
Algorithmica manuscript No.
(will be inserted by the editor)

Complexity of token swapping and its variants

Édouard Bonnet · Tillmann Miltzow ·
Paweª Rz¡»ewski

Received: date / Accepted: date

Abstract In the Token Swapping problem we are given a graph with a
token placed on each vertex. Each token has exactly one destination vertex,
and we try to move all the tokens to their destinations, using the minimum
number of swaps, i.e., operations of exchanging the tokens on two adjacent
vertices. As the main result of this paper, we show that Token Swapping is
W [1]-hard parameterized by the length k of a shortest sequence of swaps. In
fact, we prove that, for any computable function f , it cannot be solved in time
f(k)no(k/ log k) where n is the number of vertices of the input graph, unless the
ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm.

We also consider two generalizations of the Token Swapping, namely
Colored Token Swapping (where the tokens have colors and tokens of the
same color are indistinguishable), and Subset Token Swapping (where each
token has a set of possible destinations). To complement the hardness result,
we prove that even the most general variant, Subset Token Swapping, is
FPT in nowhere-dense graph classes.

Finally, we consider the complexities of all three problems in very restricted
classes of graphs: graphs of bounded treewidth and diameter, stars, cliques,

The extended abstract of this paper was presented at STACS 2017 [3]. The research was
partially supported by the ERC grant PARAMTIGHT: �Parameterized complexity and the
search for tight complexity results�, no. 280152.

É. Bonnet
Middlesex University, Department of Computer Science, London, UK
E-mail: edouard.bonnet@dauphine.fr

T. Miltzow
Université libre de Bruxelles (ULB), Brussels, Belgium
E-mail: t.miltzow@gmail.com

P. Rz¡»ewski
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw,
Poland
E-mail: p.rzazewski@mini.pw.edu.pl

2 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

and paths, trying to identify the borderlines between polynomial and NP-hard
cases.

1 Introduction

In recon�guration problems, we are interested to transform a combinatorial
or geometric object from one state to another, by performing a sequence of
simple operations. An important example is motion planning, where we want
to move an object from one con�guration to another. Elementary operations
are usually translations and rotations. It turns out that motion planning can
be reduced to the shortest path problem in some higher dimensional Euclidean
space with obstacles [8].

Finding the shortest �ip sequence between any two triangulations of a con-
vex polygon is a major open problem in computational geometry. Interestingly
it is equivalent to a myriad of other recon�guration problems of so-called Cata-
lan structures [4]. Examples include: binary trees, perfect matchings of points
in convex position, Dyck words, monotonic lattice paths, and many more.
Recon�guring permutations under various constraints is heavily studied and
usually called sorting.

An important class of recon�guration problems is a big family of problems
in graph theory that involves moving tokens, pebbles, cops or robbers along
the edges of a given graph, in order to reach some �nal con�guration [1, 5, 9,
11, 14, 16, 23, 31, 35]. In this paper, we study one of them.

The Token Swapping problem, introduced by Yamanaka et al. [36], �ts
nicely into this long history of recon�guration problems and can be regarded
as a sorting problem with special constraints.

v1 v2

v3v4

T1

T2

T3

T4

v1

v2

v3

v4

πstart

Fig. 1 Every token placement can be uniquely described by a permutation.

The problem is de�ned as follows, see also Figure 1. We are given an
undirected connected graph with n vertices v1, . . . , vn, a set of tokens T =
{t1, . . . , tn} and two permutations πstart and πtarget. These permutations are
called start permutation and target permutation, respectively. Initially vertex
vi holds token tπstart(i). In one step, we are allowed to swap tokens on a pair of
adjacent vertices, that is, if v and w are adjacent, v holds the token s, and w
holds the token t, then the swap between v and w results in the con�guration
where v holds t, w holds s, and all the other tokens stay in place. The Token

Complexity of token swapping and its variants 3

Swapping problem asks if the target con�guration can be reached in at most
k swaps. Thus, a solution for Token Swapping is a sequence of edges, where
the swaps take place. The solution is optimal if its length is shortest possible.
To see the correspondence to sorting note that every placement of tokens can
be regarded as a permutation and the target permutation can be regarded as
the sorted state.

Yamanaka et al. [36] observed that every instance of Token Swapping

has a solution, and its length is O(n2). Moreover, Ω(n2) swaps are someti-
mes necessary. It is interesting to note that although the problem in its full
generality was introduced only recently [36], some special cases were studied
before in the context of sorting permutations with additional restrictions (see
Knuth [24, Section 5.2.2] for paths, Pak [30] for stars, Cayley [6] for cliques,
and Heath and Vergara [19] for squares of a path). Recently the problem was
also solved for a special case of complete split graphs (see Gaku et. al. [38]). It
is also worth mentioning that a very closely related concept of sorting permu-
tations using cost-constrained transitions was considered by Farnoud, Chen,
and Milenkovic [13], and Farnoud and Milenkovic[12].

The computational complexity of Token Swapping was investigated by
Miltzow et al. [28]. They show that the problem is NP-complete and APX-
complete. Moreover, they show that any algorithm solving Token Swapping
in time 2o(n) would refute the Exponential Time Hypothesis (ETH) [21]. The
results of Miltzow et al. [28] carry over also to a generalization of Token
Swapping, calledColored Token Swapping, �rst introduced by Yamanaka
et al. [37]. In this problem, vertices and tokens are partitioned into color classes.
For each color c, the number of tokens colored c equals the number of vertices
colored c. The question is whether k swaps are enough to reach a con�guration
in which each vertex contains a token of its own color. Token Swapping

corresponds to the special case where each color class comprises exactly one
token and one vertex. NP-hardness of Colored Token Swapping was �rst
shown by Yamanaka et al. [37], even in the case that only 3 colors exist.

We introduce Subset Token Swapping, which is an even further gene-
ralization of Token Swapping. Here a function D : T → 2V speci�es the set
D(t) of possible destinations for the token t. We ask if k swaps are enough
to reach a con�guration, when each token t is placed on a vertex from D(t).
Observe that Subset Token Swapping also generalizes Colored Token

Swapping. It might happen that there is no satisfying swapping sequence at
all to this new problem. Though, this can be checked in polynomial time by
deciding if there is a perfect matching in the bipartite token-destination graph.
Thus we shall always assume that we have a satis�able instance.

In this paper we continue and extend the work of Miltzow et al. [28].
They presented a very simple algorithm which solves the instance of Token
Swapping in nO(k) time and space, where k denotes the number of allowed
swaps. In Section 3 we show that this algorithm can be easily generalized
to Colored Token Swapping and Subset Token Swapping. Next, we
present a slightly slower exact algorithm, whose advantage is only polynomial
(in fact, only slightly super-linear) space complexity.

4 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

The algorithm by Miltzow et al. [28] shows that Token Swapping is in
XP. A natural next step is to investigate whether the problem can be solved
in FPT time (i.e., f(k) · nO(1), for some function f). There is some evidence
indicating that this could be possible. First, observe that if more than 2k
tokens are misplaced, then one can immediately answer that we deal with
a No-instance, as each swap involves exactly two tokens. Further, one can
safely remove all vertices from the graph that are at distance more than k
from all misplaced tokens. This preprocessing yields an equivalent instance,
where every connected component has diameter O(k2). Thus for bounded
maximum degree ∆ each component has size f(k), for some function f . The
connected components of f(k) size can be solved separately by exhaustively
guessing (still in FPT time) the number of swaps to perform in each of them.
Moreover, even the generalized Subset Token Swapping problem is FPT
in k +∆ (see Proposition 3). For those reasons, one could have hoped for an
FPT algorithm for general graphs. However, as the main result of this paper,
we show in Section 4 that this is not possible.

Theorem 1 (Parameterized Hardness) Token Swapping is W [1]-hard,
parameterized by the number k of allowed swaps. Moreover, assuming the ETH,
for any computable function f , Token Swapping cannot be solved in time
f(k)(n + m)o(k/ log k) where n and m are respectively the number of vertices
and edges of the input graph.

Observe that this lower bound shows that the simple nO(k)-time algorithm
is almost best possible. It is worth mentioning that the parameter for which
we show hardness is in fact number of swaps + number of initially misplaced
tokens + diameter of the graph, which matches the reasoning presented in the
previous paragraph.

To show the lower bound, we introduce handy gadgets called linkers. They
are simple and can be used to give a signi�cantly simpler proof of the lower
bounds given by Miltzow et al. [28]. One might also use them to establish a
simpler and potentially stronger inapproximability result.

Since there is no FPT algorithm for Token Swapping (parameterized by
the number k of swaps), unless FPT = W [1], a natural approach is to try
to restrict the input graph classes, in hope to obtain some positive results.
Indeed, in Section 5 we show that FPT algorithms exist, if we restrict our
input to the so-called nowhere-dense graph classes.

Theorem 2 (FPT in nowhere dense graphs) Subset Token Swapping

is FPT parameterized by k on nowhere-dense graph classes.

The notion of nowhere-dense graph classes has been introduced as a com-
mon generalization of several previously known notions of sparsity in graphs
such as planar graphs, graphs with forbidden (topological) minors, graphs with
(locally) bounded treewidth or graphs with bounded maximum degree.

Grohe, Kreutzer, and Siebertz [17] proved that every property de�nable as
a �rst-order formula ϕ is solvable in O(f(|ϕ|, ε)n1+ε) time on nowhere-dense
classes of graphs, for every ε > 0. We use this meta-theorem to show the

Complexity of token swapping and its variants 5

existence of an FPT time algorithm for Subset Token Swapping, restricted
to nowhere-dense graph classes. In particular, this implies the following results.

Corollary 3. Subset Token Swapping is FPT

(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

It is often observed that NP-hard graph problems become tractable on
classes of graphs with bounded treewidth (or, at least, with bounded tree-
depth; see Ne²et°il and Ossona de Mendez [29, Chapter 10] for the de�nition
and some background of tree-depth and related parameters). It is not uncom-
mon to see FPT algorithms running in time f(tw)nO(1) (or f(td)nO(1)) or XP
algorithms running in time nf(tw) (or nf(td)), for some computable functions
f . Especially, in light of Corollary 3 (a), we want to know if there exists an
algorithm that runs in polynomial time for constant treewidth. In Section 6 we
rule out the existence of such algorithms by showing that Token Swapping

remains NP-hard when restricted to graphs with tree-depth 4 (treewidth and
pathwidth 2; diameter 6; distance 1 to a forest).

Theorem 4 (Hard on Almost Trees) Token Swapping remains NP-
hard even when both the treewidth and the diameter of the input graph are
constant, and cannot be solved in time 2o(n), unless the ETH fails.

Table 1 shows the current state of our knowledge about the paramete-
rized complexity of Token Swapping (TS), Colored Token Swapping

(CTS), and Subset Token Swapping (STS) problems, for di�erent choices
of parameters.

k +∆ k + diam k, nowhere-dense tw+diam
/ k + tw

TS FPT ([28]) W[1]-h (Th 1) FPT paraNP-c (Th 4)
CTS FPT W[1]-h FPT paraNP-c
STS FPT (Prop 3) W[1]-h FPT (Th 2) paraNP-c

Table 1 The parameterized complexity of Token Swapping, Colored Token Swapping,
and Subset Token Swapping.

While we think that our results give a fairly detailed view on the complexity
landscape of Token Swapping, we also want to point out that our reductions
are signi�cantly simpler than those by Miltzow et al. [28].

Since the investigated problems seem to be immensely intractable, in Section
7 we investigate their complexities in very restricted classes of graphs, namely
cliques, stars, and paths. We focus on �nding the borderlines between easy (po-
lynomially solvable) and hard (NP-hard) cases. The summary of these results

6 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

is given in Table 2. Observe that on cliques Token Swapping is in P, while
Colored Token Swapping (and thus also Subset Token Swapping) is
NP-hard. On the other hand, on stars Colored Token Swapping (and thus
also Token Swapping) is in P and Subset Token Swapping is NP-hard.

trees cliques stars paths

TS ? P (see [28]) P (see [28]) P (see [28])
CTS ? NP-c (Th 10) P (Th 8) P (Th 12)
STS NP-c NP-c NP-c (Th 9) NP-c [18]

Table 2 The complexity of Token Swapping (TS), Colored Token Swapping (CTS),
and Subset Token Swapping (STS) on very restricted classes of graphs.

The paper is concluded with several open problems in Section 8.

2 Preliminaries

Yamanaka et al. [36] showed that in every instance of Token Swapping, the
length of the optimal solution is O(n2) and this bound is asymptotically tight
for paths. Here we show that long induced paths are the only structures forcing
solutions of superlinear length.

Proposition 1 The length of the optimal solution for Token Swapping in
an n-vertex Pr+1-free graph G is at most r · n.

Proof. We can assume that G is connected, since otherwise we can solve the
problem on connected components separately. Let P be the longest path in G
and let v be its end-vertex. Observe that G − v is connected (otherwise P is
not longest) and Pr+1-free. First, we move the token with destination v to this
vertex, which requires at most diam(G) 6 r swaps. Then we can recursively
continue with the graph G− v (we never touch v again). Such a solution has
length at most r · n.

Note that this bound is asymptotically tight � to see this, consider a graph,
whose every connected component is isomorphic to Pr and has the reverse
permutation of tokens (if we want to have our instance connected, we can
add one additional vertex, adjacent to one of the end-vertices of each path,
and put a well-placed token on it). Moreover, we observe that the bound from
Proposition 1 holds also for Colored Token Swapping and Subset Token
Swapping problems. Indeed, we can �x one destination for each of the tokens
(by choosing a perfect matching in the token-destination graph) to obtain
an instance of Token Swapping, whose solution is also the solution for the
original problem.

For a token t, let dist(t) denote the distance from the position of t to
its destination. For an instance I of Token Swapping, we de�ne L(I) :=

Complexity of token swapping and its variants 7∑
t dist(t), i.e., the sum of distances to the destination over all the tokens.

Clearly, after performing a single swap, dist(t) may change by at most 1. We
shall also use the following classi�cation of swaps: for x, y ∈ {−1, 0, 1}, x ≤ y,
by a (x/y)-swap we mean a swap, in which one token changes its distance by
x, and the other one by y. Intuitively, (−1/− 1)-swaps are the most �e�cient�
ones, thus we will call them happy swaps. Since each swap involves two tokens,
we get the following lower bound.

Proposition 2 ([28]) The length of the optimal solution for an instance I of
Token Swapping is at least L(I)/2. Besides, it is exactly L(I)/2 if and only
if there is a solution using happy swaps only.

When designing algorithms, especially for computationally hard problems,
it is natural to ask about lower bounds. However, the standard complexity
assumption used for distinguishing easy and hard problems, i.e., P 6= NP,
is too weak to tell us something meaningful about possible complexities of
algorithms. The stronger assumption that is typically used for this purpose is
the so-called Exponential Time Hypothesis (usually referred to as the ETH),
formulated by Impagliazzo and Paturi [21]. We refer the reader to the survey
by Lokshtanov, Marx, and Saurabh for more information about ETH and
conditional lower bounds [25]. The version we present below (and is most
commonly used) is not the original statement of this hypothesis, but its weaker
version (see also Impagliazzo, Paturi, and Zane [22]).

Exponential Time Hypothesis (Impagliazzo and Paturi [21]). There is no
algorithm solving every instance of 3-Sat with N variables and M clauses in
time 2o(N+M).

3 Algorithms

First, we prove that Subset Token Swapping (and therefore also Colored
Token Swapping as its restriction) is FPT in k + ∆, where k is the num-
ber of allowed swaps, and ∆ is the maximum degree of the input graph. This
generalizes the observation of Miltzow et al. [28] for Token Swapping. Furt-
hermore, we show that the simple algorithm for Token Swapping, presented
by Miltzow et al. [28], carries over to the generalized problems, i.e., Colored
Token Swapping and Subset Token Swapping. At last, we will present
an algorithm that has polynomial space complexity.

Proposition 3 Subset Token Swapping is FPT in k + ∆ and admits a
kernel of size 2k + 2k2 ·∆k.

Proof. Let I be an instance of Subset Token Swapping on a graph G with
maximum degree ∆ and suppose I has a solution s of length at most k.

Let Vm be the set of such vertices v of G, that the token initially placed
on v does not accept v as its destination. First, observe that every vertex from

8 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

Vm has to be involved in some swap in s. Thus we can assume that |Vm| ≤ 2k
(otherwise we immediately report a No-instance).

Let E′ be the set of edges that appear in s and let G′ be the subgraph of
G induced by E′. Consider a connected component C of G′. Suppose �rst that
the vertex set of C does not contain any vertex from Vm. Observe that the
sequence s′ obtained from s by removing all edges from C is also a solution for I
of length at most k. So, without loss of generality, every connected component
C of G′ contains a vertex from Vm, and has at most k edges. Let G′′ be
the subgraph of G induced by the vertices at distance at most k from Vm
(we �nd it by running a breadth-�rst search, starting from Vm). We observe
that every vertex incident to an edge in E′ is in G′′. Thus the instance I ′ of
Subset Token Swapping, restricted to G′′, is equivalent to I. Note that the
maximum degree of G′′ is at most ∆, and the number of vertices in G′′ is at
most 2k + 2k2∆k. Thus I ′ is a kernel for I.

Miltzow et al. [28] show that an optimal solution for Token Swapping can
be found by performing a breath-�rst-search on the con�guration graph, i.e.
a graph, whose vertices are all possible con�gurations of tokens on vertices,
and two con�gurations are adjacent when we can obtain one from another
with a single swap. We observe that the same approach works for Colored
Token Swapping and Subset Token Swapping, the only di�erence is that
we terminate on any feasible target con�guration.

Proposition 4 Let G be a graph with n vertices, and let k be the maximum
number of allowed swaps. The Colored Token Swapping and the Subset
Token Swapping problems on G can be solved in time:

� O(n! · n2) = 2O(n logn),
� nO(k) = 2O(k logn),

using exponential space.

The main drawback of such an approach is an exponential space complexity.
Here we show the following complementary result, inspired by the ideas of
Savitch [34].

Theorem 5 Let G be a graph with n vertices, and let k be the maximum
number of allowed swaps. Subset Token Swapping on G can be solved in
time 2O(n logn log k) = 2O(n log2 n) and space O(n log n log k) = O(n log2 n).

Proof. Consider the algorithm Reach (see Algorithm 1). It is easy to verify that
it returns true if the con�guration πs can be reached from the con�guration
π0 with exactly k swaps, and false otherwise.

The depth of the recursion is O(log k). The con�gurations can be gene-
rated with polynomial delay, using only linear (in n) memory. Thus the time
complexity of the algorithm is n!log k ·nO(1) = 2O(n logn log k). The space needed
to keep track of the recursive stack is O(n log n log k). Recall that k = O(n2)
� otherwise we immediately report a Yes-instance.

Complexity of token swapping and its variants 9

Algorithm 1: Reach(G, π0, πs, k)
Input: G = (V,E) � a graph, π0, πs � con�gurations of tokens on G, integer k ≥ 0

1 if k = 0 then
2 if π0 = πs then return true
3 else return false

4 if k = 1 then
5 foreach e ∈ E do
6 if πs can be obtained from π0 with a swap on e then
7 return true

8 return false

9 else
10 foreach con�guration π′ of tokens on G do
11 if Reach(G, π0, π′, dk/2e) = true and Reach(G, π′, πs, bk/2c) = true then
12 return true

13 return false

u1 u2

u3u4

V1 V2

V3

V4

ϕ(u1)

ϕ(u2)

ϕ(u3)

ϕ(u4)

Fig. 2 On the left is the pattern graph P ; on the right, the host graph H. We indicate the
image of ϕ with white vertices. To keep the example small, we did not make P 3-regular.

To use the algorithm for Subset Token Swapping, we can enumerate all
possible target con�gurations in n! · nO(1) = 2O(n logn) time and polynomial
space, and then solve the instance of Token Swapping for each of them.

4 Lower bounds on parameterized Token Swapping

Let us start by de�ning an auxiliary problem, calledMulticolored Subgraph

Isomorphism (also known as Partitioned Subgraph Isomorphism; see Fi-
gure 2).

In Multicolored Subgraph Isomorphism, one is given a host graph
H whose vertex set is partitioned into k color classes V1] V2] . . .] Vk
and a pattern graph P with k vertices: V (P) = {u1, . . . , uk}. The goal is
to �nd an injection ϕ : V (P) → V (H) such that uiuj ∈ E(P) implies that

10 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

ϕ(ui)ϕ(uj) ∈ E(H) and ϕ(ui) ∈ Vi for all i, j. Thus we can assume that
each Vi forms an independent set. Further, we assume without loss of gene-
rality that E(Vi, Vj) := {ab ∈ E(H) : a ∈ Vi, b ∈ Vj} is non-empty if and
only if uiuj ∈ E(P). In other words, we try to �nd k vertices v1 ∈ V1,
v2 ∈ V2, . . ., vk ∈ Vk such that, for any i < j ∈ [k],1 there is an edge be-
tween vi and vj if and only if E(Vi, Vj) is non-empty. The W [1]-hardness of
Multicolored Subgraph Isomorphism problem follows from the W [1]-
hardness of the Multicolored Clique. Marx [26] showed that assuming
the ETH,Multicolored Subgraph Isomorphism cannot be solved in time
f(k)(|V (H)|+ |E(H)|)o(k/ log k), for any computable function f , even when the
pattern graph P is 3-regular and bipartite (see also Marx and Pilipczuk [27]).
In particular, k has to be an even integer since |E(P)| is exactly 3k/2. We
�nally assume that for every i ∈ [k] it holds that |Vi| = t, by padding po-
tentially smaller classes with isolated vertices. This can only increase the size
of the host graph by a factor of k, and does not create any new solution nor
destroy any existing one.

Now we are ready to prove the following theorem.

Theorem 1 (Parameterized Hardness) Token Swapping is W [1]-hard,
parameterized by the number k of allowed swaps. Moreover, assuming the ETH,
for any computable function f , Token Swapping cannot be solved in time
f(k)(n + m)o(k/ log k) where n and m are respectively the number of vertices
and edges of the input graph.

Proof. To show parameterized hardness of Token Swapping, we introduce
a very handy linker gadget. This gadget has a robust and general ability to
link decisions. As such, it permits to reduce from a wide range of problems.
Its description is short and its soundness is intuitive. Because it yields very
light constructions, we can rule out fairly easily unwanted swap sequences. We
describe the linker gadget and provide some intuitive reason why it works (see
Figure 3).

Linker gadget. Given two integers a and b, the linker gadget La,b contains
a set of a vertices, called �nishing set and a path on a vertices, that we call
starting path. The tokens initially on vertices of the �nishing set are called local
tokens; they shall go to the vertices of the starting path in the way depicted in
Figure 3. The tokens initially on vertices of the starting path are called global
tokens. Global tokens have their destination in some other linker gadget. To
be more speci�c, their destination is in the �nishing set of another linker.

We describe and always imagine the �nishing set and the starting paths
to be ordered from left to right. Below the �nishing set and to the left of the
starting path, stand b disjoint induced paths, each with a vertices, arranged
in a grid, see Figure 3. We call those paths private paths. The private tokens
on private paths are already well-placed. Every vertex in the �nishing set is
adjacent to all private vertices below it and the leftmost vertex of the starting
path is adjacent to all rightmost vertices of the private paths.

1 For an integer p, by [p] we denote the set {1, . . . , p}.

Complexity of token swapping and its variants 11

local token

global token

private token

private paths

starting path

finishing set

︸ ︷︷ ︸

︸
︷︷

︸

a

b

Fig. 3 The linker gadget La,b. Black (private) tokens are initially properly placed. Dashed
arcs represent destinations of tokens of the �nishing set (they all go to the starting path).
In the intended solution, all local tokens are moved to a single private path (bottom left).
Next, they are swapped with the tokens on the starting path (bottom right). The global
tokens go to that private path.

For local tokens to go to the starting path, they must go through a private
path. As its name suggests, the linker gadget aims at linking the choice of the
private path used for every local token. Intuitively, the only way of bene�ting
from a2 happy swaps between the a local tokens and the a global tokens is to
use a unique private path (note that the destination of the global tokens will
make those swaps happy). That results in a kind of con�guration as depicted
in the bottom right of Figure 3, where each global token is in the same private
path. The fate of the global tokens has been linked.

Construction. We present a reduction from Multicolored Subgraph

Isomorphism with cubic pattern graphs to Token Swapping where the
number of allowed swaps is linear in k. Let (H,P) be an instance of Multico-

lored Subgraph Isomorphism. For any color class Vi = {vi,1, vi,2, . . . , vi,t}
of H, we add a copy of the linker L3,t that we denote by Li. We denote by
j1 < j2 < j3 the indices of the neighbors of ui in the pattern graph P . The lin-
ker Li will be linked to 3 other gadgets and it has t private paths (or choices).
The �nishing set of Li contains, from left to right, the vertices a(i, j1), a(i, j2),
and a(i, j3). We denote the tokens initially on the vertices a(i, j1), a(i, j2), and
a(i, j3) by local(i, j1), local(i, j2), local(i, j3), respectively.

12 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

Li

b(
i,
j 1
)

b(
i,
j 2
)

b(
i,
j 3
)

a
(i
,j

1
)

a
(i
,j

2
)

a
(i
,j

3
)

a(j1, i)

Lj1

a(j2, i)

Lj2

a(j3, i)

Lj3

U(i, 1)

U(i, 2)

U(i, 3)

U(i)

u(i, 3, j2)

global(i, j2)

local(i, j2)

U(i, 2)

Fig. 4 The di�erent labels for tokens, vertices, and sets of vertices.

The starting path contains, from left to right, vertices b(i, j1), b(i, j2), and
b(i, j3) with tokens global(i, j1), global(i, j2), and global(i, j3).

For each p ∈ [3], local(i, jp) shall go to vertex b(i, jp), whereas global(i, jp)
shall go to a(jp, i) in the gadget Ljp . Observe that the former transfer is
internal and may remain within the gadget Li, while the latter requires some
interplay between the gadgets Li and Ljp . For any h ∈ [t], by U(i, h) we denote
the h-th private path. This path represents the vertex vi,h. The path U(i, h)
consists of, from left to right, vertices u(i, h, j1), u(i, h, j2), u(i, h, j3). We set
U(i) :=

⋃
h∈[t]U(i, h). Initially, all the tokens placed on vertices of U(i) are

already well placed.
We complete the construction by adding an edge u(i, h, j)u(j, h′, i) whene-

ver vi,hvj,h′ is an edge in E(Vi, Vj) (see Figure 5). Let G be the graph that we
built, and let I be the whole instance of Token Swapping (with the initial
position of the tokens). We claim that (H,P) is a Yes-instance of Multico-

lored Subgraph Isomorphism if and only if I has a solution of length at
most ` := 16.5k = O(k). Recall that k is even, so 16.5k is an integer.

Correctness. (⇒) First assume that there is a solution {v1,h1
, v2,h2

, . . . , vk,hk
}

to the Multicolored Subgraph Isomorphism instance. We perform the
following sequence of swaps. The orderings that we do not specify among those
swaps are not important, which means that they can be done in an arbitrary
fashion. In each gadget Li, we �rst bring local(i, j3) to b(i, j3), then local(i, j2)
to b(i, j2), and �nally local(i, j1) to b(i, j1), each time passing through the
same private path U(i, hi). This corresponds to a total of 12 swaps per gadget
and 12k swaps in total. Note that global(i, jp) is moved to u(i, hi, jp). Now,
for each edge vi,hivj,hj of the host graph H (i.e., uiuj ∈ E(P)), we swap the
tokens global(i, j) and global(j, i). By construction of G, u(i, hi, j)u(j, hj , i) is
indeed an edge in E(G), so this swap is legal. This adds 3k/2 swaps. At this

Complexity of token swapping and its variants 13

v3,1

V3

v3,2

v3,3

v7,1

V7

v7,2

v7,3

u(3, 1, 7)

u(3, 2, 7)

u(3, 3, 7)

u(7, 1, 3)

u(7, 2, 3)

u(7, 3, 3)

E(V3, V7)

Fig. 5 The way linkers (in that case, L3 and L7) are assembled together, with t = 3.

point, the token global(j, i) is on vertex u(i, hi, j). Therefore, we move each
token global(j, i) to the vertex a(i, j) in one swap. This corresponds to 3k ad-
ditional swaps. Observe that it has also the e�ect of putting the private tokens
back to their original private path. Thus, every token is now well placed. The
overall number of swaps in this solution is 12k + 3k/2 + 3k = 16.5k = `.

(⇐) We now assume that there is a solution s to Token Swapping of
length at most `. We de�ne Y := {(i, j) |uiuj ∈ E(P)}. Note that (i, j) ∈ Y
implies (j, i) ∈ Y , and |Y | = 3k. We compute the sum L(I) of the distan-
ces token to destination. For any (i, j) ∈ Y , local(i, j) is at distance 4 of its
destination b(i, j) (via any private path). For any (i, j) ∈ Y , global(i, j) is at
distance 5 of its destination a(j, i) (following any private path of Li, then an
edge to gadget Lj , and a last edge to a(j, i)). The rest of the tokens are initi-
ally well-placed. Therefore, L := L(I) = (4 + 5) · 3k = 27k. By Proposition 2,
the length of any solution for I is at least 13.5k.

Claim 1. In any solution s for I, at least 3k initially well-placed tokens have
to move.

Proof of Claim 1. There are 3k local tokens and each has a disjoint neig-
hborhood from all the others. Furthermore, all tokens in their neighborhood
are private tokens, which are already well placed. �

In solution s, let x be the number of swaps between a well-placed token
and a misplaced token (in the best case, (−1/+ 1)-swaps), and y the number
of swaps between two well-placed tokens ((+1/ + 1)-swaps). Claim 1 implies
that x + 2y > 3k. Those x + y swaps increase the sum of distances token to

14 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

destination by 2y; its value reaches L + 2y. As ` 6 16.5k, there can only be
at most 16.5k − (x+ y) 6 13.5k + y = L+2y

2 other swaps. Therefore, all those
swaps shall be happy. It also implies that in each U(i) exactly 3 well-placed
tokens move in solution s. A last consequence is that all the swaps strictly
worse than (−1/+1)-swaps (that is, (0/+1)-swaps and (+1/+1)-swaps) have
to be swaps between two well-placed tokens.

Claim 2. In any solution s, no token local(i, j) leaves the gadget Li.

Proof of Claim 2. It should �rst be noted that the token local(i, j) can only
increase its distance to its destination by leaving Li. Let j1 < j2 < j3 be such
that (i, jl) ∈ Y for every l ∈ [3]. The distance of local(i, j) to its destination
is its distance to b(i, j1) plus l − 1. Besides, local(i, j) can only leave Li via a
vertex u(i, h, j′) with h ∈ [t] and (i, j′) ∈ Y . From this vertex, it can go to
u(j′, h′, i) for some h′ ∈ [t]. Now, the distance of local(i, j) to b(i, jl) is 2 if
l = 3, and at least 3 otherwise. In both cases, the swap that puts local(i, j)
cannot be happy. Therefore, by the consequences of Claim 1, it has to be a
swap with a well-placed token. That means that this swap is at best a (0/+1)-
swap. This is only possible if it is a (+1/ + 1)-swap between two well-placed
tokens; hence, a contradiction. �

Claim 3. For every i ∈ [k], the 3 tokens of U(i) which moved in solution s,
are in the same U(i, hi), for some hi ∈ [t].

Proof of Claim 3. Let j1 < j2 < j3 such that (i, j1), (i, j2), and (i, j3) are
all in Y . Consider the token local(i, j2). It �rst moves to a vertex u(i, hi, j2)
(for some hi ∈ [t]). By Claim 2, its only way to its destination b(i, j2) is via
u(i, hi, j3). This means that the token initially well-placed on u(i, hi, j3) is
one of those 3 tokens of U(i) which moved. Now, by considering the token
local(i, j1), the same argument shows that the three tokens of U(i) which are
moved by solution s are u(i, hi, j1), u(i, hi, j2), and u(i, hi, j3). �

We now claim that {v1,h1
, v2,h2

, . . . , vk,hk
} is a solution to theMulticolo-

red Subgraph Isomorphism instance. Indeed, for any (i, j) ∈ Y , global(i, j)
has to go to a(j, i). By Claim 3, it has to be via vertices of U(i, hi) and U(j, hj),
and there is an edge between those two sets only if vi,hi

vj,hj
∈ E(H).

The graph G has 3(t+ 2)k vertices and O(t2k2) edges. We recall that ` =
O(k). Therefore, any algorithm solvingToken Swapping in time f(`)(|V (G)|+
|E(G)|)o(`/ log `), for some computable function f , could be used to solveMul-

ticolored Subgraph Isomorphism in time f ′(k)(|V (H)|+|E(H)|)o(k/ log k);
and would contradict the ETH. This completes the proof of Theorem 1.

5 Token Swapping on nowhere-dense classes of graphs

As we have seen in Section 4, there is little hope for an FPT algorithm for
Token Swapping (parameterized by k), unless FPT = W [1]. Now let us

Complexity of token swapping and its variants 15

show that FPT algorithms exist, if we restrict our input to nowhere-dense
graph classes.

To de�ne nowhere-dense graphs, �rst let us introduce a notion of a shallow
minor. A shallow minor of a graph G at depth d is a subgraph of a graph
obtained from G by contracting subgraphs of G, each of radius at most d, into
single vertices, and removing loops and multiple edges. A class G is nowhere-
dense if for every d the class of shallow minors at depth d of graphs in G
has bounded clique number. For more information about this topic, we refer
the reader to the comprehensive book of Ne²et°il and Ossona de Mendez [29,
Chapter 13].

As graphs with bounded degree are nowhere-dense, this result generalizes
Proposition 3.

Theorem 2 (FPT in nowhere dense graphs) Subset Token Swapping
is FPT parameterized by k on nowhere-dense graph classes.

Proof. If we are able to express Subset Token Swapping as a �rst-order
formula, then the result follows immediately from the meta-theorem by Grohe,
Kreutzer, and Siebertz [17].

Theorem 6 (Grohe, Kreutzer, and Siebertz [17]) For every nowhere-
dense class C and every ε > 0, every property of graphs de�nable by a �rst-
order formula ϕ can be decided in time O(f(|ϕ|, ε) · n1+ε) on C, where f is
some function depending only on ϕ and ε.

We will de�ne the instance of Subset Token Swapping as a �rst-order
formula Φ≤k of size O(k4). Recall that if the length of an optimal solution is
k, then at most 2k tokens are swapped. In our formula variables will denote
vertices of G. The relation edge(x, y) denotes the existence of an edge xy.
The subsets of possible destinations of tokens will be represented by relation
target(x, y), which means that the vertex y is a possible destination for the
token initially starting on vertex x. Moreover, each token will be identi�ed by
its initial position.

Let Φk denote the formula encoding the solution of Subset Token Swap-
ping with exactly k swaps. If we are interested in a solution using at most k
swaps, it is given by Φ6k =

∨k
i=1 Φi.

We use variables to represent:

1. the �traced� tokens t1, t2, . . . , t2k that are involved in the solution (some of
them may stay intact, if the solution uses less than 2k tokens),

2. the �nal positions dest1, dest2, . . . , dest2k of the �traced� tokens (destj is
the �nal position of token tj),

3. the swaps s11, s
2
1, . . . , s

1
k, s

2
k (in the i-th swap we exchange the tokens on

edge s1i s
2
i),

4. the tokens that are swapped in the i-th swap for i = 1, 2, . . . , k � by st1i , st
2
i

we denote the tokens that were swapped in the i-th swap, i.e., stpi denotes
the token on vertex spi before performing the i-th swap,

16 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

5. the positions of �traced� tokens in each round � posj,i is the vertex, where
token tj is after i-th swap.

Now we are ready to present the formula Φk.

Φk =∃(t1, t2, . . . , t2k) (1)

∃(dest1, dest2, . . . , dest2k) (2)

∃(st11, st21, st12, st22, . . . , st1k, st2k) (3)

∃(s11, s21, s12, s22, . . . , s1k, s2k) (4)

∃(pos1,0, pos2,0, . . . , pos2k,0) (5)

∃(pos1,1, pos2,1, . . . , pos2k,1) (6)

∃(pos1,2, pos2,2, . . . , pos2k,2) (7)

... (8)

∃(pos1,k, pos2,k, . . . , pos2k,k) (9)

∀(x)(
2k∧
j=1

x 6= tj)→ target(x, x) (10)

∧
2k∧
j=1

2k∧
j′=1

(j 6= j′ → tj 6= tj′) (11)

∧
2k∧
j=1

target(tj , destj) (12)

∧
k∧
i=1

edge(s1i , s
2
i) (13)

∧
2k∧
j=1

posj,0 = tj (14)

∧
2k∧
j=1

posj,k = destj (15)

∧
k∧
i=1

 2k∨
j=1

st1i = tj ∧ posj,i = s1i

 (16)

∧
k∧
i=1

 2k∨
j=1

st2i = tj ∧ posj,i = s2i

 (17)

∧
k∧
i=1

2k∧
j=1

(
¬(st1i = tj ∨ st2i = tj)→ posj,i+1 = posj,i

)
(18)

Complexity of token swapping and its variants 17

∧
k∧
i=1

2k∧
j=1

2k∧
j′=1

(19)

(
(j 6= j′ ∧ st1i = tj ∧ st2i = tj′)→ (posj,i+1 = posj′,i ∧ posj′,i+1 = posj,i)

)
(20)

In lines 1�9 we de�ne the variables. Line 10 says that the tokens that are not
involved in any swaps are already at feasible positions. Line 11 ensures that
the traced tokens are pairwise di�erent. Lines 12 and 13 say that the �nal
positions of traced tokens should be feasible, and we can perform swaps only
on edges. In lines 14 and 15 we synchronize the values of variables posj,0 and
posj,k with variables tj and destj . In lines 16 and 17 we synchronize the values
of variables sp1i , sp

2
i and s1i , s

2
i . In line 18 we make sure that the tokens that

are not involved in the current swap, stay on their positions. Finally, in line 19
and 20 , we say that the tokens involved in the current swap exchange their
positions.

We derive the following corollary.

Corollary 3. Subset Token Swapping is FPT

(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

To see Corollary 3 (a), recall that bounded-treewidth graphs are nowhere-
dense. Therefore by Theorem 2 there exists an algorithm with running time
O(f(k)n1+ε), for any ε > 0 and treewidth bounded by some constant c. Ob-
serve that the constant hidden in the big-O notation depends on the constant
c. In particular c has no in�uence on the exponent of n.

6 Token Swapping on almost trees

This section is devoted to the proof of the following theorem.

Theorem 4 (Hard on Almost Trees) Token Swapping remains NP-
hard even when both the treewidth and the diameter of the input graph are
constant, and cannot be solved in time 2o(n), unless the ETH fails.

Proof. In Exact Cover by 3-Sets, we are given a �nite family, denoted by
S = {S1, S2, . . . , Sm}, of 3-element subsets of the universeX = {x1, x2, . . . , xn},
where 3 divides n. The goal is to �nd n/3 subsets in S that partition (or
here, equivalently, cover) X. The problem can be seen as a straightforward
generalization of the 3-Dimensional Matching problem. This problem is
NP-complete and has no 2o(n) algorithm, unless the ETH fails, even if each
element belongs to exactly 3 triples [2, 15]. Therefore we can reduce from the
restriction of the Exact Cover by 3-Sets problem, where each element
belongs to 3 sets of S, and obviously |S| = |X| = n.

18 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

Construction. For each set Sj ∈ S, we add a set gadget consisting of a tree
on 10 vertices (see Figure 6). In the set gadget, the four gray tokens should
cyclically swap as indicated by the dotted arrows: gji shall go where gji+1 is,
for each i ∈ [4] (addition is computed modulo 4). The three black tokens, as
usual, are initially well placed. The three remaining vertices are called element
vertices. They represent the three elements of the set. The tokens initially on
the element vertices are called element tokens. For each element of X, there
are 3 element tokens and 3 element vertices.

g0 g1 g2 g3

Fig. 6 The set gadget for red, green and blue. We voluntarily omit the superscript j.

We add a vertex c that is linked to all the element vertices of the set
gadgets and to all the vertices gj0. Each token originally on an element vertex
should cyclically go to its next occurrence (see Figure 7). The token initially
on c is well placed (it could be drawn as a black token).

.

c

Fig. 7 The overall picture. Each element appears exactly 3 times, so there are 3 red tokens.

The constructed graph G has 10n + 1 vertices. If one removes the vertex
c the remaining graph is a forest, which means that the graph has a feedback
vertex set of size 1 and, in particular, treewidth 2. G has its diameter bounded
by 6, since all the vertices are at distance at most 3 of the vertex c. We now
show that the instance S of Exact Cover by 3-Sets admits a solution if
and only if there exists a solution for our instance of Token Swapping of
length at most ` := 11 · n/3 + 9 · 2n/3 + 2n = 35n/3 = 11n+ 2n/3.

Soundness. The correctness of the construction relies mainly on the fact that
there are two competitive ways of placing the gray tokens. The �rst way is the
most direct. It consists of only swapping along the spine of the set gadget. By

Complexity of token swapping and its variants 19

spine, we mean the 7 vertices initially containing gray or black tokens. From
hereon, we call that swapping the gray tokens internally.

Claim 4. Swapping the gray tokens internally requires 9 swaps.

Proof of Claim 4. In 6 swaps, we can �rst move g3 to its destination (where
g0 is initially). Then, g0, g1, and g2 need one additional swap each to be
correctly placed. We observe that, after we do so, the black tokens are back
to their respective destination. �

We call the second way swapping the gray tokens via c. Basically, it is the
way one would have to place the gray tokens if the black tokens (except the
one in c) were removed from the graph. It consists of, �rst (a) swapping g0
with the token on c, then moving g0 to its destination, then (b) swapping g1
with the current token on c, moving g1 to its destination, (c) swapping g2 with
the token on c, moving g2 to its destination, �nally (d) swapping g3 with the
token on c and moving it to its destination.

Claim 5. Swapping the gray tokens via c requires 11 swaps.

Proof of Claim 5. Steps (a), (b), and (c) take 3 swaps each, while step (d)
takes 2 swaps. �

Considering that swapping the gray tokens via c takes 2 more swaps than
swapping them internally, and leads to the exact same con�guration where
both the black tokens and the element tokens are back to their initial position,
one can question the interest of the second way of swapping the gray tokens.
It turns out that, at the end of steps (a), (b), and (c), an element token is on
vertex c. We will take advantage of that situation to perform two consecutive
happy swaps with its two other occurrences. By doing so, observe that the �rst
swap of steps (b), (c), and (d) are also happy and place the last occurrence of
the element tokens at its destination.

We assume that there is a solution Sa1 , . . . , San/3
to the Exact Cover

by 3-Sets instance. In the corresponding n/3 set gadgets, swap the gray
tokens via c and interleave those swaps with doing the two happy swaps over
element tokens, whenever such a token reaches c. By Claim 5, this requires
11 · n/3 + 2n swaps. At this point, the tokens that are misplaced are the
4 ·2n/3 gray tokens in the 2n/3 remaining set gadgets. Swap those gray tokens
internally. This adds 9 ·2n/3 swaps, by Claim 4. Overall, this solution consists
of 29n/3 + 2n = 35n/3 = `.

Let us now suppose that there is a solution s of length at most ` to the
Token Swapping instance. At this point, we should observe that there are
alternative ways (to Claim 4 and Claim 5) of placing the gray tokens at their
destination. For instance, one can move g3 to g1 along the spine, place tokens
g2 and g3, then exchange g0 with the token on c, move g0 to its destination,
swap g3 with the token on c, and �nally move it to its destination. This also
takes 11 swaps but moves only one element token to c (compared to moving
all three of them in the strategy of Claim 5). One can check that all those
alternative ways take 11 swaps or more. Let r ∈ [0, n] be such that s does not

20 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

swap the gray tokens internally in r set gadgets (and swap them internally in
the remaining n− r set gadgets). The length of s is at least 11r + 9(n− r) +
2(n − q) + 4q = 11n + 2(r + q), where q is the number of elements of X for
which none occurrence of its three element tokens has been moved to c in the
process of swapping the gray tokens. Indeed, for each of those q elements, 4
additional swaps will be eventually needed. For each of the remaining n − q
elements, only 2 additional happy swaps will place the three corresponding
element tokens at their destination. It holds that 3r > n−q, since the element
tokens within the r set gadgets where s does not swap internally represent at
most 3r distinct elements of X. Hence, 3r+ q > n. Also, s is of length at most
` = 11n+2n/3, which implies that r+q 6 n/3. Thus, n 6 3r+q 6 3r+3q 6 n.
Therefore, q = 0 and r = n/3. Let Sa1 , . . . , San/3

be the n/3 sets for which s
does not swap the gray tokens internally in the corresponding set gadgets. For
each element of X, an occurrence of a corresponding element token is moved
to c when the gray tokens are swapped in one of those gadgets. So this element
belongs to one Sai and therefore Sa1 , . . . , San/3

is a solution to the instance of
Exact Cover by 3-Sets.

The ETH lower bound follows from the fact, that the size of constructed
graph is linear in n.

7 Variants of Token Swapping on stars, cliques, and paths

In this section we investigate the complexities of the variants of Token Swap-
ping on very simple classes of graphs.

Let us start with de�ning an auxiliary digraph, which will be useful in co-
ping with Colored Token Swapping. For an instance of Colored Token
Swapping on a graph G, we de�ne the color digraph G∗, whose vertices are
colors of tokens on G, and arcs correspond to vertices of G. The vertex v cor-
responds to the arc e(v) = cc′, such that c is the color of v and c′ is the color
of the token placed in v. Note that both loops and multiple arcs are possible.
There is a very close relation between color digraphs and Eulerian digraphs.

Observation 7. The following hold:

(i) if G∗ is the color digraph of some instance of Colored Token Swap-

ping, then every connected component of G∗ is Eulerian;
(ii) for every Eulerian digraph H with n edges, and for any graph G with n

vertices, there exists an instance of Colored Token Swapping on G,
such that its color digraph G∗ is isomorphic to H.

Proof. To see (i), consider a vertex c of G∗. Its out-degree is the number of
tokens placed on vertices with color c. The in-degree of c is the number of
tokens in color c. Thus the in-degree is equal the out-degree, from which (i)
follows.

Now, to see (ii), consider a vertex c of G∗, let d be its out-degree (equal to
the in-degree, as G∗ is Eulerian). Then in G give the color c to any d vertices.
Moreover, for each arc cc′ in G∗ we place a token in color c′ on a vertex in color

Complexity of token swapping and its variants 21

c. We repeat this for every vertex c in G∗, obtaining an instance of Colored
Token Swapping, whose color digraph is exactly G∗.

Now consider a solution s for the instance of Colored Token Swapping
in G and �x the destinations of tokens according to s. We observe that the
cycles in the permutation de�ned by these destinations correspond to circuits
in G∗. Thus, when trying to �nd a solution for an instance of Colored To-

ken Swapping, we will �rst try to �x appropriate destinations (by analyzing
circuits in G∗), and then we will solve the instance of Token Swapping.

7.1 Stars

To prove the next theorem we will use the following result by Pak [30]. We
state in the language of tokens and swaps, although the original motivation of
Pak was sorting a permutation by transpositions with the �rst element.

Lemma 1 (Pak [30]) Let I be an instance of Token Swapping on a star
with n leaves, with the initial con�guration of tokens π. If the decomposition
of π into cycles consists of one cycle involving the central vertex, m cycles of
length at least 2, and b cycles of length 1, then the length of an optimal solution
to I is n+m− b.

Theorem 8 Colored Token Swapping can be solved in polynomial time
on stars.

Proof. Let G be a star with center v0 and leaves v1, v2, . . . , vn. The color of
the vertex v will be denoted by c(v). Also, let c0 := c(v0).

First, suppose that there exists a leaf v, such that the token t that is
initially placed there has color c(v) as well. Let s be an optimal solution and
consider a permutation π of tokens given by s. We want to show that π(v) = v.
Using the solution of Pak [30], this implies that t is never swapped.

For the purpose of contradiction, suppose π(v) 6= v. Then, there exists a
token t′ initially on vertex u with π(u) = v and a vertex w with π(v) = w.
In other words, token t ends at vertex w. So neither u, v nor w is involved in
a 1-cycle, but all three vertices must have the same color. Thus we can alter
this solution to a new permutation π′, by setting π(v) = v and π(u) = w. This
increases the number b of 1-cycles by 1 and the number m stays the same.
This contradicts the optimality of s by Lemma 1 and we conclude π(v) = v.
Thus for any leaf v with a token t of color c(v) holds, that the solution does
not change after removal of v. Thus from now on we assume that no leaf v
contains a token colored with color c(v).

Consider the color digraph G∗. By the previous paragraph, we observe that
with just one possible exception c0c0, it has no loops. Let C0, C2, . . . , Cm be
the connected components of G∗, and let c0 ∈ C0. Moreover, for i ≥ 0, by pi
we denote the number of arcs in Ci. By Observation 7(i), the edges of G∗ can
be decomposed (in polynomial time) into m + 1 circuits (Eulerian circuits of
its connected components).

22 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

Let e(vi1), e(v
i
2), . . . , e(v

i
pi) be such a circuit for Ci, also we assume that

v01 = v0 (i.e. we start the circuit for C0 with the arc corresponding to v0). We
construct the swapping strategy s by concatenating sequences si, de�ned as
follows:

si =

{
v0v

0
2 , v0v

0
3 , . . . , v0v

0
p0 for i = 0,

v0v
i
1, v0v

i
2, v0v

i
3, . . . , v0v

i
pi for i > 0.

It is straightforward to verify that s is a solution for our problem and its length
is n+m. We claim this solution is optimal.

To see this, consider any solution s′. Let us consider the instance of Token
Swapping obtained by �xing the destinations of all tokens, according to s′.
Let q0, q1, . . . , qm′ be the cycles in the permutation given by the destinations,
and assume q0 contains vertex v0. By Lemma 1, the length of the optimal
solution of this instance of Token Swapping is exactly n +m′. We observe
that the set of colors of vertices in each cycle has to be entirely contained
in one of the components Ci, so m′ ≥ m, thus the length of s′ is at least
n+m′ ≥ n+m, which completes the proof.

Theorem 9 On stars, Subset Token Swapping remains NP-hard and can-
not be solved in time 2o(n) unless the ETH fails, even for target sets of size at
most 2.

Proof. We will reduce from the Directed Hamiltonian Cycle problem
restricted to digraphs with out-degree at most 2, which is known to be NP-
complete [32]. Moreover, it follows from the proof that the problem cannot be
solved in time 2o(n), unless the ETH fails (the original proof considers planar
instances, but if we drop the planarity assumption, we obtain claimed lower
bound).

Let G = (V,E) be a digraph with all out-degrees at most 2, we can assume
it has no loops. We will construct an instance (G′ = (V ′, E′), D) of Subset
Token Swapping with |D(v)| 6 2 for all v ∈ V ′, that has a solution of length
at most n+ 1 if an only if G has a Hamiltonian cycle.

The set V ′ is equal to V] {c} where c is the center of the star, and the
leaves are the vertices of G. For each v ∈ V ′ \ {c}, we set D(v) = NG(v) (the
set of out-neighbors of v in G) and D(c) = {c}.

Suppose G has a Hamiltonian cycle v1, v2, v3, . . . , vn (with v1 adjacent to
vn). It is easy to observe that the sequence cv1, cv2, . . . , cvn, cv1 of edges is a
solution for Colored Token Swapping with length n+ 1.

On the other hand, suppose there is a solution s′ for Subset Token

Swapping of length at most n+1. Since G has no loops, every token starting
at v ∈ V must be moved to c at some point. Moreover, in the last swap we have
to bring the token starting at c back to this vertex. Thus every feasible solution
uses at least n+ 1 swaps, which implies that the length of s′ is exactly n+ 1;
let s′ = cv1, cv2, . . . , cvn, cvn+1. Moreover, we have v1 = vn+1 and vi 6= vj for
all 1 ≤ i < j ≤ n. Thus we observe that v1, v2, v3, . . . , vn is a Hamiltonian
cycle in G.

Complexity of token swapping and its variants 23

7.2 Cliques

If G is a complete graph, then the optimal solution for Token Swapping is
n minus the number of cycles in the permutation given by initial positions
of tokens [6]. Thus, the problem is solvable in polynomial time. On the other
hand, we can show that Colored Token Swapping is NP-complete on cli-
ques. Before we prove it, let us prove an auxiliary lemma. In the Directed
Triangle Decomposition we are given a digraph H = (V,A), and we ask
whether the arc set A can be decomposed into disjoint directed triangles.

Lemma 2 Directed Triangle Decomposition is NP-complete, even if
the input digraph H = (V,A) is Eulerian and has no 2-cycles. Moreover, it
cannot be solved in 2o(|A|), unless the ETH fails.

Proof. For a given 3-Sat formula Φ with N variables and M clauses, we will
construct a digraph H, which can be decomposed into triangles if and only if
Φ is satis�able.

The main part of the construction is essentially the same as the con-
struction of Holyer [20], used to show NP-hardness of decomposing the edge
set of an undirected graph into triangles (or, more generally, k-cliques). Thus
we will just point out the modi�cations and refer the reader to the paper of
Holyer for a complete description.

We observe that by the proper adjustment of constants the graph G3 con-
structed by Holyer can be made three-partite (see also Colbourn [7]). Let
A,B,C denote the partition classes. We obtain H by orienting all edges of G3,
according to the following pattern A→ B → C → A. Note that clearly H has
no 2-cycles.

Consider a vertex v of G3. Without loss of generality assume v ∈ A. We
note that exactly half of the neighbors of v are in B, and the other half are in
C. This implies that H is Eulerian.

We also point out that the number of arcs in H is linear in the number of
vertices. Moreover, if we make the size of each variable gadget proportional to
the number of occurrences of this variable in Φ (instead of proportional to M ,
as in the original proof), we obtain that |A| = O(N +M). This shows that an
existence of a subexponential (in |A|) algorithm for our problem contradicts
the ETH.

Theorem 10 On cliques, Colored Token Swapping remains NP-hard
and cannot be solved in time 2o(n), unless the ETH fails.

Proof. We reduce from Directed Triangle Decomposition. Let H be an
Eulerian directed graph with n arcs, having no 2-cycles. Consider an instance
of Colored Token Swapping on G = Kn, such that H is its color di-
graph (it exists by Observation 7(ii)). We claim that there exists a solution
for this instance of length at most 2n/3 if and only if the arc set of H can be
decomposed into directed triangles (see Lemma 2).

Suppose that the arc set of H can be decomposed into n/3 triangles. The
vertices of G corresponding to the edges of the i-th triangle, are vi1, v

i
2, v

i
3.

24 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

We construct the solution s by concatenating sequences vi1v
i
2, v

i
1v
i
3 for i =

1, 2, . . . , n/3. It is easy to verify that s is a solution and its length is 2n/3.
So now suppose we have a solution s of length at most 2n/3. Recall that

the length of any solution s′ is at least n minus the number of cycles in the
permutation obtained by �xing the destinations of tokens according to s′. Thus
the number of cycles in the permutation given by s is at least n/3. Since these
cycles correspond to circuits in the color digraph H, and H has no 2-cycles,
this is only possible if the arcs of H can be decomposed into triangles.

It is interesting to point out that if G is a clique, then the presence of
many cycles in the permutation of tokens yields a short solution for Token
Swapping, while for the case when G is a star, the situation is opposite.

Theorems 9 and 10 can be used to show a slightly more general hardness
result. A class G of graphs is hereditary, if for any G ∈ G and any induced
subgraph G′ of G we have G′ ∈ G. We say that that a class G of graphs has
unbounded degree, if for every d ∈ N there exists G ∈ G, such that ∆(G) ≥ d.

Theorem 11 Let G be a hereditary class containing an in�nite number of
connected graphs with unbounded degree. Subset Token Swapping is NP-
complete, when restricted to graphs from G. Moreover, if there exists an al-
gorithm solving Subset Token Swapping in time 2o(n) for every graph in
G ∈ G with n vertices, then the ETH fails.

Proof. We shall reduce from Directed Hamiltonian Cycle in digraphs
with out-degree at most 2. Let H be such a digraph with n vertices.

First, assume that K1,n ∈ G. Then we are done by Theorem 9. So assume
that K1,n /∈ G. Since G is hereditary, we know that K1,n′ /∈ G for any n′ ≥ n.
Since decomposing the arc set of an Eulerian digraph with no 2-cycles into
directed triangles is NP-complete (see Lemma 2), there exists a polynomial
reduction from Directed Hamiltonian Cycle to this problem. Consider
the digraph H∗ obtained with this reduction. Its arc set can be decomposed
into triangles if and only if H has a Hamiltonian cycle. Let m denote the
number of edges in H∗ and set N = max(m,n).

By Ramsey theorem [33] (see also Erd®s, Szekeres [10]) we know that there
exists an absolute constant c such that every graph with more than c · 4N
vertices has either a clique or an independent set of size N .

Since G has unbounded degree, there exists a graph G ∈ G, such that
∆(G) ≥ c · 4N . Let v be a vertex of G with degree at least c · 4N and let G′ be
a subgraph of G induced by the neighborhood of v. If G′ has an independent
set U of size N , then G[U ∪ {v}] ∼ K1,N , so we obtain a contradiction (recall
that G is hereditary). Thus G′ has a subset C inducing a clique of size N .
Since G is hereditary and N ≥ m, we obtain that Km ∈ G. Thus we can use
the construction from Theorem 10.

7.3 Paths

Finally, we turn our attention to paths.

Complexity of token swapping and its variants 25

Theorem 12 Colored Token Swapping can be solved in polynomial time
on paths.

Proof. Let c be the color of the vertex v at the left end of the path. Let t be the
leftmost token with color c. It is clear that no optimal solution contains a swap
involving two tokens of the same color, so in any optimal solution the token t
will end up in v. Repeat this argument with the second leftmost vertex, and
so on. This way we �x the destinations for all tokens, obtaining an equivalent
instance of Token Swapping, which can be solved in polynomial time (see
[28]).

Now we will discuss the complexity of Subset Token Swapping on paths.
We want to point out an equivalent, interesting formulation of this problem.
Consider an instance I of Subset Token Swapping de�ned on a path with
n vertices v1, v2, . . . , vn. For a vertex vi, let ti denote the token initially placed
on vi, and let D(ti) denote the set of possible destinations of ti. Now consider a
bipartite graph G with bipartition classes {v1, v2, . . . , vn} and {t1, t2, . . . , tn}.
The edge tivj is present in G if and only if vj ∈ D(ti). Fix two distinct vertical
lines ` and `′ on a plane and �x the positions of vertices of G on these lines;
v1, v2, . . . , vn lie on ` (in this ordering from top to bottom), and t1, t2, . . . , tn
lie on `′ (also in this ordering from top to bottom); see Figure 8.

v1 v2 v3 v4

D
v1

v2

v3

v4

` `′G

Fig. 8 A bipartite graph G constructed from an instance of Subset Token Swapping on
a path.

Consider a feasible solution s of I and let σ be the permutation assigning
destinations to tokens, according to s. Since after �xing the destinations we
obtain an instance of Token Swapping, which is polynomially solvable on
paths, we observe that each feasible solution s for I corresponds to a perfect
matching in G (and vice versa).

Recall that the number of swaps required to solve an instance of Token
Swapping on a path is equal to the number of inversions in the initial permu-
tation of tokens. Suppose there is such an inversion in σ, i.e. σ(ti) > σ(tj) for

26 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

some i < j. Observe that this is exactly equivalent to saying that the edges
tiσ(ti) and tjσ(tj) of G cross (see Figure 8).

So let us formally de�ne the problem Minimum Crossing Bipartite

Matching, which is equivalent to Subset Token Swapping on a path. The
instance of Minimum Crossing Bipartite Matching is (G, k), where k is
an integer and G is a bipartite graph with n vertices in each bipartition class.
Moreover, the vertices of G are positioned on two parallel lines, one for each
bipartition class. We can also assume that G has at least one perfect matching.
The problem asks if G has a perfect matching with at most k pairwise crossing
pairs of edges.

The problem Minimum Crossing Bipartite Matching (and thus also
Subset Token Swapping on paths) was recently shown to be NP-hard by
Gu±piel [18].

Theorem 13 (Gu±piel [18]) Subset Token Swapping remains NP-hard
for paths, even if each token has at most 2 possible destinations, and each
vertex is a destination of at most 2 tokens. Moreover, the problem cannot be
solved in time 2o(n) (where n is the number of vertices of the path), unless the
ETH fails.

This result allows us to generalize Theorem 11 to all hereditary classes of
graphs.

Theorem 14 Let G be a hereditary class containing an in�nite number of con-
nected graphs. Subset Token Swapping is NP-complete, when restricted to
graphs from G. Moreover, if there exists an algorithm solving Subset Token
Swapping in time 2o(n) for every graph in G ∈ G with n vertices, then the
ETH fails.

Proof. If G has unbounded degree, then the claim holds by Theorem 11. On
the other hand, if there is a constant d, such that ∆(G) ≤ d for all G ∈ G,
then G contains all paths. Indeed, let n be an integer and let G ∈ G be a graph
with at least n · dn vertices (it always exists, since G is in�nite). Run a BFS
algorithm on G, starting from an arbitrary vertex, and consider the obtained
BFS-layers. The number of such layers is at least n, so G contains Pn as an
induced subgraph. Since G is hereditary, we have Pn ∈ G. The claim follows
by Theorem 13.

8 Conclusion

We conclude the paper with several ideas for further research. First, we believe
that it would be interesting to �ll the missing entries in Table 2. In particular,
we conjecture that Token Swapping remains NP-complete even if the input
graph is a tree.

Another interesting problem is the following. By Miltzow et al. [28, The-
orem 1] (see also Proposition 4), Token Swapping can be solved in time

Complexity of token swapping and its variants 27

2O(n logn), and there is no 2o(n) algorithm, unless the ETH fails. We conjecture
that the lower bound can be improved to 2o(n logn). It would also be interesting
to �nd single-exponential algorithms for some restricted graph classes, such as
graphs with bounded treewidth or planar graphs.

Finally, to prove Corollary 3, we use the powerful and very general meta-
theorem by Grohe, Kreutzer, and Siebertz [17]. It would be interesting to
obtain elementary FPT algorithms for planar graphs and graph with bounded
treewidth (or even trees), just as we did for graphs with bounded degree.

References

1. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways, for Your
Mathematical Plays: Games in particular, volume 2. Academic Pr, 1982.

2. H. L. Bodlaender and J. Nederlof. Subexponential time algorithms for
�nding small tree and path decompositions. In ESA 2015 Proc., pages
179�190. Springer, 2015.

3. É. Bonnet, T. Miltzow, and P. Rzazewski. Complexity of Token Swapping
and its Variants. In H. Vollmer and B. Vallée, editors, 34th Symposium
on Theoretical Aspects of Computer Science (STACS 2017), volume 66
of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1�
16:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl�Leibniz-Zentrum fuer
Informatik.

4. P. Bose and F. Hurtado. Flips in planar graphs. Computational Geometry,
42(1):60�80, 2009.

5. G. Calinescu, A. Dumitrescu, and J. Pach. Recon�gurations in graphs and
grids. In LATIN 2006 Proc., pages 262�273. Springer, 2006.

6. A. Cayley. LXXVII. Note on the theory of permutations. Philosophical
Magazine Series 3, 34(232):527�529, 1849.

7. C. J. Colbourn. The complexity of completing partial latin squares. Dis-
crete Applied Mathematics, 8(1):25 � 30, 1984.

8. M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Com-
putational geometry. In Computational geometry, pages 1�17. Springer,
2000.

9. E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito,
H. Ono, Y. Otachi, R. Uehara, and T. Yamada. Linear-time algorithm for
sliding tokens on trees. Theoretical Computer Science, 600:132�142, 2015.

10. P. Erd®s and G. Szekeres. Classic Papers in Combinatorics, chapter A
Combinatorial Problem in Geometry, pages 49�56. Birkhäuser Boston,
Boston, MA, 1987.

11. R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia,
and D. R. Wood. Token graphs. Graphs and Combinatorics, 28(3):365�
380, 2012.

12. F. Farnoud, C. Y. Chen, O. Milenkovic, and N. Kashyap. A graphical
model for computing the minimum cost transposition distance. In Infor-
mation Theory Workshop (ITW), 2010 IEEE, pages 1�5, Aug 2010.

28 Édouard Bonnet, Tillmann Miltzow, Paweª Rz¡»ewski

13. F. Farnoud and O. Milenkovic. Sorting of permutations by cost-
constrained transpositions. IEEE Trans. Information Theory, 58(1):3�23,
2012.

14. E. Fox-Epstein, D. A. Hoang, Y. Otachi, and R. Uehara. Sliding token on
bipartite permutation graphs. In K. Elbassioni and K. Makino, editors,
Algorithms and Computation, volume 9472 of Lecture Notes in Computer
Science, pages 237�247. Springer Berlin Heidelberg, 2015.

15. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theor. Comput. Sci., 38:293�306, 1985.

16. D. Graf. How to sort by walking on a tree. In ESA 2015 Proc., pages
643�655. Springer, 2015.

17. M. Grohe, S. Kreutzer, and S. Siebertz. Deciding �rst-order properties of
nowhere dense graphs. In STOC 2014 Proc., pages 89�98. ACM, 2014.

18. G. Gu±piel. Complexity of �nding perfect bipartite matchings minimizing
the number of intersecting edges. CoRR, abs/1709.06805, 2017.

19. L. S. Heath and J. P. C. Vergara. Sorting by short swaps. Journal of
Computational Biology, 10(5):775�789, 2003.

20. I. Holyer. The NP-Completeness of Some Edge-Partition Problems. SIAM
J. Comput., 10(4):713�717, 1981.

21. R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367 � 375, 2001.

22. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512�530, 2001.

23. T. Kasai, A. Adachi, and S. Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574�586, 1979.

24. D. E. Knuth. The Art of Computer Programming, volume 3 / Sorting and
Searching. Addison-Wesley, 1982. ISBN 0-201-03803-X.

25. D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41�72, 2011.

26. D. Marx. Can you beat treewidth? Theory of Computing, 6(1):85�112,
2010.

27. D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar
facility location problems using voronoi diagrams. CoRR, abs/1504.05476,
2015.

28. T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno.
Approximation and Hardness of Token Swapping. In P. Sankowski and
C. Zaroliagis, editors, 24th Annual European Symposium on Algorithms
(ESA 2016), volume 57 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 66:1�66:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl�
Leibniz-Zentrum fuer Informatik.

29. J. Ne²et°il and P. Ossona de Mendez. Sparsity - Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

30. I. Pak. Reduced decompositions of permutations in terms of star trans-
positions, generalized Catalan numbers and k-ARY trees. Disc. Math.,
204(1):329 � 335, 1999.

Complexity of token swapping and its variants 29

31. T. D. Parsons. Pursuit-evasion in a graph. In Theory and applications of
graphs, pages 426�441. Springer, 1978.

32. J. Plesník. The NP-Completeness of the Hamiltonian Cycle Problem in
Planar Digraphs with Degree Bound Two. Inf. Process. Lett., 8(4):199�
201, 1979.

33. F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc.
(3), 30:264�286, 1930.

34. W. J. Savitch. Relationships Between Nondeterministic and Deterministic
Tape Complexities. J. Comput. Syst. Sci., 4(2):177�192, 1970.

35. R. M. Wilson. Graph puzzles, homotopy, and the alternating group. Jour-
nal of Combinatorial Theory, Series B, 16(1):86 � 96, 1974.

36. K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi, Y. Oka-
moto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno. Swapping labeled
tokens on graphs. In FUN 2014 Proc., pages 364�375. Springer, 2014.

37. K. Yamanaka, T. Horiyama, D. G. Kirkpatrick, Y. Otachi, T. Saitoh,
R. Uehara, and Y. Uno. Swapping colored tokens on graphs. In WADS
2015 Proc., pages 619�628, 2015.

38. G. Yasui, K. Abe, K. Yamanaka, and T. Hirayama. Swapping labeled to-
kens on complete split graphs. SIG Technical Reports, 2015-AL-153(14):1�
4, 2015.

	Introduction
	Preliminaries
	Algorithms
	Lower bounds on parameterized Token Swapping
	Token Swapping on nowhere-dense classes of graphs
	Token Swapping on almost trees
	Variants of Token Swapping on stars, cliques, and paths
	Conclusion

