∪X2 for every X1 ∈ R[t1, I] and X2 ∈ R[t2, I].
We claim that R[t, I] is a reduced set of P[t, I]. Let X ∈ P[t, I]. For each i ∈ {1, 2}, let Xi := X ∩ V (Gti).

It is not difficult to see that Xi ∈ P[ti, I], as it is a partial solution of Gti .
Since R[ti, I] is a reduced set of P[ti, I], there exists X ′i ∈ R[ti, I] such that X ′i ≡t Xi and w(X ′i) ≥ w(Xi).

By construction, X ′1 ∪X ′2 ∈ A, and there exists X ′ ∈ R[t, I] such that X ′ ≡t X ′1 ∪X ′2 and w(X ′) ≥ w(X ′1 ∪X ′2).
It is not difficult to check that X ′ ≡t X by considering Gt and the sum (Gt1 , Bt) ⊕ (Gt2 , Bt2) and applying
Claim 21 twice. As w(X ′1 ∪X ′2) ≥ w(X1 ∪X2) = w(X), we conclude that R[t, I] is a reduced set.

It remains to prove the correctness and the running time of our algorithm. We can assume w.l.o.g. that the
bag Br associated with the root r of T is empty. By definition P [t, ∅] contains an optimal solution. Since R[t, ∅]
is a reduced set, we conclude that R[t, ∅] also contains an optimal solution.

For the running time, we use the fact that we can compute reducet(A) in time |A|2O(tw log tw)n2. This follows
from the upper bound of Claim 18 on the number of equivalence classes of ≡t and the fact that for every partial
solutions X,Y of Gt, we can decide whether X ≡t Y in time O(n2).

Let t be a node of T that is not a leaf. Observe that we set R[t, I] = reducet(A) where A is some sets that
depends on the type of the node t. Let k be maximum size of a reduced set R[t′, I ′] for t′ ∈ V (T ) and I ′ ⊆ Bt′ .
By construction, if t is an introduce node, then the size of A is at most k. If t is a forget node, then the size of A
is at most 2k. And if t is a join node, then the size of A is at most k2. From Claim 18, we have k ≤ 2O(tw log tw).
We deduce that, for every node t and I ⊆ Bt, we can compute R[t, I] in time 2O(tw log tw) · n2. Since T has at
most O(n · tw2) nodes and there are at most 2O(tw) possibilities for I, the running time of our algorithm is
2O(tw log tw)n3. J

The dependency n3 on the input size n in Theorem 17 was obtained because we keep the partial solutions
themselves, and have to check their equivalences. We believe that with a careful argument by keeping only
auxiliary graphs Aux(X, t), we can reduce the dependence of the input size; however, for simplicity, we present
the running time with n3 factor.

Now, we solve the other problems.

I Theorem 20. Subset Feedback Vertex Set, Restricted Edge-Subset Feedback Edge Set, Node
Multiway Cut, and their weighted variants can be solved in time 2O(tw log tw)n3 on n-vertex graphs with treewidth
tw.

Proof. It is easy to check that a graph has no S-traversing cycle if and only if every block of size at least 3
has no vertex of S. So, for Subset FVS, we can simply adapt the algorithm for Subset OCT, with ignoring
necessary things for checking bipartiteness. A partial solution at a node t, is a subset Y of V (Gt) such that
Gt[Y ] is a graph having no S-traversing cycles.

We use the same auxiliary graph Aux(Y, t), and use the equivalence relation obtained by removing the
conditions for bipartiteness in the equivalence relation for Subset OCT. In more detail, we say that two partial
solutions are equivalent for Subset FVS if X ∩Bt = Y ∩Bt, and there is an isomorphism ϕ from Aux(X, t) to
Aux(Y, t) such that the following conditions are satisfied.

For every vertex v in Aux(X, t), v is active if and only if ϕ(v) is active.
For every vertex v in Aux(X, t), v is a block if and only if ϕ(v) is a block.
For every active cut vertex v in Aux(X, t), we have ϕ(v) = v.
For every active block B in Aux(X, t):
V (B) ∩Bt = V (ϕ(B)) ∩Bt,
V (B) ∩ S 6= ∅ if and only if V (ϕ(B)) ∩ S 6= ∅,

For every edge uv in Aux(X, t):
V (Muv) ∩ S 6= ∅ if and only if V (Mϕ(u)ϕ(v)) ∩ S 6= ∅.
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It is straightforward to adapt an algorithm for Subset OCT to Subset FVS with this equivalence relation.
We conclude that Subset FVS admits a 2O(tw log tw)n3 time algorithm.

For the weighted variant of Node Multiway Cut, we use the reduction to Subset FVS which is
described in the introduction. Given an instance (G,S, k) of Weighted Node Multiway Cut with weight
function w : V (G) → R, we construct an equivalent instance (G′, S′, k) of Weighted Subset FVS with
tw(G′) ≤ tw(G) + 1 as follows. We add a new vertex v′ to G adjacent to all the vertices in S. Let G′ be the
resulting graph and S′ = {v′}. Since we only add a vertex, we have tw(G′) ≤ tw(G) + 1. For every vertex v in
G, we set the weight of v to be “infinite” if v ∈ S ∪ {v′} and w(v) otherwise. Consequently, a solution cannot
contain vertices in S ∪ {v′}. One easily proves that (G,S, k) is a yes-instance of Weighted Node Multiway
Cut if and only if (G′, S′, k) is a yes-instance of Weighted Subset FVS. Hence, Node Multiway Cut and
its weighted variant admit 2O(tw log tw)n3 time algorithms.

It remains to prove that the theorem holds for Weighted Restricted Edge-Subset Feedback Edge
Set (WSFES for short). For doing so, we use a reduction to Weighted Subset FVS. Let (G,S, k) be a
instance of WSFES with weight function w : E(G)→ R. We will construct a instance (G′, S′, k) of Weighted
Subset FVS where tw(G′) = tw(G).

Let G′ be the graph obtained by subdividing the edges of G. Since subdivisions do not increase the treewidth,
we have tw(G′) = tw(G). For every edge e of G, we call ve the vertex in G′ created from the subdivision of e. Let
S′ be the set {ve | e ∈ S}. We give “infinite” weights on the vertices of G′ that belong to V (G) ∪ S′. Moreover,
for every edge e ∈ E(G) \S, we give to ve the same weight as e. Consequently, a solution cannot contain vertices
in V (G) ∪ S′. It is easy to prove that (G,S, k) is a yes-instance of WSFES if and only (G′, S′, k) is a yes
instance of Weighted Subset FVS. We conclude that WSFES and its weighted variant admit 2O(tw log tw)n3

time algorithms. J
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A Semi-regular instances of k × k-Clique

Here we show the claimed ETH lower bound for Semi-Regular k× k-Clique, namely that it is not easier than
k × k-Clique. We insist that we do not need this result in the paper, but we believe that it may be helpful in a
different context. We recall that by semi-regular, we mean that every vertex of a given column has the same
degree towards another fixed column.

The known parameterized reduction from k-Clique on general graphs to k-Clique on regular graphs will
not work here, since it would increase the parameter polynomially (which we cannot afford). We take a couple of
steps back and show how to partition the vertex set V (G) of a hard instance of Bounded-Degree 3-Coloring
in such a way that the seminal reduction from 3-Coloring to k×k-Clique only produces semi-regular instances.
Let us recall that the latter reduction builds one vertex per 3-coloring of a part of the partition, and links by an
edge every pair of consistent partial colorings (i.e., the union of the colorings is proper in the graph induced by
the two parts). If the number of parts k is chosen so that 3|V (G)|/k ≈ k, we obtain a “square” k-by-k instance of
Clique. Now we want to ensure, in addition, that each 3-coloring of a part P has the same number of consistent
3-colorings of another part P ′.

It is a folklore consequence of the Sparsification Lemma [18] and known reductions that 3-coloring a bounded-
degree n-vertex graph cannot be done in 2o(n). For instance Cygan et al. show the following.

I Theorem 21 (Lemma 1 in [10]). Unless the ETH fails, 3-Coloring on n-vertex graphs of maximum degree 4
cannot be solved in 2o(n).

Ultimately this result is a reduction from 3-SAT. The 3-Coloring instances produced by that reduction serve
as our starting point.

I Theorem 22. Unless the ETH fails, Semi-Regular k × k-Clique cannot be solved in time 2o(k log k).

Proof. Let G be a hard instance of 3-Coloring with maximum degree 4, produced by the reduction of
Theorem 21. G2, the square of G, (with an edge between two vertices at distance at most 2) has degree 16.
By Hajnal-Szemerédi Theorem, G2 admits an equitable coloring using 17 colors. This equitable coloring can
further be found in polynomial time, by Kierstead and Kostochka [20]. We refine this 17 classes arbitrarily into
k classes of equal size, such that dk log3 ke = |V (G)|. Let us call P the obtained partition of V (G). We perform
the reduction of 3-Coloring to k × k-Clique with this equipartition P . The resulting instance is semi-regular.
By design, for every pair of parts P 6= P ′ ∈ P , G[P ∪ P ′] consists of some isolated edges between P and P ′, and
isolated vertices. Indeed an edge within P , or within P ′, or a degree-2 vertex would all contradict the coloring of
G2 (with 17 colors). Thus any 3-coloring of P is consistent with the same number of 3-colorings of P ′. This
shared number is 3 times the number of isolated vertices of G[P ∪ P ′] in P ′ times twice the number of edges in
G[P ∪ P ′]. J
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