
Twin-width VI: the lens of contraction sequences
Édouard Bonnet � Â

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Eun Jung Kim �

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Amadeus Reinald �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Stéphan Thomassé �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
A contraction sequence of a graph consists of iteratively merging two of its vertices until only one
vertex remains. The recently introduced twin-width graph invariant is based on contraction sequences.
More precisely, if one puts error edges, henceforth red edges, between two vertices representing
non-homogeneous subsets, the twin-width is the minimum integer d such that a contraction sequence
exists that keeps the red degree at value at most d. By changing the condition imposed on the
trigraphs (i.e., graphs with some edges being red) and possibly slightly tweaking the notion of
contractions, we show how to characterize the well-established bounded rank-width, tree-width,
linear rank-width, path-width, and monotone proper minor-closed classes by means of contraction
sequences.

Thus going from parameters based on branch-decompositions to parameters based on contraction
sequences has a crucial advantage: while we can still express classical width notions, we can go
through the planar barrier which is captured by bounded twin-width. As another application we give
a transparent alternative proof of the celebrated Courcelle’s theorem (actually of its generalization
by Courcelle, Makowsky, and Rotics), that MSO2 (resp. MSO1) model checking on graphs with
bounded tree-width (resp. bounded rank-width) is fixed-parameter tractable in the size of the input
sentence. We are hopeful that our characterizations can help in other contexts.

We then explore new avenues along the general theme of contraction sequences both in order to
refine the landscape between bounded tree-width and bounded twin-width (via spanning twin-width)
and to capture more general classes than bounded twin-width. To this end, we define an oriented
version of twin-width, where appearing red edges are oriented away from the newly contracted vertex,
and the mere red out-degree should remain bounded. Surprisingly, classes of bounded oriented
twin-width coincide with those of bounded twin-width. This greatly simplifies the task of showing
that a class has bounded twin-width. As an example, using a lemma by Norine, Seymour, Thomas,
and Wollan, we give a 5-line proof that Kt-minor free graphs have bounded twin-width. Without
oriented twin-width, this fact was shown by a somewhat intricate 4-page proof in the first paper of
the series. Finally we explore the concept of partial contraction sequences, instead of terminating
on a single-vertex graph, the sequence ends when reaching a particular target class. We show that
FO model checking (resp. ∃FO model checking) is fixed-parameter tractable on classes with partial
contraction sequences to a class of bounded degree (resp. bounded expansion), provided the partial
contraction sequence is given. Efficiently finding such partial sequences could turn out simpler than
finding a (complete) sequence.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Twin-width, contraction sequences, width parameters, FO and MSO model
checking, matroids

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-6824-0516
mailto:amadeus.reinald@ens-lyon.fr
mailto:stephan.thomasse@ens-lyon.fr

2 Twin-width VI: the lens of contraction sequences

1 Introduction

A trigraph is a graph with some of its edges being distinguished, typically called red edges,
while the rest of the edges are called black. The (vertex) contraction (or identification) of
two non-necessarily adjacent vertices u and v in a trigraph consists of merging these two
vertices into a new vertex w, keeping every edge wx black if both ux and vx were black
edges, and turning all the other edges incident to w red. The rest of the trigraph does
not change. A contraction sequence of an n-vertex (tri)graph G is a sequence of trigraphs
G = Gn, Gn−1, . . . , G1 such that Gi is an i-vertex trigraph, obtained by performing one
contraction in Gi+1. A d-sequence is a contraction sequence such that every trigraph of
the sequence has maximum red degree at most d. The twin-width of a graph is defined
via contraction sequences: It is the minimum integer d such that G admits a d-sequence.
See Figure 1 for an example of a graph with a 2-sequence. Not to hinder the flow of this

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

introduction, we will try to limit further definitions. The reader is deferred to Section 2 if
encountering some unknown terminology.1

Classes of bounded twin-width are surprisingly diverse. They include for instance classes
of bounded tree-width, or even bounded rank-width, proper minor-closed classes, hereditary
proper subclasses of permutation graphs, subgraphs of O(1)-dimensional grids [6], as well as
Ω(logn)-subdivisions of n-vertex graphs, classes with bounded queue or stack number, and
some families of expanders [3]. Nevertheless classes of bounded twin-with have interesting
properties: They are closed under taking first-order (FO) transductions [6], χ-bounded [4],
and allow a fixed-parameter tractable (FPT) algorithm for FO model checking [6], provided
O(1)-sequences are given in input, and more practical FPT algorithms on specific problems like
k-Independent Set or k-Dominating Set [4]. Twin-width naturally extends to matrices
over finite alphabets and binary structures in general [6, 7]. Efficiently approximating twin-
width (that is, returning an f(d)-sequence when the twin-width of the input is at most d)
can be done for classes of totally ordered binary structures [5], but remains an open challenge
for unordered graphs.

This paper investigates variations on the theme of contraction sequences. We first
show that bounded rank-width and bounded linear rank-width can be defined by means of
contractions sequences. Instead of requiring the maximum red degree to be bounded, one
shall strengthen the condition to bounded-size red components, and bounded total number
of red edges,2 respectively. In the sparse regime of biclique-free classes, this characterizes
bounded tree-width and bounded path-width. See Figures 2c and 2d for some illustration.

Let us elaborate on that with an alternative formalism. A useful equivalent viewpoint on
contraction sequences is the notion of partition sequence, that is, a sequence Pn, . . . ,P1 of

1 If a term is still not defined there, it is not important for the rest of the paper.
2 modulo the technicality of introducing red loops (see Section 2)

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 3

partitions of the vertex set V (G), where Pn is the partition into singletons, P1 = {V (G)},
and each Pi is obtained by merging two parts of Pi+1. Then a width w : P(V (G)) → N (i.e.,
a function from the partitions of V (G) to the naturals) can be naturally lifted to the graph
G as the minimum integer t such that there exists a partition sequence Pn, . . . ,P1 satisfying
w(Pi) ⩽ t for every i. This defines the width of G associated to w.

What are partitions of “good quality” or small width? Probably partitions Pi such that
the quotient G/Pi “captures” the edge set of G quite well, minimizing the extra amount of
information one needs to fully recover G. In that respect, the ideal scenario is when a pair of
parts X,Y ∈ Pi is homogeneous, that is, X and Y are completely adjacent or completely
non-adjacent in G. Consider the auxiliary graph with vertex set the parts of Pi, and edge
set all pairs of parts X,Y ∈ Pi which are not homogeneous. Note that this auxiliary graph
is precisely the red graph of trigraph Gi (as previously defined), that is, obtained from Gi by
keeping the red edges only. Three width measures come relatively naturally: the maximum
degree, wd, the maximum component-size, wc, and the total number of edges, wt, in the red
graph of Gi. We obtain the following invariant on graphs.

The twin-width of G as the width tww(G) associated to wd (see Figure 2a).
The component twin-width of G as the width ltww(G) associated to wc (see Figure 2c).
The total twin-width of G as the width ttww(G) associated to wt (see Figure 2d).

(a) Twin-width: red degree. (b) Oriented twin-width: red out-degree.

(c) Component twin-width: size of red components. (d) Total twin-width: number of red edges.

Figure 2 Examples of graphs with low value of the four corresponding twin-width variants.

As we will see in Section 3, the striking fact is that the latter two parameters already
exist, up to functional equivalence.

▶ Theorem 1. The following parameters are functionally equivalent:
Component twin-width and rank-width;
Total twin-width and linear rank-width.

This phrases the classic width measures (tree-width, rank-width, path-width, linear

4 Twin-width VI: the lens of contraction sequences

rank-width) in the language of twin-width and contraction sequences. This unifying lens has
two main benefits.

The first benefit is simplicity and renewal. We propose some examples where our
characterizations somewhat simplify matters or bring a new, slightly but resolutely different
perspective. We give a short alternative proof of the celebrated theorem by Courcelle,
Makowsky, and Rotics [11] that monadic second-order (MSO) model checking (with adjacency
relation only) is fixed-parameter tractable on classes with bounded rank-width. More precisely,
G |= φ is decidable in time f(|φ|, cw)|V (G)| on graphs G given with a clique-width expression
with cw labels, and MSO sentences φ. This is known to generalize Courcelle’s theorem that
MSO model checking with incidence relation is fixed-parameter tractable on classes with
bounded tree-width.

Let us sketch how our algorithm goes. Instead of parsing a clique-width expression (or a
tree-decomposition), we scan the contraction sequence from G = Gn to G1. We maintain
types that are “local to the red graph”, that is, the theory up to quantifier depth q of all the
sentences of depth q that are true on a given red component. As the component twin-width
is bounded, note that there is a bounded number of vertices per red component. Initially in
Gn = G, the red components are single vertices, hence the local theory is easy to determine.
Eventually in G1, the whole graph has been merged into a single vertex, thus the local theory
of the unique vertex of G1 matches the “global” theory of G. As this is precisely what we
are after, the crux lies in updating the local theories when moving from trigraph Gi+1 to
trigraph Gi. When contracting u, v ∈ V (Gi+1), up to d + 1 red components of Gi+1 are
fused into one in Gi, where d is the upper bound on the component twin-width. We show
that the local theory on these red components, combined with the black edges sitting on
them, is enough to determine unambiguously the local theory of the new red component.
The relative simplicity of component twin-width brings our proof down to a minimum: one
lemma in the vein of the Feferman-Vaught theorem [14]. For completeness, we prove this
folklore lemma with Ehrenfeucht-Fraïssé games for MSO.

We also present an analogue to dynamic programming over clique-width expressions or
tree-decompositions, with the approach of contraction sequences. We exemplify it with a
practical algorithm for the particular MSO-expressible problem q-Coloring. As the MSO
model checking algorithm, it can be described as dynamic programming over the contraction
sequence; except it is obviously much more practical and simple than the former. We then list
some advantages that our approach hold over the classic dynamic-programming algorithms.
In [4], this scheme was used to solve some particular FO-expressible problems on graphs of
bounded twin-width given with an O(1)-sequence.

This brings us to the second benefit, which is an unexpected collapse of the meta-
algorithmic techniques dedicated to handle first-order and monadic second-order logic.
Dynamic programming over contraction sequences tackles in one sweep problems that were
seemingly as different and required as disparate techniques as k-Subgraph Isomorphism on
planar graphs3 and q-Coloring on graphs of bounded rank-width [12]. Another realization of
that collapse is a similar algorithm efficiently solving FO model checking on graphs of bounded
twin-width given with O(1)-sequences [6], and MSO model checking on graphs of bounded
rank-width/bounded component twin-width. This motivates searching for characterizations
or generalizations of classes of bounded expansion or nowhere dense classes by means of
contraction sequences, as a way to push further their unifying power.

3 see the work of Eppstein [13] building up on Baker’s technique [1] and leading to low tree-width
decompositions, and [4] for the approach with contraction sequences

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 5

We also define a notion of spanning twin-width,4 intermediate between bounded tree-width
and bounded twin-width, which exactly captures classes excluding a minor, among monotone
classes.

▶ Theorem 2. A monotone graph class C has bounded spanning twin-width if and only if it
is proper minor-closed.

So far we explored what happens when restricting the notion of bounded twin-width. Here
is an attempt to generalize it. One may observe that homogeneity of two distinct parts X,Y
of Pi is in fact a directed relation. Let us say that Y is homogeneous to X if the pair X, {y}
is homogeneous for all y ∈ Y . We can now form the directed red graph Di whose vertices are
the parts of Pi, and with arcs X → Y for all pairs X,Y ∈ Pi with Y not homogeneous to
X. The oriented width of Pi is the maximum out-degree wo of Di. This defines the oriented
twin-width of G denoted otww(G) (see Figure 2b). Note that otww(G) ⩽ tww(G) since
contracting parts can only create red arcs which are directed from the contracted vertex.

Oriented twin-width is in some sense “fairer” than twin-width, as far as the “error count” is
concerned. When an error (red edge) occurs while contracting two parts, it is only accounted
to the newly contracted part, and not to other adjacent parts (since only their red in-degree
may increase). Surprisingly, we will see that:

▶ Theorem 3. Oriented twin-width and twin-width are functionally equivalent.

The proof simply revisits the equivalence between bounded twin-width and so-called O(1)-
mixed freeness (see Section 2), and can almost integrally be found in [6]. Our contribution
here is mainly conceptual, in identifying the overlooked oriented twin-width. The indirect
nature of the proof, which does not immediately provide an O(1)-sequence from a partition
sequence with bounded oriented width, suggests that something non-trivial is at play. Indeed
this greatly simplifies, as we then exemplify, the proof that Kt-minor free graphs have
bounded twin-width presented in [6]. We also observe that planar graphs have oriented
twin-width at most 9. This translates to the current best upper bound for the twin-width of
planar graphs.

Another direction to generalize bounded twin-width is to allow contraction sequences to
end at “simple” (tri)graphs instead of the 1-vertex graph. Of course for this notion to be new,
“simple” should not imply bounded twin-width. Bounded-degree and bounded-expansion
are reasonably “tractable” classes with unbounded twin-width [3]. We say that a class
C is collapsible to a class D if graphs of C admit partial O(1)-sequences to (tri)graphs in
D. We showcase the flexibility of the FO model-checking algorithm in [6]: Collapsible
classes to bounded degree and collapsible classes to bounded expansion admit respectively a
fixed-parameter tractable FO and ∃FO model-checking algorithm, provided a corresponding
partial O(1)-sequence is given. This is a relatively elementary fusion of the algorithm in [6]
and classic techniques from the meta-algorithmic toolbox, namely Gaifman’s locality theorem
and low tree-depth covers. On the one hand, it can be seen as a first attempt to unify
and extend tractable FO model-checking algorithms on “sparse” classes (bounded degree,
bounded expansion) and on possibly “dense” classes (bounded twin-width). On the other
hand, we explain why efficiently finding the corresponding partial O(1)-sequences, may turn
out simpler than computing (complete) O(1)-sequences.

4 the exact definition is somewhat technical and deferred to Section 6

6 Twin-width VI: the lens of contraction sequences

Organization of the paper.

In Section 2 we recall the relevant background. In Section 3 we show Theorem 1, present an
alternative proof of Courcelle’s theorems, and give a practical algorithm for q-Coloring on
graphs of bounded component twin-width (i.e., bounded rank-width). In Section 4, we prove
Theorem 3 and use it to bound the twin-width of Kt-minor free graphs. In Section 5, we
present some FO model-checking algorithms using partial contraction sequences to classes
of bounded degree and bounded expansion. In Section 6, we show the equivalence between
proper minor-closed and bounded spanning twin-width, for monotone classes.

2 Preliminaries

We denote by [i, j] the set of integers {i, i+ 1, . . . , j − 1, j}, and [k] is a short-hand for [1, k].
We use the standard graph-theoretic definitions and notations. Given a graph G, its vertex
set is denoted by V (G) and its edge set by E(G). Given a subset S of V (G), G[S] denotes
the subgraph of G induced by S.

Two parameters w and w′ defined on graphs (or more generally on matrices) are func-
tionally equivalent if there exists a function f such that for every graph G, we have
w(G) ⩽ f(w′(G)) and w′(G) ⩽ f(w(G)). Among classical pairs of functionally equival-
ent parameters, let us mention branch-width and tree-width, or rank-width and clique-width.
When speaking of a class C of graphs, we mean closed under isomorphism. When C is
furthermore closed under taking subgraphs, we speak of monotone class and when C is closed
under induced subgraphs, we speak of hereditary class. A class C of graphs is sparse if there
is a t for which no graph of C contains the complete bipartite graph Kt,t as a subgraph (i.e.,
not necessarily induced).

2.1 Branch decompositions
A branch decomposition of a graph G is a ternary tree T in which the leaves are in one-to-
one correspondence with V (G). In particular every edge e of T corresponds to the vertex
bipartition Be of G defined by the two sets of leaves of the connected components of T \ e.
Given now any function m from graph bipartitions to the non-negative integers, we obtain
a parameter bm(G) which is the minimum, over all branch-decompositions T of G of the
maximum of m(Be) over all edges e of T .

For instance, when m(Be) is the rank (computed in F2) of the adjacency matrix of the
bipartite subgraph of G spanned by the vertex bipartition Be, the parameter bm is the
rank-width of G. We obtain the linear rank-width of G by keeping the same rank function
m but insisting that branch-decompositions T are ternary trees where the internal vertices
form a path. A class has bounded tree-width (resp. bounded path-width) if and only if it is
sparse (i.e., Kt,t-free) and has bounded rank-width (resp. bounded linear rank-width) [17].
Hence tree-width and path-width can be seen as the sparse restrictions of rank-width and
linear rank-width.

Let us now introduce a parameter which is equivalent to rank-width. The boolean-width
bool(X,Y) of a bipartition (X,Y) of V (G) is the logarithm in base 2 of the number of
subsets of Y (equivalently, of X) that are the neighborhood of some subset of X (resp. of Y).
The boolean-width of a graph G is the parameter bbool(G). Boolean-width is functionally
equivalent to rank-width. When we only consider branch decompositions in which internal
vertices form a path, we speak of linear boolean-width, which is similarly equivalent to linear
rank-width.

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 7

We will use the next observation implicitly, which is proved in [8].

▶ Observation 4. Let (X,Y) be a vertex bipartition of G, and let q be the maximum number
of vertices in X which have distinct neighborhoods in the bipartite graph G(X,Y) (i.e.,
forgetting edges inside X and Y). The boolean-width of (X,Y) is at most q and at least
log2 q.

It is often convenient to root a branch-decomposition T of G at some arbitrary non leaf
node. Given then an internal node v of T , the leaves of the subtree of T rooted at v is
denoted by Av, and the bipartition (Av, V (G) \Av) of G is said to be associated with v. Note
that there is a unique bipartition associated with an internal node of T .

Branch-decompositions are a very popular concept and can be adapted to partitions of
the edge set instead of the vertex set (leading to the branch-width), or to the ground set
of a matroid using as parameter its connectivity function (yielding matroid branch-width).
One very appealing feature is that parameters defined by branch-decompositions usually
admit dual parameters via tangles. However, the main limitation is that planar graphs have
unbounded value for parameters defined with branch-decompositions. Indeed every balanced
bipartition of a planar graph is complex, and thus return a large value for the classical
parameters m, which in turn gives an unbounded bm. The main way to overcome the “planar
barrier” is to measure the complexity of vertex partitions instead of vertex bipartitions.

2.2 Partition sequences
A partition sequence of a graph G is a sequence S = Pn, . . . ,P1 of partitions of V (G) where
Pn := {{v} : v ∈ V (G)} is the partition of V (G) into singletons, P1 = {V (G)} is the whole
set, and each Pi is obtained by merging two parts of Pi+1. In particular each Pi consists of i
subsets of V (G). A vertex-ordering compatible with S is any total order ⩽ on V (G) (often
also seen as a permutation σ) such that for every Pi and every part X in Pi, the elements of
X are consecutive along ⩽.

A function w from vertex-partitioned graphs into the non-negative integers is called a
width. The partition-width associated to w of a graph G is the minimum integer t such that
there exists a partition sequence Pn, . . . ,P1 of G such that w(Pi) ⩽ t for every i ∈ [n]. We
denote it by pw(G).

We say that two disjoint subsets of vertices X,Y of a graph G are homogeneous if there
are all edges or no edge between them. More generally, if G is a binary multirelation, we insist
that every ordered pairs xy and x′y′ where x, x′ ∈ X and y, y′ ∈ Y induce the same structure.
By extension, X is homogeneous with X when X is a singleton, but is not homogeneous
with X when X has at least two elements. Indeed if x, x′ ∈ X, the type of x, x and the type
of x, x′ are not the same.

Given a graph G and a partition Pi, we consider an auxiliary trigraph Gi, called quotient
trigraph and denoted by G/Pi, with vertices the part of Pi, red edges all pairs of parts X,Y
which are not homogeneous, and black edges all pairs of parts X,Y for which X,Y is a
complete bipartite graph in G. The red graph (resp. black graph) of Gi has vertex set V (Gi),
and edge set its red edges (resp. black edges). By our convention, we add a loop (X,X) to
every part X which is not a singleton. Loops count as degree 1. Note that a vertex u of Gi

corresponds to a subset of vertices of G which we denote by u(G). It will also be convenient
to speak of the total degree of u in Gi which is the total number of red and black edges
incident to u. The graph obtained from Gi by forgetting the colors (i.e., the graph which is
the union of the red and black edges) is called total graph.

8 Twin-width VI: the lens of contraction sequences

A module in a graph G is a subset of vertices X such that for every x, x′ ∈ X and
y ∈ V (G) \X, both xy and x′y induce an edge or both induce a non-edge. More generally,
if G is a binary multirelation, we insist that the ordered pairs xy and x′y induce the same
structure. When X,Y are two disjoint subsets of vertices, we say that Y is homogeneous to
X if Y is a module in G[X ∪ Y]. We obtain a directed version of Gi as follows: The directed
trigraph Di is obtained from Gi by orienting red edges XY as X → Y whenever X is not
homogeneous to Y and keeping black edges unchanged. Note that some red edges of Di can
be directed in both ways.

Given G and a partition Pi, we define four possible widths: wo is the maximum red
out-degree of Di, wd is the maximum red degree of Gi, wc is the maximum number of vertices
in a red connected component of Gi, and wt is the total number of red edges in Gi. Note
that wo ⩽ wd ⩽ wc ⩽ wt. We now obtain the associated width-parameters:

The oriented twin-width of G as the partition width otww(G) associated to wo.
The twin-width of G as the partition width tww(G) associated to wd.
The component twin-width of G as the partition width ltww(G) associated to wc.
The total twin-width of G as the partition width ttww(G) associated to wt.
Observe that otww(G) ⩽ tww(G) ⩽ ltww(G) ⩽ ttww(G). Note that there is a slight

variation with our original definition of twin-width since loops add one to the degree. For
the sake of consistency, we will actually drop the red loops for oriented twin-width and
twin-width. We will see in Sections 3 and 4 that we did not create new parameters:

▶ Theorem. The following parameters are functionally equivalent:
Twin-width and oriented twin-width.
Component twin-width and rank-width.
Total twin-width and linear rank-width.

It is somewhat comforting to be on charted territory since the choices of the widths
wo, wd, wc, wt are natural. The equivalence between oriented twin-width and twin-width is
very handy, as we will in Section 4.

2.3 The matrix viewpoint
Given an n×m matrix M , a row-partition (resp. column-partition) is a partition of the
rows (resp. columns) of M . A (k, ℓ)-partition (or simply partition) of a matrix M is a pair
(R = {R1, . . . , Rk}, C = {C1, . . . , Cℓ}) where R is a row-partition and C is a column-partition.
A contraction of a partition (R, C) of a matrix M is obtained by performing one contraction
in R or in C.

We distinguish two extreme partitions of an n × m matrix M : the finest partition
where (R, C) have size n and m, respectively, and the coarsest partition where they both
have size one. A contraction sequence of an n × m matrix M is a sequence of partitions
(R1, C1), . . . , (Rn+m−1, Cn+m−1) where

(R1, C1) is the finest partition,
(Rn+m−1, Cn+m−1) is the coarsest partition, and
for every i ∈ [n+m− 3], (Ri+1, Ci+1) is a contraction of (Ri, Ci).
Given a subset R of rows and a subset C of columns in a matrix M , the zone R ∩ C

denotes the submatrix of all entries of M at the intersection between a row of R and a
column of C. A zone of a partition pair (R, C) = ({R1, . . . , Rk}, {C1, . . . , Cℓ}) is any Ri ∩Cj

for i ∈ [k] and j ∈ [ℓ]. A zone is constant if all its entries are identical. The error value of Ri

is the number of non constant zones among all zones in {Ri ∩ C1, . . . , Ri ∩ Cℓ}. We adopt a
similar definition for the error value of Cj . The error value of (R, C) is the maximum error

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 9

value taken over all Ri and Cj . The twin-width of a matrix M is the minimum t for which
there exists a contraction sequence of M consisting of partitions with error value at most t.

In a contraction sequence of a matrix M , one can always reorder the rows and the
columns of M in such a way that all parts of all partitions in the contraction sequence consist
of consecutive rows or consecutive columns. To mark this distinction, a row-division is a
row-partition where every part consists of consecutive rows; with the analogous definition for
column-division. A (k, ℓ)-division (or simply division) of a matrix M is a pair (R, C) of a
row-division and a column-division with respectively k and ℓ parts. A division sequence is a
contraction sequence in which all partitions are divisions.

A matrix M = (mi,j) is vertical (resp. horizontal) if mi,j = mi+1,j (resp. mi,j = mi,j+1)
for all i, j. Observe that a matrix which is both vertical and horizontal is constant. We
say that M is mixed if it is neither vertical nor horizontal. A crucial remark is that a
matrix is mixed if and only if it contains a corner, that is any 2-by-2 mixed submatrix
of the form (mi,j ,mi+1,j ,mi,j+1, mi+1,j+1). A t-mixed minor in M is a division (R, C) =
({R1, . . . , Rt}, {C1, . . . , Ct}) such that every zone Ri ∩Cj is mixed (hence contains a corner).
A matrix without t-mixed minor is t-mixed free. The minimum t for which one can reorder
the column and the rows of M to form a t-mixed free matrix is called the mixed value of M .

▶ Theorem 5 ([6]). Twin-width and mixed value are functionally equivalent for matrices.

Given a graph G and a permutation σ of its vertex set, we denote by Adjσ(G) the
adjacency matrix of G in which the columns and the rows are ordered according to σ. As
usual, given two vertices u, v, the entry Adjσ(G)u,v is equal to 1 if uv is an edge and 0
otherwise. By extension, we say that the mixed value of a graph G is the minimum t for
which Adjσ(G) is t-mixed free, taken over all permutations σ. The link between mixed value
and twin-width for graphs was proved in [6]:

▶ Theorem 6 ([6]). Twin-width and mixed value are functionally equivalent for graphs.

2.4 Bounded expansion and tree-depth covers
We recall some definitions from a paper by Plotkin, Rao, and Smith [28] and from the sparsity
program of Ossona de Mendez and Nešetřil [24]. One possible way of defining a minor of a
graph G is by a collection of disjoint sets B1, B2, . . . , Bh ⊆ V (G), called branch sets, such
that G[Bi] is connected for all i ∈ [h]. A minor of G is then any graph H, say on vertex
set [h], such that ij ∈ E(H) implies that there is an edge in G with one endpoint in Bi and
the other endpoint in Bj . A depth-r minor (also called r-shallow minor) of a graph G is
a minor H of G that can be obtained such that each branch set induces in G a subgraph
with radius at most r. Let us denote by ∇r(G) the set of all the depth-r minors of G. In
particular ∇r(G) is subgraph-closed. Given a non-decreasing function f : N → N, we say
that a graph G has expansion f if for every r ∈ N, ∇r(G) has (maximum) average degree at
most f(r). A graph class C has expansion f if all its graphs have expansion f , and C have
bounded expansion if it has expansion f for some function f . Note that saying that a graph
has bounded expansion is meaningless (they all do, individually) but the fact that, for a
specific function f , a single graph has expansion f is meaningful.

The tree-depth of a graph G is the minimum integer td such that there is rooted forest
F of height td on vertex set V (G) with every edge of G being in an ancestor-descendant
relationship in F . Bounded tree-depth is more restrictive than bounded tree-width, so in
particular, bounded tree-depth graphs have bounded twin-width. There is a very useful
connection between bounded tree-depth and bounded expansion, in the form of low tree-depth

10 Twin-width VI: the lens of contraction sequences

covers, or the related low tree-depth decompositions [22, 23]. A low tree-depth cover with
parameters k, f of a graph G is a family of h = f(k) subsets X1, . . . , Xh ⊆ V (G) such that,
for every i ∈ [h], G[Xi] has tree-depth at most k, and every subset of V (G) of size at most
k is fully included in at least one Xi. A graph class C has low tree-depth covers if there
is a function f depending only on C such that for every G ∈ C and integer k, G has a low
tree-depth cover with parameters k, f .

▶ Theorem 7 ([23]). Every monotone class has low tree-depth covers if and only if it has
bounded expansion. Furthermore a low tree-depth cover of any graph drawn from a class of
bounded expansion can be computed in linear time.

2.5 Finite model theory
We recall some relevant background from finite model theory. We denote by FOτ and MSOτ

the set of first-order, respectively monadic second-order, formulas on signature τ . In first-
order, every variable is interpreted as an element of the universe. In monadic second-order, a
first-order variable is interpreted as an element, while a second-order variable is interpreted
as a subset of the universe. We will mainly consider signatures consisting of unary and binary
relation symbols only. Typically the signature τ will be one of the following:

{E}, where E is binary: the language of graphs with possible edge orientations and loops;
{E,∼}, where ∼ is interpreted as an equivalence relation: the language of graphs with
an unlabeled partition;
{E,U1, . . . , Ud}, where U1, . . . , Ud are unary relations interpreted as a partition of the
universe: the language of colored graphs, or graphs with a labeled partition;
{inc}, where inc is interpreted as an vertex-edge incidence graph.

MSO{E} is usually denoted by MSO1, and MSO{inc} by MSO2. A sentence is a formula
without free variables. A relational τ -structure A on universe A gives an interpretation
RA ⊆ Ar to every r-ary relation symbol R ∈ τ . A structure A is a model of a sentence φ,
denoted by A |= φ, if φ holds when interpreted on A. We will only consider finite models
where the universe A is a finite set. The FO model checking (resp. MSO model checking)
asks given a τ -structure A and a sentence φ ∈ FOτ (resp. φ ∈ MSOτ) whether A |= φ holds.
The fragment ∃FO (existential first-order logic) consists of the formulas with no universal
quantifier and all the negations pushed down to atomic formulas.

The Gaifman graph of a τ -structure A has vertex set its universe A, and edges ab
whenever a and b appear in the same relation RA for some R ∈ τ . The quantifier depth
(or quantifier rank) of a formula φ is the largest number of quantifiers that are nested in
φ. FOτ [q] (resp. MSOτ [q]) denotes the set of formulas in FOτ (resp. MSOτ) with quantifier
depth at most q. When the signature is irrelevant or clear from the context, we may omit it,
and simply write FO, MSO, FO[q], MSO[q].

If two finite τ -structures are not isomorphic, then there is a sentence that holds in one but
not in the other (for instance the sentence that fully describes the former structure). However
it is very well possible that two non-isomorphic τ -structures satisfy the exact same sentences
of FO[q] or MSO[q], for some (finite) integer q. Ehrenfeucht-Fraïssé games characterize
exactly when that happens. Initially the game was defined for first-order logic. We call it
the EF game and start with its description. We will then present its extension MSO-EF for
monadic second-order.

In the EF game, two players Spoiler and Duplicator confront each other over two τ -
structures A and B. They play a succession of rounds, when Spoiler wants to show that A
and B are not isomorphic, whereas Duplicator tries to argue the opposite. The i-th round

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 11

goes like this. Spoiler chooses a structure A or B, and picks one element in it, say ai ∈ A

(or bi ∈ B). Duplicator answers by picking an element in the other structure, say bi ∈ B

(resp. ai ∈ A). If after q rounds, ai 7→ bi (for i ∈ [q]) is still an isomorphism between the
induced substructures (A,=)[a1, . . . , aq] and (B,=)[b1, . . . , bq], we say that Duplicator has
survived q rounds of the EF game.

We write A ≡FO
q B if Duplicator has a strategy such that she can survive (at least) q

rounds. The Ehrenfeucht-Fraïssé theorem states that this is equivalent to A and B agreeing
on all the sentences of FOτ [q].

▶ Lemma 8 (Ehrenfeucht-Fraïssé, see Theorem 3.9 in [21]). Let A and B be two τ -structures.
A and B satisfy the same sentences of FOτ [q] if and only if A ≡FO

q B.

The MSO-EF game is similar to the EF-game, but Spoiler can alternatively decide
to play a subset of A (or a subset of B). To which Duplicator answers with a subset
of B (resp. of A). Now after q rounds, a tuple of e elements have been played in both
A and B, say (a1, . . . , ae) and (b1, . . . , be) in this order, as well as a tuple of s sets, say
(A1, . . . , As) in A and (B1, . . . , Bs) in B, with q = e+ s. Duplicator has survived these q
rounds if ai 7→ bi (for i ∈ [e]) is an isomorphism between (A,=, A1, . . . , As)[a1, . . . , ae] and
(B,=, B1, . . . , Bs)[b1, . . . , be]. Similarly we write A ≡MSO

q B if Duplicator has a strategy
allowing her to survive (at least) q rounds of the MSO-EF game. The same characterization
holds for MSO and the MSO-EF game.

▶ Lemma 9 (Ehrenfeucht-Fraïssé for MSO, see Corollary 7.8 in [21]). Let A and B be two
τ -structures. A and B satisfy the same sentences of MSOτ [q] if and only if A ≡MSO

q B.

3 From branch-decompositions to contraction sequences

We start this section by showing Theorem 1, that is, the functional equivalence between
boolean-width (equivalently rank-width) and component twin-width, and between linear
boolean-width and total twin-width.

3.1 Classical width parameters as contraction sequences
▶ Theorem 10. Boolean-width and component twin-width are functionally equivalent.

Proof. Let G be a graph. We first show that the component twin-width of G is bounded in
terms of the boolean-width of G.

Let T be a rooted branch-decomposition of G whose leaves are bijectively mapped to
V (G), and assume that T has boolean width at most d. We make a sequence of contractions
Gn, . . . , G1 such that the size of any red component in the trigraph sequence is at most 2d+1.
For this, a rooted branch-decomposition Ti for each trigraph Gi is constructed along the
contraction sequence while the next invariant is maintained:

(♣) For each node v of Ti with |Av| ⩾ 2d + 1, the boolean-width of the bipartition
(Av, V (Gi) \Av) is at most d and all edges of Gi crossing (Av, V (Gi) \Av) are black.

The invariant (♣) clearly holds for Gn = G and Tn = T . Moreover, if Ti has no proper
rooted subtree with at least 2d + 1 leaves, then contracting an arbitrary pair of vertices of Gi

trivially preserves the invariant. Furthermore Gi has at most 2d+1 vertices, hence component
twin width is at most 2d+1 for Gi and all Gj with j ⩽ i. Therefore, we may assume that (♣)

12 Twin-width VI: the lens of contraction sequences

holds for a trigraph Gi+1 and a rooted branch-decomposition Ti+1 where i+ 1 ⩾ 2d+1 + 1
and show how to construct Gi and Ti.

Observe that there exists a node v of Ti+1 such that 2d + 1 ⩽ |Av| ⩽ 2d+1. Just consider
for this a node v such that Av has size at least 2d + 1 which is the furthest from the root.
By Observation 4 and the first part of (♣) applied to v, there are two distinct vertices x, y of
Gi+1 which belong to Av such that x, y have the same (black) neighborhood in V (Gi+1) \Av.
Now contract x, y to yield Gi. Let Ti be a branch-decomposition of Gi obtained by deleting
y and identifying the node x to the new vertex of Gi resulting from the contraction of x and
y. Due to the choice of x, y and the second part of (♣) on i+ 1, the edges between Av (of
the new tree Ti) and V (Gi) \ Av are all black. This means that any bipartition of V (Gi)
that can potentially contain a newly created red edge of Gi must be associated with a strict
descendant of v. By the definition of v, any strict descendant of v has at most 2d leaves
(both in Ti+1 and Ti) and is thus out of the scope of the invariant (♣). Therefore, the second
part of (♣) is maintained.

This also means that for any node u of Ti which is not a strict descendant of v, the
bipartition (Au, V (Gi)\Au) associated with u is the same as the bipartition associated with u
in Ti+1 after deleting one vertex of Gi+1, namely y. Since the boolean-width of a bipartition
does not increase after vertex deletion, we conclude that the first part of (♣) is maintained as
well. Finally, we observe that the invariant (♣) indicates that G has component twin-width
at most 2d+1 since any red component of Gi is included inside some Av with size at most
2d+1.

To see the other direction, let Pn, . . . ,P1 be a partition sequence of G such that every
connected component of the red graph Gi has at most d vertices. Let P ′

i be the coarsening
of Pi such that each part of P ′

i corresponds to a red component of Gi, i.e., is the union of
parts of Pi which form a red component in Gi. Slightly abusing the notation, we call a part
of P ′

i a red component of Pi.
Let Tn be a star tree rooted at its center r, whose n leaves are bijectively mapped to V (G).

We will iteratively transform a rooted tree Ti+1 to Ti in a way that mirrors the merging of
parts in P ′

i. The root r will be unchanged throughout the transformations. During iterative
transformations we maintain the following invariants:

(a) The leaves of each connected component of Ti − r are mapped to each part of P ′
i.

(b) The root r has as many children as |P ′
i| and all other internal nodes have two children.

(c) For every edge of Ti, the associated bipartition has boolean width at most 2d.

When i = n, the invariants (a)-(c) clearly hold. Suppose Tn, . . . , Ti+1 satisfy the invariants
(a)-(c), and i ⩾ 1. Notice that P ′

i is a coarsening of P ′
i+1 (possibly P ′

i+1 = P ′
i), that there is a

unique red component C ∈ P ′
i, obtained as the union of some (possibly one) red components

C1, . . . , Cs of P ′
i+1, and that P ′

i \ C = P ′
i+1 \ {C1, . . . , Cs}. By the invariant (a), there are

subtrees of Ti+1 − r whose leaves are mapped to parts C1, . . . , Cs of P ′
i+1. Let t(Cj) be

the root of the subtree of Ti+1 − r corresponding to Cj for j ∈ [s]. Now, we construct Ti

from Ti+1 as follows: replace the edges connecting the root ri+1 and t(Cj) for j ∈ [s] by a
subcubic tree rooted at t(C) with s leaves, whose root t(C) becomes the child of ri+1 and
whose s leaves are identified (arbitrarily) with t(Cj) for j ∈ [s].

By the induction hypothesis and the construction of Ti, the invariants (a)-(b) are main-
tained. Furthermore, since C =

⋃s
i=1 Ci, the red component C ∈ P ′

i consists of at most d
parts of Pi, thus at most d+ 1 parts of Pi+1, and we have s ⩽ d+ 1. To see that the boolean
width of Ti is at most 2d, it suffices to check that for all I ⊆ [s], the boolean-width of the
bipartition (

⋃
j∈I Cj , V (G) \

⋃
j∈I Cj) is at most 2d. For a proper subset I of [s], we know

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 13

that
⋃

j∈I Cj consists of at most d parts of Pi+1 and each of these parts of Pi+1 has the
same neighborhood across the bipartition (

⋃
j∈I Cj , V (G) \

⋃
j∈I Cj) since each Cj is a red

component. Hence, the vertex set
⋃

j∈I Cj has at most d vertices with distinct neighborhood
across the bipartition and thus the boolean width is at most 2d. For I = [s], the same
argument applies once it is noted that

⋃
j∈I Cj = C consists of at most d parts of Pi.

As P ′
1 = P1 = {V (G)}, the invariants (a) and (b) at i = 1 imply that T1 is a subcubic

tree whose leaves are bijectively mapped to V (G). With the invariant (c), we conclude that
T1 and the bijection form a boolean decomposition of width at most 2d. ◀

▶ Theorem 11. Linear boolean-width and total twin-width are functionally equivalent.

Proof. Let G be a graph. We first bound total twin-width in terms of linear boolean-width.
Let T be a linear branch-decomposition of G (i.e. in which the internal nodes form a path
P) with boolean-width at most d. We root T at an internal node which has degree 1 in the
path P . We follow the same proof as for Theorem 10 and observe that every tree Ti is now a
linear branch-decomposition. Indeed, the linearity of Ti implies that there is a unique choice
of a minimal rooted subtree of Ti with at least 2d + 1 leaves. Moreover, the invariant (♣)
of Theorem 10 means that the endpoints of any red edge are restricted to the leaves of this
subtree. Note that there are at most 2d + 1 +

(2d+1
2

)
red edges in any Gi.

Let Pn, . . . ,P1 be a partition sequence of G achieving total twin-width at most d. Let
Vi ⊆ V (G) be the set of (original) vertices which were ever contracted in the contraction
sequence, or equivalently, Vi is the union of all non-singleton parts of Pi. Because a part of
Pi is incident with a red edge if and only if it is not a singleton (recall that we add a red
loop), at most d parts of Pi are incident to red edges. Note that Vi \ Vi+1 has at most two
vertices, and it has two vertices only when we contract two singleton parts. Consider now
any total order ≺ on V (G) such that u ≺ v if u was contracted before v. Indeed, we have
Vn−1 ≺ Vn−2 \Vn−1 ≺ · · · ≺ V2 \V3 ≺ V1 \V2. Now consider the linear branch decomposition
T corresponding to ≺ and observe that the boolean-width of T is bounded by d+ 1; every
bipartition corresponds either to a cut (Vi, V (G) \ Vi) or to (Vi ∪ {v}, V (G) \ (Vi ∪ {v})) for
some v ∈ Vi+1 \ Vi. Note that in both cases there are at most d + 1 equivalence classes,
where each class has the same neighborhood across the cut. Therefore, with Observation 4
we deduce that the boolean-width of T is at most d+ 1. ◀

Here again, we can find equivalent parameters in the sparse regime:

▶ Theorem 12. In the class of Kt,t-free graphs:
tree-width and component twin-width are functionally equivalent.
path-width and total twin-width are functionally equivalent.

Note that if we do not add red loops to contracted vertices, linear rank-width and total
twin-width are not equivalent because of cographs. Thus the addition of loops may seem
a bit artificial and even made to force the equivalence. There is however a good reason
for loops: From the adjacency-matrix viewpoint (which is both used for rank-width and
twin-width), the main diagonal represents equality and thus should not be confused with
edges or non-edges.

3.2 Alternative proof of Courcelle’s theorems
We will give an alternative proof to the celebrated result by Courcelle, Makowsky, Rotics [11]
that MSO1 model checking can be solved in linear time on bounded clique-width graphs,
given with an O(1)-expression. This generalizes the original Courcelle’s theorem [9] that

14 Twin-width VI: the lens of contraction sequences

MSO2 model checking can be solved in linear time on bounded tree-width graphs. Indeed
MSO2 is not more expressible than MSO1 on graphs of bounded tree-width [10, Theorem
9.37], and there is a linear-time FPT algorithm returning a tree-decomposition of optimal
width [2]. We observe that there are other alternative proofs to the central result of Courcelle,
Makowsky, Rotics; one based on automata [16], and one game-theoretic [20].

We call MSO rank-q type (or type for short) any set of sentences

mso-tpq(G) := {φ ∈ MSO{E}[q] : G |= φ}

where G is a graph, and we recall, MSO{E}[q] denotes the set of MSO sentences on a signature
with a single binary relation E, and quantifier depth at most q. Then mso-tpq(G) is called
the MSO rank-q type of G, or type of G for short.

We fix a positive integer d, upperbounding the component twin-width on the class we
want to tackle. We call local MSO rank-q partitioned type (or local partitioned type for short)
any set of sentences

loc-mso-tpq,d(G,Po, C) := {φ ∈ MSO{E,U1,...,Ud}[q] : (G[C],Po[C]) |= φ}

where G is a graph with a labeled vertex-partition Po, and C is the set of initial vertices of
G landing in a red component (i.e., a connected component in the red graph of the quotient
trigraph G/P) with at most d parts. The unary relations U1, . . . , Ud are interpreted as the
labeled partition Po[C] of G[C]. Thus some Ud′+1, Ud′+2, . . . , Ud may possibly be empty if
Po[C] has d′ < d parts. We use the superscript o (for ordered) for the labeled partition Po

since we will usually fix the labeling by giving an ordering of the parts. We may sometimes
identify C with the corresponding red component in G/P, and P will denote the partition
Po ignoring the labels.

It is not difficult to show that there is only finitely many MSO sentences of quantifier
depth q on finitary signatures, up to logical equivalence (see for instance [21, Proposition
7.5]). Furthermore there is an algorithm (taking time function of q and signature τ) that lists
all the sentences of depth q, up to logical equivalence. Therefore the number of (local) MSO
rank-q (partitioned) types is bounded by a function of q and d only. Again all the (local) MSO
rank-k (partitioned) types can be listed in time function of q and d only. Instead of deciding
G |= φ for a particular sentence φ with quantifier depth q, we will compute mso-tpq(G). By
the previous observation, this allows to decide G |= φ for every sentence φ with quantifier
depth q in constant time, if q and d are treated as a constant.

The algorithm will only compute local partitioned types. Note that for an n-vertex
graph G with a partition sequence Pn, . . . ,P1, loc-mso-tpq,d(G, Po

n = {{v} : v ∈ V (G)}, C)
is easy to determine, with any labeling Po

n of Pn, since G/Pn is isomorphic to the graph G and
each possible C is a singleton {w} (for some w ∈ V (G)). Thus these local partitioned types
all coincide to the one of the 1-vertex graph with its unique labeled partition. Furthermore
loc-mso-tpq,d(G,P1 = {V (G)}, V (G)) matches5 mso-tpq(G), which is the set we are after.

Thus we only need to compute all the local partitioned types
(
loc-mso-tpq,d(G,Po

i , C)
)

C
from the knowledge of

(
loc-mso-tpq,d(G,Po

i+1, C
′)

)
C′ . It is at all possible since the local

partitioned types, the contracted pair of parts (X,X ′), and the black edges of the quotient
trigraph are enough to reconstitute the local partitioned type of the new red component
containing X ∪X ′. We show that fact with the characterization via the Ehrenfeucht-Fraïssé

5 Strictly speaking loc-mso-tpq,d(G, P1 = {V (G)}, V (G)) is a superset of mso-tpq(G), but its projection
to sentences ignoring the (trivial) labeled partition is exactly mso-tpq(G).

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 15

game for MSO (see Lemma 9). Recall that given two input structures A,B, Duplicator has
a strategy to survive q rounds of the MSO-EF game if and only if A and B satisfy the same
sentences of MSO[q], hence have the same rank-q type.

The subsequent Lemma 13 has a technical and lengthy pre-condition that we chose
to state outside the lemma environment for the sake of legibility. It starts here. Let
(G1, (X1

1 , . . . , X
1
ℓ1

)), . . . , (Gk, (Xk
1 , . . . , X

k
ℓk

)) be k graphs Gj given with a labeled partition
of size ℓj . Let (H1, (Y 1

1 , . . . , Y
1

ℓ1
)), . . . , (Hk, (Y k

1 , . . . , Y
k

ℓk
)) be such that

(Gj , (Xj
1 , . . . , X

j
ℓj

)) ≡MSO
q (Hj , (Y j

1 , . . . , Y
j

ℓj
)), for every j ∈ [k].

Let (G,Po) be a graph with a labeled vertex-partition made from the disjoint union⋃
j∈[k]

(Gj , (Xj
1 , . . . , X

j
ℓj

))

with parts labeled by the order σ, say,

(X1
1 , . . . , X

1
ℓ1
, X2

1 , . . . , X
2
ℓ2
, . . . , Xk

1 , . . . , X
k
ℓk

),

and adding the biclique between some pairs of parts Xj
h, X

j′

h′ prescribed by a meta-graph B

on vertex set Po.
The natural bijection ι : Xj

h 7→ Y j
h (for j ∈ [k] and h ∈ [ℓj]) allows to transpose σ and B

to the union of the Hj . Let (H,Qo) be the graph with a labeled partition made from the
disjoint union

⋃
j∈[k](Hj , (Y j

1 , . . . , Y
j

ℓj
)) with the parts labeled along ι(σ), and adding the

bicliques prescribed by ι(B). Finally we distinguish two parts (the parts to be contracted)
X,X ′ in Po, and we distinguish the homologous parts Y := ι(X), Y ′ := ι(X ′) in Qo.

▶ Lemma 13. (G,Po, X,X ′) ≡MSO
q (H,Qo, Y, Y ′).

Proof. The global strategy of Duplicator simply follows the corresponding local strategy if a
vertex is played, and if a set S is played, the union of the local answers to each projection
of S on the red components is replied.

More precisely, if Spoiler plays xs ∈ Xj
h (or ys ∈ Y j

h), then Duplicator answers ys ∈ Y j
h

(resp. xs ∈ Xj
h) accordingly to her local strategy on (Gj , (Xj

1 , . . . , X
j
ℓj

)), (Hj , (Y j
1 , . . . , Y

j
ℓj

)).
Importantly we know that Duplicator replies a vertex of Y j

h to a vertex of Xj
h played by Spoiler,

since otherwise the local unary relation Uh over Gj contradicts the partial isomorphism
ensured by (Gj , (Xj

1 , . . . , X
j
ℓj

)) ≡MSO
q (Hj , (Y j

1 , . . . , Y
j

ℓj
)). (Duplicator also remembers that

moves (xs, ys) have been added to the local j-th game, in case more moves are played there.)
If Spoiler plays a set Sp ⊆ V (G), Duplicator considers all the non-empty sets Sp ∩ V (Gj)
(for j ∈ [k]) and replies Tp :=

⋃
j Aj where Aj is the local answer to Sp ∩ V (Gj). Duplicator

builds similarly an answer Tp ⊆ V (H) to a move Sp ⊆ V (G) by Spoiler.
Since (Gj , (Xj

1 , . . . , X
j
ℓj

)) ≡MSO
q (Hj , (Y j

1 , . . . , Y
j

ℓj
)), the projection of the mapping xs 7→

ys (for s indexing the vertex moves) onto Gj , Hj is a partial isomorphism between the two
corresponding local structures. Since there is the same (black) graph B on the parts of P , as
ι(B) on the parts of Q, there is an edge in G between xs ∈ Xj

h and xs′ ∈ Xj′

h′ if and only
if there is an edge in H between ys ∈ Xj

h and xs′ ∈ Xj′

h′ . For every s and p, xs ∈ Sp if and
only if ys ∈ Tp otherwise the moves (xs, ys) and (Sp ∩ V (Gj), Tp ∩ V (Hj)), played in some
order, where xs ∈ V (Gj) would make Duplicator lose the local j-th game. Finally since the
parts X,X ′ and Y, Y ′ are homologous (under the bijection ι), xs ∈ X (resp. xs ∈ X ′) if and
only if ys ∈ Y (resp. ys ∈ Y ′). Otherwise we already observed that (xs, ys) would have been
a losing pair of moves for Duplicator in the corresponding local game. Thus the mapping

16 Twin-width VI: the lens of contraction sequences

xs 7→ ys (for s indexing the vertex moves) is a partial isomorphism between (G,Po, X,X ′)
and (H,Qo, Y, Y ′). ◀

By Lemma 9, we have just established that the local partitioned type of a new red
component C ′ obtained by the merge of two parts X,X ′ is function of the local partitioned
type of every component C1, . . . , Cℓ ending up in C ′ after the contraction, the contracted
pair (X,X ′), and the transversal black edges (bicliques) linking some pairs of parts in two
distinct Ci’s.

The crucial place where the upper bound d on the component twin-width comes into play is
in the time that the update from

(
loc-mso-tpq,d(G,Po

i+1, C
′)

)
C′ to

(
loc-mso-tpq,d(G,Po

i , C)
)

C
takes. Let Z ∈ Pi be the result of the merge of the two parts X,X ′ ∈ Pi+1. Since all the
red components have size at most d, the set Z is in a red component with a set Q of at most
d− 1 other parts of Pi. The black edges in G/Pi+1 on the vertex subset Q′ := {X,X ′} ∪ Q,
the pair of parts (X,X ′), and the local partitioned type of each red component within Q′,
account for less than 2((d+1)

2)(
d+1

2
)
(d + 1)f(q) outcomes, for some function f . Thus the

transition table giving the new local type can be precomputed in time depending only on d

and q. (The red components of G/Pi not containing Z do not need an update.) Treating d
and q as constant, the update takes constant time, and the overall algorithm, O(n) time.

If the partition sequence is not given with the input graph, we rely on an algorithm
approximating rank-width [26] to find the sequence. Our proof looks like the original one
by Courcelle, Makowsky, Rotics [11], except it does not need to use transductions to deal
with the label-joins and relabelings of the clique-width expression. Instead everything is
concentrated in Lemma 13, a statement similar to Feferman-Vaught theorem [14], which is
invoked in [11] to handle the disjoint union of two labeled graphs.

3.3 Simpler algorithm for a particular MSO1 problem: q-Coloring

Like for tree-width and clique-width, one can design more practical algorithms for particular
MSO-expressible problems, when the component twin-width is bounded, still utilizing the
viewpoint of contraction sequences. This gives rise to a different dynamic-programming
scheme than the one on tree-decompositions or on clique-width expressions. It comes naturally
positively-instance driven [30], that is, generating only positive subproblems. This is known
to have significantly sped up some exact algorithms, as the computation of tree-width and
tree-decompositions (see again the work of Tamaki [30]). The approach by contraction
sequences has other advantages that we will list after we give a particular example. We
present an algorithm for q-Coloring which, given an n-vertex graph G and a contraction
sequence G = Gn, . . . , G1 witnessing that its component twin-width is at most d, runs in
time O((2q − 1)dd2n).

If C ⊆ V (Gi) is a red component, that is, a connected component in the red graph of
Gi, we denote by C(G) the set

⋃
u∈C u(G). A q-coloring profile (or profile for short) of

C is a function γ : V (C) → 2[q] \ {∅} such that there is a proper q-coloring c of G[C(G)]
satisfying, for every u ∈ C, that c(u(G)) = γ(u). Thus γ gives the exact set of colors used
by a (contracted) vertex of the red component. We will maintain for each red component C
the complete set of profiles of C.

Description of the algorithm. Initially in Gn, there are n red components isomorphic
to the 1-vertex graph. Thus for each u ∈ V (G), we store the set of profiles {u 7→ {1}, u 7→
{2}, . . . , u 7→ {q}}. This corresponds to the q ways a vertex can be colored. Eventually in

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 17

G1, if there is a profile for the unique red component (again a 1-vertex graph), it means that
G is q-colorable.

We shall just update the profiles as the red components evolve. Let u, v be the vertices
contracted into a vertex z when going from Gi+1 to Gi. Let C be the red component of
Gi containing z, and C1, . . . Cd′ be the red components in Gi+1 such that C =

⋃
j∈[d′] Cj \

{u, v} ∪ {z}. Since |C| ⩽ d, it holds that |
⋃

j∈[d′] Cj | ⩽ d+ 1, and in particular d′ ⩽ d+ 1.
Say that u ∈ Ca and v ∈ Cb.

The update only consists of computing a set of profiles for C (and destroying the set of
profiles of C1, . . . , Cd′). For every γ1, . . . , γd′ in the profile set of C1, . . . , Cd′ , respectively,
we check in time O(d2) is there is a black edge between a pair x ∈ Cj , y ∈ Cj′ with
γj(x) ∩ γj′(y) ̸= ∅. If there is no such edge, we add the corresponding union profile γ to
the profile set of C, i.e., γ(z) = γa(u) ∪ γb(v), and γ(x) = γj(x) if x ̸= z and x ∈ Cj . This
finishes the description of the algorithm.

Correctness and running time. The correctness comes from the invariant that every
red component is associated to its set of profiles. Indeed a black edge between xy ∈ E(Gi)
means that there is a biclique between x(G) and y(G), thus these sets cannot use a shared
color. The running time is as indicated since

∏
j∈[d′]

#profile(Cj) ⩽
∏

j∈[d′]

(2q − 1)|Cj | = (2q − 1)

∑
j∈[d′]

|Cj |

= (2q − 1)d+1,

where #profile(Cj) is the number of profiles of red component Cj . To actually compute a
coloring, one can simply augment profiles with one representative coloring.

Advantages. Assuming the SETH,6 this new approach will for instance not improve the
theoretically best algorithm for q-Coloring parameterized by clique-width, since Lampis
showed that running time O∗((2q − 2)cw) is achievable and essentially optimal [19]. However
our algorithm presents some practical advantages.

The first remarkable feature is its simplicity. Contrary to dynamic programming on
clique-width expressions which has to deal with unions, joins, and relabelings (or tree-
decompositions with their forget, introduce, and join internal nodes), we have only one
operation to handle: the contraction of two vertices, where all optimization efforts can be
invested. We have only n− 1 operations in total, while tree-decompositions and clique-width
parse trees typically have O(n) nodes, incurring a multiplicative overhead.

We do not maintain partial solutions that turn out to be locally infeasible. When a red
component C has at least one profile, we know that G[C(G)] is q-colorable. On the contrary,
in the usual algorithm parameterized by clique-width, a join between two labels sharing at
least one color can happen long after the corresponding vertices were introduced. This causes
to maintain a lot of unnecessary partial solutions.

4 Oriented twin-width

Oriented twin-width is “fairer” than twin-width in the following sense: In the partition
sequence, when merging two parts X,Y of Pi+1 to form Pi, the only red arcs of Di which
are created are directed from X ∪ Y . Indeed, if Z is homogeneous to X and to Y , it is

6 For Strong Exponential Time Hypothesis; the assumption that for every ε > 0, there is an integer k
such that n-variable k-SAT cannot be solved in time (2 − ε)n by a classical algorithm.

18 Twin-width VI: the lens of contraction sequences

also homogeneous to X ∪ Y . Thus any error due to a contraction is only attributed to the
contracted vertices and does not wildly spread to their neighbors. This locality of error
makes one’s life much easier to design partition sequences. Let us illustrate why.

Given a graph G and two non necessarily adjacent vertices x, y, we denote by G/{x, y}
the graph obtained by contracting x, y into one vertex {x, y} and joining it to all neighbors
of x and y in G. We say that a class C of graphs is d-contractible if for every graph G of
C there are two vertices x, y such that G/{x, y} is also in C and is such that the degree of
{x, y} is at most d. For instance the following lemma due to Norine et al. [25] implies that
Kt-minor free graphs are 2Õ(t)-contractible.

▶ Lemma 14 (Lemma 2.2. in [25]). Let G be a Kt-minor free graph. Then there are two
vertices u, v ∈ V (G), both of degree 2Õ(t), that are either false twins or adjacent.

Moreover, by a direct application of the discharging method, Kotzig [18] could show that
planar graphs are 9-contractible (and the bound is attained by the so-called stellated icosa-
hedron).

▶ Lemma 15. Every d-contractible class of graphs C has oriented twin-width at most d.

Proof. Let G be a graph on n vertices in C and x, y two vertices such that G/{x, y} is in C
and {x, y} has degree at most d. To start the partition sequence, consider Pn−1 consisting of
singletons and part {x, y}. Note that the only red arcs created by the contraction stem from
{x, y}, yielding out-degree at most d in Dn−1 (recall Section 2.2). We inductively iterate
the argument on G/{x, y} to form a partition sequence in which every vertex in Di has
out-degree at most d. ◀

In particular, Kt-minor free graphs have oriented twin-width 2Õ(t), and planar graphs
have oriented twin-width at most 9.

Is bounded oriented twin-width a new notion? Surprisingly, the answer turns out to be
negative. It is quite fortunate since it allows for more flexibility when looking for contraction
sequences. One may just worry about the red out-degree. In contrast, with the above easy
arguments the original proof that proper minor-closed classes have bounded twin-width [6] is
quite tedious, involving a carefully chosen depth-first-search tree. Up to our knowledge, no
classic result on minor-closed classes directly implies bounded twin-width. Moreover, the
known upper bound on the twin-width of planar graphs is very large.

▶ Theorem 16. Oriented twin-width and twin-width are functionally equivalent.

Proof. We already observed that a class with twin-width d has a fortiori oriented twin-width
as most d. Moreover mixed value and twin-width are functionally equivalent for graphs by
Theorem 6. Thus to show that
1. twin-width,
2. oriented twin-width,
3. mixed value
are pairwise functionally equivalent, we need to argue that Item 2 implies Item 3. Actually
this is similar to the proof that Item 1 implies Item 3 presented in [6]. We reproduce the
arguments here for completeness.

We show the contrapositive. Let G be a graph with mixed value greater than 2d + 2,
hence such that every adjacency matrix of G has a 2d + 2-mixed minor. Fix a partition
sequence S = Pn, . . . , P1 of G. Let σ be a vertex ordering compatible with S. Let D =
(R = {R1, . . . , R2d+2}, C = {C1, . . . , C2d+2}) be a 2d+ 2-mixed minor of M := Adjσ(G). By

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 19

design, the partition sequence S defines a symmetric division sequence over M since when
merging two subsets of vertices, one can contract (simultaneously) the corresponding columns
and the corresponding rows.

Recall that the vertices of the red directed graphs Di are subsets of vertices of G. Let ℓ
be the maximum index such that a vertex of Dℓ fully contains a part P of D. Without loss
of generality, we may assume that P is a column part, thus P = Cj for some j ∈ [2d+ 2]. As
there is a corner in every cell M [Ri, Cj] with i ∈ [2d+ 2], there is in particular at least one
row ri in each Ri such that M [ri, Cj] contains two distinct values. In Dℓ, the d+ 1 vertices
v1, v3, . . . , v2d+1 respectively corresponding to rows r1, r3, . . . , r2d+1 are all in different parts,
except possibly one pair v2h−1, v2h+1. Indeed as we performed a symmetric division sequence
on M , and stopped the first time a part of the 2d+ 2-mixed minor D was contained in a part
of the sequence, there is at most one part Rh which is contained in a part of Pℓ. (One may
observe that D need not be symmetric, so h is not necessarily equal to j.) Thus the vertex
of Dℓ corresponding to Cj is the source of at least d red arcs. Therefore G has oriented
twin-width at least d. ◀

Note that our proof of Theorem 16 shows that otww(C) ⩽ tww(C) ⩽ exp(exp(O(otww(C)))).
It would be interesting to improve the bound given by the second inequality and/or to com-
plement it by a lower bound. As a consequence, d-contractible classes have twin-width 22O(d) ,
and Kt-minor free graphs have twin-width 222Õ(t)

.

5 Partial contraction sequences to a target class

In this section, we present a couple of FO model-checking algorithms based on partial
contraction sequences. It consists of pipelining the algorithm of [6] with other elements of
the meta-algorithmic toolbox.

Partial sequences. For two non-negative integers d,∆, let Dd,∆ be the class of graphs
admitting a partial d-sequence to a trigraph of total degree at most ∆. A class C is said
to be collapsible to bounded degree if there are two integers d,∆ such that C is included in
Dd,∆. For a non-negative integer d and a non-decreasing function f : N → N, let Ed,f be the
class of graphs admitting a partial d-sequence to a trigraph whose total graph has expansion
bounded by f . We refer the reader to Section 2.4 for the definition of expansion. A class
C is said collapsible to bounded expansion if there is an integer d and a function f : N → N
such that C is included in Ed,f . Similarly we may say that a class C is collapsible to class C′

if there is an integer d such that every graph G ∈ C has a partial d-sequence to a trigraph
whose total graph is in C′.

The FO model checking algorithm in [6]. We will not need a full description of the
algorithm. It is enough to recall the following. Let Gn, . . . , G1 be the contraction sequence
of G, and Pn, . . . ,P1 the corresponding partition sequence. Like the algorithm presented in
this paper for MSO model checking in Section 3.2, we maintain the local theory of sentences
of quantifier depth q rooted at each vertex u of each trigraph Gi of the sequence. In the
case of bounded component twin-width, the local theory was naturally limited to the red
component of u. Now that the red graphs can have arbitrary large components, the local
theory is limited to vertices at distance less than 3q from u in the red graph of Gi. Since the
red degree is assumed to be bounded by d, this represents a set, say, Sq,d(u) of less than d3q

vertices.
In [6] the local theory is not materialized by types but by a tree (called reduced morphism-

tree), denoted here by Tq,d(u), of depth q and total size function of q only, containing all

20 Twin-width VI: the lens of contraction sequences

the possible games in the partitioned graph (G,Pi)[
⋃

v∈Sq,d(u) v(G)] up to equivalent moves.
More precisely, the root of Tq,d(u) is labeled by the empty sequence, and every child adds
a new vertex of

⋃
v∈Sq,d(u) v(G) (new move) to the current sequence (branch from the root

to the current node). At this stage, it is not determined yet if a move is played by ∃ or
∀ player. One can define by induction what two equivalent moves are. At the level of
leaves (depth q) two equivalent moves are siblings defining the same induced substructures
in (G,Pi)[

⋃
v∈Sq(u) v(G)] (with equality). Then two sibling internal nodes are equivalent if

there is a bijection between their children such that the paired children would be equivalent
if they had the same parent.

Initially, the tree Tq,d(v) for each vertex v ∈ V (Gn) = V (G) is easy to compute: it
is a path of length q where the only possible move is v. The tree Tq,d(u) when u is
the unique vertex of G1 is enough to decide G |= φ for every sentence φ with quantifier
depth k. Indeed such sentence can be effectively rewritten as a prenex7 sentence of depth
q := Tower(k + log∗ k + 3) [27, Theorem 2.2 and inequalities (32)]. As usual the crux of the
algorithm is how to update the trees Tq,d(u) after one contraction is performed. Per tree,
this takes time function of q and d only, while at most d3q trees may require an update after
one contraction; hence the overall running time of f(d, q)n for some computable function f .
We will however not need to detail how the update is done.

Algorithms based on partial sequences. We first observe that we can pipeline the
FO model checking algorithm on graphs given with a (complete) O(1)-sequence, developed
in [6], with Gaifman’s locality theorem. Thus, given a corresponding partial sequence, FO
model checking is FPT on collapsible classes to bounded degree. We recall Gaifman’s locality
theorem.

▶ Theorem 17 (Gaifman’s Locality Theorem [15]). Every FO sentence φ is equivalent to a
Boolean combination of sentences of the form

∃x1 . . . ∃xk

∧
1⩽i<j⩽k

d(xi, xj) > 2r ∧
∧

1⩽i⩽k

ϕ(xi)

where ϕ is an r-local formula, i.e., ∀A, a: A |= ϕ(a) if and only if A[Nr
A[a]] |= ϕ(a), where

Nr
A[a] is the r-neighborhood of a, that is, the set of elements at distance at most r of a in

the Gaifman graph of A.
Furthermore if the sentence φ has quantifier depth k, then the formulas ϕ have quantifier

depth at most q = f(k) for a computable function f .

In the previous statement, d(xi, xj) > 2r is a short-hand for the fact that there is no path of
length at most 2r between xi and xj .

▶ Theorem 18. Given G ∈ Dd,∆ with a partial sequence G = Gn, . . . , Gs such that Gs

has total degree ∆, and a sentence φ ∈ FOE [k], one can decide whether G |= φ in time
f(d,∆, k)n for some computable function f .

Proof. We run the algorithm of [6] on the partial sequence Gn, . . . , Gs with a small nuance.
When the total degree of a vertex u ∈ V (Gi) becomes at most ∆, we turn all its black
incident edges into red. We denote this new trigraph G′

i and proceed to the next contraction
on G′

i (not Gi). By that process, the red degree may exceed d but remains bounded by
d+∆ (in the extreme case when ∆ black edges were turned red). We thus maintain trees

7 with all the quantifiers as a prefix of the sentence, followed by a quantifier-free formula

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 21

Tq,d+∆(u), with q function of k as given in Theorem 17. When we reach the trigraph G′
s, by

design all its edges are red, since its total degree is at most ∆. We may therefore interpret
G′

s as a mere graph. Up to this point the algorithm takes time g(d,∆, q)(n − s) for some
computable function g.

To apply Gaifman’s locality theorem directly, we adopt the partition viewpoint on
the contraction sequence. Recall that there is a partial partition sequence Pn, . . . ,Ps

corresponding to the partial trigraph sequence Gn, . . . , Gs. We consider the structure
A := (G,Ps, D := {ab : a ∈ u(G), b ∈ v(G), uv ∈ R(G′

s)}). We add the “dummy” graph D

so that the Gaifman graph of A is simply a blow-up of the Gaifman graph of G′
s. We

apply Theorem 17 with r = 3q on FOE,∼,D sentences that are not using the relation D.
The tree Tq,d+∆(u) for every u ∈ V (G′

s) allows us to determine every such r-local sentence
ϕ(x) of quantifier depth at most q. We can therefore mark the vertices u ∈ V (G′

s) such that
ϕ(a) holds for at least one vertex a ∈ u(G). This takes time linear in s. We conclude as in
the FO model-checking algorithm for bounded-degree structures of Seese [29], by observing
that finding a 2r-scattered set of size k (i.e., k vertices pairwise at distance more than 2r)
among the marked vertices in the graph G′

s can be done in time h(k, r)s for some computable
function h (with a bounded search tree). Hence the overall running time. ◀

Typical graphs collapsible to bounded degree –but of unbounded twin-width and un-
bounded degree– are blow-ups (replace every vertex by a clique module of arbitrary size) of
bounded-degree graphs; and more generally any modular decomposition where all the modules
have bounded twin-width, while the core has bounded degree. We believe that Theorem 18
should hold more generally for collapsible classes to bounded expansion. We will only show
the result for existential first-order sentences.

▶ Theorem 19. Given G ∈ Ed,g with a partial sequence G = Gn, . . . , Gs such that the
total graph of Gs has expansion g, and a sentence φ = ∃x1∃x2 . . . ∃xqψ ∈ ∃FOE [q] with
ψ a quantifier-free formula, one can decide whether G |= φ in time f(d, g, q)n for some
computable function f .

Proof. We run the algorithm of [6] on the partial sequence Gn, . . . , Gs. When we reach Gs,
we compute a low tree-depth cover X1, . . . , Xh of the total graph G′

s of Gs with parameters
h, f = f(Ed,g) such that, we recall, G′

s[Xj] has tree-depth at most q for every j ∈ [h], every
subset of V (G′

s) of size at most q is fully contained in at least one Xj , and h = f(k) Theorem 7.
As G′

s[Xj] has tree-depth at most q for every j ∈ [h], it has twin-width bounded by a function
of q, and a (complete) f ′(q)-sequence can be found in polynomial time for some function f ′.
For every j ∈ [h], we perform the following run. We trim all the trees Tq,d(u) with u ∈ V (Gs)
by deleting every move which is not in Xj (and its subtree). We resume the algorithm of [3]
with the trigraph Gs[Xj] and the twin-width bound set to f ′(q).

If G |= φ indeed holds, let Xj be such that G′
s[Xj] contains q vertices (v1, . . . , vq) such

that G |= ψ(v1, . . . , vq) (recall that φ is existential). The corresponding runs detects a
solution. If G |= φ does not hold, every run is negative. The claimed overall running time is
easy to derive. ◀

Theorems 18 and 19 tackle more general graph classes than the FO model-checking
algorithm of [3], combining the features of graphs with bounded twin-width and of sparse
graphs. The interest of such algorithms might also be to ease the computation of the (partial)
sequence. It is still unknown if there is an approximation algorithm outputting f(d)-sequences
for graphs of twin-width at most d, in say, fixed-parameter time. A reason why this may be a
delicate issue is that Ω(logn)-subdivisions of n-vertex graphs have bounded twin-width, while

22 Twin-width VI: the lens of contraction sequences

o(logn)-subdivisions do not [3]. Furthermore the O(1)-sequences for Θ(logn)-subdivisions
require arguments related to optimal sorting networks, which are difficult to conciliate with
typical obstructions (like brambles, tangles, or grid minors) usually enabling to approximate
width parameters. Now we observe that Ω(logn)-subdivisions are not an issue to compute
partial O(1)-sequences to bounded degree or bounded expansion. Indeed there is a relatively
easy argument for the former case (not involving sorting networks), whereas the latter case
is immediate, the expansion being already bounded.

6 Spanning twin-width

Let ≼ be a partial order on a set X. When x ≼ y, we say that x is an ancestor of y, that y
is a descendant of x, and that x, y are comparable. A forest order ≺ on X is a partial order
such that whenever x, y ≼ z, then x, y are comparable. A tree order is a forest order with a
minimum element. We write x ≺c y when x ≺ y and there is no z such that x ≺ z ≺ y. The
binary relation (X,≺c) is the Hasse diagram of ≼. Notice that the Hasse diagram of a tree
order is a tree.

Let G be a connected graph. A tree order ≼ on V (G) is compatible with G if uv is an
edge of G whenever u ≺c v. Put in another way, a tree order compatible with G can be seen
as the transitive closure of some oriented rooted spanning tree of G.

Adding a tree order to a graph can help to design partition sequences. For instance, the
key ingredient in the proof of [6] that minor-closed classes have bounded twin-width lies in
the fact that if G is Kt-minor free, then it has a tree order ≼ (a kind of Lex-DFS) such that
(G,≼) seen as a binary multirelation has bounded twin-width. This is one appealing feature
of twin-width: One often has to guess which additional information will guide the sequence.
Here the tree order can be seen as an intermediate step between the mere graph G and the
full partition sequence.

In order to refine the landscape between bounded tree-width and bounded twin-width, a
natural candidate is the spanning twin-width of a connected graph G which is the minimum
twin-width of (G,≼) taken over all tree orders ≼ compatible with G. We extend the notion
to disconnected graphs by taking the maximum over all connected components. Observe
that this parameter is not monotone. Indeed the spanning twin-width of a subgraph (even
induced) can be larger than the one of the host graph. Nevertheless for monotone classes, it
exactly captures classes excluding a minor.

▶ Theorem 20. A monotone graph class C has bounded spanning twin-width if and only if it
does not contain some Kt as a minor.

Proof. As already mentioned, the backward implication is proved in [6] using a Lex-DFS. To
show the forward direction, we exhibit graphs in C with arbitrarily high spanning twin-width.
Here an induced subdivision of a graph H is any graph obtained from arbitrarily subdividing
the edges of H (including the possibility of not subdividing the edge and just keeping it).

▷ Claim 21. If a monotone class C contains arbitrarily large clique minors, then C contains
an induced subdivision of every cubic graph.

Proof of the Claim: To see this, observe that if H is a cubic graph on t vertices and G

contains a Kt minor, then G contains a minor which contains H as a subgraph. Consider
then an edge-minimal subgraph G′ of G which contains a minor which contains H as a
subgraph and observe now that G′ is exactly an induced subdivision of H. ♢

The strategy is now to show that if an induced subdivision S of a (connected) cubic
graph H is given together with a tree order ≼, then one can retrieve H from (S,≼) using

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 23

a first-order transduction8 via some fixed length formula. Since FO-transductions keep
twin-width bounded [6], the assumption that C has bounded spanning twin-width would
directly imply that the class of cubic graphs has also bounded twin-width, which is false [3].

We only have to show how to recover H from (S,≼). FO-transductions allow to introduce
a bounded number of unary relations, so we can first identify the set V of vertices of S which
have degree three (which are the original vertices of H). The technical task is now to decide
if two such vertices x, y ∈ V are joined or not in H. This is the case if and only if there is an
induced path x = u0, . . . , uℓ = y of S such that all internal vertices are not in V . We denote
this path by P . Note that when ℓ = 1 querying the existence of such a path can be directly
done by asking if xy is an edge of S. Let us focus on the case when we want to retrieve an
edge xy which has been subdivided at least once, i.e., let us see how the tree order can help
to retrieve the edge xy when ℓ > 1.

As ≼ is a tree order compatible with S, xy is an edge of H which is subdivided if and
only if one of the following holds for P :

1. u0 ≺c · · · ≺c uℓ,

2. u0 ≻c · · · ≻c uℓ, or
3. there exists i ∈ [ℓ− 1] such that u0 ≺c · · · ≺c ui and ui+1 ≻c · · · ≻c uℓ.
4. there exists i ∈ [ℓ− 1] such that ui ≺c · · · ≺c u0 and ui ≺c · · · ≺c uℓ

(exceptional case when ui is the root of the tree-order).
5. there exists i ∈ [ℓ− 1] such that ui ≺c · · · ≺c u0 and uℓ ≺c · · · ≺c ui+1

(exceptional case when ui is the root of the tree-order).
6. there exists i ∈ [ℓ− 1] such that ui ≺c · · · ≺c uℓ and u0 ≺c · · · ≺c ui−1

(exceptional case when ui is the root of the tree-order).

Since all these conditions can be tested with a (long but bounded) first-order formula, H
is a first-order transduction of (S,≺). ◀

An interesting direction would be to investigate which hereditary classes have bounded
spanning twin-width as it could indicate some possible generalization of minor-closed classes
to the dense setting. But even sparse hereditary classes C with bounded spanning twin-width
are somewhat mysterious. For instance the induced subgraphs of the grid with diagonals
have bounded spanning twin-width (and arbitrarily large clique minors).

We believe that subdivisions of arbitrary cubic graphs could be the key in this study and
that, for instance, any hereditary class with girth at least five avoiding any subdivision of a
fixed cubic graph could have bounded twin-width (and maybe bounded spanning twin-width).
In that direction, we suggest the following problem as a first step.

▶ Conjecture 22. The class of segment graphs with girth at least five has bounded spanning
twin-width.

We do not even know if this class has bounded twin-width.

References
1 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. J.

ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

8 that is, by means of a reinterpretation of the edge set with an FO formula with two free variables, and
based on the old edge set and non-deterministic unary relations

https://doi.org/10.1145/174644.174650

24 Twin-width VI: the lens of contraction sequences

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

3 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996, 2021. doi:10.1137/1.9781611976465.118.

4 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

5 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117,
2021. URL: https://arxiv.org/abs/2102.03117, arXiv:2102.03117.

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 601–612. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00062.

7 Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian Siebertz, and
Stéphan Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021. URL:
https://arxiv.org/abs/2102.06880, arXiv:2102.06880.

8 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of
graphs. Theoretical Computer Science, 412(39):5187–5204, 2011. URL: https://www.
sciencedirect.com/science/article/pii/S030439751100418X, doi:https://doi.org/10.
1016/j.tcs.2011.05.022.

9 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12 – 75, 1990. URL: http://
www.sciencedirect.com/science/article/pii/089054019090043H, doi:https://doi.org/
10.1016/0890-5401(90)90043-H.

10 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

11 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

12 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer,
2015.

13 David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999. doi:10.7155/jgaa.00014.

14 Solomon Feferman and Robert L Vaught. The first order properties of products of algebraic
systems. Journal of Symbolic Logic, 32(2), 1967.

15 Haim Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of
Mathematics, volume 107, pages 105–135. Elsevier, 1982.

16 Robert Ganian and Petr Hlinený. On parse trees and myhill-nerode-type tools for handling
graphs of bounded rank-width. Discret. Appl. Math., 158(7):851–867, 2010. doi:10.1016/j.
dam.2009.10.018.

17 Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs without Kn, n.
In Ulrik Brandes and Dorothea Wagner, editors, Graph-Theoretic Concepts in Computer
Science, 26th International Workshop, WG 2000, Konstanz, Germany, June 15-17, 2000,

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://arxiv.org/abs/2102.03117
http://arxiv.org/abs/2102.03117
https://doi.org/10.1109/FOCS46700.2020.00062
https://arxiv.org/abs/2102.06880
http://arxiv.org/abs/2102.06880
https://www.sciencedirect.com/science/article/pii/S030439751100418X
https://www.sciencedirect.com/science/article/pii/S030439751100418X
https://doi.org/https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/https://doi.org/10.1016/j.tcs.2011.05.022
http://www.sciencedirect.com/science/article/pii/089054019090043H
http://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/s002249910009
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1016/j.dam.2009.10.018
https://doi.org/10.1016/j.dam.2009.10.018

É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé 25

Proceedings, volume 1928 of Lecture Notes in Computer Science, pages 196–205. Springer,
2000. doi:10.1007/3-540-40064-8_19.

18 Anton Kotzig. Contribution to the theory of eulerian polyhedra. Math. Slovaca, 5:101–113,
1955.

19 Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math.,
34(3):1538–1558, 2020. doi:10.1137/19M1280326.

20 Alexander Langer, Peter Rossmanith, and Somnath Sikdar. Linear-time algorithms for
graphs of bounded rankwidth: A fresh look using game theory - (extended abstract). In
Mitsunori Ogihara and Jun Tarui, editors, Theory and Applications of Models of Computation
- 8th Annual Conference, TAMC 2011, Tokyo, Japan, May 23-25, 2011. Proceedings, volume
6648 of Lecture Notes in Computer Science, pages 505–516. Springer, 2011. doi:10.1007/
978-3-642-20877-5_49.

21 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. URL: http://www.cs.toronto.edu/%7Elibkin/fmt, doi:
10.1007/978-3-662-07003-1.

22 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

23 Jaroslav Nesetril and Patrice Ossona de Mendez. On low tree-depth decompositions. Graphs
Comb., 31(6):1941–1963, 2015. doi:10.1007/s00373-015-1569-7.

24 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

25 Serguei Norine, Paul D. Seymour, Robin Thomas, and Paul Wollan. Proper minor-closed
families are small. J. Comb. Theory, Ser. B, 96(5):754–757, 2006. doi:10.1016/j.jctb.2006.
01.006.

26 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

27 Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: a survey. Model theoretic
methods in finite combinatorics, 558:129–179, 2011.

28 Serge A. Plotkin, Satish Rao, and Warren D. Smith. Shallow excluded minors and improved
graph decompositions. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pages 462–470, 1994. URL:
http://dl.acm.org/citation.cfm?id=314464.314625.

29 Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

30 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. J. Comb. Optim.,
37(4):1283–1311, 2019. doi:10.1007/s10878-018-0353-z.

https://doi.org/10.1007/3-540-40064-8_19
https://doi.org/10.1137/19M1280326
https://doi.org/10.1007/978-3-642-20877-5_49
https://doi.org/10.1007/978-3-642-20877-5_49
http://www.cs.toronto.edu/%7Elibkin/fmt
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1007/s00373-015-1569-7
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/j.jctb.2006.01.006
https://doi.org/10.1016/j.jctb.2006.01.006
https://doi.org/10.1145/1435375.1435385
http://dl.acm.org/citation.cfm?id=314464.314625
https://doi.org/10.1007/s10878-018-0353-z

	1 Introduction
	2 Preliminaries
	2.1 Branch decompositions
	2.2 Partition sequences
	2.3 The matrix viewpoint
	2.4 Bounded expansion and tree-depth covers
	2.5 Finite model theory

	3 From branch-decompositions to contraction sequences
	3.1 Classical width parameters as contraction sequences
	3.2 Alternative proof of Courcelle's theorems
	3.3 Simpler algorithm for a particular MSO1 problem: q-Coloring

	4 Oriented twin-width
	5 Partial contraction sequences to a target class
	6 Spanning twin-width

