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Abstract
Despite the (algorithmic) importance of treewidth, both its complexity and approximability
present large knowledge gaps. While the best polynomial-time approximation algorithm has ratio
O(

√
logOPT), no approximation factor could be ruled under P 6= NP alone. There are 2O(n)-time

algorithms to compute the treewidth of n-vertex graphs, but the Exponential-Time Hypothesis
(ETH) was only known to imply that 2Ω(

√
n) time is required. The reason is that all the known

hardness constructions use Cutwidth or Pathwidth on bounded-degree graphs as an intermediate
step in a (long) chain of reductions, for which no inapproximability nor sharp ETH lower bound is
known.

We present a simple, self-contained reduction from 3-SAT to Treewidth. This starts filling
the former gap, and completely fills the latter gap. Namely, we show that 1.00005-approximating
Treewidth is NP-hard, and solving Treewidth exactly requires 2Ω(n) time, unless the ETH fails.
We further derive, under the latter assumption, that there is some δ > 1 such that δ-approximating
Treewidth requires time 2n

1−o(1)
.
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1 Introduction

Treewidth [3, 11, 19] and tree-decompositions1 have a central role in algorithm design and
graph theory, among other areas. While it is known that computing the treewidth of
a graph is NP-complete [1], various approximation and/or parameterized algorithms, and
exact exponential algorithms have been developed. The current Pareto front features, on
n-vertex graphs of treewidth k, a polynomial-time O(

√
log k)-approximation algorithm [9],

a O(1.7347n)-time exact algorithm [10], a 2O(k)n-time 2-approximation algorithm [15],
a 2O(k3)n-time exact algorithm [4], a 2O(k2)n4-time exact algorithm, and a 2O( k log k

ε )n4-time
(1 + ε)-approximation algorithm for any ε > 0 [16]; see the latter reference for a detailed
overview of the state of the art.

On the complexity side, we did not know any sharp lower bound. The original reduction [1],
as well as subsequent constructions strengthening the NP-hardness of Treewidth to graphs
of maximum degree at most 9 [7], and even to cubic graphs [5], all rely on the NP-hardness
of Cutwidth or Pathwidth on bounded-degree graphs. However, the known reductions
for the latter results (see for instance [17]) incur a quadratic blow-up in the input size,
and do not preserve any multiplicative2 inapproximability. Therefore, prior to the current
paper, a polynomial-time approximation scheme (PTAS) for Treewidth could not be
ruled out under the sole assumption3 that P 6= NP, and the best lower bound based on the

1 See their definition in Section 2.2.
2 Some additive inapproximability is known for treewidth [6].
3 Assuming the so-called Small Subset Expansion conjecture (that the edge expansion of sublinear vertex

subsets is hard to approximate), it can be showed that any constant-approximation of Treewidth is
NP-complete [20].
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Exponential-Time Hypothesis4 (ETH) only implied that Treewidth requires 2Ω(
√
n) time

(see for instance the appendix of [16]).
In this paper, we present a simple self-contained linear reduction from 3-SAT to

Treewidth. This improves our understanding in the approximability and complexity
of treewidth. We make the reduction modular so that depending on the instances of 3-SAT
we start with, we derive the following three theorems.

I Theorem 1. 1.00005-approximating Treewidth is NP-hard.

I Theorem 2. Unless the ETH fails, Treewidth requires 2Ω(n) time on n-vertex graphs.

I Theorem 3. Unless the ETH fails, there is some constant δ > 1 such that δ-approximating
Treewidth requires 2n1−o(1) time on n-vertex graphs.

The first theorem rules out a PTAS for Treewidth unless P = NP (and establishes its
APX-hardness). There is still a very large gap between this inapproximability factor and the
O(
√

logOPT)-approximation algorithm of Feige, Hajiaghayi, and Lee [9], but at least the
lower bound has moved for the first time. The second theorem establishes a tight ETH lower
bound: running time 2O(n) (for instance [10]) is best possible (under the ETH) to exactly
compute treewidth. The third theorem combines the previous two hardness features. In
particular, it (loosely) complements the 2O( k log k

ε )nO(1)-time (1 + ε)-approximation algorithm
of Korhonen and Lokshtanov [16], in the sense that even for some fixed sufficiently small
ε > 0 (depending on the ETH constant λ), the exponent O(k log k) in the running time
cannot be improved to O(k1−η) with η > 0.

Techniques. The known hardness constructions leverage the fact that on co-bipartite
graphs (complements of bipartite graphs), tree-decompositions behave orderly. They are
tame enough to allow a simple reduction from Cutwidth,5 and actually treewidth and
pathwidth are equal on co-bipartite graphs [1]. However, it seems challenging to design
a linear reduction from 3-SAT to Treewidth on co-bipartite graphs. It is indeed unclear
how to design a (binary) choice gadget in this restricted setting.

We thus move to co-tripartite graphs G with tripartition (A,B,C) (into cliques) where
A encodes the clauses, and B ∪ C encodes the variables, with B associated to their positive
form, and C, their negation. More precisely, a blow-up (where vertices are replaced by clique
modules) of a semi-induced matching6 between B and C constitutes our variable gadgets.
For A, we add 7 = 23 − 1 vertices for each clause, one for each partial satisfying assignment
of the clause, each adjacent to the three modules corresponding to its literals; see Figure 1.
This is to turn the disjunctive nature of 3-SAT into some conjunctive encoding, which better
fits tree-decompositions.

Although co-tripartite graphs provide the greater generality (compared to co-bipartite
graphs) that allows us to simply design choice gadgets, their tree-decompositions are still
tame enough. In particular, they always admit a tree-decomposition of minimum width
whose underlying tree is a subdivided claw, and whose three leaf bags contain A, B, and
C, respectively. The crucial property that these tree-decompositions shares is that the bag
of the unique degree-3 node is a vertex cover of the graph I(G), defined as G deprived of
the edges within the cliques A, B, and C. A reader familiar with the notion of bramble may

4 The ETH asserts that there is a λ > 0 such that no algorithm solves n-variable 3-SAT in O(λn)
time [13].

5 We will not need the definition of cutwidth.
6 Here, an induced matching if not for the cliques B and C.
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already observe that the edge set of I(G) is a bramble of G, hence the vertex cover number
of I(G) minus one indeed lower bounds the treewidth of G; a useful fact for the “negative”
3-SAT instances.

This is where moving from co-bipartite graphs to co-tripartite graphs is decisive: Min
Vertex Cover is polynomial-time solvable on bipartite graphs, but NP-complete on
tripartite graphs. We can thus simply rely on the hardness of Min Vertex Cover, while
this was impossible for the previous reductions based on co-bipartite graphs. This is indeed
what we do. The treewidth upper bound for the “positive” 3-SAT instances can easily be
derived via the Cops and Robber game. We will in fact not use brambles nor the Cops and
Robber game in order to make the paper self-contained and more widely accessible. Readers
comfortable with these notions will be able to skip Section 3.2, and find their own alternative
(and shorter) proof in Section 3.3.

2 Definitions and notation

If i is a positive integer, we denote by [i] the set of integers {1, 2, . . . , i}.

2.1 Classical graph theory
We denote by V (G) and E(G) the set of vertices and edges of a graph G, respectively.
For S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is obtained by removing
from G all the vertices that are not in S (together with their incident edges). A set
X ⊆ V (G) is connected (in G) if G[X] has a single connected component, and disconnected
otherwise. A graph is co-tripartite (resp. co-bipartite) if it is the complement of a tripartite
graph (resp. bipartite) graph, or equivalently can have its vertex set partitioned into three
(resp. two) cliques. A vertex cover of a graph G is a subset S ⊆ V (G) such that every edge
of G has at least one of its two endpoints in S.

We denote by NG(v) and NG[v], the open, respectively closed, neighborhood of v in G.
For S ⊆ V (G), we set NG(S) :=

⋃
v∈S NG(v) \S and NG[S] := NG(S)∪S. A module in G is

a subset Y ⊆ V (G) such that for every u, v ∈ Y , NG(u) \ Y = NG(v) \ Y . The degree dG(v)
of a vertex v ∈ V (G) is the size of NG(v), and the maximum degree of G is maxv∈V (G) dG(v).
In all the previous notations, we may omit the graph subscript if it is clear from the context.
A subdivided claw is any tree with exactly three leaves. Note that any subdivided claw has
exactly one vertex of degree 3, and apart from it and its three leaves, only vertices of degree 2.

2.2 Tree-decompositions and treewidth
A tree-decomposition of a graph G is a pair (T, β) where T is a tree and β is a map from
V (T ) to 2V (G) satisfying the following properties:

for every v ∈ V (G), {t ∈ V (T ) : v ∈ β(t)} induces a non-empty subtree of T , and
for every uv ∈ E(G), there is a t ∈ V (T ) such that {u, v} ⊆ β(t).

The width of (T, β) is defined as maxt∈V (T ) |β(t)| − 1, and the treewidth of G, denoted by
tw(G), is the minimum width of (T, β) taken among every tree-decomposition (T, β) of G.
A path-decomposition is a tree-decomposition (T, β) where T is a path. And pathwidth is
defined as treewidth with path-decompositions instead of tree-decompositions.

We may call β(t) the bag of t ∈ V (T ). We also call trace of v ∈ V (G) the set {t ∈ V (T ) :
v ∈ β(t)}. We may say that an edge uv ∈ E(G) is covered by a tree-decomposition (T, β)
(not a priori claimed to be one of G) if there is a t ∈ V (T ) such that {u, v} ⊆ β(t). More
specifically, the edge uv is covered by node t. A pair (T, β) where T is a tree and β is a map
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from the nodes of T to subsets of some universe U is a (valid) tree-decomposition (of some
graph) if the trace of each element of U induces a non-empty subtree of T . It further is
a tree-decomposition of G if U = V (G) and every edge of G is covered by (T, β).

3 Treewidth hardness

Let ϕ be a 3-CNF formula. We denote by x1, . . . , xn the variables of ϕ, and by C1, . . . , Cm,
its clauses, each of them on exactly three literals.

3.1 Construction of G(ϕ)
We build a co-tripartite graph G := G(ϕ) with 2γn+7m vertices, where γ = O(1) is a natural
number to be instantiated. Set V (G) is partitioned into (A,B,C) with G[A], G[B], and
G[C] each being a clique. The set A represents the clauses, and B ∪C, the variables, with B
corresponding to their positive form, and C their negation.

For every variable xi, we add γ vertices b1
i , . . . , b

γ
i to B, and γ vertices c1

i , . . . , c
γ
i to C.

We keep the value of the natural number γ generic. The only constraint on γ is that there is
no literal with p positive occurrences and q negative occurrences in ϕ such that 4p+ 3q > γ.
To clarify, every clause of ϕ containing ¬xi counts for a positive occurrence of literal ¬xi,
and every clause of ϕ containing xi counts for a negative occurrence of literal ¬xi.

(For the concreteness of showing Theorem 1, the reader can assume that every variable
appears exactly twice positively and exactly twice negatively, and γ := 4 · 2 + 3 · 2 = 14.) We
set B(xi) := {b1

i , . . . , b
γ
i } and C(xi) := {c1

i , . . . , c
γ
i }. For every i, i′ ∈ [n] and h, h′ ∈ [γ], the

two vertices bhi , ch
′

i′ are made adjacent if and only if i = i′. Each set B(xi) and C(xi) will
remain a module in G(ϕ), and we will therefore rarely refer to bhi individually.
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B(x1)

C(x1)
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C(xn)
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a1(x1,¬x4, x6)
a1(x1,¬x4,¬x6)

a1(x1, x4, x6)
a1(x1, x4,¬x6)

a1(¬x1,¬x4, x6)
a1(¬x1,¬x4,¬x6)

a1(¬x1, x4, x6)

A1

A

Figure 1 Illustration of G(ϕ) with n = 8. For the sake of not cluttering the picture, we did not
draw the edges within the cliques A, B, and C. We also only represented the vertices of A encoding
the clause C1 = x1 ∨ ¬x4 ∨ x6, i.e., A1, and only drew the edges incident to a1(x1,¬x4, x6) and
to a1(¬x1, x4, x6). The blue vertical boxes are modules.

For every clause Cj = `1∨`2∨`3 with `p = (¬)xip for p ∈ [3], we add a set Aj of 7 vertices
to A, one for each assignment of its three variables satisfying Cj . For (s1, s2, s3) ∈ ({`1,¬`1}×
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{`2,¬`2}×{`3,¬`3}) \{(¬`1,¬`2,¬`3)}, we denote by aj(s1, s2, s3) the corresponding vertex
of A, while syntactically replacing ¬¬x by x. For each p ∈ [3], we make aj(s1, s2, s3) fully
adjacent to B(xip) if sp = xip , or to C(xip) if sp = ¬xip . This finishes the construction of G;
see Figure 1.

3.2 Tree-decompositions of co-tripartite graphs
Here we show that every co-tripartite graph G with tripartition (A,B,C) has a tree-
decomposition (T, β) of width tw(G) such that T is a subdivided claw, and the bag of
its vertex of degree 3 is a vertex cover of I(G), the graph G deprived of the edges within the
cliques A, B, and C. A reader familiar with brambles may observe that the family of pairs
B := {{u, v} : uv ∈ E(G) \

⋃
X∈{A,B,C}E(G[X])} is a bramble of G, and that a hitting set

of B is, by definition, a vertex cover of I(G); thereby reaching the desired treewidth lower
bound. They may then skip Section 3.2. We chose this presentation, as Lemma 6 better
prepares to Sections 3.3 and 3.4.

We start by recalling a classical lemma.

I Lemma 4. Let G be a graph, X be a clique of G, and (T, β) be a tree-decomposition of G.
Then there is a node t ∈ V (T ) such that X ⊆ β(t).

Proof. Every two vertices x, y ∈ X have to appear together in some bag of (T, β). We
conclude, as subtrees in a tree have the Helly property. J

Lemma 4 justifies the existence of tA, tB , tC in the assumption of the following lemma.

I Lemma 5. Let G be a co-tripartite graph with tripartition (A,B,C), and (T, β) be a tree-
decomposition of G. Let tA, tB , tC ∈ V (T ) be such that A ⊆ β(tA), B ⊆ β(tB), and
C ⊆ β(tC). Let T ′ be the minimal subtree of T containing tA, tB , tC . Then (T ′, β) is
a tree-decomposition of G (where β is used, for simplicity’s sake, for its restriction to V (T ′)).

Proof. In a tree, the intersection of two subtrees is also a subtree. Thus (T ′, β) is a valid
tree-decomposition (of some graph). We show that (T ′, β) is a tree-decomposition of G. As
A ⊆ β(tA), B ⊆ β(tB), and C ⊆ β(tC), every vertex of G is in some bag of (T ′, β). We
next argue that no node of V (T ) \ V (T ′) is actually useful to cover the edges of G. Let
t ∈ V (T ) \ V (T ′) and t′ be the node of T ′ in the shortest path from t to V (T ′). It holds that
β(t) ⊆ β(t′), as otherwise the trace of any vertex of β(t) \ β(t′) in (T, β) is disconnected.
Hence t does not cover edges that are not already covered by t′. J

If G is a co-tripartite graph with tripartition (A,B,C), we recall that I(G) is the graph
obtained from G by removing all the edges within the cliques A, B, and C.

I Lemma 6. Let G be a co-tripartite graph with tripartition (A,B,C). Then G has a tree-
decomposition (T, β) of width tw(G) such that

T is a subdivided claw,
the three leaves tA, tB, tC of T satisfy X ⊆ β(tX) for every X ∈ {A,B,C}, and
the unique degree-3 node t∧pp of T is such that β(t∧pp ) is a vertex cover of I(G).

Proof. By applying Lemma 5 with a tree-decomposition of minimum width, G has a tree-
decomposition (T, β) of width tw(G) such that T is a subdivided claw whose three leaves tA,
tB , tC verify X ⊆ β(tX) for every X ∈ {A,B,C}. (Indeed, if the minimal subtree connecting
tA, tB, tC is a path, one can simply add a neighbor with the same bag to whichever of tA,
tB , tC is not yet a distinct leaf node.) Hence the first two items of the lemma are satisfied.
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Let t∧pp be the unique node of T with degree 3. Assume for the sake of contradiction
that an edge uv ∈ E(I(G)) is such that {u, v} ∩ β(t∧pp ) = ∅. Without loss of generality, let
us assume that u ∈ A and v ∈ B. We claim that no bag of (T, β) may then include {u, v}.
Indeed, vertex u may only be present in the path of T going from tA to t∧pp , excluding t∧pp
itself, while v is only present within the path from tB to t∧pp (excluded). J

When we later use Lemma 6, only the third item will actually matter.

3.3 If one can satisfy m′ clauses, then tw(G) 6 γn+ 7m−m′ + γ − 1
We go back to the particular co-tripartite graph G := G(ϕ) with tripartition (A,B,C)
constructed in Section 3.1, and exhibit, when a truth assignment satisfies m′ clauses of ϕ,
a tree-decomposition (T, β) of G where every bag has size at most γ(n+ 1) + 7m−m′. Let
us recall that |A| = 7m and |B| = |C| = γn. The tree T is a subdivided claw. Let t∧pp be its
degree-3 vertex, and tA, tB , tC be its three leaves.

The bag of t∧pp . Let A be a truth assignment of x1, . . . , xn satisfying m′ 6 m clauses
of ϕ. We denote by A+ ⊆ [n] (resp. A− ⊆ [n]) the set of indices i such that A sets xi to
true (resp. to false). Thus (A+,A−) partitions [n]. Let us define the bag of t∧pp . We set

B′ :=
⋃
i∈A+

B(xi), and C ′ :=
⋃
i∈A−

C(xi).

We define the subset A′ ⊂ A of size 7m−m′, starting from A and removing, for each satisfied
clause Cj , the vertex aj(s1, s2, s3) ∈ Aj such that s1, s2, s3 are all satisfied by A. Thus
|A′| = |A| −m′ = 7m−m′. We set β(t∧pp ) := A′ ∪B′ ∪ C ′.

Path-decompositions from t∧pp to the three leaf nodes. We now give the path-
decompositions from t∧pp to tX for each X ∈ {A,B,C}, such that: X ⊆ β(tX), and for every
node t ∈ V (T ) in the path from t∧pp to tX , for each Y ∈ {A,B,C} \X, β(t) ∩ Y ⊆ Y ′. We
will later see that path-decompositions satisfying the previous conditions combine to define
a valid tree-decomposition.

The path-decomposition from t∧pp to tB goes as follows. Initially, the active node is t∧pp .
For increasing indices i ∈ A−, add a neighbor t′ to the current active node t ∈ V (T ), and set
β(t′) := β(t) ∪B(xi). Then add a neighbor t′′ to t′, and set β(t′′) := β(t′) \ C(xi). Node t′′
then becomes the active node. The active node after the last iteration in A− is tB . Note that
β(tB) = A′ ∪B. The path-decomposition from t∧pp to tC is defined analogously by replacing
A− with A+, and swapping the roles of B(xi) and C(xi).

We finally describe the path-decomposition from t∧pp to tA. The path of T from t∧pp to
tA is: t∧pp = t′0, t1, t

′
1, t2, t

′
2, . . . , tn, t

′
n = tA. For every integer i from 1 to n, we set β(ti) :=

β(t′i−1)∪Zi where Zi is the set of neighbors in A of vertices in B(xi) if i ∈ A+ (equivalently
if B(xi) ⊆ B′ ∪ C ′), or of vertices in C(xi) if i ∈ A− (equivalently if C(xi) ⊆ B′ ∪ C ′). And
we set β(t′i) := β(ti) \ (B(xi) ∪ C(xi)). Note that β(tA) = A.

This finishes the construction of (T, β). We have three properties to check: the trace of
every vertex of G (in (T, β)) makes a non-empty tree, all edges of G are covered by (T, β),
and every bag of (T, β) has size at most γ(n+ 1) + 7m−m′.

The trace of every v ∈ V (G) induces a non-empty tree. The simplest case is when
v ∈ A′, as A′ is included in every bag of (T, β). For each X ∈ {A,B,C}, the trace (in (T, β))
of any v ∈ X \X ′ is a path ending at tX , since v ∈ X ⊆ β(tX), and in the path of T going
from t∧pp to tX , vertex v is added to the bag of some node t, and never removed in the path
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from t to tX . Furthermore, if {Y,Z} = {A,B,C} \X, no vertex of X \X ′ is part of a bag
in the path of T from tY to tZ .

It remains to check that the traces of vertices of B′ ∪ C ′ induce subtrees of T . This is
indeed the case since every vertex v ∈ B′ (resp. v ∈ C ′) is in all the bags along the path
from t∧pp to tB (resp. to tC), while no vertex in B (resp. in C) is ever added to a bag in the
paths from t∧pp to tA and from t∧pp to tC (resp. to tB).

Every edge e ∈ E(G) is covered by (T, β). For each X ∈ {A,B,C}, every edge within
the clique X is covered by tX , as X ⊆ β(tX). Therefore, we shall just argue that every edge
of E(I(G)) is covered by (T, β).

We start with the edges between B and C. Recall that all these edges are of the form
bhi c

h′

i with i ∈ [n] and h, h′ ∈ [γ]. If i ∈ A−, there is, in the path of T from t∧pp to tB , a node
where we just added B(xi), while C(xi) ⊆ C ′ is still present (and C(xi) is removed in the
following bag). Thus this node covers bhi ch

′

i , as well as every edge between B(xi) and C(xi).
Analogously, if i ∈ A+, there is in the path of T from t∧pp to tC , a node where we just added
C(xi), while B(xi) ⊆ B′ is still present.

We now consider edges between A and B ∪ C. Note that every edge between A′ and B
(resp. C) is covered by tB (resp. tC) since β(tB) = A′ ∪B (resp. β(tC) = A′ ∪ C). We thus
turn our attention to edges between A \A′ and B ∪ C. By construction, no vertex of A \A′
has a neighbor in (B ∪C) \ (B′ ∪C ′). Hence we are only left with edges between A \A′ and
B′ ∪ C ′.

Fix an edge uv ∈ E(G) with u ∈ A \A′ and v ∈ B′ ∪ C ′, and let i ∈ [n] be such that v
belongs to β(ti) but not to β(t′i). Note that i is well-defined and corresponds to the index such
that v ∈ (B(xi)∪C(xi))∩(B′∪C ′). AsNG((B(xi)∪C(xi))∩(B′∪C ′))∩A = NG(v)∩A ⊆ β(ti),
edge uv is covered by ti (since u ∈ NG(v) ∩A).

Every bag of (T, β) has size at most γ(n+ 1) + 7m−m′. First note that |β(t∧pp )| =
γn + 7m − m′ and that each bag along the path of T between tB and tC has either
size γn + 7m − m′ or size γ(n + 1) + 7m − m′. We finally claim that for every i ∈ [n],
|β(ti)| 6 |β(t′i−1)|+ γ and |β(t′i)| 6 |β(t′i−1)|. For the former inequality, notice that vertices
of B(xi) (resp. C(xi)) have the same four neighbors within each Aj such that xi appears
positively (resp. negatively) in Cj , and the same three neighbors within each Aj such that xi
appears negatively (resp. positively) in Cj , and no other neighbor in A. Further recall that
every literal with p positive occurrences and q negative occurrences in ϕ satisfies γ > 4p+ 3q.
Consequently, to check that |β(t′i)| 6 |β(t′i−1)|, simply recall that the bag of t′i is that of ti
deprived of γ vertices. Therefore every bag along the path from t∧pp to tA has size at most
|β(t′0)|+ γ = |β(t∧pp )|+ γ = γ(n+ 1) + 7m−m′.

We have thus established that the treewidth of G is at most γn+ 7m−m′ + γ − 1.

3.4 If at most m′′ clauses are satisfiable, then tw(G) > γn+ 7m−m′′− 1
By Lemma 6, there is a tree-decomposition of G of width tw(G) with a bag (that of t∧pp )
that is a vertex cover of I(G). Therefore, we shall just argue that every vertex cover of
I(G) has size at least γn + 7m −m′′, when every truth assignment satisfies at most m′′
clauses of ϕ. We fix any inclusion-wise minimal vertex cover S of I(G), and set A′ := A ∩ S,
B′ := B ∩ S, C ′ := C ∩ S. As, for every i ∈ [n], every vertex of B(xi) is adjacent to every
vertex of C(xi), it necessarily holds that B(xi) ⊆ S or C(xi) ⊆ S. As B(xi) (resp. C(xi))
is a module (in G and in I(G)) and S is inclusion-wise minimal, it further holds that
S ∩ (B(xi) ∪ C(xi)) ∈ {B(xi), C(xi), B(xi) ∪ C(xi)}. We show the following replacement
lemma, to obtain a more suitable and non-larger vertex cover S′ of I(G).
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I Lemma 7. There is a vertex cover S′ of I(G) such that S′∩(B(xi)∪C(xi)) ∈ {B(xi), C(xi)}
for every i ∈ [n], and |S′| 6 |S|.

Proof. We initialize the set S′ to S. For every i ∈ [n] such that B(xi) ∪ C(xi) ⊆ S, we
remove C(xi) from S′, and add NG(C(xi)) ∩ A to S′. It was already observed that the
condition imposed on γ implies that |NG(C(xi))∩A| 6 γ, so the size of S′ may only decrease
(as |C(xi)| = γ). The replacement preserves the property of being a vertex cover of I(G),
since all the neighbors of C(xi) end up in S′ whenever C(xi) is removed. J

By Lemma 7, we just need to show that |S′| > γn + 7m − m′′. We note that S′ ∩
(B ∪ C) has size γn and defines a truth assignment A of x1, . . . , xn: A sets xi to true if
S′ ∩ (B(xi) ∪ C(xi)) = B(xi), and to false if S′ ∩ (B(xi) ∪ C(xi)) = C(xi). Seeing S′ as
(A \ Â) ∪ (S′ ∩ (B ∪ C)) for some Â ⊆ A, it holds that |S′| = 7m− |Â|+ γn. For S′ to be
a vertex cover of I(G), a vertex v of Â has to have all its neighbors within B ∪ C included
in S′. This can only happen if v = aj(s1, s2, s3), Cj is satisfied by A, and the literals s1, s2, s3
are all satisfied by A. This implies that |Â| 6 m′′. Therefore, |S′| > γn + 7m −m′′. We
conclude that the treewidth of G is at least γn+ 7m−m′′ − 1.

3.5 Instantiating the reduction
We now apply the previous reduction to hard (to approximate) 3-SAT instances in order
to show Theorems 1–3. Recall that as long as γ = O(1), our reduction produces graphs on
O(n+m) vertices from n-variable m-clause 3-SAT formulas. In particular, it is a polynomial
reduction, and linear in n whenever m = O(n).

Proof of Theorem 1. Following Berman, Karpinski, and Scott [2], we call (3, 2B)-SAT
formula a 3-CNF formula where every clause has exactly three literals, and every variable
appears exactly twice positively, and exactly twice negatively. The same authors showed that,
for any ε > 0, it is NP-complete to distinguish within m-clause (3, 2B)-SAT formulas those
for which at least (1− ε)m clauses are satisfiable from those for which at most ( 1015

1016 + ε)m
clauses are satisfiable.

We observe that m-clause (3, 2B)-SAT formulas have n = 3m
4 variables. Substituting

m′ := (1 − ε)m, m′′ := ( 1015
1016 + ε)m, γ := 4 · 2 + 3 · 2 = 14, and n = 3m

4 , we get that it is
NP-hard to distinguish graphs of treewidth at most (10.5 + 6 + ε)m + 13 from graphs of
treewidth at least (10.5 + 7− 1015

1016 − ε)m− 1. We conclude as

(17.5− 1015
1016 − ε)m− 1

(16.5 + ε)m+ 13 > 1.00005

for sufficiently small ε and large m.
We observe that one can increase the inapproximability gap by performing (with the

required adjustments) our reduction from Max-2-SAT where every variable has at most four
occurrences. This problem has a better known inapproximability factor than Max-(3, 2B)-
SAT [2], and this would also allow to decrease the value of γ (to 7).

Proof of Theorem 2. The Sparsification Lemma of Impagliazzo, Paturi, and Zane [14]
implies that, under the ETH, n-variable 3-SAT requires 2Ω(n) time even within formulas
where every variable appears at most B times, for some constant B. We denote this fragment
of 3-SAT by 3-SAT-B. We set γ := 4B so that the condition on γ is verified, and we
duplicate γ + 1 times the initial hard formula ϕ′ of 3-SAT-B. Each copy is on a pairwise
disjoint set of variables. We thus create an instance ϕ of 3-SAT-B on (γ + 1)n variables,
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such that it takes 2Ω(n) time to tell whether all m clauses of ϕ are satisfiable, or at most
m− (γ + 1) of its clauses are, unless the ETH fails.

For G(ϕ), which has 7m + 2γn 6 7Bn + 2γn = O(n) vertices, this translates into
distinguishing whether its treewidth is at most γn+ 6m+ γ − 1 or at least γn+ 7m− (m−
(γ + 1))− 1 = γn+ 6m+ γ, implying Theorem 2.

Proof of Theorem 3. Building upon Håstad’s polynomial-time inapproximability of
3-SAT [12], Moshkovitz and Raz proved that, unless the ETH fails, approximating n-variable
3-SAT within ratio smaller than 8

7 requires time 2n1−o(1) [18]. Applyling the Sparsification
Lemma [14] on the instances produced by Moshkovitz and Raz’s reduction, the following is
attained.

I Theorem 8 ([14, 18], see for instance [8]). For any constant r ∈ ( 8
7 , 1), there is an integer B,

such that any r-approximation algorithm for n-variable 3-SAT-B requires 2n1−o(1) time.

In effect, the proof of Theorem 8 takes a 3-CNF formula ϕ′ on n variables and returns
2o(n) formulas (subexponential blow-up due to the Sparsification Lemma) (ϕi)i of 3-SAT-B
on N := n1+o(1) variables (quasilinear blow-up due to the PCP of Moshkovitz and Raz)
and m 6 BN clauses such that, if ϕ′ is satisfiable, then at least 0.99m clauses of some ϕi
are satisfiable, and if instead ϕ′ is unsatisfiable, then at most 0.88m clauses of each ϕi is
satisfiable.

To decide which case holds, we run our reduction on every instance ϕi. We again set
γ := 4B, and observe that the obtained G(ϕi) has n1+o(1) vertices. This creates a gap
between the treewidth upper bound of γN + 6.01m+ γ − 1 (when ϕ′ is satisfiable) and the
treewidth lower bound of γN + 6.12m− 1 (when ϕ′ is unsatisfiable). For sufficiently large m,
this makes an approximability gap of δ > 1 (for some δ), which implies Theorem 3.
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