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Abstract
In the Token Swapping problem we are given a graph with a token placed on each vertex.
Each token has exactly one destination vertex, and we try to move all the tokens to their des-
tinations using the minimum number of swaps, i.e., operations of exchanging the tokens on two
adjacent vertices. As the main result of this paper, we show that Token Swapping is W [1]-
hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for
any computable function f , it cannot be solved in time f(k)no(k/ log k) where n is the number of
vertices of the input graph, unless the ETH fails. That lower bound almost matches the trivial
nO(k)-time algorithm.

We also consider two generalizations of the Token Swapping, namely Colored Token
Swapping (where the tokens have different colors and tokens of the same color are indistinguish-
able), and Subset Token Swapping (where each token has a set of possible destinations). To
complement the hardness result, we prove that even the most general variant Subset Token
Swapping is FPT in nowhere-dense graph classes.

Finally, we consider the complexities of all three problems in very restricted classes of graphs:
graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the
borderlines between polynomial and NP-hard cases.
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1 Introduction

A big family of problems in graph theory involves moving tokens along the edges of a given
graph, in order to reach some final configuration [1, 4, 6, 15]. In this paper we study on of
them, namely, the Token Swapping problem introduced by Yamanaka et al. [16]. The
instance of this problem is a connected graph G = (V,E) (where |V | = n) and an initial
configuration of tokens given by a permutation π0 : V → T with T := {tv | v ∈ V }. For
any vertex v of the graph, π0(v) = tw is interpreted as „the token initially on v is tw”. Since
π0 is a permutation, there is exactly one token on each vertex. A swap operation consists
of interchanging the tokens of two adjacent vertices. The target configuration satisfies that
the token on each vertex v ∈ V is precisely tv. The Token Swapping problem asks if the
target configuration can be reached in at most k swaps. Thus, a solution for the Token
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Swapping problem is a sequence of edges, where the swaps take place. The solution is
optimal if its length is shortest possible. Yamanaka et al. [16] observed that every instance
of Token Swapping has a solution, and its length is O(n2). Moreover, Ω(n2) swaps are
sometimes necessary.

It is interesting to note that although the problem in its full generality was introduced
only recently [16], some special cases were studied before in different contexts (see Knuth
[10, Section 5.2.2] for paths, Pak [13] for stars, and Cayley [2] for cliques).

The complexity of the Token Swapping problem was investigated by Miltzow et al.
[12]. They show that the problem is NP-complete and APX-complete. Moreover, they show
that an algorithm solving the Token Swapping problem in time 2o(n) would refute the
ETH.

The results of Miltzow et al. [12] carry over also to some generalization of the Token
Swapping problem, called Colored Token Swapping. In this problem, vertices and
tokens are partitioned into color classes. For each color c, the number of tokens colored
c equals the number of vertices colored c. NP-hardness of Colored Token Swapping
was first shown by Yamanakaet al. [17], even in the case that only 3 colours exist. In this
setting, the goal is to reach, with the minimum number of swaps, a configuration in which
each vertex contains a token of its color. Token Swapping corresponds to the special case
where each color class comprises exactly one token and one vertex.

The Subset Token Swapping problem is even further generalization of Token Swap-
ping where a function D : T → 2V specifies the set D(t) of possible destinations D(t)
for token t. Observe that Subset Token Swapping also generalizes Colored Token
Swapping. It might happen that there is no satisfying swapping sequence at all to this new
problem. Though, this can be checked in polynomial time by deciding if there is a perfect
matching in the bipartite token-destination graph. Thus we shall always assume that we
have a satisfiable instance.

In this paper we continue and extend the work of Miltzow et al. [12]. As the main
contribution, we show in Section 3 that Token Swapping is W [1]-hard parameterized by
the number of swaps k.

I Theorem 1 (Parameterized hardness). Unless the ETH fails, for any computable function f ,
Token Swapping cannot be solved in time f(k)(n)o(k/ log k) where k is the allowed number
of swaps, and n equals the number of vertices of the input graph.

We even show that, under the ETH, the brute-force algorithm running in time nO(k) is
almost the best possible. Let us explain why this result was not that predictable. Observe
that if more than 2k tokens are misplaced, then one can claim that it is a NO-instance.
Further, one can safely remove from the graph all the vertices that are at distance more
than k of every misplaced tokens. This preprocessing yields a new graph whose connected
components have diameter O(k2). The connected components of f(k) size can be solved
separately by exhaustively guessing (in FPT time) the number of swaps to perform in each
of them. For those reasons, one could have hoped for an FPT algorithm. Indeed, the
parameter for which we show hardness is in fact number of swaps + number of initially
misplaced tokens + diameter of the graph.

For the proof of Theorem 1, we introduce linker gadgets. They are simple and can be
used to give a significantly simpler proof of the lower bounds given by [12].

I Theorem 2 (Exact Lower Bound [12]). Token Swapping is NP-hard and is not solvable
in 2o(n) on graphs with n vertices, unless the ETH fails.
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It seems that the linker gadget can be used to show inapproximability lower bounds as
well. A discussion can be found in Section 6.1 of the appendix.

Although there is no FPT algorithm for the Token Swapping problem (parameterized
by k = number of swaps), unless FPT = W [1], we show that FPT algorithms exist, if we
restrict our input to the so-called nowhere-dense graph classes. The notion of nowhere-dense
graph classes has been introduced as a common generalization of several previously known
notions of sparsity in graphs such as planar graphs, graphs with forbidden (topological)
minors, graphs with (locally) bounded treewidth or graphs with bounded maximum degree.
Grohe, Kreutzer, and Siebertz [7] proved, that every property definable as a first-order
formula, is solvable in O(n1+ε) time on nowhere-dense classes of graphs, for all ε > 0. The
formal definition of nowhere-dense graphs is rather involved, so we refer the reader to the
paper of Grohe, Kreutzer, and Siebertz [7].

I Theorem 3. Subset Token Swapping is FPT parameterized by k on nowhere-dense
graph classes.

We defer this proof into Section 6.2 of the appendix.
We derive the following corollary.

I Corollary 4. Subset Token Swapping is FPT

(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

It is often observed that NP-hard graph problems becomes tractable on classes of graphs
with bounded treewidth (or, at least, with bounded tree-depth1); be it with FPT algorithms
running in time f(tw)nO(1) (or f(td)nO(1)) or XP algorithms in time nf(tw) (or nf(td)) for
some computable functions f . We rule out such algorithms by showing that Token Swap-
ping remains hard when restricted to graphs with tree-depth 4 (treewidth and pathwidth
2, diameter 6, distance 1 to a forest).

I Theorem 5 (Hardness for restricted graphs). Token Swapping remains NP-hard even
when both the treewidth and the diameter of the input graph are constant.

It might very well be that Token Swapping is NP-hard on trees. In contrast, we give
an algorithm for Colored Token Swapping on stars using some connection to Eulerian
graphs.

I Theorem 6 (Colored Token Swapping on stars). Colored Token Swapping can
be solved in polynomial time on stars.

Complimentary to this, we can show that Subset Token Swapping is already hard on
stars. This gives an example of a graph class that distinguishes Subset Token Swapping
and Colored Token Swapping.

I Theorem 7 (Subset Token Swapping on stars). On stars, Subset Token Swapping
remains NP-hard and cannot be solved in time 2o(n) unless the ETH fails, even for target
sets of size at most 2.

Recall that Token Swapping can be solved easily on cliques. The following theorem
shows hardness of Colored Token Swapping on cliques. This gives an example of a
graph class that distinguishes Token Swapping and Colored Token Swapping.

1 We do not define tree-depth here since it is only a side observation.
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I Theorem 8. On cliques, Colored Token Swapping remains NP-hard and cannot be
solved in time 2o(n) unless the ETH fails.

In order to get a more complete picture, we considered paths and got the following result.

I Theorem 9. Colored Token Swapping can be solved in polynomial time on paths.

In Section 5, we give a summary of our results and some open questions. The proofs of
Theorem 6, 7 and Theorem 8 can be found in Section 6.3 of the appendix.

2 Preliminary results

Yamanaka et al. [16] showed, that in every instance of the Token Swapping problem,
the length of the optimal solution is O(n2) and this bound is asymptotically tight for paths.
Here we show that long induced paths are the only structures forcing solutions of superlinear
length. We leave the proof as an excercise.

I Proposition 10. The length of the optimal solution for Token Swapping in an n-vertex
Pr+1-free graph G is at most r · n.

We observe that the bound from Proposition 10 holds also for Colored Token Swap-
ping and Subset Token Swapping problems. Indeed, we can fix one destination for each
of the tokens (by choosing a perfect matching in the token-destination graph) to obtain an
instance of Token Swapping problem, whose solution is also the solution for the original
problem.

For a token t, let dist(t) denote the distance from the position of t to its destination.
For an instance I of the Token Swapping problem, we define L(I) :=

∑
t dist(t), i.e., the

sum of distances to the destination over all the tokens. Clearly, after performing a single
swap, dist(t) may change by at most 1. We shall also use the following classification of
swaps: for x, y ∈ {−1, 0, 1}, x ≤ y, by a (x/y)-swap we mean a swap, in which one token
changes its distance by x, and the other one by y. Intuitively, (-1/-1)-swaps are the most
„efficient”, thus we will call them happy swaps. Since each swap involves two tokens, we get
the following lower bound.

I Proposition 11. The length of the optimal solution for an instance I of Token Swapping
is at least L(I)/2. Besides, it is exactly L(I)/2 iff there is a solution with only happy swaps.

Miltzow et al. [12] show that an optimal solution for the Token Swapping problem can
be found by performing a breath-first-search on the configuration graph (i.e. a graph, whose
vertices are all possible configurations of tokens on vertices, and two configurations are adja-
cent when we can obtain one from another with a single swap). We point out that the same
approach works for the Colored Token Swapping and the Subset Token Swapping
problems, the only difference is that we terminate on any feasible final configuration.

For a later purpose, we define here the Multicolored Subgraph Isomorphism prob-
lem (see Figure 1). In Multicolored Subgraph Isomorphism, one is given a host graph
H whose vertex set is partitioned into k color classes V1 ] V2 ] . . .] Vk and a pattern graph
P with k vertices: V (P ) = {u1, . . . , uk}. The goal is to find an injection ϕ : V (P )→ V (H)
such that uiuj ∈ E(P )⇒ ϕ(ui)ϕ(uj) ∈ E(H) and ϕ(ui) ∈ Vi. Thus we can assume that each
Vi forms an empty set. Further, we assume without loss of generality that Ei,j := E(Vi, Vj)
is non-empty iff vivj ∈ E(P ). In other words, we try to find k vertices v1 ∈ V1, v2 ∈ V2, . . .,
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u1
u2

u3

u4

V1 V2

V3

V4

ϕ(u1)

ϕ(u2)

ϕ(u3)

ϕ(u4)

Figure 1 On the left is the pattern graph P ; on the right, the host graph H. We indicate the
image of ϕ with white vertices. To keep the example small, we did not make P 3-regular.

vk ∈ Vk such that, for any i < j ∈ [k],2 there is an edge between vi and vj iff Ei,j := E(Vi, Vj)
is non-empty. As shown by Marx [11], Multicolored Subgraph Isomorphism cannot be
solved in time f(k)(|V (H)|+|E(H)|)o(k/ log k), for any computable function f , even when the
pattern graph P is 3-regular and bipartite. In particular, k has to be an even integer since
|E(P )| is exactly 3k/2. We finally assume that ∀i ∈ [k], |Vi| = t, by padding potentially
smaller classes with isolated vertices. This can only increase the size of the host graph by a
factor of k, and does not create any new solution nor destroy any existing one.

3 Lower Bounds on parameterized Token Swapping

This section is devoted to the proof of the following theorem.

I Theorem 1 (Parameterized hardness). Unless the ETH fails, for any computable function f ,
Token Swapping cannot be solved in time f(k)(n)o(k/ log k) where k is the allowed number
of swaps, and n equals the number of vertices of the input graph.

Linker gadget. To show parametrized hardness of the Token Swapping problem, we
introduce a very handy linker gadget. This gadget has a robust and general ability to link
decisions. As such, it permits to reduce from a wide range of problems. Its description is
short and its soundness is intuitive. Because it yields very light constructions, we can rule
out fairly easily unwanted swap sequences. A quite direct usage of linker gadgets also gives
an alternative proof of Theorem 2.

We describe the linker gadget and provide some intuitive reason why it works (see Fig-
ure 2). Given two integers, the linker gadget La,b contains a set of a vertices, called finishing
set and a path of length a, that we call starting path. The tokens initially on vertices of the
finishing set are called local tokens; they shall go to the vertices of the starting path in the
way depicted in Figure 2. The tokens initially on vertices of the starting path are called
global tokens. Global tokens have their destination in some other linker gadget. To be more
specific, their destination is in the finishing set of another linker.

We describe and always imagine the finishing set and the starting paths to be ordered
from left to right. Below the finishing set and to the left of the starting path, stand b

2 Throughout the paper, we denote {1, . . . , p} by [p] for any positive integer p
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disjoint induced paths each of length a arranged in a grid, see Figure 2. We call those paths
private paths. The private tokens on private paths are already well-placed. Every vertex in
the finishing set is adjacent to all private vertices below it and the leftmost vertex of the
starting path is adjacent to all rightmost vertices of the private paths.

local token

global token

private token

private paths

starting path

finishing set

Figure 2 The linker gadget La,b. Black tokens are initially properly placed. Dashed arcs represent
where tokens of the finishing set should go in the starting path. At the bottom left, we depict the
gadget after all the local tokens are swapped to a single private path. At the bottom right, we see
the result after swapping all the local tokens to the starting path. In this case, the global tokens
go to that private path.

For local tokens to go to the starting path, they must go through a private path. As
its name suggests, the linker gadget aims at linking the choice of the private path used for
every local token. Intuitively, the only way of benefiting from a2 happy swaps3 between the
a local tokens and the a global tokens is to use a unique private path. That results in a kind
of configuration as depicted in the bottom right of Figure 2, where each global token is in
the same private path. The fate of the global tokens has been linked.

Construction. We present a reduction from Multicolored Subgraph Isomorphism
with cubic pattern graphs to Token Swapping where the number of allowed swaps is
linear in k. For any color class Vi = {vi,1, vi,2, . . . , vi,t} of the Multicolored Subgraph
Isomorphism instance (H,P ), we add a copy of the linker L3,t that we denote by Li. We
denote by j1 < j2 < j3 the indices of the neighbors of ui in the pattern graph P . L3,t will
be linked to 3 other gadgets and it has t private paths (or choices). The finishing set of Li

contains, from left to right, the vertices a(i, j1), a(i, j2), and a(i, j3). We denote the tokens
initially on the vertices a(i, j1), a(i, j2), and a(i, j3) by local(i, j1), local(i, j2), local(i, j3),
respectively.

3 The destination of the global tokens will make those swaps happy.
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Li

b(
i,
j 1
)

b(
i,
j 2
)

b(
i,
j 3
)

a
(i
,j

1
)

a
(i
,j

2
)

a
(i
,j

3
)

a(j1, i)

Lj1

a(j2, i)

Lj2

a(j3, i)

Lj3

U(i, 1)

U(i, 2)

U(i, 3)

U(i)

u(i, 3, j2)

global(i, j2)

local(i, j2)

U(i, 2)

Figure 3 The different labels for tokens, vertices, and sets of vertices.

The starting path contains, from left to right, vertices b(i, j1), b(i, j2), and b(i, j3) with
tokens global(i, j1), global(i, j2), and global(i, j3).

For each p ∈ [3], local(i, jp) shall go to vertex b(i, jp), whereas global(i, jp) shall go to
a(jp, i) in the gadget Ljp . Observe that the former transfer is internal and may remain
within the gadget Li, while the latter requires some interplay between the gadgets Li and
Ljp . For any h ∈ [t], we name U(i, h) the h-th private path. This path represents the vertex
vi,h. The path U(i, h) is made of, from left to right, vertices u(i, h, j1), u(i, h, j2), u(i, h, j3).
We set U(i) :=

⋃
h∈[t] U(i, h). Initially, all the tokens placed on vertices of U(i) are already

well placed.

v3,1

V3

v3,2

v3,3

v7,1

V7

v7,2

v7,3

u(3, 1, 7)

u(3, 2, 7)

u(3, 3, 7)

u(7, 1, 3)

u(7, 2, 3)

u(7, 3, 3)

E3,7 = E(V3, V7)

Figure 4 The way linkers (in that case, L3 and L7) are assembled together, with t = 3.

We complete the construction by adding every edge of the form u(i, h, j)u(j, h′, i) whenever
vi,hvj,h′ is an edge in Ei,j (see Figure 4). We call G the graph that we built and I the whole
instance (with the initial position of the tokens). We ask for a solution of length at most
` := 16.5k = O(k). Recall that k is even, so 16.5k is an integer.
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Correctness. (⇒) We first assume that there is a solution {v1,h1 , v2,h2 , . . . , vk,hk
} to the

Multicolored Subgraph Isomorphism instance. We perform the following sequence of
swaps. The orderings that we do not specify among those swaps are not important; which
means that they can be done in an arbitrary fashion. In each gadget Li, we first bring
local(i, j3) to b(i, j3), then local(i, j2) to b(i, j2), and finally local(i, j1) to b(i, j1), each time
passing through the same private path U(i, hi). This corresponds to a total of 12 swaps per
gadget and 12k swaps in total. Note that global(i, jp) is moved to u(i, hi, jp). Now, for each
edge vi,hi

vj,hj
of the host graph H (i.e., uiuj ∈ E(P )), we swap the tokens global(i, j) and

global(j, i). By construction of G, u(i, hi, j)u(j, hj , i) is indeed an edge in E(G), so this swap
is legal. This adds 3k/2 swaps. At this point, the token global(j, i) is on vertex u(i, hi, j).
Therefore, we move the token global(j, i) to vertex a(i, j) in one swap. That corresponds to
3k additional swaps. Observe that it has also the effect of putting the private tokens back to
their original private path. Thus, every token is well placed. The overall number of swaps
of this solution is 12k + 3k/2 + 3k = 16.5k = `.

(⇐) We now assume that there is a solution s to Token Swapping of length at most
`. We define Y := {(i, j) | i 6= j ∧ uiuj ∈ E(P )}. Note that (i, j) ∈ Y implies (j, i) ∈ Y ,
and |Y | = 3k. We compute L(I) the sum of the distances token to destination. For any
(i, j) ∈ Y , local(i, j) is at distance 4 of its destination b(i, j) (via any private path). For any
(i, j) ∈ Y , global(i, j) is at distance 5 of its destination a(j, i) (following any private path of
Li, then an edge to gadget Lj , and a last edge to a(j, i)). The rest of the tokens are initially
well-placed. Therefore, L := L(I) = (4 + 5) · 3k = 27k. By Proposition 11, a solution for I
is at least of length 13.5k.

I Lemma 12. In any solution s for I, at least 3k initially well-placed tokens have to move.

Proof. There are 3k local tokens and each has a disjoint neighborhood from all the others.
Further all tokens in their neighborhood are private tokens, which are already well placed.

J

In solution s, let x be the number of swaps between a well-placed token and a misplaced
token (in the best case, (-1/+1)-swaps), and y the number of swaps between two well-placed
tokens ((+1/+1)-swaps). Lemma 12 implies that x+ 2y > 3k. Those x+ y swaps increase
the sum of distances token to destination by 2y; its value reaches L+2y. As ` 6 16.5k, there
can only be at most 16.5k − (x + y) 6 13.5k + y = L+2y

2 other swaps. Therefore, all those
swaps shall be happy. It also implies that, in each U(i) exactly 3 well-placed tokens move in
solution s. A last consequence is that all the swaps strictly worse than (-1/+1)-swaps (that
is, (0/+1)-swaps and (+1/+1)-swaps) have to be swaps between two well-placed tokens.

I Lemma 13. In any solution s, no token local(i, j) leaves the gadget Li.

Proof. It should first be noted that the token local(i, j) can only increase its distance to its
destination by leaving Li. Let j1 < j2 < j3 be such that ∀l ∈ [3], (i, jl) ∈ Y . The distance of
local(i, j) to its destination is its distance to b(i, j1) plus l − 1. Besides, local(i, j) can only
leave Li via a vertex u(i, h, j′) with h ∈ [t] and (i, j′) ∈ Y . From this vertex, it can go to
u(j′, h′, i) for some h′ ∈ [t]. Now, the distance of local(i, j) to b(i, j1) is 2 if l = 3, and at least
3 otherwise. In both cases, the swap that puts local(i, j) cannot be happy. Therefore, by the
consequences of Lemma 12, it has to be a swap with a well-placed token. That means that
this swap is at best a (0/+1)-swap. Which is only possible if it is a (+1/+1)-swap between
two well-placed tokens; hence, a contradiction. J

I Lemma 14. For every i ∈ [k], the 3 tokens of U(i) which moved in solution s, are in the
same U(i, hi), for some hi ∈ [t].
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Proof. Let j1 < j2 < j3 such that (i, j1), (i, j2), and (i, j3) are all in Y . Consider the token
local(i, j2). It first moves to a vertex u(i, hi, j2) (for some hi ∈ [t]). By Lemma 13, its only
way to its destination b(i, j2) is via u(i, hi, j3). Which means that the token initially well-
placed on u(i, hi, j3) is one of those 3 tokens of U(i) which moved. Now, by considering the
token local(i, j1), the same argument shows that the three tokens of U(i) which are moved
by solution s are u(i, hi, j1), u(i, hi, j2), and u(i, hi, j3). J

We now claim that {v1,h1 , v2,h2 , . . . , vk,hk
} is a solution to the Multicolored Sub-

graph Isomorphism instance. Indeed, for any (i, j) ∈ Y , global(i, j) has to go to a(j, i).
By Lemma 14, it has to be via vertices of U(i, hi) and U(j, hj), and there is an edge between
those two sets only if vi,hi

vj,hj
∈ E(H).

G has 3(t + 2)k vertices and O(t2k2) edges. We recall that ` = O(k). Therefore,
any algorithm solving Token Swapping in f(`)(|V (G)| + |E(G)|)o(`/ log `), for some com-
putable function f , would also solve Multicolored Subgraph Isomorphism in time
f(k)(|V (H)|)o(k/ log k); and would contradict the ETH. This finishes the proof of Theorem 1.

4 Token Swapping on very restricted classes of graphs

I Theorem 5 (Hardness for restricted graphs). Token Swapping remains NP-hard even
when both the treewidth and the diameter of the input graph are constant.

Proof. In 3-Exact Cover, one is given a set S = {S1, S2, . . . , Sm} of m 3-element subsets
over a universe X = {x1, x2, . . . , xn}, where n divides 3. The goal is to find n/3 subsets of
S that partitions (or here, equivalently, covers) X. 3-Exact Cover remains NP-complete
when each element belongs to exactly 3 sets of S [5]. We will reduce from that restriction of
the problem. Thus, n the number of elements of the universe equals m the number of sets
of S.

Construction. For each set Sj ∈ S, we add a set gadget consisting of a tree on 10 vertices
(see Figure 5). In the set gadget, the four gray tokens should cyclically swap as indicated
by the arrows: gj

i shall go where gj
i+1 mod 4 is, for each i ∈ [4]. The three black tokens,

as usual, are initially well placed. The three remaining vertices are called element vertices.
They represent the three elements of the set. The tokens initially on the element vertices
are called element tokens. For each element of X, there are 3 element tokens and 3 element
vertices.

g0 g1 g2 g3

Figure 5 The set gadget for { , , }. We voluntarily omit the superscript j.

We add a vertex c that is linked to all the element vertices of the set gadgets and to all
the vertices gj

0. Each token originally on an element vertex should cyclically go to its next
occurrence (see Figure 6). The token initially on c is well placed (it could be drawn as a
black token).

The constructed graph G has 10n+1 vertices. If one removes the vertex c the remaining
graph is a forest, which means that the graph has a feedback vertex set of size 1 and, in
particular, treewidth at most 2. G has its diameter bounded by 6, since all the vertices are at
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c

. . . . . .

Figure 6 The overall picture. Each element appears exactly 3 times, so there are 3 red tokens.

distance at most 3 of the vertex c. We now show that the instance of 3-Exact Cover admits
a solution iff the optimal number of swaps is no greater than ` := 11 · n/3 + 9 · 2n/3 + 2n =
35n/3 = 11n+ 2n/3.

Soundness. The correctness of the construction relies mainly on the fact that there are
two competitive ways of placing the gray tokens. The first way is the most direct. It
consists of only swapping along the spine of the set gadget. By spine, we mean the 7
vertices initially containing gray or black tokens. From hereon, we call that swapping the
gray tokens internally.

I Lemma 15. Swapping the gray tokens internally requires 9 swaps.

Proof. In 6 swaps, we can first move g3 to its destination (where g0 is initially). Then, g0,
g1, and g2 need one additional swap each to be correctly placed. We observe that, after we
do so, the black tokens are back to their respective destination. J

We call the second way swapping the gray tokens via c. Basically, it is the way one would
have to place the gray tokens if the black tokens (except the one in c) were removed from
the graph. It consists of, first (a) swapping g0 with the token on c, then moving g0 to its
destination, then (b) swapping g1 with the current token on c, moving g1 to its destination,
(c) swapping g2 with the token on c, moving g2 to its destination, finally (d) swapping g3
with the token on c and moving it to its destination.

I Lemma 16. Swapping the gray tokens via c requires 11 swaps.

Proof. Steps (a), (b), and (c) takes 3 swaps each, while step (d) takes 2 swaps. J

Considering that swapping the gray tokens via c takes 2 more swaps than swapping them
internally, and leads to the exact same configuration where both the black tokens and the
element tokens are back to their initial position, one can question the interest of the second
way of swapping the gray tokens. It turns out that, at the end of steps (a), (b), and (c),
an element token is on vertex c. We will take advantage of that situation to perform two
consecutive happy swaps with its two other occurrences. By doing so, observe that the first
swap of steps (b), (c), and (d) are also happy and place the last occurrence of the element
tokens at its destination.

We assume that there is a solution Sa1 , . . . , San/3 to the 3-Exact Cover instance. In
the corresponding n/3 set gadgets, swap the gray tokens via c and interleave those swaps
with doing the two happy swaps over element tokens, whenever such a token reaches c. By
Lemma 16, this requires 11 · n/3 + 2n swaps. At this point, the tokens that are misplaced
are the 4 · 2n/3 gray tokens in the 2n/3 remaining set gadgets. Swap those gray tokens
internally. This adds 9 · 2n/3 swaps, by Lemma 15. Overall, this solution consists of
29n/3 + 2n = 35n/3 = `.
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Let us now suppose that there is a solution s of length at most ` to the Token Swapping
instance. At this point, we should observe that there are alternative ways (to Lemma 15 and
Lemma 16) of placing the gray tokens at their destination. For instance, one can move g3
to g1 along the spine, place tokens g2 and g3, then exchange g0 with the token on c, move g0
to its destination, swap g3 with the token on c, and finally move it to its destination. This
also takes 11 swaps but move only one element token to c (compared to moving all three
of them in the strategy of Lemma 16). One can check that all those alternative ways take
11 swaps or more. Let r ∈ [0, n] be such that s does not swap the gray tokens internally
in r set gadgets (and swap them internally in the remaining n− r set gadgets). The length
of s is at least 11r + 9(n − r) + 2(n − q) + 4q = 11n + 2(r + q), where q is the number of
elements of X for which none occurrence of its three element tokens has been moved to c in
the process of swapping the gray tokens. Indeed, for each of those q elements, 4 additional
swaps will be eventually needed. For each of the remaining n−q elements, only 2 additional
happy swaps will place the three corresponding element tokens at their destination. It holds
that 3r > n − q, since the element tokens within the r set gadgets where s does not swap
internally represent at most 3r distinct elements of X. Hence, 3r+q > n. Also, s is of length
at most ` = 11n+ 2n/3, which implies that r + q 6 n/3. Thus, n 6 3r + q 6 3r + 3q 6 n.
Therefore, q = 0 and r = n/3. Let Sa1 , . . . , San/3 be the n/3 sets for which s does not
swap the gray tokens internally in the correponding set gadgets. For each element of X,
an occurrence of a corresponding element token is moved to c when the gray tokens are
swapped in one of those gadgets. Which means that this element belongs to one Sai

. Hence,
Sa1 , . . . , San/3 is a solution to the instance of 3-Exact Cover. J

5 Conclusion

The Table 1 shows the current state of our knowledge about complexities of Token Swap-
ping, Colored Token Swapping, and Subset Token Swapping problems, parameter-
ized by k, and by the treewidth and the diameter of G.

k + diam k, nowhere-dense tw + diam

Token Swapping W[1]-h (Th 1) FPT paraNP-c (Th 5)
Colored Token Swapping W[1]-h FPT paraNP-c
Subset Token Swapping W[1]-h FPT (Th 3) paraNP-c

Table 1 The parameterized complexity of Token Swapping, Colored Token Swapping, and
Subset Token Swapping.

In Table 2 we summarize the complexities of Token Swapping, Colored Token
Swapping, and Subset Token Swapping problems in restricted classes of graphs.

trees cliques stars paths

Token Swapping ? P (see [12]) P (see [12]) P (see [12])
Colored Token Swapping ? NP-c (Th 8) P (Th 6) P (Th 9)
Subset Token Swapping NP-c NP-c NP-c (Th 7) ?

Table 2 The complexity of Token Swapping, Colored Token Swapping, and Subset Token
Swapping on very restricted classes of graphs.
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We believe that it would be interesting to fill the missing entries. In particular, we
conjecture that the Token Swapping problem is NP-complete even for trees.

Another interesting problem is the following. By Miltzow et al. [12, Theorem 1], the
Token Swapping problem can be solved in time 2O(n log n), and there is no 2o(n) algorithm,
unless the ETH fails.

We conjecture that the lower bound can be improved to 2o(n log n). It would be also
interesting to find single-exponential algorithms for some restricted graph classes, such as
graphs with bounded treewidth or planar graphs.
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6 Appendix

6.1 A simpler NP- and APX-hardness proof.
Recently, Miltzow et al. gave a ten-page long intricate chain of reductions showing that
Token Swapping is NP-hard, and even APX-hard and not solvable in subexponential
time under the ETH [12]. It turns out that those results can be obtained by using linker
gadgets. We sketch a much simpler construction.

I Theorem 2 (Exact Lower Bound [12]). Token Swapping is NP-hard and is not solvable
in 2o(n) on graphs with n vertices, unless the ETH fails.

sketch. We reduce from 3Sat. By the Sparsification Lemma, we can assume that the
number of clauses is linear in the number of variables [9]. Further, we can assume that each
variable occurs a constant number of times. From this constant number of occurrences, one
can go down to only three occurrences per variable with a linear reduction. Let then φ be a
3CNF-formula where each variable appears 3 times. We introduce a linker gadget L2,3 for
each variable and a linker gadget L3,7 for each clause of φ. In each variable gadget, we have
the choice between a true or a false assignment. Each clause gadget has 7 different choices
corresponding to the 7 different satisfying assignments. Each variable gadget is linked to
all clause gadgets that it appears in (therefore, every clause gadget is linked to the three
variable gadgets it contains). Two choices are consistent if the variable assignment agrees
with the chosen satisfying assignment of the clause. The correctness of this approach can
be shown in the same way as the proof of Theorem 1. As each gadget has constant size, the
reduction is linear. Thus any 2o(n) algorithm would contradict the ETH. J

With some additional care, one can also get inapproximability results with the linker
gadgets.

6.2 Proof of Theorem 3
I Theorem 3. Subset Token Swapping is FPT parameterized by k on nowhere-dense
graph classes.

Proof. If we are able to express the Subset Token Swapping problem as a first-order
formula, then the result follows immediately from the meta-theorem by Grohe, Kreutzer,
and Siebertz [7].

Miltzow et al. [12] observed that if the length of an optimal solution is k, then at
most 2k tokens are swapped. In our formula variables will denote vertices of G. The
relation edge(x, y) denotes the existence of an edge xy. The subsets of possible destinations
of tokens will be represented by relation target(x, y), which means that the vertex y is a
possible destination for the token initially starting on vertex x. Moreover, each token will
be identified by its initial position.

Let Φk denote the formula encoding the solution of the Subset Token Swapping
problem with exactly k swaps. If we are interested in a solution using at most k swaps, it
is given by Φ6k =

∨k
i=1 Φi.

We use variables to represent:

1. the „traced” tokens t1, t2, . . . , t2k that are involved in the solution (some of them may
stay intact, if the solution uses less than 2k tokens),

2. the final positions dest1, dest2, . . . , dest2k of the „traced” tokens (destj is the final posi-
tion of token tj),
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3. the swaps s1
1, s

2
1, . . . , s

1
k, s

2
k (in the i-th swap we exchange the tokens on edge s1

i s
2
i ),

4. the tokens that are swapped – by st1i , st2i we denote the tokens that were swapped in the
i-th swap, i.e. before the swap the position of stpi was sp

i ,
5. the positions of „traced” tokens in each round – posj,i is the vertex, where token tj is

after i-th swap.
Now we are ready to present the formula.

Φk =∃(t1, t2, . . . , t2k) (1)
∃(dest1, dest2, . . . , dest2k) (2)
∃(st11, st21, st12, st22, . . . , st1k, st2k) (3)
∃(s1

1, s
2
1, s

1
2, s

2
2, . . . , s

1
k, s

2
k) (4)

∃(pos1,0, pos2,0, . . . , pos2k,0) (5)
∃(pos1,1, pos2,1, . . . , pos2k,1) (6)
∃(pos1,2, pos2,2, . . . , pos2k,2) (7)
... (8)
∃(pos1,k, pos2,k, . . . , pos2k,k) (9)

∀(x)(
2k∧

j=1
x 6= tj)→ subset(x, x) (10)

∧
2k∧

j=1

2k∧
j′=1

(j 6= j′ → tj 6= tj′) (11)

∧
2k∧

j=1
subset(tj , destj) (12)

∧
k∧

i=1
edge(s1

i , s
2
i ) (13)

∧
2k∧

j=1
posj,0 = tj (14)

∧
2k∧

j=1
posj,k = destj (15)

∧
k∧

i=1

 2k∨
j=1

st1i = tj ∧ posj,i = s1
i

 (16)

∧
k∧

i=1

 2k∨
j=1

st2i = tj ∧ posj,i = s2
i

 (17)

∧
k∧

i=1

2k∧
j=1

(
¬(st1i = tj ∨ st2i = tj)→ posj,i+1 = posj,i

)
(18)

∧
k∧

i=1

2k∧
j=1

2k∧
j′=1

(
(j 6= j′ ∧ st1i = tj ∧ st2i = tj′)→ (posj,i+1 = posj′,i ∧ posj′,i+1 = posj,i)

)
(19)

In lines 1–9 we define the variables. Line 10 says that the tokens that are not involved in any
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swaps are already at feasible positions. Line 11 ensures that the traced tokens are pairwise
different. Lines 12 and 13 say that the final positions of traced tokens should be feasible,
and we can perform swaps only on edges. In lines 14 and 15 we synchronize the values of
variables posj,0 and posj,k with variables tj and destj . In lines 16 and 17 we synchronize
the values of variables sp1

i , sp
2
i and s1

i , s
2
i . In line 18 we make sure that the tokens that are

not involved in the current swap, stay on their positions. Finally, in line 19, we say that the
tokens involved in the current swap exchange their positions. J

6.3 Classic Cases
Now, let us consider the complexities of Token Swapping, Colored Token Swapping,
and Subset Token Swapping problems, restricted to some very simple classes of graphs,
i.e. stars, cliques, and paths. We will be interested in exploring the boundaries between
easy (i.e. polynomially solvable) and hard (NP-hard) cases.

Let us start with a defining an auxiliary digraph. For the instance Colored Token
Swapping problem on a graph G, we define the color digraph G∗, whose vertices are colors
of tokens on G, and arcs correspond to vertices of G. The vertex v corresponds to the arc
cc′, such that c is the color of v and c′ is the color of the token placed in v. Note that both
loops and multiple arcs are possible. There is a very close relation between color digraphs
and Eulerian digraphs.

I Observation 17. The following hold:

(i) if G∗ is the color digraph of some instance of Colored Token Swapping problem,
then every connected component of G∗ is Eulerian;

(ii) for every Eulerian digraph H with n edges, there exists an instance of Colored
Token Swapping G on n vertices, such that its color digraph G∗ is isomorphic to H.

Proof. Too see (i), consider a vertex c of G∗. Its out-degree is the number of tokens placed
on vertices with color c. The in-degree of c is the number of tokens in color c. Thus the
in-degree is equal the out-degree, from which (i) follows.

Now, to see (ii), consider a vertex c of G∗, let d be its out-degree (equal to the in-degree,
as G∗ is Eulerian). Then in G give the color c to any d vertices. Moreover, for each arc cc′
in G∗ we place a token in color c′ on a vertex in color c. We repeat this for every vertex c in
G∗, obtaining an instance of Colored Token Swapping, whose color digraph is exactly
G∗. J

Now consider a solution s for the instance of the Colored Token Swapping problem
in G and fix the destinations of tokens according to s. We observe that the cycles in the
permutation defined by these destinations correspond to circuits in G∗. Thus, when trying
to find a solution for an instance of Colored Token Swapping problem, we will first
try to fix appropriate destinations (by analyzing circuits in G∗), and then we will solve the
instance of Token Swapping problem.

I Theorem 6 (Colored Token Swapping on stars). Colored Token Swapping can
be solved in polynomial time on stars.

Proof. Let G be a star with center v0 and leaves v1, v2, . . . , vn. The color of the vertex v
will be denoted by c(v). Also, let c0 := c(v0).

First, suppose that there exists a leaf vi (for i ≥ 1), such that the token that is initially
placed there has color c(vi). It is easy to observe that in an optimal solution this token is
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never swapped, so we can continue with the graph G− vi. Thus, we assume that no leaf vi

has a token colored c(vi).
Consider the color digraph G∗. By the previous paragraph, we observe that with just one

possible exception c0c0, it has no loops. Let C0, C2, . . . , Cm be the connected components
of G∗, and let c0 ∈ C0. Moreover, for i ≥ 0, by pi we denote the number of arcs in Ci.
By Observation 17(i), the edges of G∗ can be decomposed (in polynomial time) into m+ 1
circuits (Eulerian circuits of its connected components).

Let e(vi
1), e(vi

2), . . . , e(vi
pi

) be such a circuit for Ci, also we assume that v0
1 = v0 (i.e.

we start the circuit for C0 with the arc corresponding to v0). We construct the swapping
strategy s by concatenating sequences si, defined as follows:

si =
{
v0v

0
2 , v0v

0
3 , . . . , v0v

0
p0

for i = 0,
v0v

i
1, v0v

i
2, v0v

i
3, . . . , v0v

i
pi

for i = 0.

It is straightforward to verify that s is a solution for our problem and its length is n + m.
We claim this solution is optimal.

To see this, consider any solution s′. Let us consider the instance of Token Swapping
problem obtained by fixing the destinations of all tokens, according to s′. Let q0, q1, . . . , qm′

be the cycles in the permutation given by the destinations, and assume q0 contains vertex
v0. By the result of Pak [13, Lemma 2.1], the length of the optimal solution of this instance
of Token Swapping is exactly n+m′. We observe that the set of colors of vertices in each
cycle has to be entirely contained in one of the components Ci, so m′ ≥ m, thus the length
of s′ is at least n+m′ ≥ n+m, which completes the proof. J

I Theorem 7 (Subset Token Swapping on stars). On stars, Subset Token Swapping
remains NP-hard and cannot be solved in time 2o(n) unless the ETH fails, even for target
sets of size at most 2.

Proof. We will reduce from the Directed Hamiltonian Cycle problem restricted to
digraphs with out-degree at most 2, which is known to be NP-complete [14]. Moreover, it
follows from the proof that the problem cannot be solved in time 2o(n), unless the ETH fails
(the original proof considers planar instances, but if we drop the planarity assumption, we
obtain claimed lower bound).

Let G = (V,E) be a digraph with all out-degrees at most 2, we can assume it has no
loops. We will construct an instance (G = (V ′, E′), D) of Subset Token Swapping with
|D(v)| 6 2 for all v ∈ V ′, that has a solution of length at most n + 1 if an only if G has a
Hamiltonian cycle.

The set V ′ is equal to V ] {c} where c is the center of the star, and the leaves are the
vertices of G. For each v ∈ V ′ \ {c}, we set D(v) = NG(v) (the set of out-neighbors of v in
G) and D(c) = {c}.

Suppose G has a Hamiltonian cycle v1, v2, v3, . . . , vn (with v1 adjacent to vn). It is easy
to observe that the sequence cv1, cv2, . . . , cvn, cv1 of edges is a solution for the Colored
Token Swapping problem with length n+ 1.

On the other hand, suppose there is a solution s′ for the Subset Token Swapping
problem of length at most n+ 1. Since G has no loops, every token starting at v ∈ V must
be moved to c at some point. Moveover, in the last swap we have to bring the token starting
at c back to this vertex. Thus every feasible solution uses at least n+1 swaps, which implies
that the length of s′ is exactly n+1 (so let s′ = cv1, cv2, . . . , cvn, cvn+1). Moreover, we have
v1 = vn+1 and vi 6= vj for all 1 ≤ i < j ≤ n. Thus we observe that v1, v2, v3, . . . , vn is a
Hamiltonian cycle in G. J
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If G is a complete graph, then the optimal solution for the Token Swapping problem
is n minus the number of cycles in the permutation given by initial positions of tokens [2].
Thus, the problem is solvable in polynomial time. On the other hand, we can show that
Colored Token Swapping problem is NP-complete on complete graphs. Before we prove
it, let us prove an auxiliary lemma.

I Lemma 18. The problem of decomposing an arc set of a digraph H = (V,A) into directed
triangles is NP-complete, even if H is Eulerian and has no 2-cycles. Moreover, it cannot be
solved in 2o(|A|), unless the ETH fails.

Proof. For a given 3-Sat formula Φ with N variables and M clauses, we will construct a
digraph H, which can be decomposed into triangles if and only if Φ is satisfiabale.

The main part of the construction is essentially the same as the construction of Holyer [8],
used to show NP-hardness of decomposing the edge set of an undirected graph into triangles
(or, more generally, k-cliques). Thus we will just point out the modifications and refer the
reader to the paper of Holyer for a complete description.

We observe that by the proper adjustment of constants the graph G3 constructed by
Holyer can be made three-partite (see also Colbourn [3]). Let A,B,C denote the partition
classes. We obtain H by orienting all edges of G3, according to the following pattern
A→ B → C → A. Note that clearly H has no 2-cycles.

Consider a vertex v of G3. Without loss of generality assume c ∈ A. We note that
exactly half of the neighbors of v are in B, and the other half are in C. This implies that
H is Eulerian.

We also point out that the number of arcs in H in linear in the number of vertices.
Moreover, if we make the size of each variable gadget proportional to the number of oc-
currences of this variable in Φ (instead of proportional to M , as in the original proof), we
obtain that |A| = O(N + M). This shows that an existence of a subexponential (in |A|)
algorithm for our problem contradicts the ETH. J

I Theorem 8. On cliques, Colored Token Swapping remains NP-hard and cannot be
solved in time 2o(n) unless the ETH fails.

Proof. Let H be an Eulerian directed graph with n arcs, having no 2-cycles. Consider an
instance of Colored Token Swapping problem on G = Kn, such that H is its color
digraph (it exists by Observation 17(ii)). We claim that there exists a solution for this
instance of length at most 2n/3 if and only if the arc set of H can be decomposed into
directed triangles (see Lemma 18).

Suppose that the arc set of H can be decomposed into n/3 triangles. The vertices of G
corresponding to the edges of the i-th triangle, are vi

1, v
i
2, v

i
3. We construct the solution s

by concatenating sequences vi
1v

i
2, v

i
1v

i
3 for i = 1, 2, . . . , n/3. It is easy to verify that s is a

solution and its length is 2n/3.
So now suppose we have a solution s of length at most 2n/3. Recall that the length of

any solution s′ is at least n minus the number of cycles in the permutation obtained by fixing
the destinations of tokens according to s′. Thus the number of cycles in the permutation
given by s is at least n/3. Since these cycles correspond to circuits in the color digraph
H, and H has no 2-cycles, this is only possible if the arcs of H can be decomposed into
triangles. J

It is interesting to point out that if G is a clique, then the presence of many cycles in the
permutation of tokens yields a short solution for the Token Swapping problem, while for
the case when G is a star, the situation is opposite. Finally, we turn our attention to paths.
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I Theorem 9. Colored Token Swapping can be solved in polynomial time on paths.

Proof. Let c be the color of the vertex v at the left end of the path. Let t be the leftmost
token with color c. It is clear that no optimal solution contains a swap involving two tokens
of the same color, so in any optimal solution the token t will end up in v. Repeat this
argument with the second leftmost vertex, and so on. This way we fix the destinations for
all tokens, obtaining an equivalent instance of Token Swapping problem, which can be
solved in polynomial time (see [12]). J
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