
Optimality Program in Segment and String
Graphs

Édouard Bonnet1 and Paweł Rzążewski2

1 Department of Computer Science, Middlesex University, London
2 Faculty of Mathematics and Information Science,

Warsaw University of Technology
edouard.bonnet@dauphine.fr, p.rzazewski@mini.pw.edu.pl

Abstract
Planar graphs are known to allow subexponential algorithms running in time 2O(

√
n) or 2O(

√
n logn)

for most of the paradigmatic problems, while the brute-force time 2Θ(n) is very likely to be asymp-
totically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3 logn) by Fox
and Pach [SODA’11], we investigate which problems have subexponential algorithms on the in-
tersection graphs of curves (string graphs) or segments (segment intersection graphs) and which
problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our
results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3 logO(1) n)

on string graphs while an algorithm running in time 2o(n) for 4-Coloring even on axis-parallel
segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments,
we show a weaker ETH lower bound of 2o(n2/3) which exploits the celebrated Erdős-Szekeres
theorem. The subexponential running time also carries over to Min Feedback Vertex Set
but not to Min Dominating Set and Min Independent Dominating Set.
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1 Introduction

Most combinatorial optimization and decision problems admit subexponential algorithms
when restricted to planar graphs. More precisely, they can be solved in time 2O(

√
n), or

2Õ(
√
n) on planar graphs with n vertices, while under the ETH (Exponential Time Hypo-

thesis, which asserts that 3-Sat cannot be solved in subexponential time [22, 24]) they do
not admit an algorithm running in time 2o(n) on general graphs. The former is due to the
facts that planar graphs have treewidth O(

√
n) and that we have efficient algorithms para-

meterized by the treewidth tw of the graph, namely running in 2O(tw)nO(1), or 2Õ(tw)nO(1).
The so-called bidimensionality theory [10, 12–14] pushes this speed-up further by yielding

2O(
√
k)nO(1) algorithms where k is the targeted size of a solution (think for example of the

problems of finding a maximum independent set or a minimum dominating set of size k).
In a nutshell, it exploits a deep structural result by Robertson, Seymour, and Thomas [36]:
planar graphs with treewidth tw have a Θ(tw)-by-Θ(tw) grid as a minor (i.e., any graph
obtained by deleting vertices and edges, and contracting edges). Thus, if the presence of
a large grid minor makes the problem trivial (as in, one can always answer yes or always
answer no), then one only has to solve efficiently instances with low treewidth; which, as
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we noted, can often be done. The claimed running time is obtained by defining large grids
as Θ(

√
k)-by-Θ(

√
k), since their absence as minors imply that the treewidth is in O(

√
k).

The bidimensionality theory is extremely versatile. It also gives approximation schemes and
linear vertex kernels and could be generalized to graphs with bounded genus and graphs
excluding a fixed minor [11].

A natural line of research is to generalize or extend the subexponential (parameterized)
algorithms to classes of graphs which do not fall into those categories. For geometric inter-
section graphs, the situation is much richer than for planar graphs. For instance, Marx and
Pilipczuk already observed that packing problems (of the kind of Max Independent Set)
are more broadly subject to subexponential algorithms – running typically in nO(

√
k) – than

covering problems (of the kind of Min Dominating Set) – for which nO(k) is essentially
optimal under the ETH [31, 32].

We briefly survey the existing results in the design of subexponential algorithms on
geometric intersection graphs. A prominent role is played by intersection graph of families
of fat objects, i.e., objects for which the aspect ratio (their length divided by their width)
is bounded. We highlight that fat objects, and in particular disks and squares, often allow
faster algorithms and the so-called square-root phenomenon. As we will see, subexponential
algorithms are less frequent on intersection graphs of curves and segments but nevertheless
present such as exemplified by Max Independent Set, 3-Coloring, and Min Feedback
Vertex Set.

Subexponential algorithms on geometric intersection graphs.

By a ply of a family of geometric objects we denote the maximum number of objects covering
a single point. Smith and Wormald show that for any collection of n convex fat objects
with ply p there is a balanced separator of size O(√np) [40]. This leads to subexponential
algorithms when the ply is constant, or in general for problems becoming trivial when the ply
is too large, such as k-Coloring. The 2Õ(

√
nk)-time algorithm that this win-win provides

for coloring n fat objects, say disks, with k colors is shown essentially optimal under the
ETH by Biró et al. [5].

A next step may consist of designing FPT1 or XP2 algorithms where the dependency
in the parameter is subexponential (for problems of the form „find k vertices such that...“).
Using a shifting argument à la Baker [4], Alber and Fiala obtain a nO(

√
k)-time to decide

if one can find k disjoint unit disks or squares among n [3]. Marx and Pilipczuk generalize
this result to packing k disjoint polygons among n in the same time [31, 32]. Their approach
is based on guessing a small separator in the medial axis (i.e., the Voronoi diagram of
polygons) of a supposed solution, as suggested by Adamaszek and Wiese and Har-Peled to
obtain QPTAS for geometric packing problems [1, 2, 21].

Marx showed that Max Independent Set and Min Dominating Set in the intersec-
tion graphs of disks or squares are W[1]-complete, and therefore unlikely to be FPT [30].
Those reductions also show that the nO(

√
k) algorithms [31, 32] are essentially optimal un-

der the ETH. Fomin et al. [17] observed that unit disks of bounded degree have treewidth
O(
√
n) and used this fact to extend bidimensionality to unit disk graphs for a handful of

problems. Recently, a superset of the previous authors gave 2O(
√
k)nO(1)-time algorithms

for k-Feedback Vertex Set, k-Path, k-Cycle, Exact k-Cycle [16].

1 with running time f(k)nO(1)

2 with running time nf(k)
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Non-fat objects: segments and strings.

Segment intersection graphs (or segment graphs in short) are the intersection graphs of
straight-line segments in the plane. They are called unit segments if all the segments of a
representation share the same length. For a fixed integer k, k-Dir is defined as the set of
intersection graphs of segments, each parallel to one of fixed k directions. Strings graphs are
the intersection graphs of simple curves in the plane. Those curves can be assumed polygonal
without loss of generality. The vertices of the polygonal curves in a geometric representation
are called geometric vertices not to confuse them with the actual vertices of the graph. As
shown by Kratochvíl and Matoušek, there are string graphs with n vertices, which require
2Ω(n) geometric vertices in any string representation with polygonal curves [26].

A systematic study of segment graphs and their subclasses was initiated by Kratochíl
and Matoušek [27]. It is interesting to point out that every planar graph is a segment
graph, as shown by Chalopin and Gonçalves [9] (this was a long-standing conjecture by
Scheinerman [39]).

The class of string graphs is very general, as it includes split graphs (i.e., graphs whose
vertices can be partitioned into two sets inducing a clique and an independent set), inter-
section graphs of bodies (i.e., compact shapes with non-empty interior), or incomparability
graphs (i.e., graphs whose vertex set is given by the set of elements of a poset, and edges
join elements that are incomparable).

Biró et al. showed that even though coloring disks or more generally fat objects with a
constant number of colors can be solved in 2Õ(

√
n) [5], 6-coloring axis-parallel segments (2-

Dir) in time 2o(n) would refute the ETH. This suggests that subexponential algorithms are
less frequent on the intersection graphs of non-fat objects such as segments and strings. On
the other hand, Fox and Pach presented a subexponential algorithm for Max Independent
Set on string graphs [18]. Their approach uses a win-win strategy and is based on the
existence of balanced separators in string graphs. Fox, Pach, and Tóth showed that string
graphs with m edges have balanced separators of size O(m3/4 logm), and conjectured that
there is always a separator of size O(

√
m) [20]. Matoušek showed that string graphs admit a

balanced separator of size O(
√
m logm) [34]. Finally, very recently Lee improved the result

of Matoušek, proving the conjecture.

I Theorem 1 (Lee [28]). Every string graph with m edges has a balanced separator of
size O(

√
m). Moreover, it can be found in polynomial time, provided that the geometric

representation is given.

Let us point out that this result generalizes the famous planar separator theorem by Lipton
and Tarjan [29], as planar graphs are string graphs and the number of edges in a planar
graph is linear in the number of vertices. This also shows that Theorem 1 is best possible
(up to the constants), as the planar separator theorem is asymptotically tight.

Our contributions.

We show that the subexponential algorithm for Max Independent Set in string graphs
by Fox and Pach [18], running in time 2Õ(n2/3), can be extended to 3-Coloring and Min
Feedback Vertex Set. As in the algorithm of Fox and Pach, the central idea is a win-
win: either the graph is rather sparse and the separator of Theorem 1 gives a speed-up, or
the graph has a high-degree vertex (used for 3-Coloring) or a large biclique (used for Min
Feedback Vertex Set) and an efficient branching can be performed. Refining a lower
bound of Biro et al. [5], we complement this former result by showing that for any k > 4,
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k-Coloring cannot be solved in 2o(n) even on axis-parallel segments, unless the ETH fails.
The reduction relies on having segment lengths with two different orders of magnitude. We
therefore ask if unit segments could allow a faster algorithm for k-Coloring for k > 4.
Under the ETH, we provide a stronger lower bound than the one for planar graphs (which
refutes a running time 2o(

√
n)) and show that unit segments cannot be k-colored in 2o(n2/3) for

any k > 4. Our construction uses the fact, closely related to the famous Erdős-Szekeres [15]
theorem, that any permutation on n totally ordered elements can be partitioned into O(

√
n)

monotone subsequences (see Brandstädt and Kratsch [7]).
We then give tight ETH lower bounds for Min (Connected) Dominating Set and

Min Independent Dominating Set on segments and Max Clique on strings. For
that, we design reductions whose number n of produced segments is linear in N +M from
satisfiability problems with N variables and M clauses. Indeed, the sparsification lemma of
Impagliazzo et al. [23] implies that those satisfiability problems are not solvable in 2o(N+M)

unless the ETH fails; which enables us to conclude that the problems are not solvable in
2o(n) under the ETH, on graphs with n vertices.

Although the NP-hardness of the aforementioned problems is known for segment inter-
section graphs [8, 42], getting such linear reductions might be difficult.

For instance, while it is known that planar graphs are a subclass of segment intersection
graphs [9], implying the NP-hardness of all the problems of Table 1 except k-Coloring for
k > 4 and Max Clique, this fact does not serve our purpose since they can be solved in
time 2O(

√
n) on planar graphs. The situation is an interesting intermediate between planar

and general graphs. Our objects can intersect but we cannot afford crossover gadgets (at
least not quadratically many). Certain intersections create unwanted edges of which we
have to tame the importance. It is also noteworthy that segment/string graphs cannot be
expanders since if they have constant degree, by Theorem 1, they have treewidth Õ(

√
n).

Hence, we are deprived of the usual hardest instances.

Problem Upper bound Lower bound

Max Independent Set 2Õ(
√

n)pO(1), 2Õ(n2/3) 2o(
√

n)

3-Coloring 2Õ(n2/3) 2o(
√

n)

k-Coloring for every k > 4 2O(n) 2o(n) (even in 2-Dir)
k-Coloring for every k > 4 2O(n) 2o(n2/3) in unit 3-Dir
Min Feedback Vertex Set 2Õ(n2/3) 2o(

√
n)

Min (Connected) Dominating Set 2O(n) 2o(n)

Min Independent Dominating Set 2O(n) 2o(n)

Max Clique 2O(n) 2o(n)

Table 1 Upper and lower bounds for classical problems on string and segment graphs. The
upper bounds work on string graphs. The lower bounds are designed on segment graphs,
unless precised otherwise. Our results are written in bold. By p we denote the number of geometric
vertices if a geometric representation is given.

Geometric representation and robust algorithms.

In case of graphs with geometric representations, it is important to distinguish between a
geometric intersection graph (i.e., a pure abstract structure, for which we know that some
geometric representation exists), and the representation itself. Note that this is not the case
with planar graphs, as finding a plane embedding can be done in linear time [6].
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Finding a segment or string representation of a graph was shown to be NP-hard by Kra-
tochvíl [25], and Kratochvíl and Matoušek [27], respectively. However, it was very unclear if
the problems are in NP (which is usually the trivial part of an NP-completeness proof). As
mentioned above, Kratochvíl and Matoušek [26] showed that some string graphs require a
representation of exponential size, which proved that the simple idea of exhaustively guessing
the representation cannot work for this problem. Finally, the NP-membership of recognizing
string graphs was proven by Schaefer, Sedgwick, and Štefankovič [37].

The story of recognizing segment graphs is even more interesting. On the first sight, the
situation seems simpler than for strings, as the number of geometric points in a segment
representation is clearly polynomial in n. However, it appears that there are segment graphs,
whose every segment representation requires points with coordinates doubly exponential in
n, i.e., using 2Ω(n) digits (see Kratochvíl and Matoušek [27], and McDiarmid and Müller
[35]). Finally, the problem was shown to be complete for the class ∃R (see Schaefer and
Štefankovič [38]), i.e., the class of problems reducible in polynomial time to deciding if a
given existential formula over the reals is true. This is a strong evidence that the problem
is not in NP. For a very nice exposition of the ∃R-completeness proof, see Matoušek [33].

All this shows that a requirement of an explicit geometric representation of an input
graph may be a serious drawback of an algorithm. We call an algorithm robust if it takes
only an abstract structure as an input, and either computes the solution, or concludes
(correctly) that the input graph does not belong to the desired class. On the one hand, our
algorithms (see Section 2) are robust, but work slightly faster if the input is given along
with the geometric representation. On the other hand, the lower bounds (see Section 3)
hold even if the geometric representation is given explicitly.

2 Upper bounds

Fox and Pach showed that, on string graphs, a maximum independent set can be computed
in subexponential time:

I Theorem 2 (Fox & Pach [18]). Max Independent Set can be solved in time 2O(n2/3 logn)

in string graphs with n vertices.

In their paper, they give a worse running time than the one claimed above. This is
because they used the O(m3/4 logm) separator theorem [20], which has been recently im-
proved to O(

√
m) [28]. The algorithm is a simple win-win argument. If there is a vertex

with degree at least n1/3, then either removing it or selecting it and removing its neighbors
gives a branching F (n) 6 F (n − 1) + F (n − dn1/3e − 1). Otherwise, if all the vertices
have degree smaller than n1/3, the graph is rather sparse and the balanced separator of size
O(
√
m) = O(n2/3) provides an efficient divide-and-conquer. The threshold n1/3 is computed

so that it balances the running time of those two subroutines and gives the claimed overall
asymptotic time.

This result was somewhat improved by Marx and Pilipczuk [31, 32] based on an approach
introduced by Adamaszek, Har-Peled, and Wiese [1] to get QPTAS for geometric problems.
However, their algorithm necessitates that the string graph is given with a representation
by polygonal curves on a polynomial number of geometric vertices.

I Theorem 3 (Marx & Pilipczuk [31]). Max Independent Set can be solved in time
2O(
√
n logn)pO(1) in string graphs with n vertices, where the strings are given as polygonal

curves on a total of p geometric vertices.
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In a nutshell, the idea is to exhaustively guess a small balanced face-separator in the Voronoi
diagram of a supposed (although not known) fixed solution, and solve recursively the two
subinstances in the inside and outside of this separator.

If this approach does not seem to generalize easily to coloring problems, the win-win of
Fox and Pach can be transported to 3-Coloring with a bit more arguments.

I Theorem 4. 3-Coloring (even List 3-Coloring) of a string graph with n vertices can
be decided in time:

2O(n2/3 logn), if the geometric representation is given,
2O(n2/3 log2 n), even without geometric representation.

Proof. Consider an instance (G,L) of List 3-Coloring with n vertices (in List k-Coloring
each vertex v is equipped with a list L(v) ⊆ [k] and we want to find a proper coloring, in
which every vertex receives a color from its list). Observe that without loss of generality we
can assume that each list has two or three elements. Indeed, if there is a vertex with just
one allowed color, we can fix this color and remove it from the list of each of its neighbors.
Let N be the sum of the lengths of the lists; clearly 2n 6 N 6 3n.

First, assume that G has no vertex with degree larger than n1/3, then the number
m of edges is O(n4/3). By Theorem 1, G has a balanced separator of size O(

√
m) =

O(n2/3). We can find this separator in polynomial time, if the representation is given, or by
exhaustive guessing in time nO(n2/3) = 2O(n2/3 logn), without using a representation. Then
we list all possible colorings of the separator and proceed with a standard divide-and-conquer
approach. The depth of the recursion is O(logn), so the total time complexity of this step
is 2O(n2/3 log2 n), or 2O(n2/3 logn) if we use the geometric representation to find a separator.

If there is a vertex v of degree at least n1/3, then one among the lists: {1, 2}, {1, 3}, {2, 3},
{1, 2, 3} appears on at least n1/3/4 of its neighbors. Thus there are two colors (say, 1 and 2)
that appear in lists of at least n1/3/4 of neighbors of n. Since the list of v has size at least
two, one of these colors (say 1) appears on the list of v. We branch into two possibilities:
choosing the color 1 for v (then we exclude 1 from the lists of all neighbor of v), and not
choosing 1 for v (then we remove 1 from the list of v). The complexity F of this step is given
by the recursion F (N) 6 F (N − n1/3/4) +F (N − 1) 6 F (N −N1/3/(31/3 · 4)) +F (N − 1).
This inequality is satisfied by F (N) = 2O(N2/3 logN) = 2O(n2/3·logn).

Combining these two cases gives the claimed time complexity. Finally, observe that if
the input graph is not a string graph, then the exhaustive search for a separator might fail,
and then we can report a wrong input instance. J

For Min Feedback Vertex Set, there is no obvious subexponential branching on a
high-degree vertex. Instead, we use the following theorem by Lee.

I Theorem 5 (Lee [28]). There is a constant c such that for any t > 1, Kt,t-free string
graphs on n vertices have fewer than c · t log t · n edges.

It is worth mentioning that Fox and Pach [19, Theorem 5] obtained a slightly weaker
result with logO(1) t instead log t.

I Theorem 6. Min Feedback Vertex Set on string graphs with n vertices can be solved
in time

2O(n2/3 log3/2 n), if the geometric representation is given,
2O(n2/3 log5/2 n), even without geometric representation.

Proof. The proof is similar to the proof of Theorem 4. Let G be the input graph. If
G has fewer than c/3 · n4/3 logn edges (where c is a constant from Theorem 5), then by
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Theorem 1 there is a balanced separator of size O(
√
m) = O(n2/3 log1/2 n), and a divide-

and-conquer approach yields a running time 2O(n2/3 log3/2 n) (with the representation, we
use it to find the separator), or 2O(n2/3 log5/2 n) (without the representation, we guess the
separator exhaustively).

Otherwise, by Theorem 5, there is a subgraph of G isomorphic to the biclique Kn1/3,n1/3 .
We can find it by exhaustive guessing in time nn2/3 · poly(n) = 2O(n2/3 logn). Observe that
any feedback vertex set of G must contain all but one vertex of one bipartition class of
the biclique. Guessing which vertex is not chosen into the solution gives us a branching
algorithm, whose complexity is given by the recursion F (n) 6 2O(n2/3 logn) + 2n1/3F (n −
n1/3 +1), which is solved by F (n) = 2O(n2/3 logn). If the exhaustive search for a separator or
a biclique fails, then we can correctly report that the input graph is not a string graph. J

3 Lower bounds

Rather surprisingly, the win-win for 3-Coloring abruptly ceases to work for k-Coloring
for every k > 4. First, let us consider the List 4-Coloring. Following Kratochvíl and
Matoušek [27], by Pure 2-Dir we denote graphs admitting a 2-Dir representation in which
parallel segments do not intersect. Observe that such a graph is bipartite.

I Theorem 7. List 4-Coloring of a Pure 2-Dir graph cannot be solved in time 2o(n),
unless the ETH fails.

Proof. Let Φ be a 3-Sat formula with n variables v1, v2, . . . , vn andm clauses C1, C2, . . . , Cm.
By repeating some literals in a clause, we may assume that each clause contains exactly three
literals. For a clause Ci, let vi1, vi2, vi3 denote the variables of Ci.

We construct a 2-Dir graph G with lists L of colors from the set {1, 2, 3, 4}, such that
Φ is satisfiable if and only if G is list-colorable with respect to the lists L.

For each variable vi, we introduce a horizontal segment called xi. For each clause Ci
we introduce three vertical segments yi1, yi2, yi3, corresponding to vi1, vi2, and vi3, respectively.
We arrange them in a grid-like way (see Figure 1). One may observe that the intersection
graph induced by those segments is a biclique. We set the lists of each xi to {1, 2} and the
lists of each yi1, yi2, yi3 to {3, 4}.

x1

x2

x3

x4

x5

x6

y1
1y

1
2y

1
3 y2

1y
2
2y

2
3 y3

1y
3
2y

3
3 y4

1y
4
2y

4
3

Figure 1 The arrangement of variable- and occurrence-segments in G.

The colors 1 and 2 used for coloring xi will be interpreted, respectively, as true and false
values given to vi, while the colors 3 and 4 given to yij will be interpreted, respectively, as
true and false values given to the literal corresponding to vij .

To ensure this, we need to introduce equality gadgets and inequality gadgets. If the
variable vi appears positively in the clause Cj as its `-th literal, then at the crossing point
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of xi and yj` we put the equality gadget ensuring that in any feasible coloring of G, the color
of xi is 1 (2, respectively) if and only if the color of yi` is 3 (4, respectively). On the other
hand, if vi appears negatively in Cj as its `-th literal, then at the crossing point of xi and
yj` we put the inequality gadget ensuring that in any feasible coloring of G, the color of xi
is 1 (2, respectively) if and only if the color of yj` is 4 (3, respectively).

The equality gadget consists of 3 segments, arranged as depicted on Figure 2. Consider
the equality gadget (left lists on Figure 2) and suppose xi gets the color 1. Then a receives
color 3, and c gets the color 4. Thus the only choice for the color for yj` is 3. The coloring
can be extended by coloring b to 2. The other cases are symmetric. The inequality gadget
is analogous and uses the right lists on Figure 2.

xi

yj`

a b

c

vertex list
xi 1,2
yj

` 3,4
a 1,3
b 2,4
c 3,4

Lists in the
equality gadget.

vertex list
xi 1,2
yj

` 3,4
a 1,4
b 2,3
c 3,4

Lists in the
inequality gadget.

Figure 2 Equality and inequality gadgets. The arrangement of segments is the same in both
gadget, the only difference is the lists.

The only thing left is to ensure that the coloring of yj1, y
j
2, y

j
3 exists if and only if Cj is

satisfied. This is ensured by the satisfiability gadget depicted in Figure 3, attached to the
top ends of y1

j , y
j
2, and y

j
3. Note that the gadget can be colored if and only if one of yj1, y

j
2, y

j
3

gets color 3, which is equivalent to one literal of Cj being set to true.

yj1 yj2 yj3

a
b
c

d

vertex list
yj

` 3,4
a 1,4
b 2,4
c 3,4
d 1,2,3

Figure 3 Satisfiability gadget.

The number of vertices of G is n′ = n︸︷︷︸
xi

+ 3m︸︷︷︸
yj

`

+ 9m︸︷︷︸
(in)equality

+ 4m︸︷︷︸
satisfiability

= Θ(n+m). On

the other hand, a algorithm solving list coloring of G in time 2o(n′) can be used to decide
the satisfiability of Φ in time 2o(n′) = 2o(n+m), which in turn contradicts the ETH. J

The non-list version is obtained analogously to the hardness for 6-Coloring in [5]. We
include the proof to make the paper self-contained.

I Theorem 8. For every fixed k > 4, the k-Coloring problem of a 2-Dir graph cannot be
solved in time 2o(n), unless the ETH fails.

Proof. We modify the construction from the proof of Theorem 7. We first introduce k
overlapping segments R1, R2, . . . , Rk, whose coloring will serve as a reference coloring. Since
these segments are pairwise intersecting, each of them receives a different color. We will
denote by i ∈ [k] the color assigned to Ri.
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Now, for each segment v of G, we want to simulate the list L(v) from the instance of
List 4-Coloring constructed in the proof of Theorem 7. For every color i /∈ L(v), we want
to introduce a segment si intersecting v, which will always receive color i.

To achieve this, we first need to transport the reference coloring to every gadget. We
split it into two parts – we will separately transport colors 1 and 2, and colors greater than
2. The overall high-level idea is depicted in Figure 4. Observe that this already simulates
the lists for every xi.

x1

x2

x3

x4

x5

x6

y1
1 y1

2 y1
3 y2

1 y2
2 y2

3 y3
1 y3

2 y3
3

Figure 4 Reference coloring is transported to every gadget. Circles denote the (in)equality
gadgets, while rectangles denote the satisfiability gadgets. Red and blue lines denote, respectively,
pairs of overlapping segments with colors 1,2, and colors greater than 2. Segments R1, R2, . . . , Rk

are positioned in the lower left corner of the picture.

Such a construction relies on a constant-size gadget, which allows us to turn or split the
reference coloring. The construction of this gadget is depicted in Figure 5. Note that the
number of segments in this gadget is constant if k is constant. Moreover, turning or splitting
the reference coloring of fewer than k colors can be obtained by a simple adaptation of the
turning gadget. Indeed, suppose we want to introduce a turning gadget for the set of colors
C ⊆ [k], with |C| = k′ < k and we have k′ overlapping segments carrying these colors.
We introduce k − k′ dummy segments, overlapping these segments. The dummy segments
will clearly receive colors from [k] \ C, but we do not know which segment will get which
color. Now we introduce a turning gadget for k colors. We know which segments leaving the
turning gadget get colors in C (and we precisely know which segment gets which color). We
do not need he remaining segments anymore, so we can finish them as soon as they leave
the turning gadget.

Now, the only thing left is to connect every segment in every gadget to appropriate
segments carrying the reference coloring (note that each yj` belongs to some (in)equality
gadget). This can easily be done using a constant number of additional segments per gadget:
we introduce a turning gadget for k colors, and finish the segments that are not needed
anumore before they intersect the segments in gadgets (see Figure 6).

The total size of the construction increases by a constant factor, as we introduce O(n)
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Figure 5 Turning gadget for k = 4 colors. The parallel segments depicted close to each other
are overlapping. Observe that the depicted 4-coloring is the only possible (up to the permutation
of colors). For k > 4 the turning gadget is analogous.

xi

yj`

c

a b yj1 yj2 yj3

a
b

c

d

Figure 6 Simulation of lists for vertices in (in)equality gadgets and satisfiability gadgets. Ho-
rizontal violet lines denote tuples of overlapping segments, carrying the reference coloring (all k
colors). In the vertical lines, segments carrying unnecessary colors are finished before they intersect
the segments of the gadgets.

constant-size turning gadgets. Thus an algorithm for k-coloring the constructed 2-Dir graph
in time 2o(n′) could be used to solve any 3-Sat instance in time 2o(n), refuting the ETH. J

Observe that the construction in the proof of Theorem 7 cannot be performed with
segments of bounded lengths, since segments xi and yjk need to have length O(n) (while the
segments inside the gadgets can have unit length). For unit segments, we show the following
weaker lower bound.

I Theorem 9. For every k > 4, List k-Coloring of a unit 2-Dir graph or k-Coloring
of a unit 3-Dir cannot be solved in time 2o(n2/3), unless the ETH fails.

Proof. Consider a 3-Sat instance with variables v1, v2, . . . , vn and clauses C1, C2, . . . , Cm,
where m = Θ(n). By duplicating some literals if necessary, we may assume that each clause
contains exactly three literals.

Let us start with a reduction to List k-Coloring in unit 2-Dir. For each clause Cj
we introduce three vertical unit segments, each corresponding to one literal in Cj . These
segments will be called literal segments. We place them in such a way that the distance
between the leftmost and the rightmost literal segment is slightly smaller than 1/2. The
ordering of the segments is the following: first, the literal segments corresponding to the
clause C1, then literal segments corresponding to the clause C2 and so on. Moreover, they
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are slightly shifted vertically, so that the y-coordinates of their top endpoints form an in-
creasing sequence. We set the list of possible colors for each literal segment to {3, 4} and
for each three literal segments corresponding to a single clause, we introduce a satisfiability
gadget already shown in Figure 3. We will interpret 3 as assigning the value true to the
particular literal (and 4 will correspond to false). Figure 7 shows how the placement of
literal segments and satisfiability gadgets. Analogously, for each variable v, we introduce a

Figure 7 Placement of satisfiability gadgets. Segments in one color correspond to one clause.
Literal segments are depicted by thick lines. Note that all segments can be freely extended to the
left and to the bottom, to make them unit.

vertical segment for each occurrence of v (we call these segments occurrence segments) with
list {3, 4}. The segments are placed in such a way that the distance between the leftmost
and the rightmost occurrence segment is slightly smaller than 1/2. Moreover, leftmost oc-
curence segments correspond to v1, then we put the segments for v2 etc. For a variable vi for
i ∈ [n], we introduce a horizontal segment, intersecting the occurrence segments of variables
vi, vi+1, . . . , vn. These segments will be called variable segments. The variable segments are
pairwise disjoint and each has list {1, 2}. Again, we will interpret 1 as the value true given
to a variable, and 2 will denote false. Now we need to ensure that the truth assignment
defined by the coloring of occurrence segments is consistent. For this, we will use a slightly
modified version of the (in)equality segment introduced in Figure 2. The modified gadget
is shown in Figure 8. For a variable v and its positive occurrence, we introduce an equality

y

x

a b

vertex list
x 3,4
y 1,2
a 3,2
b 4,1

Lists in the
equality gadget.

vertex list
x 3,4
y 1,2
a 3,1
b 4,2

Lists in the
inequality gadget.

Figure 8 Modified equality and inequality gadgets. The segment x is an occurrence segment
and the segment y is a variable segment. Segments a, b, and x overlap.

gadget joining the occurrence segment and the variable segment. Analogously, we introduce
an inequality gadget joining the variable segment and the occurrence segment corresponding
to a negative occurrence. The placement of all these segments is shown in Figure 9.

Now we need to make sure that the truth assignment given by the coloring of literal
segments is consistent with the truth assignment given by the coloring of occurrence seg-
ments. We will do it in a very similar way as we synchronized the colorings of occurrence
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Figure 9 Placement of variable and occurrence segments along with (in)equality gadgets. Seg-
ments in one color correspond to one variable. Literal segments are depicted by thick lines. Thin
horizontal lines are variable segments and thin vertical lines are parts of (in)equality gadgets.

segments, i.e., by using auxiliary horizontal lines and equality gadgets. Let `1, `2, . . . , `3m
denote the literals ordered as their corresponding literal segments (from left to right). Let
o1, o2, . . . , o3m be the ordering of occurrences, again from left to right. Let σ be the per-
mutation of [3m], such that the literal `i corresponds to the occurrence oσ(i). Now, for every
i ∈ [n], we want to introduce an equality gadget between the literal segment corresponding
to `i and the occurrence segment corresponding to oσ(i).

We observe that this is quite easy to do if σ is either increasing or decreasing. As shown
by Brandstädt and Kratsch [7], each permutation of [3m] can be partitioned into at most
z := d

√
6m+ 1/4−1/2e = O(

√
n) monotone sequences. Their proof is constructive and can

be easily transformed into a polynomial algorithm finding such a partition. Let σ1, σ2, . . . , σz
be the partition of σ, where each σi is monotone. We introduce z layers, each corresponding
to one σi. The ith layer is responsible to synchronize the colorings of literal segments and
occurrence segments corresponding to elements of σi (we call such segments important for
layer i). Figure 10 shows a single layer. Note that each layer contains copies of all literal
segments and occurrence segments. They appear in two groups – literal segments on the
left and occurrence segments on the right. The distance between leftmost and rightmost
segment in one group is slightly less than 1/2, and the distance between the rightmost literal
segment and the leftmost occurrence segment is slightly less than 2. This allows us to fit two
equality gadgets, whose horizontal segments are collinear but non-overlapping (see Fig. 10
and notice that we can adjust the distances within groups and between the groups, so that
the distance between the horizontal segments is always positive and smaller than 1). For
each such a pair we introduce k−1 overlapping segments with lists {1, 2, . . . , k}, intersecting
both of them and nothing else.

literal segments

occurrence segments

Figure 10 A single layer i. Thick colored segments indicate corresponding literal and occurrence
segments, which are important for layer i. Thin colored segments are parts of equality gadgets.
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The last thing to do is to connect the literal segments (with (in)equality gadgets), layers,
and occurrence segments with satisfiability gadgets. We place the occurrence segments at
the bottom, and then we introduce layers in such a way that the corresponding vertical
segments are collinear but non-intersecting. Finally, the literal segments with satisfiability
gadgets are put on top. Let s1 and s2 be collinear vertical segments and let s1 be above
s2. If s1 is an important literal segment of the ith layer, then there are two segments a, b
belonging to the appropriate equality gadget, which are covering the lower endpoint of s1.
We introduce k − 3 vertical segments q1, q2, . . . , qk−3, intersecting only s1,a,b (so its upper
endpoint is below the horizontal segment of the equality gadget, where a and b belong), and
set their lists to {1, 2, . . . , k}. We adjust the distance between the layers, so that a, b, and
q intersect s2, but no other vertex of its layer.

The situation is analogous if s2 is an important occurrence segment of ith layer. Finally,
if none of s1, s2 is an important segment of a layer, we introduce k−1 overlapping segments
q1, q2, . . . , qk−1 with lists {1, 2, . . . , k}, intersecting s1, s2, and no other previously construc-
ted segment. This way s1 and s2 are non-adjacent, but they are both intersected by three
pairwise intersecting segments. This ensures that s1 and s2 will receive the same color. The

(in)equality gadgets

layer 1

layer 2

layer z

satisfiability gadgets

. . .

y
x

a
b

Figure 11 Overall construction (left). Modified equality gadgets in a unit 3-DIR graph (right).

number of segments in each layer is O(n) and the number of layers is z = O(
√
n). Thus the

total number of segments in our construction is O(n3/2). This implies that an algorithm
solving List k-Coloring on unit 2-Dir graphs with N vertices in time 2o(N2/3) could be
used to solve 3-Sat with n variables in time 2o(n), which contradicts the ETH.

If we want to obtain a reduction to the non-list k-Coloring for any k > 4, we need to
transport the reference coloring to each gadget. However, this cannot be done for segments
a, b in our (in)equality gadgets (recall Theorem 8 and Figure 8), which have non-trivial lists
and are fully covered by other segments – note that if a segment in color 4 intersects a, it
will also intersect x (note that the segments with lists {1, 2, . . . , k}, even if they are fully
covered, are not problematic since they do not need the reference coloring). But if we use a
third direction, we can make a, b intersect x and y (again, we use notation in Figure 8) and
no other vertex with non-trivial list in our grid-like structure – it is enough to choose their
slope to be “almost vertical” (see Fig. 11). This shows the claimed lower bound, for every
k > 4, for k-Coloring of unit 3-Dir graphs and completes the proof. J

We show that on segment graphs, Min Dominating Set, Min Connected Dominat-
ing Set, and Min Independent Dominating Set are unlikely to admit a subexponential
algorithm.
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I Theorem 10. Min (Connected) Dominating Set cannot be solved in time 2o(n) on
segment graphs with n vertices, unless the ETH fails.

Proof. Using standard tricks we can transform an arbitrary 3-Sat formula ψ with N ′ vari-
ables and M ′ clauses into an equivalent Cnf-Sat formula φ with N = O(N ′) variables
and M = O(M ′) clauses, where each variable appears exactly twice positively and twice
negatively.

Put M pairwise-disjoint small segments on a circle as shown in Figure 12; M slightly
perturbed points work as long as no two pairs define the same direction. Each small segment
s(Cj) represents a distinct clause Cj . For each literal σxi, where xi is one of the N variables
appearing in φ and σ ∈ {∅,¬}, we add a segment s(σxi) crossing only the two small segments
s(Cj) and s(Cj′) corresponding to the clauses this literal satisfies. We prolong all the
segments corresponding to literals to make them pairwise intersect.

For each pair of literals xi,¬xi, we add a small segment s(i) near the intersection of
s(xi) and s(¬xi) which intersects only s(xi) and s(¬xi). This finishes the construction (see
Figure 12). Note that the total number of segments is n := 3N+M = Θ(N). We claim that
there is a dominating set of size N in the intersection graph if and only if φ is satisfiable.

Indeed, to dominate all the segments s(i) for i ∈ [N ], one has to take exactly one of s(xi)
and s(¬xi). The choice of the literals will only dominate all the segments s(Cj) for j ∈ [M ]
if the chosen dominating set corresponds to a satisfying assignment. The reverse direction
is straightforward.

Moreover, as every pair of segments representing literals intersects, the dominating set
encoding the satisfiable assignment is connected (it even induces a clique). J

s(C1)

s(C2)

s(C3)
s(C4)

s(C5)

s(C6)

s(C7)
s(C8)

s(C9)

σ(1)

σ(2)

σ(3)

σ(4)σ(x1)

σ(¬x1)

Figure 12 An example with 9 clauses and 6 variables. The segments σ(xi) and σ(¬xi) can be
inferred from σ(i) or from the colors (although we only specified which is which for variable x1).
Observe that the light blue and purple pairs do not intersect inside the circle so those segments
should be prolonged outside it until they meet (this part is not shown in the picture).

The hardness proof for Min Independent Dominating Set has to be quite different
and is trickier.

I Theorem 11. Min Independent Dominating Set cannot be solved in time 2o(n) on
segment graphs with n vertices, unless the ETH fails.
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Proof. We reduce from 3-SAT on N variables and M clauses, where each literal appears
at most four times, and each clause contains exactly three literals. This restriction was
shown NP-complete by Tovey [41]. We can further assume that each literal appears at most
three times. Indeed, if the same literal appears four times, then by definition its negation
cannot appear in the whole instance. Hence, the variable can be set so as to satisfy the four
corresponding clauses.

The variable gadget G(xi) for variable xi consists of three parallel segments Ti repres-
enting positive occurrences crossing three parallel segments Fi representing negative occur-
rences. Those two sets of segments intersect three dummy pairs of parallel segments as
shown on Figure 13. Note that even if a literal appears strictly fewer than three times, we
keep exactly three parallel segments to encode it.

The clause gadget G(Cj) for the clause Cj consists of three pairwise crossing segments,
drawn in blue in Figure 13, each of which crosses one red segment. Each pair of blue and red
segment corresponds to one of literals of Cj . Additionally, all blue segments are intersected
by four parallel dummy segments, and each pair of crossing blue and red segment has a
private segment, crossing both of them.

Fi Ti

Figure 13 The variable gadget G(xi) for the variable xi (left) and the clause gadget G(Cj) for
the clause Cj (right).

Now, for every literal (¬)xi belonging to the clause Cj , we add a new segment denoted
by (¬)xi ∈ Cj . This segment crosses one non-dummy segment in G(xi): a segment of Ti if
the literal is positive, and a segment of Fi otherwise. Moreover, it crosses one literal (red)
segment from G(Cj), and no other segments in variable and clause gadgets, see Figure 14.
Those lastly introduced segments cross exactly once each literal segment and at most once
each segment of

⋃
i∈[n] Ti ∪ Fi.

We claim that such a constructed graph has an independent dominating set of size at
most 3N + 3M if and only if the initial formula is satisfiable.

First, suppose that A is a satisfying assignment. If xi is set to true by A, we select the
three segments of Ti in the solution, otherwise we select the three segments of Fi. Now
consider a clause Cj . Since A is satisfying, it contains at least one true literal. In G(Cj) we
select the blue segment corresponding to a true literal and the red segments corresponding
to the other two literals. Note that this way we select 3N + 3M segments and the selected
set dominates all segments from all gadgets. Let us consider a segment (¬)xi ∈ Cj . Either
it is dominated by one of the selected red segments in G(Cj). Or it corresponds to a true
literal of Cj , so it is dominated by a selected segment in G(xi).

On the other hand, assume that there is an independent dominating set S of size at most
3N + 3M . Notice that in order to dominate all dummy segments in G(xi), we need to select
at least three segments from G(xi), and if we want to select exactly three, we need to choose
either all segments in Ti, or all segments in Fi. Analogously, we need to select at least three
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F1 T1

G(x1)

F2 T2

G(x2)

F3 T3

G(x3)

F4 T4

G(x4)

F5 T5

G(x5)

G(C1) G(C2) G(C3) G(C4) G(C5) G(C6)

¬x1 ∈ C4

Figure 14 The overall picture. We only represented two clauses: C3 = ¬x2 ∨ x3 ∨ x5 and
C4 = ¬x1 ∨ ¬x2 ∨ ¬x5.

segments from each G(Cj), and if we want to select exactly three, we need do choose one
of blue segments and thus we cannot choose its corresponding red segment. Note that since
the total size of S is 3N + 3M , we need to select exactly three segments in each gadget, and
no segment (¬)xi ∈ Cj is selected.

We define the assignment A as follows: if segments Ti are in S, then xi is set true, and
otherwise xi is set false. Suppose that Cj is not satisfied by A, which means that all its
literals are false. This means that the three segments joining appropriate variable gadgets
with G(Cj) are not dominated by segments in variable gadgets, so S must contain all three
red segments from G(Cj). However, this way the horizontal segments from G(Cj) are not
dominated, a contradiction.

The total number of segments is bounded by 12N + 13M + 3M = O(N + M), so the
claim holds. J

I Theorem 12. Max Clique cannot be solved in time 2o(n) on strings graphs with n

vertices, unless the ETH fails.

Proof. We reduce from 3-Sat with a linear number of clauses, where every clause contains
exactly three literals. Let φ be an instance with N variables and M = Θ(N) clauses. For
any positive integers p and s, the co-cluster CCp,s = Ks,s,...,s (p times) can be represented as
in Figure 15. We encode the N variables by 2N curves representing true and false for each
variable by a co-cluster CCN,2 and theM = Θ(N) clauses by 3M curves each representing a
distinct literal in a clause by a co-cluster CCM,3. There are in total n := 2N + 3M = Θ(N)
curves. We make the 2N variable curves intersect the 3M literal curves in a grid-like way.
They form an almost complete biclique K2N,3M where 3M edges are removed.

More precisely, the literal curve c(lji ) (j ∈ [M ], i ∈ [3]) intersects every variable curve
but c(σxk) (k ∈ [N ]) encoding the k-th variable with sign σ ∈ {∅,¬} for which lji and σwk
are opposite literals (see Figure 16). It is easy to observe that there is a clique of size N+M

if and only if φ has a satisfying assignment. J
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Figure 15 Realization of a co-cluster CCp,s = Ks,s,...,s with s = 3 and p = 7.

c(¬x1)
c(x1)

c(¬x2)
c(x2)

c(¬x3)
c(x3)

c(¬x4)
c(x4)

c(¬x5)
c(x5)

c(¬x6)
c(x6)

x3 ∨ x1 ∨ ¬x6

Figure 16 The representation of 3 clauses: x3 ∨ x1 ∨ ¬x6, x5 ∨ ¬x4 ∨ ¬x2, and ¬x3 ∨ x4 ∨ ¬x6.

4 Perspectives

We have started a generalized optimality program on segment and string graphs for the
most principal graph problems. On the algorithmic side, we extended a subexponential
algorithm for Max Independent Set on string graphs [18] to two other problems: 3-
Coloring and Min Feedback Vertex Set. On the complexity side, we showed that no
subexponential algorithm is likely for, among others, 4-Coloring, Min Dominating Set,
and Min Independent Dominating Set. It is quite easy to obtain such lower bounds for
string graphs. Extending those results to segments requires more ingenuity, and even more
so when it comes to unit segments.

A handful of questions remains unsettled. Can we improve the algorithm or give tight
ETH lower bounds for the following problems: Max Independent Set without geometric
representation, 3-Coloring, and Min Feedback Vertex Set on segments/strings? Can
we show for Max Clique the same lower bound for segment graphs as we have for string
graphs. The mere NP-hardness of Max Clique on segments [8] answered a long-standing
open question. Hence, it is likely that getting a tight ETH hardness will be difficult. We
would also find interesting to have, for a certain problem, an algorithm for segments (resp.
unit segments) which beats the ETH lower bound on strings (resp. segments). So far, we
only have candidate problems for such a “separation”.

Finally, another natural continuation of this work is to determine which fixed-parameter
tractable problems can be solved in time O∗(2Õ(k2/3)) or O∗(2Õ(

√
k)), and which W[1]-

hard problems can be solved in time f(k)nO(
√
k) on segments and strings. For instance,

Min Vertex Cover can be solved in time O∗(2Õ(k2/3)) (even in time O∗(2Õ(
√
k)) if a
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geometric representation is given with O∗(2Õ(
√
k)) intersections) on string graphs due to

the linear kernel yielding an equivalent instance on 2k vertices and the algorithm for Max
Independent Set. The latter problem can be solved in nO(

√
k) in segments or more

generally in polygons of polynomial complexity [31], while Min Dominating Set on string
graphs cannot be solved in time f(k)no(k), for any computable function f , unless the ETH
fails (since this lower bound holds for split graphs).
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