
Twin-width III: Max Independent Set, Min
Dominating Set, and Coloring
Édouard Bonnet � Â

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Colin Geniet �

University of Warsaw

Eun Jung Kim �

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Stéphan Thomassé �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Rémi Watrigant �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order
model checking can be solved in time f(d, k)n for n-vertex graphs given with a witness that the
twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet
et al., FOCS ’20]. The inevitable price to pay for such a general result is that f is a tower of
exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need
not be impractical. We present 2O(k)n-time algorithms for k-Independent Set, r-Scattered
Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We
further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism,
and Induced Subgraph Isomorphism, in the slightly worse running time 2O(k log k)n. Up to
logarithmic factors in the exponent, all these running times are optimal, unless the Exponential
Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a
dynamic programming scheme following the sequence of contractions forward.

We then show a second algorithmic use of the contraction sequence, by starting at its end and
rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that
properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded
twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-
width classes, and does so with a very concise proof. It readily yields a constant approximation for
Max Independent Set on Kt-free graphs of bounded twin-width, and a 2O(OPT)-approximation for
Min Coloring on bounded twin-width graphs. We further observe that a constant approximation
for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number)
would actually imply a PTAS.

The third algorithmic use of twin-width builds on the second one. Playing the contraction
sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear
number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed
vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that
biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and
hence All-Pairs Shortest Paths in time O(n log n) and time O(n2 log n), respectively. In sharp
contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width
graphs, unless the Strong Exponential Time Hypothesis fails.

The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions
[Bonnet et al., SODA ’21], a branching and more robust witness of low twin-width. We present
constant-approximation algorithms for Min Dominating Set and related problems, on bounded
twin-width graphs, by showing that the integrality gap is constant. This is done by going down the
versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a
greedy approach yields the desired approximation.

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:colin.geniet@ens-paris-saclay.fr
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-6824-0516
mailto:stephan.thomasse@ens-lyon.fr
mailto:remi.watrigant@univ-lyon1.fr
https://orcid.org/0000-0002-6243-5910

2 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Twin-width, Max Independent Set, Min Dominating Set, Coloring, Paramet-
erized Algorithms, Approximation Algorithms, Exact Algorithms

1 Introduction

As the title suggests, this is the third paper of a series [5, 4] devoted to a new graph invariant
called twin-width. All the results presented in this paper are self-contained as the relevant
background is given in Section 2. In the same section, the reader can find the definitions of
contraction sequences and twin-width. For now, we are content with some intuition on these
notions. This will be enough to sketch the ideas and techniques leading to our results, while
sparing this introduction from too much formalism.

The twin-width of a graph is a non-negative integer measuring its distance to being a
cograph. Among the several characterizations of cographs, a possible definition goes as
follows. A graph is a cograph if one can find therein two twins,1 identify them, and iterate
this process until there is only one vertex left. This corresponds to what we define as a
0-sequence in Section 2, witnessing that cographs have twin-width 0. Conversely it is also
true that graphs with twin-width 0 are cographs. We generalize this identification process by
allowing a controlled error on the contracted pairs of vertices. An error graph or red graph
keeps the faulty adjacencies appearing between a contracted pair and the vertices that are
neighbor of only one vertex of the pair. A d-sequence is an indentification or contraction
sequence such that the maximum degree of the error graph never exceeds d. The existence
of such a sequence entails that the initial graph has twin-width at most d.

As it turns out, many graph classes have bounded twin-width: planar graphs and more
generally proper minor-closed classes, bounded rank-width or clique-width graphs, proper
hereditary subclasses of permutation graphs, unit interval graphs, and some particular class
of cubic expanders, to name only a few.2 Considering the wide variety of these classes, it
might seem that our cograph generalization has gone too far to allow for a unified algorithmic
treatment of bounded twin-width graphs. The first paper of the series [5] and the current
one show that this is not the case. Graphs of bounded twin-width admit algorithms whose
running times are provably unattainable in general graphs. We will now detail that point.

After defining any graph parameter κ, a natural question is whether some computationally
hard problems can be solved more efficiently on graphs where κ is bounded. When this
turns out to be the case for several problems, it may sometimes lead to a powerful meta-
theorem. A standard way of capturing a large set of problems within the same framework is
through the use of logic formulas over graphs, or more generally over relational structures.
In the language of parameterized algorithms, one may ask for the existence of a Fixed-
Parameter Tractable (FPT) algorithm parameterized by κ and the size of the graph formula
φ to be tested: More precisely, an algorithm deciding in time f(|φ|, κ(G))nO(1), or better
f(|φ|, κ(G))n, whether an n-vertex graph G satisfies φ, where f is some computable function.
Certainly the most famous result of that kind is the celebrated Courcelle’s theorem, where the
parameter κ is tree-width, and the formula φ ranges over Monadic Second Order logic (MSO2)
formulas [10]. On a slightly less general logic (namely MSO1, where quantification over edge

1 i.e., two vertices with the same neighborhood beside them
2 A more exhaustive list is given in Theorem 7.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 3

sets is disallowed), the result holds for the smaller parameter clique-width [11]. It implies,
for instance, that deciding whether a graph on n vertices contains a subset of k pairwise
non-adjacent vertices (i.e., solving k-Independent Set) can be done in linear time on
graphs of constant clique-width, while in general graphs it cannot be solved in polynomial
time unless P=NP, nor in time f(k)nO(1) unless FPT=W[1]. Such a result is unlikely for
twin-width as k-Independent Set remains NP-hard in planar graphs, which have constant
twin-width. Nevertheless, when parameterized by the solution size k, an FPT algorithm is
known in planar graphs, and more generally in any proper minor-closed graph class. Actually,
on the latter class, every problem expressible by a first-order (FO) formula φ can be solved
in FPT time parameterized by |φ| [22]. In the first paper of our series [5], we extended this
result and obtained the following meta-theorem for twin-width.

▶ Theorem 1. [5] Given an n-vertex graph G, a d-sequence of G, and a first-order formula φ,
one can decide G |= φ in time f(|φ|, d)n for some computable function f .

The main drawback of this kind of algorithm is the obtained running time: The function
f is a tower of exponentials whose height depends on the size of the formula. This is an
unavoidable price to pay to solve at once all graph problems expressible in first-order logic.
Indeed, it is known that testing first-order formulas on trees requires a running time whose
dependence in the size of the formula is a non-elementary function, unless P = NP [23].
Furthermore the running time of our FO model checking algorithm does not get better on
“seemingly simpler” formulas, such as for instance, with few quantifier alternations.

Our results.

We show that twin-width and its associated contraction sequence can also give rise to
practical algorithms for some individual classic graph problems. In particular, we consider
the following NP-complete problems, given a graph G and an integer k, decide if:

k-Independent Set: there are k pairwise non-adjacent vertices.
k-Clique: there are k pairwise adjacent vertices.
(k, r)-Scattered Set: there are k vertices pairwise at distance at least r.
k-Dominating Set: there is a set S of k vertices such that for every vertex v of G,
either v ∈ S or v has a neighbor in S.
(k, r)-Dominating Set: there is a set S of k vertices such that every vertex of G is at
distance at most r of some vertex in S.

These problems, parameterized by k, are W[1]-hard (the last two are even W[2]-complete),
thus unlikely to admit an FPT algorithm, i.e., one with running time f(k)nO(1), on general
graphs. We obtain single-exponential parameterized algorithms for all these problems when
a contraction sequence witnessing “twin-width at most d” is given. When considering the
unparameterized optimization variant, we denote these five problems by Max Independent
Set (and MIS for short), Max Clique, Distance-(r − 1) MIS, Min Dominating Set,
and Min r-Dominating Set, respectively.

▶ Theorem 2. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned five problems can be solved in time 2Od(k)n.

We then consider some W[1]-complete generalizations of k-Independent Set or of
k-Clique. Namely:

Weighted Max Independent Set: given a graph G with a weight function on vertices
w : V (G)→ R and an integer k, decide whether there exists a set S of size exactly k of
pairwise non-adjacent vertices such that

∑
v∈S w(v) is maximum.

4 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

Induced Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide
whether there exists a set S ⊆ V (G) such that G[S], the subgraph of G induced by S, is
isomorphic to H.
Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide whether
there exists a set S ⊆ V (G) such that H is isomorphic to a subgraph of G[S].

Unlike the other two problems, Subgraph Isomorphism is not a generalization of
k-Independent Set. Though it does generalize k-Clique. Once the formal definition
of a contraction sequence is given, it will be clear that a d-sequence for G readily yields a
d-sequence for its complement, G. Thus in the context of bounded twin-width graphs, an
algorithm solving Subgraph Isomorphism can be used to solve k-Independent Set. For
these three problems, we now get slightly superexponential parameterized algorithms.

▶ Theorem 3. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned three problems can be solved in time 2Od(k log k)n.

The algorithms behind Theorems 2 and 3 follow the same general plan. Let us consider
the n successive red graphs Rn, . . . , R1 (error graphs) obtained after each vertex contraction.3
Rn is the edgeless n-vertex graph (since there are initially no errors) and R1 is the 1-vertex
graph. We maintain optimum partial solutions populating connected subgraphs of bounded
size in each Ri. Initially in Rn, the connected subgraphs are only made of single vertices
(there are no edges). So the optimum partial solutions are trivial to compute. The partial
solutions for Ri are built from the partial solutions of Ri+1 in the following way. Every
partial solution not involving the newly contracted vertex is simply kept. Every partial
solution involving the newly contracted vertex is computed by merging a bounded number of
previous partial solutions on pairwise disconnected sets. The key is that, by design, there is
no error between the latter partial solutions. Thus the presence or absence of edges can be
decided regardless of the forgotten choices of precise vertices within the solution. Eventually
a (partial) solution is computed in R1, which constitutes an actual solution in the entire
initial graph G. In a nutshell, the algorithms may be summarized as dynamic programming
over connected sets of the red graphs.

For k-Independent Set there is not much more to it than the previous sketch. For
(Induced) Subgraph Isomorphism the algorithms become more technical. Also conceptu-
ally, partial solutions are no longer necessarily feasible. For k-Dominating Set some new
challenges appear. The partial solutions and their actual specification are not straightforward
to define, as it is for k-Independent Set.

One may wonder if subexponential parameterized algorithms are possible for any of
the eight problems considered so far. We will observe that even k-Independent Set
cannot be solved in time 2o(k/ log k)nO(1) on graphs given with an O(1)-sequence, unless the
Exponential Time Hypothesis fails. With a similar argument, the same lower bound applies
to k-Dominating Set. Thus, up to logarithmic factors in the exponent, the running times
of Theorems 2 and 3 are optimal. Actually we will see that even algorithms running in time
2o(n/ log n) are unlikely.

All the previous algorithms exploit the contraction sequence forward. They follow the
identification process from the initial graph G to the 1-vertex graph. What if we would
start at the end, and maintain solutions as the vertices are iteratively split until the initial

3 A reader who would want precise definitions at this point is welcome to read first the couple of paragraphs
of Section 2.1.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 5

graph G is formed? We exemplify the idea of using the contraction sequence backward with
an essentially greedy coloring procedure that is not optimal but still uses relatively few colors.

Let us be more specific. A proper k-coloring of a graph G is a mapping c : V (G) →
{1, . . . , k} such that c(u) ̸= c(v) whenever uv ∈ E(G). The chromatic number, denoted
by χ(G), is the smallest integer k such that G admits a proper k-coloring. It can be seen
that χ(G) ⩾ ω(G), where ω(G) denotes the size of a largest clique in G, whereas many
constructions of triangle-free (that is, with ω(G) ⩽ 2) graphs G with arbitrarily large χ(G)
are known. A class of graphs C is χ-bounded if there is a function f such that for any graph
G ∈ C, we have χ(G) ⩽ f(ω(G)). Our coloring algorithm (d + 2)-colors any triangle-free
graph of twin-width at most d, and more generally (d + 2)ω(G)−1-colors any graph G given
with a d-sequence. In particular, it shows the following.

▶ Theorem 4. Every graph class with bounded twin-width is χ-bounded.

Algorithmically this has some direct consequences for approximating the chromatic
number, as well as, in the subcase of Kt-free graphs, the independence number.

The same idea of considering the contraction sequence backward is then used to show
that every graph given with an O(1)-sequence admits an edge partition into O(n) bicliques,
each side of which is on consecutive vertices, for a fixed vertex ordering. We use this edge
partition to tackle the unweighted version of some classic polynomial-time solvable problems:

Single-Source Shortest Paths: given a graph G and a source s, find a shortest-path
tree rooted at s, spanning the connected component of s.
All-Pairs Shortest Paths: given a graph G, find the distances in G between every
pair of vertices.
Diameter: given a graph G, report the largest distance in G between two vertices.

We show how breadth-first search (BFS) can be mimicked, when replacing “traversing an
edge” by “traversing a biclique all at once”. A subtlety of the algorithm, beside the necessary
data structures to get Single-Source Shortest Paths sublinear in the total number of
edges, lies in the fact that bicliques, contrary to single edges, can be traversed twice (once in
both directions) before being discarded.

▶ Theorem 5. If the input graph comes with an O(1)-sequence, Single-Source Shortest
Paths can be solved in O(n log n) time, thus All-Pairs Shortest Paths and Diameter
can be solved in O(n2 log n) time. In contrast, Diameter cannot be solved in O(n2−ε) for
any ε > 0, even in that scenario, unless the Strong Exponential Time Hypothesis fails.

Our algorithm inherently relies on unweighted edges. Nonetheless vertex-weights can be
supported with the same running time.

Min Dominating Set is known to be as approximable as the Set Cover problem.
Thus, by classic papers by Johnson [31] and by Lovász [33], it admits a ln n-approximation
and the integrality gap (i.e., the ratio between the optimum of the original problem and the
optimum of the LP relaxation) of its standard LP formulation is also ln n. In sharp contrast,
unless P=NP, Min Dominating Set cannot be approximated in polynomial-time within
factor (1− o(1)) ln n on n-vertex general graphs [14].

We show that, on bounded twin-width classes, the integrality gap of Min Dominating
Set is constant. This uses the versatile trees of contractions developed in the second paper of
the series [4]. These are more robust witnesses of low twin-width which, instead of providing
a single contraction in a given trigraph, give linearly many disjoint ones. Placing ourselves
at a right node of the versatile tree, we show that a greedy strategy in the corresponding
trigraph yields a constant approximation in the original graph.

6 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

▶ Theorem 6. If the input graph comes with an O(1)-sequence, Min Dominating Set,
Distance-2 MIS, and more generally Min r-Dominating Set, Distance-2r MIS for
every positive r, admit O(1)-approximation algorithms.

These results are particular cases of the fact that when the twin-width of a matrix A is
bounded, there is a linear gap between the packing number and the minimum hitting set of
the hypergraph with incidence matrix A. Bounded twin-width matrices might more generally
provide linear programs with bounded duality gap. It is noteworthy that Max Independent
Set (which corresponds to Distance-1 MIS) is not covered by the previous theorem. We
further give some evidence that MIS may have a very different approximability status than
Min Dominating Set on bounded twin-width graphs.

Related work.

It is intrinsically difficult to compare our work to the existing literature since bounded
twin-width graphs cover a wide spectrum of graph classes (more precisely, see Theorem 7
in Section 2) and is rather transversal to well-established graph classes (see in the same
subsection which graphs are and which graphs are not of bounded twin-width). We sample
some data points showing that our algorithms fare well even when compared to the state-
of-the-art on a particular class of bounded twin-width (think, a single item on the list of
Theorem 7). In that respect, the most flattering comparison point for our algorithms is
perhaps with Subgraph Isomorphism and Induced Subgraph Isomorphism. On the
contrary, k-Independent Set admits parameterized subexponential algorithms on several
sparse classes [12], an easy single-exponential algorithm on bounded-degeneracy graphs
by bounded search tree, and polynomial-time algorithms on perfect graphs [25] and other
classes [26], with which we cannot hope to uniformly compete.

Induced Subgraph Isomorphism, and particularly Subgraph Isomorphism, have
a long history of parameterized algorithms on sparse classes. Let us recall some steps of
that history. Eppstein showed how to solve (Induced) Subgraph Isomorphism in time
2O(k log k)n on planar graphs [18], and then on apex4-minor free graphs [19]. The latter
algorithm would later be shown to work on every proper minor-closed class of graphs. In
modern terms, Eppstein’s algorithm is based on low treewidth colorings, and more precisely
on the fact that planar graphs, but more generally H-minor free graphs, can be k + 1-colored
so that the union of any k color class has treewidth O(k). Introducing a new kind of
dynamic programming, dubbed embedded, Dorn [15] improved the running time of solving
Induced Subgraph Isomorphism on planar graphs to 2O(k)n. More recently, Pilipczuk and
Siebertz presented a polynomial-space 2O(k log k)n-time algorithm for Induced Subgraph
Isomorphism on H-minor free graphs [34]. This mainly uses the treedepth counterpart of
Eppstein’s approach.

Given an O(1)-sequence, our algorithm for (Induced) Subgraph Isomorphism also
runs in time 2O(k log k)n (while it may face dense graphs) for the far-reaching generalization
of bounded twin-width graphs (again we refer the reader to Theorem 7 for other examples of
bounded twin-width classes). We also show with an elementary one-and-a-half-page proof
that bounded twin-width classes are χ-bounded. This can be put in perspective with the
χ-boundedness of graphs of bounded clique-width [16], which is not an easy result.

On general graphs, the current fastest algorithm for the vertex-weighted variant of All-
Pairs Shortest Paths (APSP) is due to Yuster and runs in time O(n2.842) [39], while

4 An apex graph is one that can be made planar by removing a single vertex.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 7

no truly subcubic (i.e., running in time O(n3−ε)) algorithm is known without the use of
fast matrix multiplication. Since Single-Source Shortest Paths (SSSP) can easily be
solved in time O(n log n) in sparse graphs, i.e., with O(n) edges, the algorithm of Theorem 5
is only relevant on bounded twin-width classes that are dense. Among the dense classes
of Theorem 7, one can find for example bounded clique-width graphs. Recently Kratsch
and Nelles showed how to solve vertex-weighted APSP on graphs given with a clique-width
expression of width cw in time O(cw2n2) [32].

Organization of the paper.

In Section 2 we introduce the relevant graph-theoretic background, then formally define
contraction sequences and twin-width, and finally summarize which classes are known to have
bounded twin-width and explain how d-sequences are given to our forthcoming algorithms.
Section 3 contains a 2O(k)n-time algorithm for k-Independent Set (and (k, r)-Scattered
Set) and a 2O(k log k)n-time algorithm for (Induced) Subgraph Isomorphism. In Section 4,
we present a 2O(k)n-time algorithm for k-Dominating Set. In Section 5, we show that
bounded twin-width classes are χ-bounded and satisfy the strong Erdős-Hajnal property.
In Section 6, we prove that bounded twin-width graphs can be edge-partitioned into linearly
many bicliques whose sides are both on consecutive vertices, for a fixed ordering of the vertex
set. We then use that property to derive algorithms solving Single-Source Shortest
Paths and All-Pairs Shortest Paths in time O(n log n) and O(n2 log n), respectively.
We also observe that Diameter is unlikely to be solvable in truly subquadratic time, in
graphs of bounded twin-width. In Section 7, we give O(1)-approximation algorithms for Min
Dominating Set and related problems, provided a d-sequence. We complement this result
by some evidence that the approximability of MIS on bounded twin-width graphs may have
a very different status. Finally in Section 8, we suggest some future work on approximation
algorithms for bounded twin-width graphs and exact exponential algorithms for general
graphs.

2 Preliminaries

We denote by [i, j] the set of integers {i, i + 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X their union. The notation Od(·) gives an asymptotic
behavior when d is seen as a constant. The notation O∗(·) suppresses polynomial factors.

Unless stated otherwise, all graphs are assumed undirected and simple, that is, they
do not have parallel edges or self-loops. We denote by V (G) and E(G) the set of vertices
and edges respectively of a graph G. For S ⊆ V (G), we denote the open neighborhood
(or simply neighborhood) of S by NG(S), i.e., the set of neighbors of S deprived of S, and
the closed neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. We simplify NG({v}) into
NG(v), and NG[{v}] into NG[v]. We denote by G[S] the subgraph of G induced by S, and
G−S := G[V (G)\S]. A connected subset (or connected set) S ⊆ V (G) is one such that G[S]
is connected. For two disjoint sets A, B ⊆ V (G), E(A, B) denotes the set of edges in E(G)
with one endpoint in A and the other one in B. We also denote by G[A, B] the bipartite
graph (A ∪B, E(A, B)). Two distinct vertices u, v such that N(u) = N(v) are called false
twins, and true twins if N [u] = N [v]. Two vertices are twins if they are false twins or true
twins. For two vertices u, v ∈ V (G), the distance dG(u, v) is the number of edges in a shortest
path from u to v, and ∞ if u and v are in two distinct connected components of G. Then the
radius of a graph G is defined as minu∈V (G) maxv∈V (G) dG(u, v) and the diameter diam(G)

8 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v z

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 1 Contraction of vertices u and v, and how the edges of the trigraph are updated.

as maxu∈V (G) maxv∈V (G) dG(u, v). In all the notations with a graph subscript, we may omit
it if the graph is clear from the context.

A graph is H-free if it does not contain H as an induced subgraph. However we make
an exception for H = Kt,t. A Kt,t-free graph is a graph with no biclique Kt,t as a subgraph.
An edge contraction5 of two adjacent vertices u, v consists of merging u and v into a single
vertex adjacent to N({u, v}) (and deleting u and v). A graph H is a minor of a graph G if
H can be obtained from G by a sequence of vertex and edge deletions, and edge contractions.
A graph G is said H-minor free if G does not contain H as a minor. A class6 C of graphs
has property Π if every graph of C has property Π. A class is hereditary if it is closed under
taking induced subgraphs.

2.1 Trigraphs, contraction sequences, and twin-width of a graph
A trigraph G has vertex set V (G), (black) edge set E(G), and red edge set R(G) (the error
edges), with E(G) and R(G) being disjoint. The set of neighbors NG(v) of a vertex v in a
trigraph G consists of all the vertices adjacent to v by a black or red edge. A d-trigraph is a
trigraph G such that the red graph (V (G), R(G)) has degree at most d. In that case, we also
say that the trigraph has red degree at most d. A (vertex) contraction or identification in a
trigraph G consists of merging two (non-necessarily adjacent) vertices u and v into a single
vertex z, and updating the edges of G in the following way. Every vertex of the symmetric
difference NG(u)△NG(v) is linked to z by a red edge. Every vertex x of the intersection
NG(u)∩NG(v) is linked to z by a black edge if both ux ∈ E(G) and vx ∈ E(G), and by a red
edge otherwise. The rest of the edges (not incident to u or v) remain unchanged. We insist
that the vertices u and v (together with the edges incident to these vertices) are removed
from the trigraph. See Figure 1 for an illustration.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
Gi has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence.

For u ∈ V (Gi), we denote by u(G) the subset of V (G) that was contracted to the
single vertex u in Gn, Gn−1, . . . , Gi. Twin-width and d-sequences can be equivalently seen
as a partition refinement process on V (G). We start with the finest partition Pn = {{v} :
v ∈ V (G)}, and end with the coarsest partition P1 = {V (G)}. There is a partition
sequence Pn,Pn−1, . . . ,P2,P1 mimicking the contraction sequence, where the contraction
of u, v ∈ V (Gi) corresponds to the merge of parts u(Gi), v(Gi) ∈ Pi to form the part

5 Not to be confused with our (vertex) contractions, which can be on non-adjacent vertices.
6 That is, a set of graphs closed under isomorphism.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 9

u(Gi) ∪ v(Gi) = z(Gi−1) ∈ Pi−1, while all the other parts are unchanged from Pi to Pi−1.
The red degree (bounded by d) of a part P ∈ Pi now corresponds to the number of other
parts P ′ ∈ Pi which are not fully adjacent nor fully non-adjacent to P in G. We may denote
by GP the trigraph corresponding to partition P over V (G). Thus Gi = GPi .

2.2 Classes with bounded twin-width and how the sequences are given
The current paper is devoted to presenting efficient algorithms when the input has bounded
twin-width, and the contraction sequence is given. It is therefore important to know how
realistic this scenario is. Fortunately, in the first two papers of the series [5, 4] we showed that
many central sparse and dense (di)graph classes have bounded twin-width. We summarize
them here.

▶ Theorem 7 ([5, 4]). The following classes have bounded twin-width.
Bounded clique-width/rank-width, and more generally, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,7
Kt-minor free graphs,
map graphs,8
subgraphs of d-dimensional grids,
Kt-free unit d-dimensional ball graphs,
Ω(log n)-subdivisions of all the n-vertex graphs,
cubic expanders defined by iterative random 2-lifts9 from K4,10

strong products of two bounded twin-width classes one of which has also bounded degree,
any subgraph closure of a Kt,t-free bounded twin-width class, and
any first-order interpretation11 of a bounded twin-width class.

Furthermore all our proofs are constructive and give rise to an O(n2)-time algorithm to
find an O(1)-sequence for an n-vertex graph of the class. For some sparse classes, or dense
classes with a sparse representation (like unit interval graphs), the sequence can even be
found in quasi-linear time or even linear time. Noticeably, we do not know a polynomial-time
algorithm that, given a “general” graph with bounded twin-width, outputs an O(1)-sequence.
Thus these algorithms are mostly ad hoc and specifically use properties of each listed class.
On the other hand, classes with unbounded twin-width include permutation graphs, cubic
graphs, unit disk graphs, and Kt-free unit segment graphs.

It is striking that such a wide variety of seemingly unrelated graph classes allows for
a unified algorithmic treatment. One may think that this has to come with a prohibitive
running time. In fact our algorithms for k-Independent Set and k-Dominating Set run
in the essentially optimal 2O(k)n-time (once the contraction sequence is computed), while
our algorithms for Induced Subgraph Isomorphism and Subgraph Isomorphism match
the best known running time of 2O(k log k)n on Kt-minor free graphs.

It may seem surprising that, given the contraction sequence, our algorithms are linear
(for fixed k) in the number of vertices, while the input graph G may have Θ(n2) edges. Also

7 In this paper, we even show a linear-time algorithm finding a 2-sequence.
8 To find the contraction sequence, we need to be given a map embedding.
9 The actual definition of a 2-lift can be found in [4] but will not be needed here.
10 More generally, any graph built by successive s-lifts applied to Kt.
11 Actually a more general result is shown in the first paper of the series [5].

10 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

the sequence itself consists of n graphs on up to n vertices, and the total number of vertices
in Gn, . . . , G1 is Θ(n2). The short answer is that we do not need to read the edges of G, nor
all the vertices of all the trigraphs Gi. Instead we only look, for every i ∈ [n], at balls of
radius12 O(k) centered at the newly contracted vertex in the red graph of Gi. Each such
vertex set has size dO(k), so we may query red and black edges within it. The total number
of operations remains bounded by g(d, k)n, for some function g.

One may still wonder if our algorithms can work with a compact encoding of the d-sequence,
such as the mere list of contracted vertices. The algorithms of Theorem 7 computing the
d-sequences all produce the union tree of how the vertices of G are eventually merged into a
single vertex. Given this tree, we can solve the disjoint set problem (union-find) in optimal
O(n)-time [24] (without inverse Ackermann function). Thus we can, starting from G, perform
the next contraction on the list, when the next trigraph of the sequence is needed. The
number of edge updates per contraction is a constant (more precisely O(d)). One shall not
forget, though, that we need in general ω(n)-time to compute the sequence in the first place.

3 Practical algorithms for k-Independent Set and its generalizations

In this section, we present essentially optimal fixed-parameter algorithms for k-Independent
Set, Induced Subgraph Isomorphism, Subgraph Isomorphism, on graphs of bounded
twin-width. The crux for the running time analysis is a simple bound on the number of
connected subsets of size at most k in a bounded-degree graph. The key to show this folklore
lemma is that a connected subgraph of size at most k can be spanned by a walk of length at
most 2k − 3.

▶ Lemma 8 (folklore). The number of vertex subsets of size at most k inducing a connected
subgraph in an n-vertex graph of maximum degree d is at most (d2k−2 + 1)n.

Proof. If d = 0 or d = 1, the total number of connected subgraphs is n or at most 3n/2,
respectively. Thus the claim holds in these cases, and we now assume that d ⩾ 2. Every
connected subgraph H has a spanning tree, say, TH rooted at vH . The circumnavigation of
TH from vH follows every edge of TH at most twice. Moreover if we only span TH without
going back to vH in the end, at least one edge of TH is taken only once. Hence every connected
subgraph of size at most k can be described by a starting vertex (n choices) followed by a
walk on 2k−3 other vertices (at most d choices for each). Therefore the number of connected
vertex subsets of size at most k is bounded by nΣ0⩽i⩽2k−3di ⩽ nd2k−2. ◀

We get the following as a direct corollary of the previous proof.

▶ Corollary 9. The number of connected vertex sets of size at most k, intersecting a set X, in
a graph of maximum degree d is at most (d2k−2 + 1)|X|. Furthermore they can be enumerated
in time O(d2k−2|X|).

We now show how to solve k-Independent Set by dynamic programming on the
connected subsets of size at most k in the red graphs of a d-sequence given with the input
graph.

▶ Theorem 10. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Independent Set can be solved in time O(k2d2kn) = 2Od(k)n.

12 For k-Dominating Set, the algorithm is more involved and this radius is function of k and d.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 11

Proof. Our algorithm maintains a set of optimum partial solutions in the current trigraph,
starting from G, and progressively going along the d-sequence. Let us start with a definition
of the partial solutions and of their optimality.

A partial solution in the trigraph Gi is a pair (T, S) where T ⊆ V (Gi) is a vertex
set inducing a connected subgraph in the red graph (V (Gi), R(Gi)), and S ⊆ V (G) is an
independent set of G such that S ⊆

⋃
u∈T u(G) and for every u ∈ T , S ∩u(G) ̸= ∅. A partial

solution (T, S) is said optimum if there is no partial solution (T, S′) such that |S| < |S′|.
A set T ⊆ V (Gi) is said realizable (in Gi) if there is an S ⊆ V (G) such that (T, S) is a partial
solution in Gi. Notice that not every connected subset in the red graph is realizable. For
instance, it is easy to engineer a situation where there is no independent set intersecting the
three vertices of a 3-vertex red path. Initially, in G, the only connected subgraphs of the red
graph are singletons (since there is no red edge). So there are exactly n (optimum) partial
solutions in G = Gn: Each vertex v of G induces a partial solution ({v}, {v}). We denote by
Sn this set of n optimum partial solutions. It boils down to determining if there is a partial
solution (_, S) in G1 (or actually in any Gi) with |S| ⩾ k. For i going from n − 1 down
to 1, we will build a set of optimum partial solutions Si in Gi from the set Si+1, keeping the
invariant that for every realizable set T ⊆ V (Gi), there is a unique optimum partial solution
(T, S) stored in Si (and no other partial solution in Si).

We shall then describe how we update the set of optimum partial solutions after a
single contraction. Two partial solutions (T, _) and (T ′, _) in Gi are disjoint if T ∩ T ′ = ∅,
and separate, if they are disjoint and there is no red edge uu′ ∈ R(Gi) with u ∈ T and
u′ ∈ T ′. Two separate partial solutions (T, _) and (T ′, _) are compatible if there is no edge
uu′ ∈ E(Gi) ∪R(Gi) with u ∈ T and u′ ∈ T ′. The union of two compatible partial solutions
(T1, S1) and (T2, S2) as (T1, S1) ∪ (T2, S2) := (T1 ∪ T2, S1 ∪ S2). By definition, such a union
is not a partial solution since T induces two connected components in its current red graph.
Nevertheless we will build the new (connected) partial solutions of Gi by making unions of
up to d + 2 pairwise compatible partial solutions in Gi+1. These unions will be connected in
Gi, hence will correspond to partial solutions as well.

Let us be more specific. Say u, v ∈ V (Gi+1) are contracted into z ∈ V (Gi) to form Gi.
We say that a partial solution (T, _) in Gi intersects a set X ⊆ V (Gi) if T ∩X ≠ ∅. We
initialize Si with all the partial solutions of Si+1 not intersecting {u, v}. We now add one
partial solution in Si per realizable set T ∋ z in Gi, of size at most k. For every T ⊆ V (Gi)
such that z ∈ T and T induces a connected subgraph on at most k vertices in the red
graph (V (Gi), R(Gi)), we observe three possibilities for a potential partial solution (T, S).
Either S intersects u(G) and v(G), or it intersects only u(G), or it intersects only v(G).
(It is not possible that S ∩ (u(G) ∪ v(G)) = ∅ since T contains z.) Therefore we take the
best (meaning with the largest S, breaking ties arbitrarily) of the potential partial solutions⋃

dec(T \{z}∪{u, v}),
⋃

dec(T \{z}∪{u}),
⋃

dec(T \{z}∪{v}), where dec(X) is the set with
one partial solution per connected component of X in its red graph (here (V (Gi+1), R(Gi+1)).
See Figure 2 for an illustration of this decomposition. In the very possible event that at least
one such connected component of X is not realizable, dec(X) = None. The union

⋃
dec(X)

of all the partial solutions of dec(X) is None if dec(X) = None or if there is at least one black
edge between two connected components. Otherwise

⋃
dec(X) is a pair (T, S) as defined

in the previous paragraph, since the partial solutions of dec(X) are pairwise compatible.
Since T is chosen connected in (V (Gi), R(Gi)), (T, S) is indeed a partial solution in Gi. If⋃

dec(T \ {z} ∪ {u, v}),
⋃

dec(T \ {z} ∪ {u}),
⋃

dec(T \ {z} ∪ {v}) all three evaluate to None,
then best{

⋃
dec(T \ {z} ∪ {u, v}),

⋃
dec(T \ {z} ∪ {u}),

⋃
dec(T \ {z} ∪ {v})} also returns

None. This would mean that T is not realizable. If instead T is realizable, we get a partial

12 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

solution (T, S) that we put in Si. If |S| ⩾ k, we already have a large enough independent
set; the algorithm outputs it and terminates.

If we finally build S1, and no independent set of size at least k was found, we output S,
the unique set such that (_, S) ∈ S1. S1 is indeed a singleton since there is only one realizable
set in G1. That finishes the description of the algorithm k-IndSet, see Algorithm 1.

Algorithm 1 k-IndSet

Input : A graph G, a positive integer k, and a d-sequence G = Gn, . . . , G1 = K1.
Output : An independent set of G of size at least min(k, α(G)).

1 Sn ←
⋃

v∈V (G){({v}, {v})}
2 for i = n− 1→ 1 do
3 u, v ← contracted pair in Gi+1 → Gi

4 z ← contraction of u and v in Gi

5 Si ← partial solutions of Si+1 not intersecting {u, v}
6 for every vertex subset T connected in (V (Gi), R(Gi)), with z ∈ T and |T | ⩽ k do
7 (T, S)← best{

⋃
dec(T \{z}∪{u, v}),

⋃
dec(T \{z}∪{u}),

⋃
dec(T \{z}∪{v})}

8 if |S| ⩾ k then
9 return S

10 if (T, S) ̸= None then
11 Si ← Si ∪ {(T, S)}

12 {(S, _)} ← S1
13 return S

Correctness. By a transparent induction, any set returned by k-IndSet is an inde-
pendent set. Indeed the initial partial solutions (in Sn) are singletons. Every new partial
solution is formed by taking a union of independent sets such that there is no black or red
edge between any pair of independent sets. Hence the union is overall an independent set.

We now claim that if there is an independent set of size at least k in G, then k-IndSet
indeed outputs a solution of size at least k. Again we show by induction the following
invariant: For every realizable set T ⊆ V (Gi) (in Gi) of size at most k, Si (eventually)
contains a solution (T, S) such that |S| = α(G[

⋃
u∈T u(G)]) or |S| ⩾ k. The former condition,

“|S| = α(G[
⋃

u∈T u(G)])”, is initially true for the singletons of Sn. If the latter condition,
“|S| ⩾ k”, ever happens, k-IndSet outputs it and we are done. Thus for the induction
hypothesis of Si+1, we suppose that the former condition always holds.

Say, u, v ∈ V (Gi+1) are contracted into z ∈ V (Gi). Let T be a realizable set in Gi. If
z /∈ T , then T is also a realizable set in Gi+1. By the induction hypothesis, there is a partial
solution (T, S∗) in Si+1 such that |S∗| = α(G[

⋃
u∈T u(G)]). This partial solution was simply

transmitted from Si+1 to Si, hence (T, S∗) ∈ Si.
Let us now assume that z ∈ T . We fix S′, a maximum independent set in G[

⋃
u∈T u(G)].

The algorithm k-IndSet defines the partial solution (T, S) ∈ Si by taking the best of the
at most three unions

⋃
dec(T \ {z} ∪ {u, v}),

⋃
dec(T \ {z} ∪ {u}), and

⋃
dec(T \ {z} ∪ {v})

(note that at most two of those may not be defined). Build the set ∅ ≠ I ⊆ {u, v} by
putting u (resp. v) in I if S′ ∩ u(G) ̸= ∅ (resp. S′ ∩ v(G) ̸= ∅). We consider dec(T \ {z} ∪ I),
the partial solutions in Si+1 associated to each connected component of T \ {z} ∪ I in
(V (Gi+1), E(Gi+1) ∪ R(Gi+1)) (by the existence of S′, each such connected component is
indeed realizable). By the induction hypothesis, every partial solution of dec(T \ {z} ∪ I) is

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 13

Gi

z

Gi+1

u

v

Figure 2 Right: In gray, a connected vertex set T in the red graph of Gi in the vicinity of the
just contracted vertex z ∈ T . Left: The decomposition dec(T \ {z} ∪ {v}) in the previous trigraph
Gi+1, where each color represents a connected component. If every color class is a realizable set in
Gi+1, then T is realizable in Gi, with (optimum) partial solution

⋃
dec(T \ {z} ∪ {v}). Note that,

due to black edges between u and some vertices of T , the partial solutions in dec(T \ {z} ∪ {u, v})
and in dec(T \ {z} ∪ {u}) cannot be pairwise compatible.

optimum. Thus the union
⋃

dec(T \ {z} ∪ I) has the same size as S′. This implies that the
partial solution (T, S) put in Si is also optimum.

Finally if k-IndSet terminates without reporting an independent set of size at least k,
our invariant on S1 indicates that α(G) < k. In that case the unique (optimum) partial
solution (V (K1), S) ∈ S1 verifies |S| = α(G).

Running time. The claimed running time for k-IndSet essentially relies on Corollary 9.
By this corollary, the sets T of the inner for loop (line 6) can be enumerated in time O(d2k).
The connected components of line 7 can be computed in time O(min(d, k)k), say, by breadth-
first search in the red graph of Gi. Then checking the absence of black edges between
potential partial solutions takes time O(k2). Thus the overall running time is O(k2d2kn).
Interestingly, once the trigraphs of a d-sequence of G have been computed, k-Independent
Set can be solved in sublinear time in the size of G, when k2d2kn = o(|E(G)|). Another
observation is that when the twin-width d is polylogarithmic in n, i.e., in Θ(logc n), k-IndSet
is still fixed-parameter tractable in k. Indeed logO(k) n = kO(k)n as noticed by Sloper and
Telle [37], which implies that k-IndSet runs in time 2O(k log k)n2 in that regime.

Optimizations. We suggest some improvements or variations of k-IndSet to generally
improve over the worst-case running time of the inner for loop. A lot of sets T will trivially
be not realizable because they induce a black edge. When enumerating the walks starting
at z of length at most 2k − 3, one can abort every branch zv1 . . . vh inducing at least one
black edge. It can even be done in a way that the enumeration takes time O(t) where t is
the number of sets T ∋ z of size at most k, such that T is connected in the red graph, and
an independent set in the black graph.

Even if a set T satisfies those properties, we have no guarantee that T is realizable. In
very dense instances, it is imaginable that the realizable sets are very rare. In that case,

14 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

we will lose a lot of time generating sets T to observe immediately after that there is no
associated partial solution (T, S). An alternative to k-IndSet is to build the new partial
solutions of Si directly as unions of pairwise compatible partial solutions of Si+1, without
anticipating the nature of the possibly realizable set T ⊆ V (G).

Let us be more precise. Let Rz be the set of red neighbors of z in Gi. For every set
of at most max(2, d + 1) partial solutions (T1, S1), . . . , (Th, Sh) ∈ Si+1 intersecting Rz, at
least one of which intersects {u, v}, if the partial solutions are pairwise compatible, we
update the realizable set

⋃
i∈[h] Ti with the partial solution

⋃
i∈[h](Ti, Si) if

⋃
i∈[h] Si is larger

than the current best solution. Following the first improvement, we can only generate the
sets that are pairwise compatible. As we know, there are at most three ways to reach
a given set T ⊆ V (Gi) as a union of pairwise compatible partial solutions in Si+1. The
running time of this variation of k-IndSet is O∗(Σi∈[n]|Snew

i |), where Snew
i := Si \Si−1 (and

Snew
n := Sn) represents the new partial solutions computed at step i. In practice, this can be

significantly better than O(k2d2kn). Such a dynamic programming, only generating “positive”
subinstances, dubbed positive-instance driven by Tamaki, led to a breakthrough and current
state-of-the-art practical algorithm for computing optimally the treewidth of a graph [38].

Weights. Without too many changes, k-IndSet may support weights, that is, find an
independent set of size exactly min(k, α(G)) with largest total weight. Instead of keeping one
solution S per realizable set T , we keep up to k solutions, one per pair (T, j) with j ∈ [|T |, k].
A partial solution (T, j, S) is defined as before except S is required to have size exactly j. To
compute the new partial solutions, we add a third nested for loop after line 6: We iterate
over all the ways of distributing j ⩽ k units between the red connected components induced
by T ′ ∈ {T \ {z} ∪ {u, v}, T \ {z} ∪ {u}, T \ {z} ∪ {v}} so that each connected component
gets a positive integer (at least equal to its size). We then add to Si one partial solution
(T, j, S) (if at least one exists) maximizing the weight of S for fixed T and j. We also skip
lines 8 and 9 of k-IndSet.

This comes with a slight increase in the running time. Namely, there is an extra 2O(k log k)

factor accounting for the ordered partition of integer j ⩽ k into positive integers. Thus the
overall running time with weights is 2O(k log k)d2kn. ◀

As twin-width and d-sequences are preserved when complementing the graph, we also
solve k-Clique in the same running time. One may wonder if the dependency in k of our
2Od(k)n-time algorithm can be improved. It turns out that this running time is essentially
optimal. Due to the Sparsification Lemma [30] and folklore reductions, MIS restricted to
subcubic n-vertex graphs cannot be solved in 2o(n), under the Exponential Time Hypothesis13

(ETH) [29]. Thus, by the classic self-reduction consisting of performing an even subdivision of
each edge [35], MIS cannot be solved in time 2o(n/ log n) on 2⌈log n⌉-subdivisions of n-vertex
subcubic graphs, unless the ETH fails. In [4], we show how to find O(1)-sequences in
polynomial time for 2⌈log n⌉-subdivisions of n-vertex graphs. Therefore this lower bound
holds even if we are given the d-sequence. In particular, no algorithm solves k-Independent
Set in time 2od(k/ log k)nO(1), unless the ETH fails.

If T is a d-sequence G = Gn, . . . , G1 = K1, we denote by CT denote the set of connected
vertex subsets in a red graph of some trigraph Gi ∈ T . Let us also denote by CT ,k the set of
connected vertex subsets of size at most k in a red graph of some trigraph Gi ∈ T . In both
cases, the exact same vertex subset appearing connected in several trigraphs of T counts

13 The assumption that there is a constant δ > 0, such that 3-SAT cannot be solved in time 2δn.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 15

only once. We know that |CT ,k| ⩽ d2kn but, as we already observed, |CT ,k| can in principle
be much smaller. As a consequence of our proof of Theorem 10, we obtain the following.

▶ Theorem 11. Given as input an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1,
k-Independent Set can be solved in time O∗(|CT ,k|) and Max Independent Set can be
solved in time O∗(|CT |).

We actually showed the stronger result that k-Independent Set and Max Independent
Set can be solved in time O∗(|RT ,k|) and O∗(|RT |), respectively, where RT ,k ⊆ CT ,k and
RT ⊆ CT only consist of the realizable sets. In [5], we show how to find in polynomial
time f(rw)-sequences for n-vertex graphs with rank-width (even boolean-width) at most rw.
Importantly the sequences comprise only g(rw)n connected vertex subsets. Hence Theorem 11
in particular generalizes the O(n)-time algorithm for MIS in graphs of bounded rank-
width/clique-width, given the rank- or clique-decomposition. Indeed the polynomial algorithm
computing the f(rw)-sequence takes time O(n), provided the rank-width decomposition. Of
course Theorem 11 is more general than that. In light of the next corollary, it also yields a
polynomial-time algorithm when a 2-sequence can be efficiently computed.

▶ Corollary 12. Given as input an n-vertex graph G and a 2-sequence G = Gn, . . . , G1 = K1,
Max Independent Set can be solved in polynomial time.

Proof. The red graphs of the trigraphs of the 2-sequence T = Gn, . . . , G1 are disjoint unions
of paths and cycles (their degree is at most 2). Thus each (V (Gi), R(Gi)) has at most n2

connected vertex subsets. Hence |CT | = O(n3). We conclude by Theorem 11. ◀

As we will now see, Corollary 12 captures unit interval graphs, which have unbounded
rank-width.

▶ Lemma 13. Unit interval graphs have twin-width 2.

Proof. Consider the unit interval graph Ik,nk on vertex set [nk] where, for every j ∈ [nk],
the interval of length exactly k and with left endpoint j is present. The family Ik,nk is
universal in the sense that every unit interval graph is an induced subgraph of some Ik,nk.
For every i ∈ [n], contract ki− 1 and ki. Then for every i ∈ [n] in increasing order, contract
ki− 2 with {ki− 1, ki}, etc. At every stage, the only red edges are between two consecutive
contracted groups, forming a path. We eventually end up with only a red path, which has
twin-width 2. ◀

We now extend Theorem 10 in two directions. We show that (Induced) Subgraph
Isomorphism and (k, r)-Scattered Set can be solved in time 2O(k log k)n on graphs given
with an O(1)-contraction sequence.

▶ Theorem 14. Given a graph G, a d-sequence G = Gn, Gn−1, . . . , G1 = K1, and a pattern
graph H on k vertices, Subgraph Isomorphism and Induced Subgraph Isomorphism
can be solved in time 2O(k log k)d2kn = 2Od(k log k)n.

Proof. The algorithms are almost identical and are obtained by making some additions
and modifications to k-IndSet. We will first describe the algorithm IndSub for Induced
Subgraph Isomorphism. The algorithm SubIso solving Subgraph Isomorphism will be
obtained by changing a single word in the pseudo-code (see Algorithm 2).

We identify V (H) to the set of integers [k]. A division of T ⊆ V (Gi)14 is a mapping
η from T to 2[k] \ {∅} such that η(u) ∩ η(v) = ∅ for every u ̸= v ∈ T . We define η(T) as

14 In this definition, we do not require that T is connected in the red graph.

16 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

⋃
u∈T η(u). Given a realizable set T ⊆ V (Gi) and a division η of T , a set S ⊆ V (G) is said

(T, η)-compliant (or simply compliant, if T and η are clear from the context) if there is an
induced subgraph isomorphism λ from H[η(T)] to G[S], such that S ∩ u(G) = λ(η(u)) for
every u ∈ T . Now partial solutions in Gi are triples (T, η, S) where T ⊆ V (Gi) is still a
vertex set of size at most k inducing a connected subgraph in (V (Gi), R(Gi)), η is a division
of T , and S ⊆ V (G) is (T, η)-compliant. In particular S ⊆

⋃
u∈T u(G) and S ∩ u(G) ̸= ∅, as

it was the case for k-Independent Set.
It is simpler to first present the new algorithms with a classic (static) dynamic program-

ming. As before this can be turned into its “positive-instance driven” version. We maintain
a table T , where for every realizable set T ⊆ V (Gi) and every division η of T , T [T, η] is
intended to contain a (T, η)-compliant set S ⊆ V (G) if it exists, and “None” otherwise. It
can be observed that for every vertex v ∈ V (G), the singleton {v} is ({v}, η)-compliant for
every division η of {v}. Notice that a division of {v} assigns a single vertex j ∈ V (H) = [k]
to v. We therefore initialize T by putting {v} in each cell T [{v}, η : v 7→ {j}], for every
v ∈ V (G) and j ∈ [k]. By default, if a cell of T is not filled, it contains the value “None”.

As in the algorithm of Theorem 10, we can compute the partial solutions in Gi from
the partial solutions in Gi+1. Say that to go from Gi+1 to Gi, we contract u, v ∈ V (Gi+1)
into z ∈ V (Gi). Note that every cell T [T, _] such that T ⊆ V (Gi) \ {z} was previously
filled. Indeed a set T ⊆ V (Gi) \ {z} connected in (V (Gi), R(Gi)) is also connected in
(V (Gi+1), R(Gi+1)) (and included in V (Gi+1) \ {u, v}). We shall fill the cells T [T, _] such
that z ∈ T ⊆ V (Gi). Again we build these partial solutions as union of partial solutions
in Gi+1. The fact z ∈ T entails that such a union may cover u, or v, or both. For every
I ∈ {{u}, {v}, {u, v}}, we decompose T ′ := T \{z}∪I into its connected component T1, . . . , Th

in the red graph (V (Gi+1), R(Gi+1)). Any division η of T ′ naturally breaks into h divisions
η1, . . . , ηh where ηp is a division of Tp for every p ∈ [h]. We denote by dec(T ′, η) the h pairs
(T1, η1), . . . , (Th, ηh).

For every such pair (T ′, η), we fill T [T ′, η] with an actual solution if the following holds.
First, every entry T [Tp, ηp], for p ∈ [h], should contain an actual solution Sp (which is not
“None”). Secondly, for every p ̸= p′ ∈ [h] the edges and non-edges in H between ηp(Tp) and
ηp′(Tp′) should match the edges and non-edges in G between Sp and Sp′ . More precisely, there
should be a bijection λ from ηp(Tp)∪ηp′(Tp′) to Sp∪Sp′ such that λ(η(x)) = (Sp∪Sp′)∩x(G)
for every x ∈ Tp ∪ Tp′ where η(x) := ηp(x) if x ∈ Tp and η(x) := ηp′(x) if x ∈ Tp′ , and
ab ∈ EH(ηp(Tp), ηp′(Tp′)) if and only if λ(a)λ(b) ∈ EG(Sp, Sp′). Such a bijection λ is called
an (ηp, ηp′)-isomorphism. We also say that H[ηp(Tp), ηp′(Tp′)] is (ηp, ηp′)-isomorphic to
G[Sp, Sp′]. Since Tp and Tp′ induce two connected components in the red graph of Gi+1,
there are only black edges and non-edges between pairs x ∈ Tp, x′ ∈ Tp′ . Thus the notion of
(ηp, ηp′)-isomorphism crucially does not depend on Sp and Sp′ : If ab ∈ EH(ηp(Tp), ηp′(Tp′))
(resp. ab /∈ EH(ηp(Tp), ηp′(Tp′))), we check that there is a black edge (resp. a non-edge)
between x ∈ Tp and y ∈ Tp′ where x and y are the only vertices in Tp∪Tp′ such that a ∈ ηp(x)
and b ∈ ηp′(y). If both conditions of this paragraph are fulfilled, we put

⋃
p∈[h] Si in cell

T [T ′, η] (otherwise the content of this cell remains unchanged).
If we ever fill a cell T [T ′, η] where η(T ′) = [k] with an actual solution S, IndSub reports S

as an overall solution of the Induced Subgraph Isomorphism-instance. If after all the
partial solutions in G1 are computed (i.e., after we exit the outermost for loop in Algorithm 2),
no such solution was reported, IndSub outputs that no solution exists. This terminates the
description of IndSub. For SubIso, we just replace the occurrences of “induced subgraph” by
“subgraph”. In the definition of the partial solutions, the mapping λ is now a (non-induced)
subgraph isomorphism from H[η(T)] to G[S]. In the update of the partial solutions, we

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 17

also relax the (ηp, ηp′)-isomorphism to be a mere (ηp, ηp′)-subisomorphism preserving the
edges of H, but not necessarily its non-edges. See Algorithm 2 for the pseudo-code of both
algorithms.

Algorithm 2 IndSub, SubIso by changing isomorphic to subisomorphic (line 11)

Input : A graph G, a d-sequence G = Gn, . . . , G1 = K1, and a graph H on [k].
Output : A set S such that G[S] and H are isomorphic, if it exists.

1 for v ∈ V (G) do
2 for j = 1→ k do
3 T [{v}, η : v 7→ {j}]← {v}

4 for i = n− 1→ 1 do
5 u, v ← contracted pair in Gi+1 → Gi

6 z ← contraction of u and v in Gi

7 for every vertex subset T connected in (V (Gi), R(Gi)), with z ∈ T and |T | ⩽ k do
8 for I ∈ {{u, v}, {u}, {v}} do
9 for every division η of T \ {z} ∪ I do

10 (T1, η1), . . . , (Th, ηh)← dec(T \ {z} ∪ I, η)
11 if

⋃
p∈[h] T [Tp, ηp] ̸= None and H[ηp(Tp), ηp′(Tp′)] is

(ηp, ηp′)-isomorphic to G[T [Tp, ηp], T [Tp′ , ηp′]], ∀p ̸= p′ ∈ [h] then
12 η′ ← x ∈ T \ {z} 7→ η(x), z 7→ η(u) ∪ η(v)
13 T [T, η′]←

⋃
p∈[h] T [Tp, ηp]

14 if η′(T) = [k] then
15 return T [T, η′]

16 return None

Correctness. The soundness and completeness of IndSub and SubIso follow as in
the proof of Theorem 10. Therefore we only state the invariant maintained to show the
completeness: After iteration i (note that the first iteration is actually iteration n− 1, and
that the initialization is iteration n) of the outermost for loop, for every set T ⊆ V (Gi) of
size at most |V (H)| = k connected in the red graph (V (Gi), R(Gi)), and every division η of
T , if there is a (T, η)-compliant set S, then T [T, η] contains such a set S. In particular if we
skip the possible exit of lines 14 and 15, after the last iteration (iteration 1), T [V (K1), η :
x ∈ V (K1) 7→ [k]] contains an actual set S (and not “None”) if and only if the (Induced)
Subgraph Isomorphism-instance admits a solution. The only “new” element (compared
to k-Independent Set) to prove the invariant is the potential presence of black edges
between red connected components. Nevertheless this was already evoked in the description
of IndSub and is dealt with straightforwardly.

Running time. There are four nested for loops in Algorithm 2. The first one (outermost)
brings a multiplicative n factor to the overall running time, the second, an d2k factor
(by Corollary 9), the third one, a factor 3. The fourth and innermost for loop ranges over all
the divisions of a fixed set T ′ of size at most k. (T ′ could in principle be of size k + 1, but
such sets can be automatically discarded since they do not admit any division.) Every such
division can be seen as a bijective mapping from T ′ to the parts of a partition of a subset of
V (H) = [k]. There are at most 2kBk = 2O(k log k) partitions of a subset of [k], where Bk is

18 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

the k-th Bell number. Then there are at most kk = 2k log k bijections from T ′ to these parts.
Thus there are at most 2O(k log k) divisions, and the last for loop incurs a 2O(k log k) factor.

Decomposing (T ′, η) and checking for a potential compliant solution can be done in time
kO(1). Thus the overall running time of IndSub and SubIso is 2O(k log k)d2kn = 2Od(k log k)n.
Again it can be observed that even when d is polylogarithmic in n, this running time is FPT
in k [37].

As in Theorem 10, a better practical algorithm (with similar worst-case running time)
consists of building the partial solutions in Gi by unions of at most min(2, d + 1) partial
solutions in Gi+1 that are pairwise disconnected in the red graph and neighboring the vertices
u and v. ◀

The (k, r)-Scattered Set problem on an input graph G is equivalent to k-Independent
Set on G⩽r. The following theorem is a consequence that FO interpretations preserve
bounded twin-width [5]. As G⩽r can be obtained by FO interpretation ϕ of size O(r) on G,
tww(G⩽r) ⩽ f(tww(G), r). Treating d = tww(G) and r as constants, it is noteworthy that
the complexity of (k, r)-Scattered Set remains the essentially optimal 2O(k)n.

▶ Theorem 15. Given a graph G, a d-sequence G = Gn, Gn−1, . . . , G1 = K1, (k, r)-
Scattered Set can be solved in time 2Od,r(k)n.

4 A practical algorithm for k-Dominating Set

We solve k-Dominating Set with a more involved instantiation of the scheme of the
previous section. We face some new conceptual difficulties compared to the algorithm for
k-Independent Set. For one thing, the partial solutions that we maintain are not feasible
solutions in the whole graph. Also we now consider balls of radius f(d)k in the red graphs,
and not merely of radius k. In general, the arguments are more subtle to handle partially and
fully dominated vertex sets, as well as the solution trace. This entails a worse dependency
in d, but the same essentially optimal 2O(k)n when d is treated as a constant.

▶ Theorem 16. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Dominating Set can be solved in time O(22(d2+1)(2+log d)kn) = 2Od(k)n.

Proof. As was the case with k-Independent Set, the algorithm sequentially considers each
trigraph in the d-sequence Gn, . . . , G1 starting from Gn, and inductively updates a set of
optimal partial solutions of the trigraph Gi to yield the next set for Gi−1. We recall that
E(Gi) and R(Gi) respectively refer to the black and red edge set of the trigraph Gi. The
ball of radius at most r in the red graph (V (Gi), R(Gi)) centered at a vertex x ∈ V (Gi) is
denoted as Br

i (x).

Profile of a partial solution. A profile (of a partial solution) of Gi is a triple (T, D, M) of
vertex sets of V (Gi) such that (i) T forms a connected set in the red graph (V (Gi), R(Gi)),
(ii) D, M ⊆ T , and (iii)

⋃
x∈D B2

i (x) ⊆ T . The first entry T of a profile P = (T, D, M) is
called the ground set of P , and the size of P is defined as the size of its ground set. A profile
(T, D, M) is said to be a k-profile if |D| ⩽ k. When the profile under consideration is clear
from the context, we denote T \D and T \M by D̄ and M̄ respectively.

We say that a profile (T, D, M) is realizable with S ⊆ V (G) if the following conditions
hold.
1. S ⊆

⋃
x∈T x(G),

2. for every x ∈ V (Gi), x ∈ D if and only if x(G) ∩ S ̸= ∅, and
3. for every x ∈ V (Gi), x ∈M if and only if x(G) is (fully) dominated by S.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 19

A profile is said to be realizable if there exists S with which it is realizable.
Suppose that x, y ∈ V (Gi+1) are contracted to yield Gi with z being the new vertex. For

a vertex set T ⊆ V (Gi) connected in the red graph V (Gi, Ri) and containing z, let T1, . . . , Tℓ

be the red connected components of T ′ = (T \ z) ∪ {x, y} in Gi+1, i.e. the partition of T ′

into maximal vertex sets each of which is connected in V (Gi+1, Ri+1). The number of these
red subgraphs does not exceed d + 2 because each Ti either contains x or y, or one of the
newly created red neighbors of z. Notice also that ℓ can be equal to 1, which means that x

and y belong to the same connected component of (V (Gi+1), R(Gi+1)).
For a k-profile (T, D, M) of Gi such that z ∈ T , we say that a set P = {(T1, D1, M1), . . . ,

(Tℓ, Dℓ, Mℓ)} of k-profiles of Gi+1 is consistent with (T, D, M) if the following holds. Let
T ′ := (T \ z) ∪ {x, y}, D′ :=

⋃ℓ
j=1 Dj and M ′ :=

⋃ℓ
j=1 Mj .

1. The ground sets of the profiles in P are precisely the red components of T ′ in Gi+1.
2. D \ z = D′ \ {x, y}.
3. z ∈ D if and only if x ∈ D′ or y ∈ D′.
4. For every u ∈ T \ z, u ∈M if and only if u ∈M ′ or there exists v ∈ D′ such that uv is a

black edge in Gi+1.
5. z ∈ M if and only if for each u ∈ {x, y}, it holds that: u ∈ M ′ or there exists v ∈ D′

such that uv is a black edge in Gi+1.

Algorithm, and how to compute τi from τi+1. At each iteration along the d-sequence,
we maintain one mapping τi from k-profiles P = (T, D, M) of Gi with |T | < (d2 + 1)k to a
subset of

⋃
t∈T t(G). The assignment τi(P) = nil is interpreted as that P is not realizable

whereas τi(P) ̸= nil is intended to be a minimum-size vertex set of V (G) realizing P . Again
let Gi be obtained by contracting the vertices x, y ∈ V (Gi+1) and z be the new vertex. Our
goal is to compute τi from τi+1, assuming τi+1 has been computed correctly. Note that a
k-profile P = (T, D, M) of Gi such that z /∈ T is also a profile of Gi, and trivially one is
realizable with S if and only if the other is realizable with S. Therefore, τi simply inherits
the assignment of τi+1 in this case as depicted in lines 6-7.

If P = (T, D, M) has z in its ground set, the algorithm k-DomSet inspects all sets P
of k-profiles of Gi+1 consistent with (T, D, M) and among the unions

⋃
P ∈P τi+1(P) over

all such P, outputs the best one as τi(T, D, M), that is, the one of minimum cardinality is
chosen. If

⋃
P ∈P τi+1(P) = nil for each consistent P , the algorithm concludes that (T, D, M)

is not realizable and assigns nil. The case when P contains a k-profile P with ground set
of size at least (d2 + 1)k, a special step is taken as τi+1 is not defined on such P . In this
situation, a vertex v ∈ T ′ \

⋃
t∈D′ B2

i+1(t) is chosen, and the query at (T ′ \ v, D′ \ v, M ′ \ v)
is made instead. Lines 15-18 handle this case. The uniqueness of k-profile in P in line 16
and the existence of such v in line 17 will be discussed in the correctness proof.

Correctness. To show the correctness of Algorithm 3, it suffices to prove the following.

(⋆) For every i ∈ [n] and every k-profile P of Gi, we have τi(P) ̸= nil if and only if P

is realizable with a set of size at most k. Furthermore, if τi(P) ̸= nil, then τi(P) is a
set of minimum size with which P is realizable.

We prove (⋆) by induction. In the base case when i = n, the claim trivially holds. Assume
i < n and let x, y be the vertices of Gi+1 which were contracted to yield Gi, where z is the
newly obtained vertex of Gi. By induction hypothesis, for any k-profile (T, D, M) of Gi with
z /∈ T the claim holds as it is a k-profile of Gi+1 as well.

Therefore, we assume that z ∈ T and let T ′ = (T \ z) ∪ {x, y}.

▷ Claim 17. Assume that (⋆) holds for all i′ > i and let P = (T, D, M) be a k-profile of Gi.
If P is realizable with a set of size at most k, then τi(P) ̸= nil.

20 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

Algorithm 3 k-DomSet

Input : A graph G, a positive integer k, and a d-sequence G = Gn, . . . , G1 = K1.
Output : A dominating set of G of size at most k, or report nil (No-instance).

1 for v ∈ V (Gn) do
2 τn({v}, {v}, {v}) = {v}, τn({v}, ∅, ∅) = ∅, τn(P) = nil for all other k-profiles P

3 for i = n− 1→ 1 do
4 x, y ← contracted pair in Gi+1 → Gi

5 z ← contraction of x and y in Gi

6 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z /∈ T do
7 τi(T, D, M)← τi+1(T, D, M)
8 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z ∈ T do
9 τi(T, D, M)← nil

10 T ′ ← (T \ z) ∪ {x, y}
11 for every set P of k-profiles of Gi+1 consistent with (T, D, M) do
12 if each k-profile of P has size less than (d2 + 1)k then
13 if τi+1(P) ̸= nil for all P ∈ P then
14 τi(T, D, M)← best{τi(T, D, M),

⋃
P ∈P τi+1(P)}

15 else
16 Let (T ′, D′, M ′) be the unique k-profile contained in P.
17 Choose v ∈ T ′ \

⋃
t∈D′ B2

i+1(t)
18 τi(T, D, M)← best{τi(T, D, M), τi+1(T ′ \ v, D′ \ v, M ′ \ v)}

19 if τi(T, D, M) ̸= nil and has size larger than k then
20 τi(T, D, M)← nil

21 return τ1(V (G1), V (G1), V (G1))

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 21

Proof of the Claim: Suppose that P = (T, D, M) is realizable with S ⊆ V (G) of
size at most k. Let T1, . . . , Tℓ be the red connected components of T ′ in Gi, and let
Sj = S ∩

⋃
t∈Tj

t(G) for every j ∈ [ℓ]. The pairs Tj and Sj for j = 1, . . . , ℓ define a set of ℓ

k-profiles (Tj , Dj , Mj) of Gi+1 in a canonical way: Dj is precisely the set of vertices t ∈ Tj

such that t(G) ∩ Sj and Mj is the set of vertices t ∈ Tj such that t(G) is (fully) dominated
by Sj . By construction, each k-profile (Tj , Dj , Mj) is realizable with Sj .

We argue that the set P = {(Tj , Dj , Mj) : j ∈ [ℓ]} is consistent with P = (T, D, M).
The first and the second conditions for consistency are clearly satisfied. To verify the third
condition, consider a vertex u ∈ T distinct from z and without loss of generality we assume
u ∈ Tj∗ . If u ∈M and u /∈Mj∗ , this means that Sj∗ does not dominate u(G) because Sj∗

realizes (Tj∗ , Dj∗ , Mj∗). From u ∈M and the fact that S realizes (T, D, M), we know that
S dominates u(G) and thus there is at least one vertex S \ Sj∗ which is adjacent (in G) with
some vertex of u(G). Consider an arbitrary vertex v ∈ T to which some of S \ Sj∗ contracts
to, and observe that v /∈ Tj∗ . This means that uv is a black edge. The converse direction
of the third condition is clearly met. The fourth condition of consistency can be verified
similarly as the third condition.

If P does not contain any k-profile whose ground set has size at least (d2 + 1)k, now the
claim is immediate because each (Tj , Dj , Mj) is realizable with Sj : by induction hypothesis,
we have τi+1(Tj , Dj , Mj) ̸= nil, and thus τi(T, D, M) is set to ̸= nil at line 14.

Suppose that P contains a k-profile whose ground set has size at least (d2 + 1)k. One
can easily see that in this case, ℓ = 1 or equivalently T ′ is a red connected component in
(V (Gi+1), R(Gi+1)) consisting of exactly (d2 +1)k vertices. Since the union of at most k balls
of radius at most 2 which is connected in (V (Gi+1), R(Gi+1)) have less than (d2 +1)k vertices,
there exists v ∈ T ′ \

⋃
t∈D′ B2

i+1(t). Moreover, by the choice of v, (T ′ \ v, D′ \ v, M ′ \ v)
is now a k-profile of Gi+1. To conclude that τi(T, D, M) ̸= nil, it suffices to prove that
τi+1(T ′ \ v, D′ \ v, M ′ \ v) ̸= nil. We do this by showing that (T, D, M), (T ′, D′, M ′) and
(T ′ \ v, D′ \ v, M ′ \ v) are equivalent in regards to realizability.

The equivalence of the first two is obvious. For the equivalence of the last two, note
that if S realizes (T ′, D′, M ′), S does not intersect v(G), and thus S trivially realizes
(T ′ \ v, D′ \ v, M ′ \ v). Conversely, suppose that (T ′ \ v, D′ \ v, M ′ \ v) is realizable with S′.
The crucial observation is that v has no red neighbor in D′ since otherwise, v belongs to
the union

⋃
t∈D′ B2

i+1(t), contradicting the choice of v. Therefore, we know that v ∈M ′ if
and only if there exists u ∈ D′ \ v such that uv is a black edge. In the case when v ∈ M ′,
there exists a black neighbor u ∈ D′ \ v of v, and any S′ realizing (T ′ \ v, D′ \ v, M ′ \ v)
intersects u(G). If follows that S′ fully dominates v(G) and S′ realizes (T ′, D′, M ′). Else if
v /∈M ′, this means that not only the red neighbors of v are disjoint from D′ but also no black
neighbor of v is contained in D′. As a consequence v(G) is not dominated by S′, thus S′

realizes (T ′, D′, M ′). This proves the equivalence of (T ′, D′, M ′) and (T ′ \ v, D′ \ v, M ′ \ v),
and completes the proof of the claim. ♢

To establish the other direction, suppose that τi(T, D, M) ̸= nil and let P∗ be the set
consistent with P such that τi(T, D, M) =

⋃
P ∈P∗ τi+1(P) or τi(T, D, M) = τi+1(T ′ \ v, D′ \

v, M ′ \ v) for some v. Such P∗ clearly exists since otherwise only nil can be output. In the
former case, it is tedious to verify that if each (Ti, Di, Mi) of P∗ is realizable with Si, then⋃

i∈[ℓ] Si realizes (T, D, M).
In the latter case, we simply recall that (T, D, M) and (T ′ \v, D′ \v, M ′ \v) are equivalent

in regards to realizability. This completes the proof of the first statement of (⋆). The second
statement immediately follows.

Running time. In an actual implementation of Algorithm 3, we maintain a single mapping τ .

22 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

As we proceed from Gi+1 to Gi, we modify the domain of τ consisting of k-profiles so that new
k-profiles involving z are added and after calculating the assignments for the new k-profiles,
all the domains and corresponding assignments involving x or y shall be discarded. Therefore,
it suffices to check the running time for updating τ , which is performed in the inner loop of
lines 6-20. By Corollary 9, there are O(d2(d2+1)k−2 · 22(d2+1)k) new profiles of Gi to compute.
For each k-profile (T, D, M) with z ∈ T , the ground sets T1, . . . , Tℓ of a potentially consistent
set P is already determined. Hence, we exhaust all possibilities of appending each Ti by Mi

and Di to form a k-profile and the inner loop of 8-20 will consider at most 2(d2+1)k · 2(d2+1)k

sets P. The consistency of P with (T, D, M) can be routinely verified. This establishes the
claimed running time. ◀

5 Bounded twin-width classes are χ-bounded

So far, our algorithms followed the same recipe: Initialize partial solutions on single-vertex
sets, stitch together a bounded number of partial solutions when they become connected in
the red graph after the current contraction, and conclude with the partial solutions on the
last (1-vertex) graph of the sequence. This is the original scheme of Guillemot and Marx [27],
and of our model checking algorithm [5].

We now present a novel use of the contraction sequence. It consists of starting at the
end, when all the vertices are contracted on a single vertex, and rewinding the sequence.
The single vertex is first “split” into two vertices (linked by a black or red edge if G is
connected). Then one of these two vertices is split into two new vertices, and so on. Typically,
at first, edges are mostly red. As the vertex partition gets finer, black edges start appearing
(eventually all edges are black). In this direction of time, black edges are irreversible: When
a black edge first appears between x and y in V (Gi), it stays or rather spreads into the
biclique (x(G), y(G)). We use this new viewpoint to color triangle-free graphs of bounded
twin-width with a constant number of colors. We show that the newly split vertices can be
greedily colored, while the rest of the colors remains unchanged. Importantly for coloring, in
a triangle-free graph, when a black edge appears between x and y we know that both sides
x(G) and y(G) of the biclique are independent sets.

The following coloring procedure essentially contains the χ-boundedness of bounded
twin-width classes. Despite its simplicity, this for instance generalizes the non-trivial result
that bounded rank-width classes are χ-bounded [16]. The proof that graphs with bounded
rank-width have bounded twin-width, presented in [5], is also elementary.

▶ Theorem 18. Every triangle-free graph with twin-width at most d is (d + 2)-colorable.

Proof. Let G be an n-vertex triangle-free graph of twin-width at most d, and let G =
Gn, . . . , G1 = K1 be a d-sequence of G. We show how to color G with d + 2 colors starting
from G1, and iteratively coloring Gi+1 based on the coloring of Gi. We give the unique vertex
of G1 = K1 color 1. This defines coloring C1. For every i from 1 to n− 1, let z be the vertex
of Gi split into u, v ∈ V (Gi+1). In coloring Ci+1, every vertex of V (Gi+1) \ {u, v} keeps the
color it received by Ci. Vertex u receives color Ci(z). Finally, v receives color Ci(z) if uv

is a non-edge in Gi+1, and the smallest positive integer not appearing in its neighborhood
(black and red neighbors) in Gi+1, otherwise. We will now show that Cn is a proper coloring
of G using at most d + 2 distinct colors.

We show by induction on i that Ci is a proper (d + 2)-coloring of the graph G′
i :=

(V (Gi), E(Gi) ∪R(Gi)). Coloring C1 is indeed proper in G′
1 and uses 1 ⩽ d + 2 color. We

assume that Ci is a proper (d+2)-coloring of G′
i, and distinguish two cases. If there is a black

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 23

NGi
[z] NGi+1 [u, v]

Figure 3 Split, when z is incident to a black edge in Gi. As G is triangle-free, there cannot be
an edge (red or black) between u and v. Thus both u and v can take the color of z, which does not
appear in their neighborhood.

NGi
[z] NGi+1 [u, v]

Figure 4 Split, when z is only incident to red edges. Even if the red neighbors of z have d distinct
colors, vertex v can find a color in [d + 2] which avoids these d colors plus the color of z and u.

edge yz ∈ E(Gi) (recall that z is the vertex split into u, v), then uv has to be a non-edge
in Gi+1. Otherwise there is at least one edge between u(G) and v(G), and this edge forms
a triangle with any vertex in y(G). Thus in that case, Ci+1(u) = Ci+1(v) = Ci(z). So the
number of distinct colors given by Ci+1 is still at most d + 2 (see Figure 3). And Ci+1 is a
proper coloring of G′

i+1 since NG′
i+1

({u, v}) = NG′
i
(z). If instead z has only red neighbors in

Gi, then z has at most d neighbors in G′
i. Furthermore let us assume that uv ∈ E(G′

i+1),
otherwise we conclude as previously. In that case, v is properly colored by Ci+1 in G′

i+1
by construction, and vertex u as well, since NG′

i+1
(u) \ {v} ⊆ NG′

i
(z). Finally Ci+1(v) is

the smallest positive integer not appearing in a set of at most d + 1 positive integers. Thus
Ci+1(v) ⩽ d + 2, and Ci+1 is overall a proper (d + 2)-coloring of G′

i+1 (see Figure 4).
In particular, Cn is a proper (d + 2)-coloring of G′

n = Gn = G. ◀

As a side note, it is, to our knowledge, possible that every triangle-free Kt-minor free
graph has twin-width O(t). If this turns out to be true, it offers a seemingly different
approach to getting improved bounds in the triangle-free case of the Hadwiger’s conjecture:
Instead of trying to color these graphs, one could try to design contraction sequences for
them.

We now show how to color any Kt-free graph G given with a d-sequence, with at most
(d + 2)t−2 colors. We use the scheme of Theorem 18 and color some induced subgraphs of G

by induction on t.

▶ Theorem 19. For every integer t ⩾ 3, every Kt-free graph with twin-width at most d is
(d + 2)t−2-colorable.

24 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

Proof. Let Gn, . . . , G1 be a d-sequence of a Kt-free graph G with t ⩾ 3. In Theorem 18,
whenever a vertex x ∈ V (Gi+1) was incident to a black edge for the first time (going from
G1 to Gn), the color of all the vertices in x(G) was eventually set to the same value, namely
Ci+1(x). Now such a set x(G) is not necessarily an independent set, but rather induces a
Kt−1-free graph. Indeed, a Kt−1 in G[x(G)] would form a Kt in G with any vertex of y(G),
where xy ∈ E(Gi+1). By induction on t, we may color G[x(G)] with tuples of at most t− 3
integers of [d + 2], and prepends Ci+1(x) to these tuples. The base case t = 3 is Theorem 18.
We make the general idea a bit more precise.

For every i ∈ [n], we define G∗
i as the graph obtained from Gi by blowing every vertex

x ∈ V (Gi) into G[x(G)] whenever x is incident to a black edge, and then turning every
red edge into a black edge. We define the successive colorings C ′

1, . . . , C ′
n of G∗

1, . . . , G∗
n,

respectively, following the algorithm of Theorem 18. While there are no black edge in the
current trigraph Gi, we set C ′

i := Ci, where Ci is the coloring in the triangle-free case. Say, at
least one black edge appears for the first time in Gi+1 (this is well-defined since Gn has only
black edges). Again we adopt the convention that z ∈ V (Gi) was split into u, v ∈ V (Gi+1).
Let S be the set of (at most d + 2) vertices with an incident black edge in Gi+1. (One may
notice that S ⊆ {u, v} ∪NGi(z) and S ∩ {u, v} ≠ ∅.) Every vertex w ∈ V (Gi+1) \ S receives
color Ci+1(w). As we observed, for every x ∈ S, G[x(G)] is Kt−1-free. By induction there is
a coloring Cx of G[x(G)] with tuples of at most t− 3 integers from [d + 2]. We permanently
color every vertex y ∈ x(G) by (Ci+1(x), Cx(y)). This defines the coloring C ′

i+1 of G∗
i+1.

We continue to follow Theorem 18, with the ensuing precisions. We go through all
the splits, including the ones between two permanently colored vertices, since they may
make some other vertices incident to a black edge for the first time. If the split vertex
z ∈ V (Gj) is not such that z(G) was already permanently colored, the colors of the new
vertices u, v ∈ V (Gj+1) are chosen according to the rules of Theorem 18 where we consider
the trigraphs Gj and Gj+1 (and not the graphs G∗

j and G∗
j+1), and the coloring Cj of V (Gj)

is defined as: Cj(y) is the first coordinate of C ′
j(y) (or C ′

j(y) itself if it is not a tuple) if
y ∈ V (G∗

j), and the first coordinate of the color of any vertex in y(G), otherwise. (One may
observe that Cj is not necessarily a proper coloring of (V (Gj), E(Gj) ∪R(Gj)), but all the
conflict edges lie within a permanently colored subgraph.) Every time a vertex x becomes
incident to a black edge, we permanently color x(G). This defines the sequence of colorings
C ′

1, . . . , C ′
n.

We show by induction on i that C ′
i properly colors G∗

i . Coloring C ′
1 is indeed a proper

coloring of G∗
1 = K1. We assume that C ′

i is a proper coloring of G∗
i , and let xy be any

edge in E(G∗
i+1). By the outermost induction on t, if xy lies within a Kt−1-free graph

permanently colored, then C ′
i+1(x) ̸= C ′

i+1(y). If instead x and y belong to two distinct
vertices of Gi+1, by the proof of Theorem 18 and the fact that C ′

i is a proper coloring of G∗
i ,

the first coordinate of C ′
i+1(x) and of C ′

i+1(y) differ.
In particular C ′

n is a proper coloring of G∗
n = Gn = G. We pad every tuple C ′

n(x) of
length t′ < t with t− t′ entries 1. From the previous proof, it can be observed that this new
coloring of G is still proper, and uses at most (d + 2)t−2 colors. ◀

Theorem 19 directly implies that, provided O(1)-sequences are given, Min Coloring
can be 2O(OPT)-approximated on bounded twin-width graphs, and Max Independent Set
can be O(1)-approximated on Kt-free graphs of bounded twin-width (trivially because an
independent set of size n/O(1) can be found). In Sections 7.2 and 8.2 we discuss further the
approximability of MIS in bounded twin-width graphs.

It would be interesting to determine if bounded twin-width classes are polynomially
χ-bounded, that is, satisfies for some constant c, χ(G) = O(ω(G)c) for every graph G in the

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 25

class. Bounded clique-width or rank-width classes were shown polynomially χ-bounded only
recently [3]. We show however that bounded twin-width classes satisfy the related strong
Erdős-Hajnal property. We recall that a class C of graphs satisfies the strong Erdős-Hajnal
property if there exists an ε > 0 such that every G ∈ C contains two disjoint subsets of
vertices X, Y , both of size at least ε|V (G)|, with either all edges or no edges between X

and Y . The strong Erdős-Hajnal property of a hereditary class implies the existence of a
clique or a stable set of polynomial size, that is, the Erdős-Hajnal property [1].

▶ Theorem 20. The class of graphs with twin-width at most d satisfies the strong Erdős-
Hajnal property with ε = 1/(d + 4).

Proof. Let G be an n-vertex graph with twin-width at most d. Consider in a fixed d-
sequence Gn, . . . , G1 the maximum index i such that there is a vertex z ∈ V (Gi) satisfying
|z(G)| ⩾ n/(d + 4). Since X := z(G) is the union of u(G) and v(G) for some u, v ∈ V (Gi+1),
its size is at most 2n/(d + 4). Vertex z has at most d red neighbors in Gi. These neighbors
constitute a set S ⊆ V (G) of at most d · n/(d + 4) vertices. Thus |V (G) \ (z(G) ∪ S)| ⩾
n− 2n/(d + 4)− dn/(d + 4) = 2n/(d + 4). By construction, every vertex in V (G) \ (z(G)∪S)
is fully adjacent to X or fully non-adjacent to X. Let Y ⊆ V (G) \ (z(G) ∪ S) be the subset
of all vertices in the majority regarding these two outcomes. Set Y has size at least n/(d + 4)
vertices and X, Y is therefore an appropriate pair. ◀

6 Interval biclique partitions and computing shortest paths

In this section, we show how to build on the viewpoint of the previous section to compute
shortest paths efficiently. We first show that bounded twin-width graphs admit favorable
edge partitions into linearly many bicliques.

An interval biclique partition (or IBP, for short) of a graph G on vertex set [n] is a set
B of bicliques that edge-partitions G where each biclique (Ai, Bi) ∈ B is such that both
sides Ai and Bi are two (disjoint) discrete intervals of [n] (see Figure 5). Observe that
the latter condition makes interval biclique partitions a more restricted form of the mere
biclique (edge-)partitions. However every graph admits an IBP, since a biclique of B can
be a single edge of G. Such an edge-partition becomes interesting when the number of
bicliques in B is small, say, at most linear in the number of vertices. We will show that
bounded twin-width graphs admit linear-sized IBPs. To give an example, the clique Kn

admits {([1], [2, n]), ([2], [3, n]), ([3], [4, n]), . . . , ([n− 1], [n])} as an IBP. The IBP B gives a
4⌈log n⌉|B|-bits representation of the graph.

The ordered union tree of a d-sequence S : G = Gn, . . . , G1 = K1, is a pair (T ,A) where
T is a rooted binary tree whose leaves are in one-to-one correspondence with V (G), and A
is an array of length n− 1 whose i-th entry is a pointer to the (distinct) internal node of T
representing the i-th contraction of S, i.e., whose rooted subtree has for leaves all the vertices
of G “contained” in the contracted vertex. Our algorithms in [5, 4] can output an ordered
union tree in the same running time as for computing the d-sequence. The ordered union
tree can thus be seen as an alternative way of presenting the d-sequence.

▶ Lemma 21. Every n-vertex graph of twin-width d has an interval biclique partition B of
size at most (d + 1)(n− 1). Furthermore B can be computed in time O(dn) = Od(n) given
the ordered union tree of a d-sequence for G.

Proof. We relabel the nodes of the tree starting from the leaves. From left to right, their
label now describes the integers from 1 to n (see Figure 6). An internal node gets label

26 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

23

21

15

14

24

22

16

19

8

6

2

9

5

4

1

26 27 3025

29 28 32

31

7

13

12

11

20

18

3 10 17

Figure 5 Example of an interval biclique partition following a contraction sequence. The bicliques
are represented in bold blue. See Figure 6 for a part of the corresponding union tree.

[i, j] if the leaves of its subtree precisely form the interval [i, j]. This step can be done in
O(n)-time.

Now we read the d-sequence backwards, starting from the end G1 = K1, and tracking
black edges appearing for the first time. Let u, v ∈ V (Gi+1) be obtained by splitting
z ∈ V (Gi). Formally we say that a black edge xy ∈ E(Gi+1) appears for the first time in
Gi+1, if xy is not a black edge of Gi (this implies that {x, y} ∩ {u, v} ≠ ∅) and xy is not of
the form uy or vy with zy ∈ E(Gi). Intuitively, not only the black edge is new, but it did
not originate from a black edge zy ∈ E(Gi). Note that the latter automatically creates two
black edges uy, vy ∈ E(Gi+1), but the information carried by these edges is contained in the
biclique (y(G), z(G)) already detected.

At each of the n−1 steps, at most d+1 black edges can appear for the first time: possibly
one between the two vertices u, v, and at most one between {u, v} and every red neighbor of
z in Gi. We append the corresponding bicliques to B. This takes overall time O(dn), and
shows that |B| ⩽ (d + 1)(n− 1). By the previous relabeling, the two sides of the bicliques
are discrete intervals. By the final observation in the previous paragraph, the bicliques of B
cover all the edges of G. By the definition of a “black edge appearing for the first time”, no
edge is covered twice, so B is indeed a biclique partition of E(G). ◀

An interesting additional property of the computed IBP B, in the case of bounded
twin-width graphs, is that the whole set of biclique sides (partite sets) defines a laminar
family. Indeed, by definition of a contraction sequence, there cannot be two overlapping
sides. Our algorithm will not use this additional property.

For the next algorithm, the interval biclique partition B is stored in a look-up table Z.
One accesses in constant time, with Z[A], the head of the list of sides B such that (A, B) or
(B, A) is in B. The table Z can be initialized in time O(|B|), given the list of bicliques B.

▶ Theorem 22. Given an IBP B of an n-vertex graph G and a vertex s ∈ V (G), Single-
Source Shortest Paths can be solved in time O((n + |B|) log n).

Proof. Essentially we will perform a breadth-first search (BFS) from vertex s, following the
bicliques instead of single edges.

To start with, we need a quick access to all the bicliques of B containing a given vertex
u ∈ V (G). As the sides of the bicliques are intervals, we in fact want to solve the interval

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 27

[1, 9]

[1, 3] [4, 9]

[1] [2, 3]

[2] [3]

[4, 8] [9]

[4, 5] [6, 8]

[4] [5] [6] [7, 8]

[7] [8]

Figure 6 The subtree [1, 9] of the union tree corresponding to the graph and sequence of Figure 5.
The bicliques of the IBP are represented in bold blue. The order of the splits does not appear.

stabbing problem: Preprocess a set I of intervals to answer queries of the form “list all
intervals of I containing p”. For instance, if we query vertex 21 of Figure 5, we want
the fast output of the list of intervals [14, 24], [21, 24], [21]. That way we can then get the
neighborhood of 21 in the compact form [12, 13], [14, 16], [22, 23], [25, 32]. Since our intervals
range over [n], there are optimal static data structures for that problem, with preprocessing
time O(n) and query time O(q) where q is the number of output intervals and n is the total
number of intervals (see for instance [36] and [7]). To our knowledge, there is no dynamic
version of these data structures that would further support deletions in time o(log n), let
alone in constant amortized time. However it will be crucial in our algorithm to remove
intervals. We thus accept to pay an extra logarithmic factor, and resolve to the simpler
use of self-balancing binary search trees such as red-black trees [8]. Red-black trees take
O(n log n) to build (by n successive insertions in time O(log n)), and support search queries
in O(log n + q) and deletions in O(log n). Here the search queries are of the form: “list all
nodes (intervals) containing a query element or intersecting a query interval”.

We maintain two red-black trees. The first, TB, is initialized to the 2|B| nodes of {A, B

| (A, B) ∈ B}, that is the sides of the bicliques of the IBP. These intervals are sorted by
lexicographic order on their pairs of endpoints. This tree will maintain which bicliques are
still untraversed in a given direction (we will distinguish the two orientations). The second,
TU , initially comprises the n vertices in V (G) = [n], sorted in the usual order. (The integers
can be seen as singleton intervals to unify TB and TU into the same kind of objects.) It will
maintain which vertex of G are still unexplored.

The primitive Bel(u, TB) (as in belongs) reports all the biclique sides S ∈ TB such that
u ∈ S, while Adj(u, TB) (as in adjacency) reports the set of biclique sides B ∈ TB such that
there is a biclique (A, B) ∈ B with u ∈ A. Finally Int(TU , [i, j]) (as in intersection) lists all
the elements of TU that are in [i, j], and we denote by delete(u, T) the deletion of u from
the red-black tree T .

We can now write our algorithm Single-Source Shortest Paths from a classic BFS, by
replacing the access to edges of the current vertex u by Adj(u, TB), and the vertices to enqueue
(and explore later) by

⋃
[i,j]∈Adj(u,TB) Int(U, [i, j]). More precisely, we initialize a queue Q to

{s}, a set of unexplored vertices U to V (G) \ {s} as a red-black tree Tu, a set of unaccessed
biclique sides of B as another red-black tree TB, a shortest-path tree parent relation p by
p(s) := s, and a distance table d to the source s by d(s) := 0. We remove s from TU . As long

28 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

as Q is non-empty, we dequeue u from it, and set Su := Bel(u, TB), and Nu := Adj(u, TB).
We remove all the biclique sides of Su from TB. We set Nu :=

⋃
[i,j]∈Nu

Int(TU , [i, j]). For
every v ∈ Nu, we set p(v) to u, d(v) to d(u) + 1, we enqueue v in Q, and remove it from TU .
We finally return p and d (see Algorithm 4 for the pseudo-code).

Algorithm 4 SSSP

Input : A graph G, a source s ∈ V (G), and an interval biclique partition B of G.
Output : A shortest-path tree p rooted at s, with a distance table d to s.

1 TU ← V (G)
2 TB ← {A, B | (A, B) ∈ B}
3 Q← {s}
4 p(s)← s

5 d(s)← 0
6 delete(s, TU)
7 while Q ̸= ∅ do
8 u← dequeue(Q)
9 Su ← Bel(u, TB)

10 Nu ← Adj(u, TB)
11 for S ∈ Su do
12 delete(S, TB)
13 Nu ←

⋃
[i,j]∈Nu

Int(TU , [i, j])
14 for v ∈ Nu do
15 p(v)← u

16 d(v)← d(u) + 1
17 enqueue(Q, v)
18 delete(v, TU)

19 return p, d

Correctness. Our algorithm is a BFS in which some edges that are not traversed may
still disappear in one direction (line 12). We only need to argue that these arcs cannot be
part of a shortest-path tree rooted at s. Say the current vertex is u, and the set of unexplored
vertices is U (i.e., the nodes of TU). We consider the set Su := Bel(u, TB) of biclique sides
still in TB and containing u. All these intervals are then removed from TB. Let u′ ̸= u be
a vertex in a side S ∈ Su, and let S′ be another side such that (S, S′) ∈ B. The deletion
of Su implies that an arc from S to S′ can no longer be taken. We claim that it is safe to
remove the arcs from u′ (or more generally from S) to S′. Indeed if u′ is visited after u, then
d(u) ⩽ d(u′). Thus all the vertices in Nu ⊇ S′ ∩ U have already had their distance set to
d(u) + 1 (⩽ d(u′) + 1) and their parent set to u.

Note however that the biclique (S′, S) may still be traversed (in the other direction, from
S′ to S). These arcs can very well be on a shortest-path tree. That is why we are removing
biclique sides and not bicliques.

Running time. The initialization of TU and TB takes time O(n log n) and O(|B| log |B|) =
O(|B| log n), respectively (observe that |B| ⩽ n2, thus O(log |B|) = O(log n)). Each call
Bel(u, TB) reporting q sides takes time O(log n+q). It is immediately followed by the deletion
of these sides from TB, in time O(q log n). Therefore in the entire while loop, these operations
take overall time O(|B| log n). Observe that Adj(u, TB) is built from Bel(u, TB) by simple

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 29

access to the look-up table Z encoding B. This takes time O(|Adj(u, TB)|). Since every
biclique can be traversed at most twice (once in each direction), overall the calls Adj(u, TB)
take time O(|B|). Each call Int(TU , [i, j]) reporting q vertices takes time O(log n+q). This is
followed by removing these vertices from TU in time O(q log n). Hence this part takes overall
time O(n log n). The rest of the instructions take constant time. Therefore the running time
of SSSP is O((n + |B|) log n). ◀

As a direct corollary of Lemma 21 and Theorem 22, we get the following two theorems.

▶ Theorem 23. Let C be a class of bounded twin-width on which there is an Od(n log n)-time
algorithm computing d-sequences for n-vertex graphs. Then Single-Source Shortest
Paths can be solved in C in time Od(n log n).

▶ Theorem 24. Let C be a class of bounded twin-width on which there is an Od(n2 log n)-time
algorithm computing d-sequences for n-vertex graphs. Then All-Pairs Shortest Paths
can be solved in C in time Od(n2 log n).

Note that for all the classes shown to have bounded twin-width in the first two papers
of the series [5, 4], an Od(n2)-time algorithm computes a d-sequence (where d does not
depend on n). For some sparse classes (Kt-minor free graphs), or some dense classes sparsely
presented (unit interval graphs, posets of bounded antichain), it is even possible to obtain
the contraction sequence in time Od(n log n). For the latter kind, it yields O(n log n)-time
algorithms (that is, sublinear in the number of edges) computing shortest-path trees from
a given source. However in these individual classes, much simpler arguments would give
O(n)-time algorithms. Thus the strength of Theorems 23 and 24 lies more in unifying and
generalizing graph classes where Õ(n) and Õ(n2) are achievable for SSSP and APSP, and
in the simplicity of the algorithm (a slightly modified BFS).

One could wonder if the diameter of a graph given with an O(1)-sequence can be computed
significantly faster than in O(n2 log n), by simply calling APSP and reporting the longest
distance. We observe that no truly subquadratic algorithm is possible, unless the Strong
Exponential Time Hypothesis15 (SETH) fails.

▶ Theorem 25. For every ε, ε′ > 0, Diameter on bounded twin-width graphs cannot
be computed, or 3/2 − ε′-approximated, in time n2−ε, unless the SETH fails, even if an
O(1)-sequence of the input graph is given.

Proof. Such an SETH lower bound exists on graphs of bounded degree (see [20]). We
subdivide ℓ − 1 times each edge of a hard instance H, with degree bounded by ∆ and
n′ > 1 vertices, where ℓ := ⌈log n′⌉. We attach a pending path on ℓ edges to the n′ original
vertices of H. This defines a graph G with n ⩽ ∆/2 · (ℓ− 1)n′ + ℓn′ = O(n′ log n′) vertices.
Thus n = O(n′1+ ε

2). We observe that diam(G) = ℓ + ℓ · diam(H) + ℓ = (ℓ + 2)diam(H).
Besides we show in [4] that the log n′-subdivision of n′-vertex graphs have bounded twin-
width. Furthermore an O(1)-sequence can be computed in O(n)-time if the initial graph has
bounded degree. An n2−ε-time algorithm computing the diameter of such a graph G, would
give an O((n′1+ ε

2)2−ε) = O(n′2− ε2
2). Such a subquadratic algorithm is ruled out, even to

obtain a 3/2− ε′-approximation of the diameter, unless the SETH fails. Finally one may
observe that the reduction preserves the inapproximability gap. ◀

15 The assumption that, for every ε > 0, SAT cannot be solved in time (2 − ε)n by a classical algorithm.

30 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

A related SETH lower bound is obtained by Coudert et al. [9], who show that Diameter
cannot be solved in time 2o(cw)n2−ε on n-vertex graphs with clique-width cw. The lower
bound of Theorem 25 is quantitatively stronger (albeit in an admittedly larger graph class)
since it rules out any algorithm solving Diameter in time f(d)n2−ε for any function f ,
on graphs of twin-width at most d. Let us recall that when the diameter is guaranteed
constant, Diameter can be expressed as a first-order formula. Thus we can compute the
exact diameter in O(n)-time provided the contraction sequence of the input graph [5].

7 Approximation Algorithms

Provided O(1)-sequences of the inputs, we give constant-approximation algorithms for Min
Dominating Set and the Distance-2 MIS problem, where one seeks a maximum-cardinality
subset of vertices not containing a pair at distance at most 2. Next we show that such an
algorithm for Distance-1 MIS, that is MIS, would have the unexpected consequence of
leading to a polynomial-time approximation scheme.

7.1 Constant approximation for Min Dominating Set
In this section, we prove that Min Dominating Set and its dual Distance-2 MIS have
bounded integrality gaps in classes of bounded twin-width. Constant factor approximation
algorithms follow for these two problems. We will use the following technical lemma from
the second paper of the series.

▶ Theorem 26 (Section 3, Lemma 20 in [4]). For every integer t, there are integers s and t′

such that every graph G with a t-sequence admits a rooted tree T with the following properties.

Every node of T is labeled by a t′-trigraph.
The root of T is labeled by G.
All the leaves of T are labeled by the 1-vertex graph K1.
If a node x of T is labeled by H, and a child node of x is labeled by H ′, there is a
t′-contraction in H that yields H ′. In particular |V (H)| = |V (H ′)|+ 1.
Every internal node of T labeled by H has at least |V (H)|/s children coming from
t′-contractions on pairwise disjoint pairs of vertices of H.

Such a tree is called an s-versatile tree of t′-contractions. Informally Theorem 26 says
that, by degrading the twin-width bound, one can move away from the “linear nature” of
the contraction sequence to a profusely branching contraction witness.

Theorem 26 is effective: The s-versatile tree of t′-contractions can be computed in
polynomial time, if a t-sequence for G is provided.

▶ Theorem 27. In classes of bounded twin-width, Min Dominating Set has bounded
integrality gap.

Proof. Let G be a graph of twin-width at most t. By Theorem 26, there exist t′, s functions
of t only such that G admits an s-versatile tree of t′-contraction. Let w∗ : V (G)→ [0, 1] be
the weight function of a minimum fractional dominating set, with total weight γ∗. Thus w∗

is an optimum solution of the linear program

minimize
∑

x∈V (G)

w(x)

with ∀x ∈ V (G),
∑

y∈N [x]

w(y) ⩾ 1, and 0 ⩽ w(x) ⩽ 1,

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 31

and γ∗ =
∑

x∈V (G) w∗(x). The weight function w∗ is extended to subsets of vertices by sum.
We assume that G has at least one vertex, so γ∗ ⩾ 1.

We now greedily perform contractions in G following the versatile tree of contractions
with a restriction: contractions involving a part of total weight at least 1

2(t′+1) are forbidden.
Let us explain what this means in more detail. We start at the root, labeled G, of the
versatile tree. We move to a(ny) child node along an edge corresponding to a non-forbidden
t′-contraction. A non-forbidden contraction is one of u, v with w∗(u(G)) < 1

2(t′+1) and
w∗(v(G)) < 1

2(t′+1) . We iterate that until we get stuck (every child of the current node
entails a forbidden contraction).

We adopt the partition viewpoint of the t′-sequence. Let P be the partition of V (G)
obtained when this process finishes, and let GP be the corresponding trigraph (that is, the
label of the node where we stop). We observe that we cannot end at a leaf of the versatile
tree. Indeed that would mean that the last contraction merged a bipartition {X, Y } of V (G)
into {V (G)}. As γ∗ ⩾ 1, this would imply that w∗(X) ⩾ 1/2 or w∗(Y) ⩾ 1/2, contradicting
max(w∗(X), w∗(Y)) < 1

2(t′+1) .

▷ Claim 28. The partition P has at most 2s(t′ + 1)γ∗ classes.

Proof. As we explained, we cannot end up with a partition P at a leaf of the versatile tree.
Thus at least |P|/s disjoint pairs of vertices are t′-contractions in GP . Therefore all these
contractions must be forbidden by our restriction imposed on the weights. It follows that at
least |P|/s parts of P have weight at least 1

2(t′+1) . Since the sum of all weights in P is γ∗, it
follows that |P| ⩽ 2s(t′ + 1)γ∗. ◀

▷ Claim 29. Let P ∈ P be any part. Either w∗(P) < 1
t′+1 or P is a singleton.

Proof. Let P ∈ P, and assume that P is not a singleton. Then P has been obtained by
contracting two parts P1, P2 during the contraction sequence leading to P. The restriction
on the contraction sequence ensures that w∗(P1) < 1

2(t′+1) and w∗(P2) < 1
2(t′+1) . Therefore

w∗(P) = w∗(P1) + w∗(P2) < 1
t′+1 . ◀

Let D ⊆ V (G) be obtained by picking arbitrarily one vertex xP in each part P ∈ P. By
Claim 28, |D| ⩽ 2s(t′ + 1)γ∗, which is linear in γ∗ when t is fixed. Let us prove that D is a
dominating set. We let P ∈ P, and prove that all vertices of P are dominated by D.

Suppose first that there exists P ′ ∈ P such that P, P ′ is a black edge in GP . Then
xP ′ ∈ P ′ is adjacent to all vertices of P , which are thus dominated by D.

Hence we may instead assume that P does not have any black neighbor in GP . Consider
any vertex y ∈ P , and let P1, . . . , Pk the parts of P \ {P} such that there exists an edge
between y and some vertex of Pi. Then P1, . . . , Pk are neighbors of P in GP , and must be
red neighbors since P has no black neighbor. Since GP is a t′-trigraph, it follows that k ⩽ t′.

We now claim that one of the parts P, P1, . . . , Pk must be a singleton. Indeed, since w∗

is a fractional dominating set, and since P ∪
⋃k

i=1 Pi contains y and its neighborhood, it
must be that w∗(P) +

∑k
i=1 w∗(Pi) ⩾ 1. Because k ⩽ t′, it follows that one part among

P, P1, . . . , Pk has weight at least 1
t′+1 . By Claim 29, that same part Ph must be a singleton.

Let z be the single vertex in Ph. Necessarily z ∈ D. If this singleton part is P , then z = y.
Otherwise z is a neighbor of y by definition of P1, . . . , Pk. In either case y is dominated in D

by z. ◀

32 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

We now consider the following linear programming formulation of Distance-2 MIS,
which is dual to Min Dominating Set:

maximize
∑

x∈V (G)

w(x)

with ∀x ∈ V (G),
∑

y∈N [x]

w(y) ⩽ 1, and 0 ⩽ w(x) ⩽ 1.

Similar arguments prove the same result for this dual problem.

▶ Theorem 30. In classes of bounded twin-width, Distance-2 MIS has bounded integrality
gap.

Proof. Consider G of twin-width t, and t′, s function of t such that G admits an s-versatile
tree of t′-contraction. Let w∗ : V (G)→ R be the weight function of a maximum fractional
2-independent set, with total weight α∗

2.
We greedily perform contractions in G following the versatile tree of contractions with the

restriction: contractions involving a part with total weight more than 1 are forbidden. Let P
be the partition of V (G) obtained when this process finishes, and GP be the corresponding
trigraph. Again the weight function w∗ is extended to P by sum. With our restriction on
allowed contractions, it is immediate that all classes of P have weight at most 2. Therefore
|P| ⩾ α∗

2
2 . We can safely assume that α∗

2 > 2, thus |P| > 1. In particular, the node of the
versatile tree labeled GP in which we stopped is an internal node.

Let A = {P ∈ P : w∗(P) > 1}.

▷ Claim 31. |A| ⩾ α∗
2

2s .

Proof. The elements of A are exactly the ones which cannot be used for contractions in GP .
The versatile tree of contractions ensures at least |P|/s ⩾ α∗

2
2s pairwise disjoint t′-contractions

in GP . All these contractions must be forbidden, meaning that they all involve a vertex of A.
Since they are contractions of disjoint pairs of vertices, it follows that |A| ⩾ α∗

2
2s . ◀

▷ Claim 32. No element of A has a black neighbor in GP .

Proof. Suppose that there exist P ∈ A, P ′ ∈ P such that PP ′ is a black edge in GP . Then
for any x ∈ P ′ we have P ⊆ NG(x) and w∗(P) > 1, which violates the LP constraint. ◀

▷ Claim 33. There exists S ⊆ A a 2-independent set in GP such that |S| ⩾ α∗
2

2s(t′2+1) .

Proof. By Claim 32, a path of length at most 2 in GP between elements of A can only
consist of red edges. Since the red graph in GP has maximum degree at most t′, given P ∈ A,
there are at most t′2 other elements of A at distance 2 or less of P . Thus one can choose a
2-independent set in A of size at least |A|

t′2+1 , which is at least α∗
2

2s(t′2+1) by Claim 31. ◀

To conclude, we pick one vertex of G within each part of S. This gives a 2-independent
set in G of size at least α∗

2
2s(t′2+1) . ◀

Reporting approximated solutions for Min Dominating Set and Distance-2 MIS
requires that a t-sequence of the input is provided (or that it can be computed in polynomial
time, as it is the case on many bounded twin-width classes). Interestingly, deciding the
associated constant-gap problem can be done without t-sequences, with the mere knowledge
of the twin-width bound.

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 33

The constant approximations more generally work for Min r-Dominating Set and
Distance-2r MIS, for every positive integer r. Indeed solving these problems in G is
equivalent to solving Min Dominating Set and Distance-2 MIS in G⩽r (where G⩽r is
the graph obtained by putting an edge between every pair of vertices at distance at most r

in G). Besides the twin-width of G⩽r is bounded by a function of the twin-width of G and r,
and an Or(1)-sequence for G⩽r can be computed in polynomial time, given an O(1)-sequence
for G [5, Section 8, Theorem 41].

7.2 A constant approximation for MIS would imply a PTAS

A pessimistic stance on the result of this section is that, perhaps surprisingly, the constant ap-
proximations of Min Dominating Set and Distance-2 MIS are unlikely to be generalizable
to the closely related MIS (that can be seen as Distance-1 MIS). We indeed observe that
the self-improving reduction of Feige et al. [21] preserves the twin-width. As a consequence a
constant approximation for MIS would provide a polynomial-time approximation scheme
(PTAS).

▶ Theorem 34. If Max Independent Set on graphs of twin-width at most d has a
constant-approximation algorithm, then it admits a PTAS.

For G1 and G2 two non-empty graphs, and u ∈ V (G1), we denote by G1(u← G2) the
substitution in G1 of u by G2. That is, u is replaced by G2, and every vertex of V (G1) \ {u}
initially adjacent to u is made adjacent to the whole V (G2).

▶ Lemma 35. tww(G1(u← G2)) = max(tww(G1), tww(G2)).

Proof. We set G := G1(u ← G2). G1 and G2 are both induced subgraphs of G, so
tww(G) ⩾ max(tww(G1), tww(G2)). For the reverse inequality, one just applies the sequence
of d2-contractions on the copy of G2 in G, with d2 := tww(G2). This results in the graph
G1 without red edges. Then, one applies the sequence of d1-contractions to G1, with
d1 := tww(G1). This shows that tww(G) ⩽ max(d1, d2). ◀

For G a graph, let Gt be the graph on the vertex set V (G)t, such that for x̄ = (x1, . . . , xt),
ȳ = (y1, . . . , yt) distinct vertices, x̄ȳ ∈ E(Gt) if and only if xiyi ∈ E(G) where i is the
smallest index such that xi ̸= yi. This definition can be restated inductively: G0 is the
1-vertex graph, and Gt is obtained from G by substituting each vertex by a copy of Gt−1.
With the notations of the initial definition, for x ∈ V (G), the set of vertices of Gt of the
form (x, x2, . . . , xt) is a copy isomorphic to Gt−1.

The following holds as a direct consequence of Lemma 35.

▶ Lemma 36. For any graph G and integer t > 0, tww(Gt) = tww(G).

We now show that the independence number of Gt is tightly related to the one of G.

▶ Lemma 37. For any graph G, both following conditions hold.

1. Given any independent set of size k in G, one can compute an independent of size kt

in Gt, in time O(kt).
2. Given any independent set of size k′ in Gt, one can compute an independent of size

at least t
√

k′ in G, in time O(k′).

34 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

Proof. Let I be an independent set in G. Then It seen as a subset of V (G)t is an independent
of Gt, which proves the first item.

For the second item, let I be an independent set in Gt of size at least rt. We define

I ′ := {x ∈ V (G) : ∃x2, . . . , xt, (x, x2, . . . , xt) ∈ I}.

Then I ′ is an independent set in G. If |I ′| ⩾ r, we are done. Otherwise, for each x ∈ I ′, let

Ix := {(x2, . . . , xt) ∈ V (G)t−1 : (x, x2, . . . , xt) ∈ I}.

For any x, Ix is an independent set in Gt−1. Furthermore we have
∑

x∈I′ |Ix| = |I|, |I| = rt,
and |I ′| < r, hence there exists some x ∈ I ′ such that |Ix| ⩾ rt−1. By induction on t we
obtain an independent of size at least r in G. ◀

As an immediate corollary, α(Gt) = α(G)t where, we recall, α(H) denotes the size of a
maximum independent set in H.

Proof of Theorem 34. Assume there is a polynomial-time β-approximation for MIS on
graphs of twin-width at most d. Let G be a graph with twin-width at most d. By Lemma 36
the algorithm can be ran on Gt to obtain an independent set of size at least α(Gt)

β = α(G)t

β .
By Lemma 37, this independent set in Gt can be turned into an independent set in G of size
at least α(G)/ t

√
β. This gives a polynomial-time t

√
β-approximation for arbitrary t. Thus

the approximation ratio can be made arbitrarily close to 1. ◀

7.3 Linear Erdős-Pósa property
Given a 0, 1-matrix M , two natural integer programs naturally arise: One can ask for a
minimum-weight 0, 1-vector Xh such that M ·Xh ⩾ 1 or for a maximum-weight 0, 1-vector Yp

such that M t · Yp ⩽ 1. In the usual representation of M as a hypergraph H where columns
are vertices and rows are hyperedges (each row seen as an indicator vector of a subset of
vertices), Xh is a minimum hitting set and Yp is a maximum packing. We usually denote by
µ(H) the size of a maximum packing and by τ(H) the size of a minimum hitting set.

One can then consider the fractional relaxation of these parameters, µ∗(H) and τ∗(H).
Since the corresponding linear programs are dual, we obtain the following chain of (in)equalities
µ(H) ⩽ µ∗(H) = τ∗(H) ⩽ τ(H). A class H of hypergraphs for which there exists a function
f such that every hypergraph H ∈ H satisfies τ(H) ⩽ f(µ(H)) has the Erdős-Pósa property.
If furthermore τ(H) ⩽ c · µ(H) for some constant c, H has the linear Erdős-Pósa property.

By a result of Haussler and Welzl [28], the class of hypergraphs with bounded VC-
dimension satisfies that τ(H) ⩽ f(τ∗(H)), but is not by itself sufficient to imply the
Erdős-Pósa property (the integrality gap for µ is unbounded). A result of Ding et al. [13]
asserts that the Erdős-Pósa property holds for matrices which do not contain the transpose
of incidence matrices of cliques as submatrices; the function f is polynomial but not linear.
Dvořák [17] proved that, for every fixed r, r-neighborhood hypergraphs of bounded expansion
classes have the linear Erdős-Pósa property. Recently, Bousquet et al [6] showed that
ball hypergraphs (of any radius) of proper minor-closed classes have the linear Erdős-Pósa
property.

The incidence bipartite graph B(H) of a hypergraph H is the bipartite graph on vertex
set V (H) ∪ E(H) where ve is an edge if v ∈ V (H), e ∈ E(H) and v ∈ e. The twin-width of
hypergraph H is defined here as the twin-width of B(H). A straightforward adaptation of
the proofs of Theorems 27 and 30 gives:

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 35

▶ Theorem 38. For every integer t, there is a constant ct such that every hypergraph H

with twin-width at most t satisfies τ(H) ⩽ ct · µ(H).

In other words, the class of bounded twin-width hypergraphs have the linear Erdős-Pósa
property. A particularly interesting line of research would be to generalize this integrality-gap
result to integer matrices rather than just 0, 1-matrices. This requires a suitable definition
for bounded twin-width in the general integer case.

8 Future work and open questions

We have now a rather fine-grained understanding of the classic parameterized graph problems
(k-Independent Set, k-Dominating Set, and their relatives) when a contraction sequence
is given in addition to the bounded twin-width graph. For k-Independent Set for example
there is a 2O(k)n-time algorithm, while a 2o(k/ log k)nO(1)-time (even 2o(n/ log n)-time) algorithm
would refute the ETH. It is natural to wonder if better approximation algorithms of NP-hard
problems are possible when a contraction sequence is given. Before we detail that a bit, as
well as the possibility of getting improved exact exponential algorithms on general graphs,
we note that bounded twin-width does not seem to help to get polynomial kernels.

8.1 No polynomial kernels on bounded twin-width classes
We already observed that k-Independent Set is unlikely to have kO(1) kernels on graphs
of twin-width at most a fixed constant d [5]. We sketch here that the same applies to the
vertex-weighted k-Dominating Set (that is, the problem of the existence of a weight-k
dominating set). The following is an OR-composition producing from, say, t instances of the
NP-hard Dominating Set on planar graphs, one instance of Weighted Dominating Set
whose underlying unweighted graph has constant twin-width.

We make the disjoint union of the t planar Dominating Set-instances (G1, k), . . . , (Gt, k).
We add t vertices u1, . . . , ut each of weight k + 1, and link ui to all the vertices of every
Gj but Gi. It is easy to see that the existence of a weight-2k + 1 dominating set in this
new graph is equivalent to one of the instances (G1, k) . . . , (Gt, k) being positive. As planar
graphs have bounded twin-width [5], the built graph (forgetting its weights) also has bounded
twin-width. One can first contract every Gi into single vertices, thus obtaining the (black)
anti-matching on t edges (i.e., the bipartite complement of t independent edges), which itself
has twin-width 2. Thus a polynomial kernel would imply the unlikely containment NP ⊆
co-NP/poly [2]. It is not so satisfactory that the lower bound is for Weighted Dominating
Set, while the twin-width is computed on the unweighted graph. It turns out that the same
negative result is attainable for Dominating Set but the reduction is far more involved.
Thus we will not sketch it here.

8.2 Better approximation algorithms
We ask for the approximability status of Max Independent Set, Min Dominating Set,
and Min Coloring on bounded twin-width graphs (given with d-sequences).

One can observe that the arguments of Section 7.2 show that a logc n-approximation
algorithm for MIS (for some constant c) implies a logε n-approximation for any ε > 0.
We let the reader decide if this is a sign that logc n-approximation algorithms are unlikely.
Approximation algorithms of MIS on bounded twin-width graphs with worst ratios (for
instance nε for every ε > 0) would also be interesting, as they are far from existing in general

36 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

graphs. For Min Dominating Set on bounded twin-width graphs, we ask for a constant-
approximation algorithm with ratio independent on the twin-width bound, or even for a
PTAS. For Min Coloring, we ask for any improvement over our 2O(OPT)-approximation
algorithm. A first step is to reach approximation factor OPTO(1). While we do not see any
obvious obstruction to an Od(1)-approximation, a PTAS is ruled out by the 3 vs 4 hardness
of Coloring in planar graphs (class for which d-sequences can be computed in polynomial
time [5]).

8.3 Exact exponential algorithms
A possible algorithmic success for a novel graph invariant, like twin-width, is to eventually
lead to (faster) algorithms on general graphs, and not merely on graphs where the invariant is
bounded. A natural way this happens (for instance for treewidth) is by a win-win argument.
Either the parameter is small and we exploit it, or it is large, and some complex structure
appears, which actually helps our decision.

But win-win arguments are not the only way. Algorithms initially designed for bounded
twin-width graphs may turn out also interesting on general graphs. We see Theorem 11 as a
promising starting point to get exact exponential algorithms for Max Independent Set on
general graphs. This asks for a new game related to, but also fundamentally different from
twin-width. Can we find a contraction sequence for any n-vertex graph such that the total
number of connected sets in the red graphs is at most O∗(cn) for some constant c? (Showing
this result with c = 1.19 would improve the current best exact algorithm for MIS.) Note
that creating vertices with large red degree is no longer forbidden.

References
1 Noga Alon, János Pach, Rom Pinchasi, Radoš Radoičić, and Micha Sharir. Crossing patterns of

semi-algebraic sets. Journal of Combinatorial Theory, Series A, 111(2):310 – 326, 2005. URL:
http://www.sciencedirect.com/science/article/pii/S0097316505000063, doi:https://
doi.org/10.1016/j.jcta.2004.12.008.

2 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

3 Marthe Bonamy and Michal Pilipczuk. Graphs of bounded cliquewidth are polynomially
χ-bounded. CoRR, abs/1910.00697, 2019. URL: http://arxiv.org/abs/1910.00697, arXiv:
1910.00697.

4 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996, 2021. doi:10.1137/1.9781611976465.118.

5 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 601–612. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00062.

6 Nicolas Bousquet, Wouter Cames van Batenburg, Louis Esperet, Gwenaël Joret, William
Lochet, Carole Muller, and François Pirot. Packing and covering balls in graphs excluding a
minor, 2020. arXiv:2001.04517.

7 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM J. Comput.,
15(3):703–724, 1986. doi:10.1137/0215051.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

http://www.sciencedirect.com/science/article/pii/S0097316505000063
https://doi.org/https://doi.org/10.1016/j.jcta.2004.12.008
https://doi.org/https://doi.org/10.1016/j.jcta.2004.12.008
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
http://arxiv.org/abs/1910.00697
http://arxiv.org/abs/1910.00697
http://arxiv.org/abs/1910.00697
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.1109/FOCS46700.2020.00062
http://arxiv.org/abs/2001.04517
https://doi.org/10.1137/0215051
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, R. Watrigant 37

9 David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. ACM Trans. Algorithms, 15(3):33:1–33:57,
2019. doi:10.1145/3310228.

10 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12 – 75, 1990. URL: http://
www.sciencedirect.com/science/article/pii/089054019090043H, doi:https://doi.org/
10.1016/0890-5401(90)90043-H.

11 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

12 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

13 Guoli Ding, Paul D. Seymour, and Peter Winkler. Bounding the vertex cover number of a
hypergraph. Comb., 14(1):23–34, 1994.

14 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 624–633. ACM, 2014. doi:10.1145/2591796.2591884.

15 Frederic Dorn. Planar subgraph isomorphism revisited. In Jean-Yves Marion and Thomas
Schwentick, editors, 27th International Symposium on Theoretical Aspects of Computer Science,
STACS 2010, March 4-6, 2010, Nancy, France, volume 5 of LIPIcs, pages 263–274. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPIcs.STACS.2010.2460.

16 Zdeněk Dvořák and Daniel Král’. Classes of graphs with small rank decompositions are
χ-bounded. Eur. J. Comb., 33(4):679–683, 2012. doi:10.1016/j.ejc.2011.12.005.

17 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse
graphs. European Journal of Combinatorics, 34(5):833 – 840, 2013. URL: http://www.
sciencedirect.com/science/article/pii/S0195669812002028, doi:https://doi.org/10.
1016/j.ejc.2012.12.004.

18 David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999. doi:10.7155/jgaa.00014.

19 David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. doi:10.1007/s004530010020.

20 Jacob Evald and Søren Dahlgaard. Tight hardness results for distance and centrality problems
in constant degree graphs. CoRR, abs/1609.08403, 2016. URL: http://arxiv.org/abs/1609.
08403, arXiv:1609.08403.

21 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approximating
Clique is almost NP-complete (preliminary version). In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 2–12. IEEE Computer
Society, 1991. doi:10.1109/SFCS.1991.185341.

22 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM J. Comput., 31(1):113–145, 2001. doi:10.1137/S0097539799360768.

23 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.01.007.

24 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)90014-5.

25 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. doi:10.
1007/BF02579273.

26 Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for maximum weight independent set on P6-free graphs. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,

https://doi.org/10.1145/3310228
http://www.sciencedirect.com/science/article/pii/089054019090043H
http://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.4230/LIPIcs.STACS.2010.2460
https://doi.org/10.1016/j.ejc.2011.12.005
http://www.sciencedirect.com/science/article/pii/S0195669812002028
http://www.sciencedirect.com/science/article/pii/S0195669812002028
https://doi.org/https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1007/s004530010020
http://arxiv.org/abs/1609.08403
http://arxiv.org/abs/1609.08403
http://arxiv.org/abs/1609.08403
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273

38 Twin-width III: Maximum Independent Set, Min Dominating Set, and Coloring

California, USA, January 6-9, 2019, pages 1257–1271, 2019. doi:10.1137/1.9781611975482.
77.

27 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82–101, 2014. doi:10.1137/1.
9781611973402.7.

28 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Computational
Geometry, 2:127–151, 1987.

29 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

31 David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci., 9(3):256–278, 1974. doi:10.1016/S0022-0000(74)80044-9.

32 Stefan Kratsch and Florian Nelles. Efficient parameterized algorithms for computing all-pairs
shortest paths. In Christophe Paul and Markus Bläser, editors, 37th International Symposium
on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier,
France, volume 154 of LIPIcs, pages 38:1–38:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.38.

33 László Lovász. On the ratio of optimal integral and fractional covers. Discret. Math., 13(4):383–
390, 1975. doi:10.1016/0012-365X(75)90058-8.

34 Michal Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on proper
minor-closed graph classes. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1501–1520. SIAM, 2019. doi:10.1137/1.9781611975482.91.

35 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

36 Jens M. Schmidt. Interval stabbing problems in small integer ranges. In Yingfei Dong,
Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, volume
5878 of Lecture Notes in Computer Science, pages 163–172. Springer, 2009. doi:10.1007/
978-3-642-10631-6_18.

37 Christian Sloper and Jan Arne Telle. An overview of techniques for designing parameterized
algorithms. Comput. J., 51(1):122–136, 2008. doi:10.1093/comjnl/bxm038.

38 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. J. Comb. Optim.,
37(4):1283–1311, 2019. doi:10.1007/s10878-018-0353-z.

39 Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted
APSP. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 950–957.
SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496873.

https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.4230/LIPIcs.STACS.2020.38
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1137/1.9781611975482.91
https://doi.org/10.1007/978-3-642-10631-6_18
https://doi.org/10.1007/978-3-642-10631-6_18
https://doi.org/10.1093/comjnl/bxm038
https://doi.org/10.1007/s10878-018-0353-z
http://dl.acm.org/citation.cfm?id=1496770.1496873

	1 Introduction
	2 Preliminaries
	2.1 Trigraphs, contraction sequences, and twin-width of a graph
	2.2 Classes with bounded twin-width and how the sequences are given

	3 Practical algorithms for k-Independent Set and its generalizations
	4 A practical algorithm for k-Dominating Set
	5 Bounded twin-width classes are -bounded
	6 Interval biclique partitions and computing shortest paths
	7 Approximation Algorithms
	7.1 Constant approximation for Min Dominating Set
	7.2 A constant approximation for MIS would imply a PTAS
	7.3 Linear Erdős-Pósa property

	8 Future work and open questions
	8.1 No polynomial kernels on bounded twin-width classes
	8.2 Better approximation algorithms
	8.3 Exact exponential algorithms

