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Abstract
A graph G contains a graph H as an induced minor if H can be obtained from G by vertex
deletions and edge contractions. We show that for every k-vertex planar graph H, every graph G
excluding H as an induced minor has treewidth at most∆(G)2O(k)

where∆(G) denotes the maximum
degree of G. Previously, Korhonen [JCTB ’23] has shown the upper bound of kO(1)2∆(G)5

whose
dependence in ∆(G) is exponential. More precisely, we show that every graph G excluding as
induced minors a k-vertex planar graph and a q-vertex graph has treewidth at most kO(1) ·∆(G)f(q)

with f(q) = 2O(q). A direct consequence of our result is that for every hereditary graph class C, if
graphs of C have treewidth bounded by a function of their maximum degree, then they in fact have
treewidth polynomial in their maximum degree.
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1 Introduction

A graph G contains a graph H as a minor if H can be obtained from G by vertex deletions,
edge deletions, and edge contractions. The notion of induced minor is defined similarly
except edge deletions are disallowed. The celebrated Grid Minor theorem [25, 26] implies that
graphs without large grid minors have low treewidth. What can be said about the treewidth
of graphs solely excluding grids as induced minor? Their treewidth can be arbitrarily large,
as exemplified by cliques. However, a notable result by Korhonen is that their treewidth can
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be upperbounded by a function of their maximum degree ∆(·).

I Theorem 1 ([18]). Every graph G excluding a fixed k-vertex planar graph as an induced
minor has treewidth at most kγ2∆(G)5 for some universal constant γ.

In this paper, we show that the exponential dependence in ∆(G) is not necessary.

I Theorem 2. Every graph G excluding a fixed k-vertex planar graph as an induced minor
has treewidth at most ∆(G)f(k) with f(k) = 2O(k).

The next step is to confine the dependence in k (at present, in the exponent of ∆(G)) to
a mere multiplicative factor and show a treewidth upper bound of g(k)∆(G)O(1) for some
function g. We in fact prove a stronger statement than Theorem 2, resolving the next step
for graphs excluding a (non-planar) graph as an induced minor.

I Theorem 3. Every graph G excluding as induced minors a k-vertex planar graph and
a q-vertex graph has treewidth at most kO(1) ·∆(G)f(q) with f(q) = 2O(q).

For instance, Theorem 3 implies that the string graphs that exclude a fixed k-vertex
planar graph have treewidth (k∆(G))O(1). Indeed, the class of all string graphs exclude the
1-subdivision of K5 (a 15-vertex graph) as an induced minor.

Our tools combine well with classes of graphs that admit a product structure. More
precisely, we prove the following.

I Theorem 4. Let H be a graph of treewidth at most t, and P be a path. Let G be a subgraph
of H � P excluding a k-vertex planar graph as an induced minor. Then the treewidth of G is
at most kO(1) · tO(1) ·∆(G)O(1).

Note that there are graph classes that admit a product structure of the form as in The-
orem 4, and yet possess every graph as induced minor; see [11]. Thus Theorem 4 is not
a special case of Theorem 3. For instance, Theorem 4 implies that `-planar graphs1 that
exclude a fixed k-vertex planar graph as an induced minor have treewidth (k`∆(G))O(1).

A dependence in ∆(G) is necessary. There are subgraphs of the strong product of a path
with a star (hence a graph H of treewidth 1) avoiding a planar induced minor, but whose
treewidth is a growing function of the number of vertices. Take the n× n grid, remove the
“vertical” edges, and add in each “column” a vertex adjacent to every vertex in the column;
see Figure 1. This construction found by Pohoata [23], and rediscovered by Davies [8], has
treewidth Θ(n) but avoids the 5×5 grid as an induced minor. The figure is a proof-by-picture
that these graphs are indeed subgraphs of strong products of a path and a star.

Figure 1 The Pohoata–Davies 6× 6 grid.

1 those graphs that can be drawn in the plane such that every edge is intersected by at most ` other edges
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Chudnovsky [4, Open problem 4.1] asks if, when ∆(G) = O(log |V (G)|), the treewidth of
graphs excluding the k × k grid as an induced minor and the biclique Kt,t as a subgraph is
Ot,k(log |V (G)|). Our results partially answer this question without requiring the absence of
Kt,t subgraph: The treewidth of these graphs is at most polylogarithmic.

At first sight, Chudnovsky’s question centered around forbidden induced subgraphs may
look somewhat different from the setting of Theorem 3. The two statements match since
forbidding large cliques and bicliques as induced subgraphs is, by Ramsey’s theorem [24],
equivalent to excluding large bicliques as subgraphs, and forbidding a subdivision of a large
wall or the line graph of a subdivision of a large wall as an induced subgraph is the same
as excluding a large grid as an induced minor. Another simplifying feature of working with
induced minors rather than induced subgraphs is that excluding as induced minor a large
grid, or a large wall, or a planar graph of large treewidth are all equivalent.

The motivation behind the ∆(G) = O(log |V (G)|) condition in Chudnovsky’s question
is that the treewidth could in principle be logarithmic in |V (G)| as well. This would yield
polynomial-time algorithms for several problems including Max Independent Set. We
come slightly short of proving it, but Theorem 2 implies a quasipolynomial-time algorithm
for Max Independent Set on graphs of logarithmic degree and excluding a fixed grid as
an induced minor. Let us insist that we do not need to assume the absence of some biclique
subgraph.

It is possible (and believed) that graphs G excluding a k-vertex planar graph as an
induced minor have treewidth g(k)∆(G), for some function g. This also is motivated by
fast algorithms for Max Independent Set, as it would imply a subexponential-time
algorithm running in 2Õk(

√
|V (G)|). Dallard, Milanič, and Štorgel [5] even ask whether

a (quasi)polynomial-time algorithm always exists in the absence of a fixed planar induced
minor. After Korhonen [18] gave the first (very slightly) subexponential algorithm, Korhonen
and Lokshtanov [19] provided an algorithm running in time 2Õk(|V (G)|2/3), which extends
to the case when the forbidden induced minor is non-planar. There have been several
recent developments in (quasi)polynomial algorithms for Max Independent Set on graphs
excluding a planar induced minor [1, 2, 6, 7, 13, 15, 16, 22], some phrased in terms of
forbidden induced subgraphs instead.

Let us conclude by explicitly mentioning the potential next improvements to Theorem 2
by increasing difficulty.

I Question 1. Does every graph G excluding a fixed k-vertex planar graph as an induced
minor have, for some function f , treewidth at most f(k)∆kO(1)? treewidth at most f(k)∆O(1)?
treewidth at most f(k)∆?

We note that Gartland and Lokshtanov [14] conjecture the following, which would in
particular imply a positive answer to every case of the above question.

I Conjecture 5 (Gartland–Lokshtanov). There is a function f : N → N such that every
graph excluding a fixed k-vertex planar graph as an induced minor has a balanced separator
dominated by at most f(k) vertices.

Fully spelled out, the conjecture says that for every G excluding a k-vertex planar graph
as an induced minor, there is a set D ⊆ V (G) of size at most f(k) such that G−N [D] has
no connected component of size larger than |V (G)|/2. In particular, these graphs would have
balanced separators of size f(k)(∆(G) + 1), known to imply treewidth O(f(k)∆(G)) [12].
If true, by a simple win-win argument, Max Independent Set could be solved in time
2Õk(

√
n) on n-vertex graphs excluding a k-vertex planar graph as an induced minor.
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Outline of the proof of Theorem 3. Let G be any graph excluding a k-vertex planar
graph and a q-vertex graph (possibly the same graph, and k = q) as induced minors. We
want to upperbound the treewidth of G, denoted by tw(G), by a polynomial function of its
maximum degree ∆(G). Our general plan is to find, for some functions f, g : N → N, an
induced subgraph G′ of G retaining treewidth at least tw(G)β/∆(G)f(q), for some constant2

β > 0, with maximum degree at most g(q). If we get such an induced subgraph G′, we
can advantageously apply Theorem 1 to G′, which, like its induced supergraph G, excludes
a k-vertex planar graph as an induced minor. We thus get that the treewidth of G′ is at most
kO(1)2g(q)5 . Importantly we avoided here the dependence in ∆(G) (in the exponent). This
translates to an upper bound of kO(1)2g(q)5/β∆(G)f(q)/β for the treewidth of G. Our main
theorem is then a consequence of the existence of G′ for f, g both having a single-exponential
growth.

Let us then describe how we find G′. The first ingredient is a classical result by Klein–
Plotkin–Rao [17]. Originally and in the context of approximation algorithms, the result is
(informally) expressed as follows. For every graph excluding a biclique minor (but more
generally, excluding any fixed minor), there is an arbitrarily small fraction of its edges whose
removal gives rise to connected components of bounded weak diameter. This means that in
every connected component of the resulting graph, every pair of vertices are close together
when measured in the original graph. Following Lee [21], who observed that the result extends
to graphs merely excluding a 1-subdivided biclique as an induced minor (but more generally,
any induced minor), we reprove this fact in the language of so-called clustered edge-colorings:
Every graph G excluding a q-vertex graph as an induced minor can be 2q+1-edge-colored
such that every monochromatic connected component has weak diameter qO(1), and hence
size at most ∆(G)qO(1) . The latter quantity is called the clustering of this edge-coloring.

The second ingredient is to utilize a contraction–uncontraction technique of Korhonen [18]
(albeit in an abstract and more general framework) on each color class of the clustered
edge-coloring. This goes as follows. By contracting each connected component of one color
class F to a single vertex, the treewidth is divided by at most ∆(G)qO(1) (the maximum size of
such connected components). Hence, by a celebrated result of Chekuri and Chuzhoy [3], the
contracted graph admits a subgraph H with tw(H) > tw(G)/(∆(G)qO(1)polylog tw(G)) and
maximum degree at most 3. Now reverting the contraction and going back to G, it is easy to
build an induced subgraph of G with at most three edges of F incident to every vertex that
can recreate H as a minor, and hence has at least its treewidth. After the 2q+1 successive
iterations of the contraction–uncontraction technique, the extracted induced subgraph has
maximum degree bounded by 3 · 2q+1 and treewidth at least tw(G).99/∆(G)2O(q) , as required
in the first paragraph of the outline, which contains the end of the argument.

Organization of the paper. In Section 2 we recall the relevant graph-theoretic
definitions and notations. In Section 3 we abstract out one iteration of the contraction–
uncontraction technique, and in Section 4 we link it to clustered edge-colorings and repeatedly
apply it. In Section 5 we reprove Klein–Plotkin–Rao’s result when excluding an induced
minor (rather than a minor). In Section 6 we wrap everything up and prove Theorem 3, our
main result. In Section 7 we reduce the search for clustered edge-colorings to edge-colorings
all color classes of which have bounded treewidth. We use that, in Section 8, to bound the
treewidth of classes excluding a planar induced minor and admitting a product structure,
via the tools developed in the paper, thereby establishing Theorem 4.

2 Actually our proof gets β arbitrarily close to 1.
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2 Preliminaries

If i 6 j are two integers, we denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}, and
by [i], the set [1, i]. All our graphs are finite and simple (i.e., do not have parallel edges
or self-loops). We denote by V (G) and E(G) the set of vertices and edges of a graph G,
respectively, so G = (V (G), E(G)). For S ⊆ V (G), the subgraph of G induced by S, denoted
G[S], is obtained by removing from G all the vertices that are not in S (together with their
incident edges). We say that S is connected if G[S] has a single connected component. Then
G−S is a short-hand for G[V (G)\S]. We denote by NG(v) and NG[v], the open, respectively
closed, neighborhood of v in G. For each S ⊆ V (G), we set NG(S) := (

⋃
v∈S NG(v)) \ S and

NG[S] := NG(S)∪ S. We denote by ∆(G) the maximum degree of a graph G, and by tw(G),
its treewidth.

We say that a graph H is an induced minor of a graph G if H can be obtained from
G after vertex deletions and edge contractions, where the contraction of edge uv unifies
u, v in a single vertex adjacent to every vertex that is a neighbor of u or of v. We insist
that our edge contractions keep the graph simple: we ignore self-loops, and retain at most
one edge between a fixed pair of vertices. A minor is the same except edge deletions are
further allowed. An induced minor model (resp. minor model) of H in G is a collection
{Bv : v ∈ V (H)} of pairwise vertex-disjoint connected subsets of V (G), often called branch
sets, such that for every v, w ∈ V (H), Bv ∪Bw is connected in G if and only if vw ∈ E(H)
(resp. for every vw ∈ E(H), Bv ∪Bw is connected). Then, it can be observed that H is a(n
induced) minor of G if and only if G admits a(n induced) minor model of H.

For a positive integer s and a graph G, the s-subdivision of G is the graph G with
each edge subdivided s times, denoted by s-subd(G). The diameter of G is defined as
maxu,v∈V (G) dG(u, v), where dG(u, v) is the number of edges in a shortest path between u
and v. The weak diameter of S in G for S ⊆ V (G) is defined as maxu,v∈S dG(u, v).

If P = {P1, . . . , Ph} is a partition of V (G) for some graph G, then by G/P, we denote
the graph with vertex set P such that P, P ′ ∈ P are connected by an edge whenever
there is an edge in G connecting a vertex in P with a vertex in P ′. The BFS layering of
a connected graph G from a vertex v ∈ V (G) is the partition L = {L0, L1, . . . , Ls} of G,
where Li = {u ∈ V (G) : dG(v, u) = i}, called the i-th layer of L, for each i ∈ [0, s], and
s is the maximum integer such that there exists u ∈ V (G) with dG(v, u) = s. In particular
L0 = {v}. A BFS layering of a graph G is the BFS layering of G from some vertex v ∈ V (G).
Sometimes we abbreviate it simply to BFS of G.

Let L = {L0, L1, . . . , Ls} be a BFS of G from some v ∈ V (G). For each vertex u ∈ Li
with i ∈ [s], we pick an arbitrary neighbor of u in Li−1 and call it the parent of u. Now,
let F be the set of edges consisting of all vertex–parent relations. The graph (V (G), F ) is
a tree. We consider it to be rooted in v, and we call it a BFS tree of L. A path is vertical in
a rooted tree if it connects a vertex with one of its ancestors or descendants.

3 Contraction–uncontraction technique

We will need a treewidth sparsifier, i.e., the extraction of a subcubic subgraph of large
treewidth in a graph of larger treewidth. We could here use the Grid Minor theorem [26], but
the following result of Chekuri and Chuzhoy provides a better lower bound in the resulting
treewidth.

I Theorem 6 ([3]). There is a constant δ > 0 such that every graph of treewidth k admits
a subcubic subgraph of treewidth at least k/ logδ k.
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The next lemma abstracts out the contraction–uncontraction technique of the third
author which, in [18], is specifically used over radius-2 balls.

I Lemma 7. Let p be a positive integer, G be a graph, and F ⊆ E(G) be such that every
connected component of the graph (V (G), F ) has at most p vertices. Then, G admits an
induced subgraph G′ such that

in G′, every vertex is incident to at most three edges of F ∩ E(G′), and
tw(G′) > tw(G)/(p logδ tw(G)), with δ the constant of Theorem 6.

Proof. Let P be the partition {P1, . . . , Ph} of V (G) into the vertex sets of the connected
components of (V (G), F ). It follows that |Pi| 6 p for every i ∈ [h]. In particular, tw(G/P) >
tw(G)/p. Indeed, a tree-decomposition of G/P of width at most tw(G)/p−1 could be turned
into a tree-decomposition of G of width at most tw(G)/p · maxi∈[h] |Pi| − 1 6 tw(G) − 1,
simply by flattening the parts of P in each bag, leading to a contradiction. On the other
hand, tw(G/P) 6 tw(G) since G/P is obtained from G by performing edge contractions, as
each Pi is connected.

By Theorem 6 applied to G/P, there is a subcubic subgraph H of G/P with

tw(H) > tw(G/P)
logδ tw(G/P)

>
tw(G)

p logδ tw(G)
.

We now build an induced subgraph G′ of G having H as a minor (hence at least its
treewidth) such that every vertex of G′ is incident to at most three edges of F . As H is
subcubic, each P ∈ V (H) is incident to at most three edges of H. From each P ∈ V (H),
let us keep a minimal subset P ′ ⊆ P such that G[P ′] is connected and G[

⋃
P∈V (H) P

′]/P ′
still contains H as a subgraph, where P ′ := {P ′ : P ∈ V (H)}. By minimal we mean that for
each P ′ ∈ V (H), the removal of any vertex in P ′ breaks one of the latter conditions.

Note that each P ′ ∈ V (H) comprises up to three terminals realizing the up-to-three
edges in H, plus a minimal subset connecting these three terminals in P . Therefore, if P ′
would contain a vertex v with more than three neighbors in P ′, we could delete one of its
neighbors by taking shortest paths from v to the terminals in G[P ′] and deleting a neighbor
not used in these shortest paths. This implies that every vertex of P ′ is incident to at most
three edges of F in G[P ′], since no edge of F can have exactly one endpoint in P .

Thus we set G′ := G[
⋃
P ′∈V (H) P

′], and get tw(G′) > tw(H) > tw(G)/(p logδ tw(G)). J

4 Clustered edge-coloring

In light of Lemma 7 and our plan to find an induced subgraph whose maximum degree is low
but whose treewidth is still high, we wish to edge-partition our graph into a bounded number
of graphs with no large connected component. This is referred to as clustered edge-coloring.
We note that the vertex kind, clustered coloring has been more thoroughly explored. An
edge-coloring has clustering p if every monochromatic connected component has at most
p vertices. For instance, an edge-coloring with clustering 2 is a proper edge-coloring.

I Lemma 8. Let p be a positive integer, G be a graph, and F1, . . . , Fh be the color classes
of an edge-coloring of G with clustering p. Then, G admits an induced subgraph G′ such that

∆(G′) 6 3h, and
tw(G′) > tw(G)/(p logδ tw(G))h, with δ the constant of Theorem 6.

Proof. Set G0 := G. For every i ∈ [h] going from 1 to h, let Gi be the induced subgraph
of Gi−1 obtained by applying Lemma 7 with edge subset F := Fi ∩E(Gi−1). We then define
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G′ as Gh. By the first item of Lemma 7, every vertex of G′ has at most three incident edges
in Fi ∩ E(G′), hence has degree at most 3h. The second item readily follows from that
of Lemma 7. J

5 Klein–Plotkin–Rao iterated breadth-first searches

We will now use a classical result of Klein, Plotkin, and Rao [17], or rather its proof. The
result and its follow-ups are phrased in terms of fairly small edge cuts disconnecting pieces
of small weak diameter in proper minor-closed classes. A first relevant observation, made by
Lee [21], is that the result actually holds in the more general context of classes excluding an
induced minor. We will extract a somewhat different-looking statement than the original
Klein–Plotkin–Rao formulation.

For a fixed integer h (which we will set to 2), consider the following recursive process
applied to a graph G. For each connected component H of G, pick an arbitrary vertex v ∈
V (H) and compute the BFS layering {L0, L1, . . . , Ls} of H from v. For each i ∈ [0, s−h+1],
recurse in G[

⋃
i6j<i+h Lj ]. We call this process iterated BFSes of width h to property Q if we

stop each recursion branch when the induced subgraph considered in this branch has property
Q (possibly as part of the initial graph G). The depth of the iterated BFSes is defined as the
maximum recursion depth. To make the process deterministic, one can imagine the vertices
of G being labeled from 1 to |V (G)|, and picking the vertex to start each BFS as the vertex
of the smallest possible label. Thus, for every connected induced subgraph G′ of G, we may
speak of the BFS of G′. The proof of the Klein–Plotkin–Rao theorem establishes that in
proper minor-closed classes the iterated BFSes of constant width to constant weak diameter
have constant depth. We later turn these iterated BFSes into clustered edge-colorings, where
the clustering depends on the maximum degree. In a rooted tree (such as BFS trees), we
call vertical path any path between a pair of ancestor–descendant.

As the authors of [17] showed their result when excluding a minor rather than an
induced minor, we will reproduce their proof with some light (not to say minor) adjustments.
Something similar has been done by Lee [21], in a somewhat different language (see [20,
Theorem 4.2]).

We start with a key lemma of [17] on the control given by two nested BFSes.

I Lemma 9. Fix a positive integer h. Let G be a connected graph, and let L be the BFS
of G from some v ∈ V (G). Let G′ be a subgraph of G induced by h consecutive layers of L,
and let L′ = {L′0, L′1, . . . , L′s} be a BFS of G′.

Then, for every w ∈ L′`, the path P from v to w in the BFS tree of L can only intersect
layers of L′ whose indices are in [`− h+ 1, `+ h− 1], and only the last h vertices of P can
be in V (G′).

Proof. The path P contains at most one vertex in each layer of L. Since G′ is contained
in h layers of L, P can only intersect V (G′) at its last h vertices. Moreover, the graph
P ′ = P ∩G′ is connected. Next, suppose to the contrary that there is u ∈ Lt ∩ V (P ) with
t /∈ [`− h+ 1, `+ h− 1]. Since P ′ is connected and |V (P ′)| 6 h, we have dG′(u,w) 6 h− 1,
which contradicts the definition of a BFS layering. J

We now adapt [17] to work for induced minors.

I Lemma 10 (Closely following [17]). Let p > 2 and q > 1 be integers, and G be a graph
excluding the 1-subdivision of Kp,q as an induced minor. Then, the iterated BFSes of width h
to weak diameter at most d := ((8h+ 2)q + 4h+ 6)(p− 1) of G has depth at most q + 1.
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Proof. Assume, for the sake of contradiction, that there is a (connected) graph Gq+1 at
recursion depth q + 1 whose weak diameter is more than d (thereby pushing the recursion
depth to at least q + 2). We show how to build a model of an induced minor of 1-subd(Kp,q)
in G1, a connected component of G. Let G1, G2, . . . , Gq, Gq+1 be the (connected) graphs
on the path from G1 to Gq+1 of the branching forest of the iterated BFSes (rooted at the
connected components of G). Thus, for every i ∈ [q], Gi+1 is a connected component of
a subgraph of Gi induced by h consecutive layers of the BFS of Gi. For each i ∈ [q], let Ti
be the BFS tree of the BFS of Gi.

We maintain the invariant that for every i ∈ [q + 1], Gi has an induced minor model of
1-subd(Kp,q+1−i). Moreover, if i > 1, then denoting by A1(i), A2(i), . . . , Ap(i) the branch
sets of the “left” side of the biclique, there is, for every j ∈ [p], a vertical path Pj(i) in Ti−1
of length 4h+ 2 with the following properties:
(1) Pj(i) intersects exactly one branch set, Aj(i);
(2) the deeper (in Ti−1) endpoint pj(i) of Pj(i) is in Aj(i), and the other endpoint is not;
(3) the paths P1(i), P2(i), . . . , Pp(i) are pairwise vertex-disjoint and non-adjacent;
(4) no vertex of Pj(i) is adjacent to a branch set B of the model for B 6= Aj(i);
(5) each branch set Aj(i) has size at most (4h+ 1)(q + 1− i) + 1; and
(6) every pair u ∈ Aj(i), v ∈ Aj′(i) with j 6= j′ is at distance at least (8h+ 2)(i− 1) + 4h+ 6

in G1 (or equivalently in G).

Note that if we show the invariant in Gq+1, and the induction step from Gi+1 to Gi, the
mere fact that G1 admits 1-subd(Kp,q) as an induced minor is our desired contradiction.

Base case. The process starts in Gq+1, which we assumed of weak diameter larger
than d. We want to find an induced minor model of Kp,0 in Gq+1, and paths P1(q + 1),
P2(q + 1), . . . , Pp(q + 1) in Gq satisfying the invariant. As Gq+1 has weak diameter more
than d = ((8h + 2)q + 4h + 6)(p − 1) and is connected, it has in particular p vertices
p1(q + 1), . . . , pp(q + 1) pairwise at distance at least (8h+ 2)q + 4h+ 6 in G1 (or G). We set
Aj(q + 1) := {pj(q + 1)} for every j ∈ [p]. We choose Pj(q + 1) as the vertical path in Tq
of length 4h+ 2 with one endpoint being pj(q + 1). Note that such a vertical path exists,
otherwise pj(q + 1) is at distance at most 4h+ 1 from the root of Tq. This would imply that
every other pj′(q + 1) (and at least one exists since p > 2) is at distance at most 5h from the
root of Tq (recall indeed that every vertex of Gq+1 is contained within h consecutive BFS
layers of Tq). In turn, this would make the pair pj(q + 1), pj′(q + 1) at distance at most
9h+ 1 < (8h+ 2)q + 4h+ 6, a contradiction.

Since if j 6= j′, then the distance between pj(q + 1) and pj′(q + 1), is at least (8h+ 2)q
+ 4h + 6 > 8h + 5, one can see that the paths Pj(q + 1) are pairwise vertex-disjoint and
non-adjacent. It is then clear that all the conditions of the invariant are met.

Induction. Let Bi be the induced minor model of 1-subd(Kp,q+1−i) in Gi with i > 1,
and P1(i), . . . , Pp(i) be the vertical paths in Ti−1 satisfying the invariant at step i. Let
A1(i), . . . , Ap(i) be the branch sets of Bi corresponding to the vertices on the “left” side of
the biclique, and let B1, . . . , Bq+1−i be the branch sets corresponding to the vertices on its
“right” side. Finally, let Zi ⊂ Bi be the collection of the branch sets corresponding to the
subdivision vertices.
Construction of the new model. The construction of Bi−1, the induced minor model of
1-subd(Kp,q+2−i) in Gi−1, is quite simple. We augment Bi in the following way. For every
j ∈ [p], let zj be the endpoint of Pj(i) that is not in Aj(i). Let X be the union of the paths
in Ti−1 between each zj and the root of Ti−1.

We use X to build a branch set corresponding to the new vertex on the “right” side.
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Namely, we set Bq+2−i := X \{zj | j ∈ [p]}. The branch sets corresponding to the subdivision
vertices adjacent to the new vertex are the singletons {zj}. Finally, we augment each Aj(i)
by adding to it the path Pj(i). Specifically, for each j ∈ [p], we define Aj(i − 1) :=
Aj(i) ∪ Pj(i) \ {zj}. This finishes the construction of

Bi−1 := {A1(i− 1), . . . , Ap(i− 1)} ∪ {B1, . . . , Bq+1−i, Bq+2−i} ∪ Zi ∪ {{z1}, . . . , {zp}}.

We refer the reader to the representation of Gi−1 and Bi−1 in Figure 2.
Bi−1 is an appropriate induced minor model. Let us first check that Bi−1 is indeed
an induced minor model of 1-subd(Kp,q+2−i) in Gi−1. Clearly, each set in Bi−1 induces
a connected subgraph of Gi−1. By Lemma 9, each path Pj(i) has no more than its at most h
last vertices in V (Gi) (where the first vertex of the path is the one closer to the root of Ti−1
in Ti−1). The rest of its vertices are in V (Gi−1) \ V (Gi). Thus, one can observe that every
set among Bq+2−i, {z1}, . . . , {zp} is non-adjacent to every branch set of Bi. By definition,
Bq+2−i is adjacent to each of {z1}, . . . , {zp}. By the invariant, all the paths P1(i), . . . , Pp(i)
are far away from each other, hence, the sets {z1}, . . . , {zp} are pairwise non-adjacent.

To conclude, it suffices to argue that Bq+2−i does not touch Aj(i − 1) for any j ∈ [p],
and that the rest of the adjacencies of Aj(i− 1) are as desired. It is clear that Aj(i− 1) is
adjacent to {zj}. By the invariant, Pj(i) is only adjacent to one branch set of Bi, namely,
Aj(i). Finally, an edge between Bq+2−i and Aj(i− 1) (or a common vertex) would create
a path of length at most 1 + (4h+ 1) + (5h+ 1) = 9h+ 3 between two sets Aj(i), Aj′(i) for
some j′ 6= j, which contradicts the last item of the invariant at step i. The existence of such
a path would indeed be guaranteed by the fact that vertices pj(i) and pj′(i) lie within h
consecutive layers of BFS tree Ti−1 (this explains the 5h+ 1 as h+ 4h+ 1). In particular,
Aj(i− 1) is not adjacent to neither Bq+2−i nor {zj′} for any j′ 6= j. This concludes the proof
that Bi−1 is an induced minor model of 1-subd(Kp,q+2−i) in Gi−1.
Construction of the vertical paths. When i = 2, this finishes the induction step.
Otherwise, we shall define the paths P1(i− 1), . . . , Pp(i− 1) required by the invariant. First,
we argue that the graph Gi−1 is deep enough in Ti−2. Let r be such that Gi−1 is a connected
component contained in the h consecutive layers of Ti−2 whose index is in [r, r + h − 1].
It follows that there is a path of length at most 2r + 2h − 2 between any vertices in the
branch sets of the model Bi. By the last item of the invariant at step i, this implies that
2r+ 2h− 2 > (8h+ 2)(i− 1) + 4h+ 6 > 12h+ 8. In particular, r > 4h+ 2. For every j ∈ [p],
let pj(i− 1) be the vertex in the middle of Pj(i). Since r > 4h+ 2, we can choose Pj(i− 1)
as the unique vertical path of Ti−2 whose length is 4h+ 2 and whose extremity further away
from the root of Ti−2 is pj(i− 1). See Figure 2 for an illustration.
Checking that all the items of the invariant hold (per paragraph: 1–2, 3, 4, 5–6).
The first two items of the invariant hold by Lemma 9 combined with the fact that no path
of length at most (2h + 1) + h + (2h + 1) = 5h + 2 can exist between two distinct Aj(i)
and Aj′(i); this is why we set the path length to 4h+ 2, and why the next paths target the
middle point of the previous paths. (This trick is called moat in [17].)

The third item holds, since if two distinct paths Pj(i− 1), Pj′(i− 1) would touch (i.e.,
intersect or be adjacent), then a path of length at most (2h+ 1) + (4h+ 2) + 1 + (4h+ 2) +
(2h + 1) = 12h + 7 would link a vertex of Aj(i) to a vertex of Aj′(i). Similarly, no path
Pj(i− 1) is adjacent to a branch set Aj′(i− 1) with j 6= j′, as this would create a path of
length at most (2h+ 1) + (4h+ 2) + (4h+ 2) between Aj(i) and Aj′(i). Finally, no path
Pj(i− 1) can touch X. Indeed, by Lemma 9 (in Gi−1), if X would touch a path Pj(i− 1)
(for some j ∈ [p]), there would be a path of length at most h+ 1 between X and pj(i− 1)
in Gi. Let then x be a vertex in X ∩N(Pj(i− 1)) linked to pj(i− 1) by a path of length
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Ai(1) Ai(2) Ai(3) Ai(4)

B1 B2 Gi
Bi

h consecutive
layers in Ti−1

pi(1)

root of Ti−1

B3

Bi−1
Pi(1)

Pi(2) Pi(3) Pi(4)

Gi−1

h consecutive layers in Ti−2

z1

pi−1(1)

Pi−1(1)

Pi−1(2)

Pi−1(3)
Pi−1(4)

root of Ti−2

Figure 2 Illustration of the various labels used in the proof, and of how the induced minor model
Bi in Gi (here at step i = q − 1) is turned into the induced minor model Bi−1 in Gi−1: The orange
part of Ti−1 gives a new branch set Bq+2−i, the vertices zj (in green) are the new “subdivision”
vertices, each path Pj(i) (in lighter blue) is absorbed in Aj(i), while the paths Pj(i− 1) (in darker
blue) provide the next vertical paths.

at most h + 1. In Ti−1, vertex x has to be on a path to zj′ with j′ ∈ [p] \ {j}. But this
contradicts that the distances of pj(i) and pj′(i) to the root of Ti−1 differ by at most h (as
these vertices lie within h consecutive layers of Ti−1). Indeed pj(i) is at distance at most
(h+ 1) + (2h+ 1) = 3h+ 2 from x, while pj′(i) is at distance at least 4h+ 2 from x. Hence,
the fourth item holds.

The fifth item holds since every Aj(i) was added at most 4h+1 vertices to become Aj(i−1).
For the same reason, sets Aj(i− 1) can only get closer to each other by 2 · (4h+ 1) = 8h+ 2,
which confirms the last item. J

I Lemma 11. Let p > 2 and q > 1 be integers, and G be a graph excluding the 1-subdivision of
Kp,q as an induced minor. Then G has a 2q+1-edge-coloring with clustering ∆(G)18(q+1)(p−1).

Proof. Consider the iterated BFSes of width 2 to weak diameter at most 18(q+ 1)(p− 1)− 1
of G. By Lemma 10 it has depth at most q + 1. We show the present lemma by induction
on the depth. If the depth is 0, the current vertex subset X has weak diameter at most
18(q + 1)(p− 1)− 1. Therefore |X| 6 ∆(G)18(q+1)(p−1). We thus give the same color to all
edges of G[X].

If the depth is d > 1, then let {L0, L1, L2, . . . , Ls} be the BFS layering of the current
graph. At each new graph, connected component of G[L0 ∪ L1], G[L1 ∪ L2], G[L2 ∪ L3],
. . ., G[Ls−1 ∪ Ls], the recursion depth is at most d− 1. By induction, every such induced
subgraph can be 2d−1-edge-colored with clustering ∆(G)18(q+1)(p−1).

Observe that the colorings of the connected components of G[L0 ∪ L1], G[L2 ∪ L3], . . .
define a 2d−1-edge-coloring with clustering ∆(G)18(q+1)(p−1) of G[L0∪L1]]G[L2∪L3]] . . . as
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a whole. The same applies to G[L1 ∪L2], G[L3 ∪L4], . . . This yields for the current graph an
edge-coloring with clustering ∆(G)18(q+1)(p−1) using at most 2d−1 +2d−1 = 2d colors. Indeed,
all its edges are covered by G[L0 ∪ L1] ]G[L2 ∪ L3] ] . . . and G[L1 ∪ L2] ]G[L3 ∪ L4] ] . . .
Edges that appear in both graphs can take any of the two colors they are assigned to.

We thus get a 2q+1-edge-coloring with clustering ∆(G)18(q+1)(p−1) for G. J

6 Putting things together

We first show an upper bound on the treewidth of graphs excluding a grid as an induced
minor and admitting edge-colorings with few colors and moderately large clustering.

I Lemma 12. Every graph G excluding a k-vertex planar graph as an induced minor and
admitting an h-edge-coloring with clustering c > 0 has treewidth at most kO(1)2O(h5+h log c).

Proof. By Lemma 8, G admits an induced subgraph G′ of maximum degree at most 3h and

tw(G)/(c logδ tw(G))h 6 tw(G′),

with δ the constant of Theorem 6.
As G excludes a k-vertex planar graph as an induced minor, so does G′. Thus by The-

orem 1,
tw(G′) 6 kγ2∆(G′)5

6 kγ2243h5
,

for some universal constant γ.
From the two previous inequalities, we get that

tw(G)/(c logδ tw(G))h 6 kγ2243h5
.

If logδh tw(G) 6
√
tw(G), we get that

tw(G) 6 c2hk2γ22·243h5
= kO(1)2O(h5+h log c),

as claimed. If instead logδh tw(G) >
√
tw(G), the statement of the lemma also holds, as

then tw(G) = 2O(h2). J

We obtain our main result as a consequence of Lemma 12.

I Theorem 3. Every graph G excluding as induced minors a k-vertex planar graph and
a q-vertex graph has treewidth at most kO(1) ·∆(G)f(q) with f(q) = 2O(q).

Proof. As G excludes a q-vertex graph as an induced minor, it also excludes as such the
1-subdivision of Kq2,q, which admits every q-vertex graph as an induced minor. We can
assume that q > 2 (hence q2 > 2) as otherwise G is edgeless, hence has treewidth 0. Thus,
by Lemma 11, G admits a 2q+1-edge-coloring with clustering ∆(G)18(q+1)(q2−1). We can
assume that ∆(G) > 2, as otherwise G has treewidth 6 1. By Lemma 12,

tw(G) 6 kO(1)2O(25(q+1)+2q+1(q+1)(q2−1) log∆(G)) = kO(1)∆(G)f(q),

with f(q) = 2O(q), as claimed. J
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7 Clusters of bounded treewidth

The goal of this section is to relax the notion of clustering of edge-colorings so that Lemma 12
still holds. Namely, we now allow clusters to be arbitrarily large, however, we want their
treewidth to be bounded. This can be converted into an edge-coloring (still with few colors)
with bounded clustering. Indeed, we show that a graph G of bounded treewidth admits
a 3-edge-coloring with clustering f(∆(G)).

The main tool we plan to use is the notion of tree-partitions of graphs. A pair (T, {Bx :
x ∈ V (T )}) is a tree-partition of a graph G if T is a tree, and {Bx : x ∈ V (T )} is a partition
of V (G) such that for every uv ∈ E(G), there exist a pair x, y ∈ V (T ) of equal or adjacent
vertices such that u ∈ Bx, v ∈ By. The width of a tree-partition (T, {Bx : x ∈ V (T )}) is
defined as the maximum cardinality of an element of {Bx : x ∈ V (T )}. The tree-partition
width of a graph G, denoted tpw(G), is the minimum width of a tree-partition of G. An
anonymous referee of [9] showed that every graph G has tree-partition width of at most
24tw(G)∆(G) (see also [27, 10]).

I Lemma 13. Every graph G admits a 3-edge-coloring with clustering tpw(G)(∆(G) + 1),
which is in particular O(tw(G)∆(G)2).

Proof. Let (T, {Bx : x ∈ V (T )}) be a tree-partition of G of width w. We root T at
an arbitrary vertex r. Assign to each vertex x ∈ V (T ) its distance to r in T , denoted
depth(x). We define a coloring col : E(G) → {0, 1, 2} as follows. Let uv ∈ E(G), and let
x ∈ V (T ), y ∈ NT [x] be such that u ∈ Bx and v ∈ By. Without loss of generality assume
that depth(x) 6 depth(y). If x 6= y, then we set col(uv) = depth(x) mod 2, and otherwise,
we set col(uv) = 2. Every monochromatic connected component of color 2 is contained in
a single part Bx for some x ∈ V (T ), and so, its cardinality is at most w. On the other hand,
for every monochromatic connected component of color 0 or 1, there exists a single part Bx
for some x ∈ V (T ) such that every edge in the component is incident to a vertex in Bx. It
follows that the size of this monochromatic component is at most w · (∆(G) + 1). J

Now, we state and prove a relaxed version of Lemma 12.

I Lemma 14. Suppose graph G excludes as an induced minor a k-vertex planar graph and
admits an edge-coloring col1 with color classes F1, . . . , Fh such that for each i ∈ [h], the graph
(V (G), Fi) has treewidth at most t. Then the treewidth of G is at most kO(1)tO(h5)∆(G)O(h5).

Proof. By Lemma 13, for each i ∈ [h], the graph (V (G), Fi) admits a 3-edge-coloring with
clustering O(t∆(G)2). Since {F1, . . . , Fh} is a partition of V (G), the above edge-colorings
give a 3-edge-coloring col2 of E(G). Consider the product edge-coloring col of col1 and col2
of E(G), that is, col(e) = (col1(e), col2(e)) for every e ∈ E(G). Observe that col uses at most
3h colors and has clustering O(t∆(G)2). Finally, by Lemma 12, we obtain

tw(G) 6 kO(1) · (t∆(G)2)O(h5) = kO(1)tO(h5)∆(G)O(h5),

as claimed. J

8 Product structure

The strong product of graphs H1 and H2, denoted by H1 � H2, is the graph with vertex
set V (H1) × V (H2) such that there is an edge (u, v)(u′, v′) whenever either u = u′ and
vv′ ∈ E(H2), or uu′ ∈ E(H1) and v = v′, or uu′ ∈ E(H1) and vv′ ∈ E(H2). We prove the
following theorem.
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I Theorem 4. Let H be a graph of treewidth at most t, and P be a path. Let G be a subgraph
of H � P excluding a k-vertex planar graph as an induced minor. Then the treewidth of G is
at most kO(1) · tO(1) ·∆(G)O(1).

Proof. We claim that H � P admits a 3-edge-coloring such that if F is any of its color
classes, then the graph (V (H �P ), F ) has treewidth at most 2t. First, note that this suffices
to prove the theorem. Indeed, we can restrict this edge-coloring to G and apply Lemma 14
with h = 3 to end the proof.

Let us justify the initial claim. We construct a coloring col : E(H � P )→ {0, 1, 2}. Let
P = v1v2 . . . vm. We set the color of each edge (u, v)(u′, v′) such that v = v′ to 2, and
each edge (u, v)(u′, v′) such that v 6= v′ to i mod 2, where i the positive integer satisfying
{v, v′} = {vi, vi+1}. The graph G restricted to edges of color 2 is simply a disjoint union of
copies of H, hence, it has treewidth at most t. On the other hand, the graph G restricted
to edges of color 0 or 1 is a disjoint union of copies of the graph H ′ = H � K2. Thus
tw(H ′) 6 2tw(H) 6 2t, which ends the proof. J
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