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Abstract
We study the existence of polynomial kernels, for parameterized problems without a polynomial
kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that
a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a
standard complexity-theoretic assumption. The reduction is quite involved, especially to get the
twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating
Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The
k-Independent Set problem admits the same lower bound by a much simpler argument, previously
observed [ICALP ’21], which extends to k-Independent Dominating Set, k-Path, k-Induced
Path, k-Induced Matching, etc.

On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex
Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the
kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence.
We also present a more intricate O(k1.5) vertex kernel for Connected k-Vertex Cover. Finally
we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and
observe that most optimization/decision graph problems can be solved in polynomial time on graphs
of twin-width at most 1.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Twin-width, kernelization, lower bounds, Dominating Set

1 Introduction

The twin-width of a graph can be defined in the following way. A partition sequence of an
n-vertex graph G, is a sequence Pn, . . . , P1 of partitions of its vertex set V (G), such that
Pn is the set of singletons {{v} : v ∈ V (G)}, P1 is the singleton set {V (G)}, and for every
2 ⩽ i ⩽ n, Pi−1 is obtained from Pi by merging two of its parts into one. Two parts P, P ′ of
a same partition P of V (G) are said homogeneous if either every pair of vertices u ∈ P, v ∈ P ′

are non-adjacent, or every pair of vertices u ∈ P, v ∈ P ′ are adjacent. Finally the twin-width
of G is the least integer d such that there is partition sequence Pn, . . . , P1 of G with every
part of every Pi (1 ⩽ i ⩽ n) being homogeneous to every other parts of Pi but at most d.
We call such a partition sequence a d-sequence.

On the one hand, a surprisingly wide variety of graphs have low twin-width. Graph
classes with bounded twin-width include classes with bounded treewidth, or even rank-
width, proper minor-closed classes, every hereditary proper subclass of permutation graphs,
bounded-degree string graphs [6], classes with bounded queue or stack number, some expander
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2 Twin-width and polynomial kernels

families [4]. Furthermore on those particular classes, we can find (non necessarily optimum)
O(1)-sequences in polynomial time. We observe that such an approximation algorithm is
still missing in general graphs, but exists for ordered binary structures [5].

On the other hand, bounded twin-width classes have interesting algorithmic and structural
properties. Remarkably, given a partition sequence witnessing that an n-vertex graph G

has twin-width at most d, and a first-order sentence φ, one can decide if φ holds in G

in time f(|φ|, d) n for a computable, but non-elementary, function f [6]. That general
framework is called first-order model checking, and generalizes problems like k-Independent
Set with φ = ∃x1 . . . ∃xk

∧
1⩽i<j⩽k ¬(xi = xj ∨ E(xi, xj)) and k-Dominating Set with

φ = ∃x1 . . . ∃xk∀x
∨

1⩽i⩽k(x = xi ∨ E(x, xi)). For these two particular problems, though,
a much better running time of 2Od(k) n is possible [3]. In contrast, an algorithm running in
time f(k)no(k) for either of these problems on general graphs, with f being any computable
function, would imply the improbable (or at least breakthrough) result that 3-SAT can be
solved in subexponential time [10].

Now we know that k-Independent Set and k-Dominating Set are fixed-parameter
tractable (FPT), i.e., solvable in time f(k) nO(1), on graphs of bounded twin-width given with
an O(1)-sequence, one can then ask whether polynomial kernels exist. A kernel is a polytime
algorithm that produces, given an instance of a parameterized problem Π, an equivalent
instance of Π (i.e., the output is a YES-instance if and only if the input is a YES-instance)
of size only function of the parameter. A polynomial kernel is a kernel for which the latter
function is polynomial. Any decidable problem with a kernel is FPT, and any FPT problem
admits a kernel. However not every FPT problem is believed to have a polynomial kernel.
And indeed such an outcome would imply an unlikely collapse of complexity classes.

We already observed that there is a constant d such that k-Independent Set is highly
unlikely to have a polynomial kernel on graphs with twin-width at most d [3]. The OR-
composition1 is straightforward from the following facts: (1) cliques have twin-width 0
and planar graphs have bounded twin-width [6], (2) the twin-width of every graph is the
maximum twin-width of its modules and quotient graph (see Lemma 9), and (3) Maximum
Independent Set is NP-hard in (subcubic) planar graphs [31]. Then one can blow every
vertex of a clique Kt into a distinct graph among t planar Maximum Independent Set-
instances. Facts (1) and (2) imply that the constructed graph has bounded twin-width,
while the correctness of the OR-composition is easy to check. Incidentally the exact same
reduction rules a polynomial kernel out for k-Independent Dominating Set. Furthermore
Minimum Independent Dominating Set is NP-hard in grid graphs [12], and Maximum
Independent Set is NP-hard in subdivisions of grid graphs (since these coincide with planar
graphs of degree at most 4). Since these graphs have twin-width at most 4 (see Lemma 10),
no polynomial kernel is likely to exist for both problems (even when a 4-sequence is given
in the input). It should be noted that this simple reduction fails for k-Dominating Set:
one can dominate the constructed graph by picking only two vertices (from two distinct
instances).

The parameterized complexity (FPT algorithms and kernels) of k-Dominating Set2

on “sparse”3 classes has a rich and interesting history. Subexponential FPT algorithms with
running time 2O(

√
k) nO(1) are known in planar graphs [29, 22], bounded-genus graphs and

more generally classes excluding a fixed minor [20, 26, 35], and an FPT algorithm with

1 See Section 2 for the relevant background on how to rule out a polynomial kernel
2 All the subsequent results also hold for k-Independent Set.
3 Sparse is an overloaded term; here we use it as not containing arbitrarily large bicliques as subgraphs.
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running time 2O(k) n exists in classes excluding a fixed topological minor [2]. On these
classes the mere existence of an FPT algorithm (but not the particular, enhanced running
time) is subsumed by an algorithmic meta-theorem of Grohe, Kreutzer, and Siebertz [33]
that says that first-order model checking is FPT in any nowhere dense class.4 More general
than nowhere dense classes are bounded-degeneracy graphs, or further, Kt,t-free classes, i.e.,
excluding the biclique Kt,t as a subgraph. Alon and Gutner [2] give an FPT algorithm in
d-degenerate graphs running in time kO(dk) n. And Philip, Raman, and Sikdar [43] extend
the fixed-parameter tractability of k-Dominating Set to any Kt,t-free class (for a fixed t).
Telle and Villanger [46] further show that k-Dominating Set on Kt,t-free graphs is FPT
for the combined parameter k + t.

In parallel to these algorithms, the existence of polynomial, or even linear, kernels have
been thoroughly investigated. In 2004, Alber, Fellows, and Niedermeier [1] presented a
linear kernel for k-Dominating Set on planar graphs that triggered a series of works.
Linear kernels are known on planar graphs [1, 9], bounded-genus graphs [28], apex-minor-
free graphs [27], but more generally in any class excluding a fixed topological minor [26].
k-Dominating Set admits a polynomial kernel on graphs of girth 5 (that is, excluding the
triangle and the biclique K2,2 as a subgraph) [45]. A polynomial kernel of size O(k(t+1)2)
is obtained for Kt,t-free graphs [43], the most general “sparse” class. Contrary to the FPT
algorithm, a polynomial kernel in the parameter k + t is highly unlikely [21]. More precisely,
for any ε > 0, a kernel of size k(t−1)(t−3)−ε would imply that coNP ⊆ NP/poly [16]. On
classes of bounded expansion5 k-Dominating Set has a linear kernel, while the seemingly
closely related Connected k-Dominating Set has no polynomial kernel [24]. The latter
result refines a reduction showing the same lower bound on 2-degenerate graphs [18].

Beyond sparse classes, for which most answers turn out positive, the parameterized
complexity of k-Dominating Set seems to conceal many surprises, some of which recently
unraveled. We already mentioned that k-Dominating Set is FPT on bounded twin-width
graphs given with an O(1)-sequence. Let us also mention that the same problem is actually
W[1]-hard (hence unlikely FPT) on circle graphs [7]. This is somewhat unexpected since
Dominating Set is polytime solvable on permutation graphs [25], a large subclass of circle
graphs. On the positive side, k-Dominating Set admits a polynomial kernel on so-called
c-closed graphs [39], a far-reaching dense generalization of bounded d-degenerate graphs.

Our results.

We are back to wondering whether k-Dominating Set admits a polynomial kernel on
graphs given with an O(1)-sequence. On the one hand, a polynomial kernel would “fit all the
data points” considering that the examples of bounded twin-width classes previously given
are either Kt,t-free (and one concludes with [43]) or are dense classes on which Minimum
Dominating Set is polytime solvable, like bounded rank-width graphs [13], and (subclasses
of) permutation graphs [25]. On the other hand, the same could be said of k-Independent
Set for which we already ruled out such a kernel. Yet we will see in Section 3 that the above
OR-composition not working for k-Dominating Set is part of a more general obstacle
toward establishing its incompressibility. In the same section we lay down our plan to

4 The definition of nowhere denseness being technical and unnecessary to the current paper, we refer the
interested reader to [42]. Let us just mention that bounded-degree graphs, planar graphs, and proper
(topological) minor-closed classes are all nowhere dense.

5 We will not need a definition of expansion here. Bounded expansion classes are more general than
topological-minor-free classes and less general than nowhere dense classes.
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overcome that obstacle and show the following.

▶ Theorem 1. Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of twin-width at
most 4 does not admit a polynomial kernel, even if a 4-sequence of the graph is given.

We mentioned that the same statement holds much more directly for k-Independent Set
and k-Independent Dominating Set. With analogous arguments, we can add k-Path,
k-Induced Path, k-Induced Matching to the list. Local gadget modifications of the
proof of Theorem 1 yield the same kernel lower bound for variants of k-Dominating Set
such as Connected k-Dominating Set and Total k-Dominating Set, on graphs of
bounded twin-width. More work would be necessary to get the lower bound for twin-width
at most 4.

On the positive side, Connected k-Vertex Cover and Capacitated k-Vertex
Cover admit polynomial kernels on graphs of bounded twin-width, while such kernels are
unlikely on general graphs [21]. Interestingly, our kernelization algorithm does not require
an O(1)-sequence.

▶ Theorem 2. Connected k-Vertex Cover and Capacitated k-Vertex Cover admit
a kernel with O(k2) vertices on any class of bounded twin-width.

A linear kernel (in the number of vertices) is known for apex-minor-free classes [27] via
the generic framework of bidimensionality, and even for topological-minor-free classes [38].
Another powerful meta-theorem by Gajarský et al. [30] says that every problem with the
so-called finite integer index (intuitively, that its boundaried graphs provide finitely many
distinct contexts) has a linear kernel on bounded expansion classes when parameterized by
the vertex cover number (and more generally by the size of a smallest vertex subset whose
deletion leaves the graph with bounded treedepth). In particular this yields a linear kernel
for Connected k-Vertex Cover, further extending the two previous results. Besides
Connected k-Vertex Cover has a polynomial kernel on Kt,t-free graphs [18].

Theorem 2 is based on the following useful lemma stating that, in graphs of bounded
twin-width, the number of distinct neighborhood traces inside a subset of vertices is at most
linear in the size of the subset.

▶ Lemma 3. There is a function f such that for every graph G of twin-width d and X ⊆ V (G),
the number of distinct neighborhoods in X, |{N(v) ∩ X : v ∈ V (G)}|, is at most f(d)|X|.

A more compact rewording, using the language of Vapnik-Chervonenkis parameters, is that
the neighborhood set-system of graphs of bounded twin-width has VC density 1. By extension,
we will say that a graph class has VC density at most 1, if its neighborhood hypergraphs do.
That bounded twin-width classes have VC density 1 is an interesting property, that is shared
with classes of bounded expansion. For example it implies a constant-factor approximation
for Min Dominating Set (obtained in a rather different manner in [3]) via small ε-nets [8].
Lemma 3 was independently obtained by Wojciech Przybyszewski in his master thesis [44].

For Connected k-Vertex Cover, an improved kernel can be obtained with a more
elaborate argument.

▶ Theorem 4. Connected k-Vertex Cover admits a kernel with O(k1.5) vertices on
classes with VC density at most 1.

Finally we extend cograph recognizability (cographs are exactly the graphs with twin-
width 0) and prove:

▶ Theorem 5. One can decide in polynomial time if a graph has twin-width at most 1.
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k-Dominating Set Connected k-DS Connected k-VC

general W[2]-complete [23] W[2]-complete [23] FPT [14], no PK [21]
bounded expansion LK [24] FPT [19], no PK [24] LK [30]
bounded biclique PK [43] FPT [46], no PK [18] PK, no LK [18]

bounded degeneracy PK [43] FPT [32], no PK [18] PK, no LK [18, 16]
K1,3-free PK [37] FPT, no PK [37] LK (trivial)
K1,4-free W[2]-complete [17] W[2]-complete [17] LK (trivial)

bounded twin-width FPT [6], no PK FPT [6], no PK O(k1.5)-vertex kernel
twin-width at most 4 FPT [6], no PK FPT [6] O(k1.5)-vertex kernel
twin-width at most 1 in P in P in P

VC density at most 1 no PK no PK O(k1.5)-vertex kernel

Table 1 Kernelization results for arguably the three main problems without a polynomial kernel
in general graphs, but an interesting story in sparse classes. PK stands for polynomial kernel, LK
for linear kernel (in the number of vertices). The indicated lack of a kernel is under the assumption
that coNP ⊆ NP/poly. Our new results are in bold (the results without a reference nor in bold are
consequences of results in bold).

In case the input graph has indeed twin-width at most 1, a 1-sequence is found in polynomial
time. Furthermore we observe that a wide class of graph problems is efficiently solvable on
inputs of twin-width at most 1. See Table 1 for a summary of most of our results, together
with the relevant pointers on other graph classes.

2 Preliminaries

We denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X their union. The notation Od(·) gives an asymptotic
behavior when d is seen as a constant.

2.1 Graph theory
Unless stated otherwise, all graphs are assumed undirected and simple, that is, they do not
have parallel edges or self-loops. We denote by V (G) and E(G), the set of vertices and
edges, respectively, of a graph G. For S ⊆ V (G), we denote the open neighborhood (or simply
neighborhood) of S by NG(S), i.e., the set of neighbors of S deprived of S, and the closed
neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. We simplify NG({v}) into NG(v), and
NG[{v}] into NG[v]. We may omit the subscript when G is clear from the context.

We denote by G[S] the subgraph of G induced by S, and G − S := G[V (G) \ S]. An
injective mapping η : V (H) → V (G) witnesses that H is a subgraph of G, if uv ∈ E(H)
implies η(u)η(v) ∈ E(G). A bijective mapping η : V (H) → V (G) witnesses that H is a
spanning subgraph of G, if uv ∈ E(H) implies η(u)η(v) ∈ E(G).

A connected subset (or connected set) S ⊆ V (G) is one such that G[S] is connected.
A dominating set is a set S ⊆ V (G) such that N [S] = V (G). A vertex cover is a set S ⊆ V (G)
such that every edge of G has at least one of its two endpoints in S. An independent set is a
set S ⊆ V (G) such that G[S] is edgeless.

For two disjoint sets A, B ⊆ V (G), E(A, B) denotes the set of edges in E(G) with one
endpoint in A and the other one in B. We also denote by G[A, B] the bipartite graph
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Figure 1 A 5-cycle of strict half-graphs of height 6.

(A ∪ B, E(A, B)). Two distinct vertices u, v such that N(u) = N(v) are called false twins,
and true twins if N [u] = N [v]. Two vertices are twins if they are false twins or true twins.

A set S ⊆ V (G) is a module if every vertex outside S is fully adjacent to S or fully
non-adjacent to S. A module is said to be trivial if it is a singleton or the entire vertex
set, and a graph without non-trivial modules is called prime. The vertex set of every
graph G can be partitioned into modules H1, H2, . . . , Hℓ, some of which can be singletons.
H = {H1, H2, . . . , Hℓ} is then called a modular decomposition of G. The quotient graph
G/H of G has vertex set H and an edge between Hi and Hj whenever every vertex of Hi is
adjacent to every vertex of Hj . By definition of a module, HiHj is not an edge of G/H if and
only if there is no edge in G between Hi and Hj . We say that X ⊆ V (G) is a module relative
to Y ⊆ V (G) \ X if every vertex of Y is either fully adjacent to X or fully non-adjacent to
X. Hence X is a module if it is a module relative to V (G) \ X.

The strict half-graph of height t is (up to isomorphism) the graph with vertex set
{a1, . . . , at, b1, . . . , bt} and edge set {aibj : i < j, i ∈ [t], j ∈ [t]}. One can see {a1, . . . , at}
oriented toward {b1, . . . , bt} in their realization of the relation < over the indices. The
ℓ-cycle of strict half-graphs of height t is (up to isomorphism) the graph with vertex set
{ap

1, . . . , ap
t : p ∈ [0, ℓ − 1]} and edge set {ap

i ap+1 mod ℓ
j : i < j, i ∈ [t], j ∈ [t], p ∈ [0, ℓ − 1]}.

Informally it is the graph obtained from an ℓ-vertex cycle by replacing every edge by a strict
half-graph of height t with a consistent, say, clock-wise orientation. See Figure 1 for an
example of a 5-cycle of strict half-graphs of height 6. A strict half-graph is, for some natural
t, the strict half-graph of height t. A cycle of strict half-graphs is, for some natural ℓ, the
ℓ-cycle of strict half-graphs of same height.

The n × m grid is the graph with vertex set [n] × [m] and edges between any pair of
vertices (x, y), (x + 1, y) or (x, y), (x, y + 1). A grid is an n × m grid for some integer n and
m. A grid graph is an induced subgraph of a grid. To insist that we consider a grid and not
a mere grid graph, we may use the term complete grid.

The neighborhood hypergraph of a graph G has vertex set V (G) and edge set {N(v) : v ∈
V (G)}. A family of hypergraphs H has Vapnik-Chervonenkis (VC) density at most 1
if there is a constant c such that for every hypergraph H ∈ H and every X ⊆ V (H),
|{X ∩ e : e ∈ E(H)}| ⩽ c · |X|. By extension, we may say that a graph class C has VC
density at most 1 if the neighborhood hypergraph of every graph in C has VC density at
most 1.

2.2 Contraction sequences and twin-width
A trigraph G has vertex set V (G), black edge set E(G), and red edge set R(G), with E(G)
and R(G) disjoint. The total graph of trigraph G is the graph G′ with V (G′) = V (G) and
E(G′) = E(G) ∪ R(G). The subtrigraph of G induced by S is the trigraph H with V (H) = S,
E(H) = E(G) ∩

(
S
2
)
, and R(H) = R(G) ∩

(
S
2
)
. H is then called an induced subtrigraph of G.

The set of neighbors NG(v) of a vertex v in a trigraph G consists of all the vertices
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adjacent to v by a black or red edge. A d-trigraph is a trigraph G such that the red graph
(V (G), R(G)) has degree at most d. In that case, we also say that the trigraph has red
degree at most d. A contraction or identification in a trigraph G consists of merging two
(non-necessarily adjacent) vertices u and v into a single vertex z, and updating the edges of
G in the following way. Every vertex of the symmetric difference NG(u)△NG(v) is linked to
z by a red edge. Every vertex x of the intersection NG(u) ∩ NG(v) is linked to z by a black
edge if both ux ∈ E(G) and vx ∈ E(G), and by a red edge otherwise. The rest of the edges
(not incident to u or v) remain unchanged. See Figure 2 for an illustration.

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v z

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 2 Contraction of vertices u and v, and how the edges of the trigraph are updated.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
Gi has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence. Note that, in what precedes, the
initial structure Gn = G may be a trigraph instead of a graph. Thus we defined twin-width
more generally for trigraphs. Similarly a partial d-sequence from a n-vertex trigraph G to an
i-vertex trigraph H is a sequence of d-trigraphs G = Gn, Gn−1, . . . , Gi = H. Observe that if
G has a partial d-sequence to H, and H has itself a d-sequence, then the concatenation of
these sequences is a d-sequence for G.

We may give a (partial) contraction sequence by listing the pairs of vertices to contract:
(u1, v1), (u2, v2), . . . where ui, vi are implicitly contracted to vertex s(ui)∪s(vi) with s(x) = x

if x is a set of vertices and s(x) = {x} if x is a single vertex. Thus for instance u2 could be
equal to {u1, v1}.

For u ∈ V (Gi), we denote by u(G) the subset of V (G) that was contracted to the single
vertex u in Gn, Gn−1, . . . , Gi. Twin-width and d-sequences can be equivalently seen as a
partition refinement process on V (G). We start with the finest partition Pn = {{v} : v ∈
V (G)}, and end with the coarsest partition P1 = {V (G)}. There is a partition sequence
Pn, Pn−1, . . . , P2, P1 mimicking the contraction sequence, where the contraction of u, v ∈
V (Gi) corresponds to the merge of parts u(Gi), v(Gi) ∈ Pi to form the part u(Gi) ∪ v(Gi) =
z(Gi−1) ∈ Pi−1, while all the other parts are unchanged from Pi to Pi−1. The red degree
(bounded by d) of a part P ∈ Pi now corresponds to the number of other parts P ′ ∈ Pi

which are not fully adjacent nor fully non-adjacent to P in G. We may denote by GP the
trigraph corresponding to partition P over V (G). Thus Gi = GPi

.
Given a partition H = {H1, H2, . . . , Hℓ} of the vertex set V (G) of a trigraph G, we call

quotient trigraph G/H the trigraph obtained by contracting every Hi into single vertices.
Note that the resulting trigraph does not depend on the order in which the contractions are
made. Thus the quotient trigraph is well-defined.

2.3 Useful twin-width bounds
It can be seen that the twin-width may only decrease when taking induced subtrigraphs.
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▶ Observation 6. Let G be a trigraph and H be an induced subtrigraph of G. Then,
tww(H) ⩽ tww(G).

The following observation states that turning some non-edges or black edges into red
edges can only increase the twin-width.

▶ Observation 7. Let G, G′ be two trigraphs such that V (G) = V (G′), R(G) ⊆ R(G′),
E(G′) ⊆ E(G), and R(G) ∪ E(G) ⊆ R(G′) ∪ E(G′). Then tww(G) ⩽ tww(G′).

Proof. Indeed, any d-sequence for G′ is a d-sequence for G. ◀

We will not need the next lemma in its particular form. Yet it yields some good insight
on contraction sequences in general, and on the “core structure” of low twin-width used in
the proof Theorem 1, in particular. Thus we give a short proof here.

▶ Lemma 8. Cycles of strict half-graphs have twin-width at most 3.

Proof. Consider Gt, the ℓ-cycle of strict half-graphs of height t, on vertex set {ap
1, . . . , ap

t : p ∈
[0, ℓ − 1]}. By Observation 7 we may prove the stronger statement that tww(G′

t) ⩽ 3 where
G′

t is obtained from Gt by adding the red edge ap
1ap+1 mod ℓ

1 for every p ∈ [0, ℓ − 1]. G′
1 is a

red cycle, and admits a 2-sequence by iteratively contracting the endpoints of any red edge.
Therefore, we shall just check that the following is a partial 3-sequence from G′

t to G′
t−1:

(a0
1, a0

2), (a1
1, a1

2), . . . , (aℓ−1
1 , aℓ−1

2 ). Indeed {ap
1, ap

2} has, in the suggested partial sequence, at
most three red neighbors: ap−1 mod ℓ

1 , ap+1 mod ℓ
1 , and ap+1 mod ℓ

2 ; the latter two being a
single vertex when p = ℓ − 1. And all the other vertices have red degree at most 2. ◀

The next lemma was already invoked in the introduction. We will use its essence in a
more general form in Section 5.1, namely that contracting vertices from a module X relative
to Y do not create red edges incident to Y .

▶ Lemma 9. Let G be a graph and H = {H1, H2, . . . , Hℓ} be its modular partition. Then,

tww(G) = max{max
i∈[ℓ]

tww(Hi), tww(G/H)}.

Proof. Consider a sequence which contracts each module Hi into a single vertex, followed by
a contraction sequence of G/H attaining tww(G/H). Contracting each module Hi creates
red edges only within the module Hi, thus G/H has red degree 0. Hence, tww(G) is upper
bounded by the twin-widths of G[H1], G[H2], . . . , G[Hℓ], and G/H. The other inequality
follows from Observation 6, since G/H is also an induced subgraph of G. ◀

Finally we will use the following lemma to finish our 4-sequences.

▶ Lemma 10. Any trigraph whose total graph is a subdivision of a subgraph of a grid has
twin-width at most 4.

Proof. By Observation 7, we may assume that the given trigraph is a subdivision of a
complete grid consisting of red edges only. By contracting every adjacent pair of vertices one
of which has degree 2, we obtain a (complete) grid. In a (red) grid on the vertex set [n] × [m],
consider a matching of n leftmost horizontal edges, that is the edges connecting (i, 1) and
(i, 2) for every i ∈ [n]. Contracting these edges from top to bottom produces intermediate
red graphs of red degree at most 4, ending in a red grid graph on [n] × [m − 1]. Finally a
path is obtained, which can be contracted into a single vertex while keeping red degree at
most 2. ◀
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2.4 List of handled problems
We refer to Section 2.1 for the definitions of dominating set, vertex cover, connected set, and
independent set. We will mostly deal with the following three problems, given by order of
importance.

k-Dominating Set Parameter: k

Input: A graph G and an integer k

Question: Does G have a dominating set of size at most k?

Connected k-Vertex Cover (Connected k-VC) Parameter: k

Input: A graph G and an integer k

Question: Does G have a vertex cover of size at most k which induces a connected
subgraph of G?

Given a graph G and a capacity function c : V (G) → N, a capacitated vertex cover X of
G is a vertex cover of G which admits a mapping ρ : E(G) → X assigning to each vertex
x ∈ X no more edges than its capacity, i.e., |ρ−1(x)| ⩽ c(x) for every x ∈ X.

Capacitated k-Vertex Cover (Capacitated k-VC) Parameter: k

Input: A graph G with a capacity function c : V (G) → N and an integer k

Question: Does G admit a capacitated vertex cover X of size at most k?
The lower bound for k-Dominating Set will also apply to its connected and total

variants.
Connected k-Dominating Set (Connected k-DS) Parameter: k

Input: A graph G and an integer k

Question: Does G have a dominating set of size at most k which induces a connected
subgraph of G?

Total k-Dominating Set Parameter: k

Input: A graph G and an integer k

Question: Does G admit a set X ⊆ V (G) of size at most k such that every vertex of G

has a neighbor in X?
For completeness, we give the definition of the remaining problems that are mentioned at

least once in the paper.

k-Independent Set Parameter: k

Input: A graph G and an integer k

Question: Does G have an independent set of size at least k?

Independent k-Dominating Set Parameter: k

Input: A graph G and an integer k

Question: Does G have an independent dominating set of size at most k?

k-Path Parameter: k

Input: A graph G and an integer k

Question: Does G have a path of length at least k?

k-Induced Path Parameter: k

Input: A graph G and an integer k

Question: Does G have an induced path of length at least k?
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k-Induced Matching Parameter: k

Input: A graph G and an integer k

Question: Does G have a matching M of size at least k such that there are no edges
between endpoints of M other than the edges of M?

2.5 Kernels or lack thereof
We often identify a problem to the language made by its positive instances. For a parameter-
ized problem Q, a kernel of size bounded by a function f is a polynomial-time reduction
ρ : Σ∗ ×N → Σ∗ ×N such that (x, k) ∈ Q if and only if ρ(x, k) ∈ Q, and |ρ(x, k)| ⩽ f(k). A
kernel is said linear, quadratic, or polynomial, if the function f can be chosen linear, quadratic,
or polynomial, respectively.

We recall the framework of OR-cross-compositions [15], which we will rely on to show
the absence of a polynomial kernel in Theorem 1. An OR-cross-composition is a polynomial
reduction that takes t instances of an NP-hard problem L and builds an instance of a
parameterized problem Q, such that the OR of the input instances is equivalent to the
output instance. More precisely at least one of the t input instances is positive if and only if
the output instance is positive. It furthermore allows to set some restrictions on the input
NP-hard instances in the form of a polynomial equivalence relation. This relation can be
useful in shaping the input instances in such a way that the composition behaves well.

▶ Definition 11. A polynomial equivalence relation on Σ∗ is an equivalence relation R when
(i) for x, y ∈ Σ∗, the equivalence xRy can be decided in time polynomial in |x| + |y|, and

(ii) R restricted to instances of size at most n admits polynomially many equivalence classes.

We can now formally define an OR-cross-composition.

▶ Definition 12. Let L be a language, R a polynomial equivalence relation on Σ∗ and Q
a parameterized problem. An OR-cross-composition from L to Q with respect to R is an
algorithm taking as input t R-equivalent instances x1, ..., xt ∈ Σ∗, running in time polynomial
in
∑t

j=1 |xj |, and outputting an instance (y, N) ∈ Σ × N such that:

(i) N is polynomially bounded in maxj∈[t] |xj | + log t,
(ii) (y, N) ∈ Q if and only if there exists some j such that xj ∈ L.

We say that L cross-composes into Q, and we sometimes refer to output instance (y, N)
as the composed instance. The following result provides the lower bound under coNP ⊆
NP/poly.

▶ Theorem 13. If an NP-hard language L admits an OR-cross-composition into a paramet-
erized problem Q, then Q does not admit a polynomial kernel unless coNP ⊆ NP/poly.

2.6 Organization of the rest of the paper
In Section 3, we sketch the proof of our main result, Theorem 1. In Section 4, we show the
NP-hardness of Minimum Dominating Set in a customized setting that will be particularly
convenient for the subsequent OR-cross-composition. In Section 5 we present the OR-
cross-composition, show its correctness, and prove the twin-width upper bound, thereby
establishing Theorem 1. In Section 6, we present two simple O(k2) kernels for Connected
k-Vertex Cover and Capacitated k-Vertex Cover, and a refined O(k1.5) kernel for
the former problem. In Section 7, we show that graphs of twin-width 1 can be efficiently
recognized and a 1-sequence with additional property can be produced, and argue that this
extra property can be used for polynomial-time algorithm for a wide range of problems.
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3 Outline of the OR-cross-composition for k-Dominating Set

Let us start explaining why we should not expect a simple OR-composition. After all, it is
only fair to ask for a justification that the kernel lower bound for k-Dominating Set spans
a dozen of pages when the same result for k-Independent Set is a side note; even more so,
when the former is often more intractable than the latter from a parameterized complexity
standpoint.

The simplest OR-composition is the disjoint union of the input instances. By simple
OR-composition we mean one, like for k-Independent Set, straightforwardly based on
juxtaposing the instances. A standard way to OR-compose t Dominating Set-instances
is to have for each instance a “switch”, that is, one vertex dominating all but one instance.
Then picking the corresponding vertex in the solution, one is left with dominating one chosen
instance with a given remaining budget. This is precisely what we want, but how to ensure
that one does not activate two switches?

As we previously observed [3], one can use larger weights for the switches. However
removing the vertex-weights cannot be done without increasing the twin-width. Another
possibility is to force all the budget but one unit (for the switch) within the instances. This
requires, say, k vertices called “forcers”, each adjacent to a k-th fraction of each instance.
Now consider the induced subgraph made by these k vertices, the t switches, and tk vertices
of the instances realizing the tk possible neighborhoods toward the former t + k vertices. The
two neighborhoods of every pair of vertices in this graph has a large symmetric difference.
Thus in particular the overall graph has unbounded twin-width. (Finally known tricks to
condense the t switches into O(log t) vertices do not help, since we want the twin-width to
be bounded by an absolute constant.)

So we need a more elaborate way of selecting one instance among t; one, thought primarily
to keep the twin-width low. In the previous attempts, the twin-width was increasing too
much because of attachments –switches and forcers– external to the instances. We will
therefore have instances themselves play these roles. Say that each instance comes with a
partition of its vertex set into N parts, each of which containing a vertex solely adjacent to
vertices in its part. We place the t instances in a t × N two-dimensional layout, where each
instance occupies a “row,” while the j-th part of all the instances form the j-th “column.”
The switch mechanism is as follows. Every vertex in the j-th part of the i-th instance –say
Ii– dominates the j − 1-st part of the instances with a smaller index, and the j + 1-st part of
the instances with a larger index. In other words, we put a strict half-graph over the parts
of two consecutive columns. This is done cylindrically, see Figure 3.

With that mechanism, a dominating set of a fixed instance Ii (intersecting each of its
parts once) is a dominating set of the overall graph. We skip here the details of the reverse
direction, but the use of half-graphs and of vertices whose neighborhood in their instance is
confined to their own part (the last ingredient is to have a dummy, edgeless top instance It)
should give a feel for why no other kind of dominating sets of size N can exist.

What about the twin-width bound? Cycles of half-graphs have bounded twin-width. So
a natural first step is to contract every part of every instance into a single vertex. Doing so
will create some red edges within each row. To ensure that the red degree remains bounded
in this first step, a part should be partially adjacent to only a bounded number of other parts.
In the second step, we contract the cycle of half-graphs row by row. Thus the red edges of
the different instances will progressively stack up. We need to control the accretion with the
red edges of each instance mapping onto a common bounded-degree red graph. Finally in
the third step, we contract the residual red graph. It should be itself of bounded twin-width,
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I1

I2

I3

I4

I5

I6

Figure 3 The overall picture. Instances I1, . . . , It (here with t = 6) are in rows, boxed in blue,
with their edge also in blue. For the sake of legibility, we only represented the edges of I1. The red
dotted edges are the red edges appearing after contracting every part (boxed in black) into a single
vertex. Example of what three vertices picked in the first three parts of I4 dominates in the other
instances. Continuing consistently in I4 would result in “switching off” all the other instances, while
deviating would leave at least one part “white” and not intersected, thus one vertex not dominated.

for instance by being planar.
In the next section, we show that Minimum Dominating Set remains NP-hard even

when inputs are equipped with a vertex-partition satisfying all the properties that we came
across in this outline.

4 Tailored NP-hardness for Dominating Set

We will show in this section the following hardness result for Dominating Set. The extra
properties that we get compared to existing NP-hardnesses of Dominating Set (even those
on planar instances) is crucial for the subsequent OR-cross-composition, as hinted at in the
previous section.

The statement of the next two theorems involve what we will call snaking grids. See Fig-
ure 4 for an illustration of the 5 × 10 snaking grid, which has (3 · (5 − 1) + 1)(3 · (10 − 1) + 1)
vertices. One may observe that the snaking grids are subdivisions of a wall with some extra
isolated vertices. We will prefer to think of the snaking grid as a spanning subgraph of
a (complete) grid, hence the particular embedding of the figure. The motivation behind
the snaking grid will become clear when designing the cross-composition and bounding its
twin-width in Section 5.1: it allows to superpose a canonical hamiltonian cycle such that the
maximum degree remains 3.

▶ Theorem 14. Dominating Set remains NP-hard when its input (G, N) comes with a
vertex-partition B = {B1, . . . , BN }, two positive integers s and t, and a bijective mapping η

from {B1, . . . , BN } to the vertex set of the s × t snaking grid such that:
(i) G has a partial 4-sequence to the quotient trigraph G/B,

(ii) G/B is a spanning subgraph of the s × t snaking grid, with t even, witnessed by η, and
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Figure 4 The 5 × 10 snaking grid.

(iii) every dominating set of G intersects each Bi, for i ∈ [N ].

We will obtain Theorem 14 as a direct consequence of the following reduction, and the
fact that Planar 3-SAT is NP-hard [40] (see Section 4.1).

▶ Theorem 15. There is a polynomial-time reduction from Planar 3-SAT to Dominating
Set that, on n-variable m-clause Planar 3-SAT-instances φ produces Dominating Set-
instances (G, N, B = {B1, . . . , BN }, η) such that:

(i) B partitions V (G), and G has a partial 4-sequence to the quotient trigraph G/B,
(ii) G/B is a spanning subgraph of the (m + 1) × n′ snaking grid, with n′ even in {n, n + 1},

witnessed by η,
(iii) every dominating set of G intersects each Bi, for i ∈ [N ], and
(iv) φ is satisfiable if and only if G has a dominating set of size N .

One can observe that conditions (i), (ii), and (iii) of Theorems 14 and 15 match.
Condition (iv) in Theorem 15 only insists that the polynomial-time transformation is a valid
reduction.

4.1 Planar satisfiability
Planar 3-SAT was introduced by Lichtenstein, who showed its NP-hardness [40], as a
convenient starting point to prove the intractability of planar problems. It is a restriction of
3-SAT where the variable/clause incidence graph is planar even if one adds edges between
two consecutive variables for a specified ordering of the variables: x1, x2, . . . , xn; i.e., xixi+1
is an edge (with index i + 1 taken modulo n). In any Planar 3-SAT-instance φ one can
partition the clause set C into (C+, C−) such that C+ and C− each admits a removal ordering,
where a removal ordering consists of iteratively applying the two following kinds of deletions:

removing a variable which is not present in any remaining clause, or
removing a clause on three consecutive variables together with the middle variable,

which ends up with an empty set of clauses. Three consecutive variables means three variables
xi, xj , xk, with i < j < k such that xi+1, xi+2, . . . , xj−1 and xj+1, xj+2, . . . , xk−1 have all
been removed already. The middle variable of the clause is xj . For an example, see Figure 5.
What matters to us is that φ can be embedded in an (|C| + 1) × n grid (the dashed blue lines
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in Figure 5) such that every “event” (a variable “wire” turns or finishes) happens at a grid
point.

x1 x2 x3 x4 x5 x6 x7 x8

C+

C−

Figure 5 The bipartition (C+, C−) of an n-variable m-clause Planar 3-SAT-instance, with n = 8
and m = 10. The square vertices represent the clauses. All the degree-3 vertices of the solid black
(and green) graph lie at intersections of the (m + 1) × n grid represented with the dashed blue lines.
The (3m + 1) × (3n − 2) grid made by the dashed blue and gray lines will embed the snaking grid.
The “wire” of variable x1 is highlighted in green.

The reduction to establish Theorem 15 will be a rather transparent substitution of local
gadgets on grid points of Figure 5. We need a variable gadget (to initiate a Boolean choice),
a propagation gadget (“wires” that may split), and a clause gadget (where the “wires” of
three variables meet at a grid point). In addition, we will design a very simple dummy
gadget, used to fill all the unoccupied grid points. We start with a description of the variable
and propagation gadgets.

4.2 Variable and propagation gadgets
We distinguish the initial variable gadget and the (regular) variable gadget. The initial
variable gadget is simply a triangle, one vertex of which corresponds to setting the variable
to true (marked ⊤ in the figures), a second vertex, to setting it to false (marked ⊥), and a
third vertex which will remain of degree 2. These three vertices form one part, say, Bℓ of
B. We denote them by ⊤, ⊥, and d, and use the subscript of the part of B they belong to
whenever we want to be specific (so ⊤ℓ, ⊥ℓ, and dℓ).

The regular variable gadget (or variable gadget for short) is the bull graph. More precisely,
it is an initial variable gadget where one adds one pendant neighbor t to ⊤ and one pendant
neighbor f to ⊥. Again these five vertices form one part of B, say Bℓ, that we may denote
⊤ℓ, ⊥ℓ, dℓ, tℓ, and fℓ. For both the initial and regular variable gadgets, the index of the
gadget is simply ℓ.

The propagation gadget from a (possibly initial) variable gadget of index ℓ to a regular
variable gadget of index ℓ′ consists of the two edges ⊤ℓfℓ′ and ⊥ℓtℓ′ . The “propagation”
starts at an initial variable gadget and extends in two directions. It may also “split,” that is,
a same regular variable gadget can propagate to two variable gadgets, one horizontally and
one vertically. See Figure 6 for a depiction of these gadgets.

For every variable xi of φ, we have a unique initial variable gadget, and several regular
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⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

⊤

⊥

Figure 6 Initial variable gadget (slightly shaded box in the middle), seven (regular) variable
gadgets, and the propagation gadgets (edges in between variable gadgets), allowing the “wire” to
split. The thick boxes represent the partition B, each box corresponding to an initial or regular
variable gadget. The figure should be rotated 90 degrees to match Figure 5 where the propagation
from the initial variable gadgets occurs vertically.

variable gadgets connected to it via a chain of propagations. We call wire of xi, the graph
induced by all these variable gadgets (the initial variable gadget included). The digraph of a
wire (or, by extension, of its corresponding variable) is the directed graph whose vertices are
the variable gadgets of the wire, and with an arc from a variable gadget of index ℓ to one of
index ℓ′ if there is a propagation gadget from the former to the latter. Following Figure 5 the
digraph of every wire is an out-tree of maximum out-degree 2, rooted at the initial variable
gadget. The leaves of this tree are adjacent to a grid point where we will place a clause
gadget.

The following lemma ensures the expected behavior of a choice propagation. The rest of
the construction (mainly the insertion of the clause gadgets) will not change the properties
used in its proof, so we show it here.

▶ Lemma 16. Let H be the wire of variable x, and let T⃗ be the out-tree, digraph of H. The
only two dominating sets of H of size (at most) |V (T⃗ )| consists of picking ⊤ in every gadget,
or of picking ⊥ in every gadget.

Proof. Every variable gadget has a vertex d only adjacent to vertices within the gadget, so
a dominating set of size |V (T⃗ )| has to intersect each gadget exactly once. Since the digraph
of H is supposed to be an out-tree, and the vertices tℓ′ and fℓ′ have their neighborhood
included in the gadget of index ℓ′ and its unique in-neighbor (in T⃗ ), of index, say, ℓ, it suffices
to observe that the only pairs of vertices dominating all the vertices in these two gadgets are
{⊤ℓ, ⊤ℓ′} and {⊥ℓ, ⊥ℓ′}. ◀

In the statement of Lemma 16, the former choice sets x to true, the latter, sets x to false.

4.3 Clause and dummy gadgets
The clause gadget of Cj consists of two vertices cj , zj , where cj is linked to its three literals in
the corresponding wire ends, and zj is isolated. The set {cj , zj} is added to B. See Figure 7
for an illustration.
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⊤

⊥

⊤⊥

⊤

⊥

cj

zj

xa1 xa3

xa2

Figure 7 Three variable wires converging to a clause gadget Cj = xa1 ∨ ¬xa2 ∨ ¬xa3 . Again, the
thick boxes represent the partition B. In fact, due to the horizontal snaking, either one of xa1 , xa3

would appear above the clause gadget (see Figure 8).

A dummy gadget is simply an isolated vertex z, which makes its own singleton part {z}
in B. Thus a dummy gadget is a clause gadget minus the vertex cj . The isolated vertices
zj ’s in the clause gadgets, and the dummy gadgets may seem artificial. Their purpose is
to fulfill conditions (ii) and (iii). Besides isolated vertices will not remain isolated in the
subsequent OR-cross-composition.

4.4 Construction
At this point, the construction is probably clear. Let n and m be the number of variables and
clauses, respectively, of the Planar 3-SAT-instance φ. We assume that n is even (if not,
we add a dummy variable not appearing in any clause). We put one initial variable gadget at
each grid point (of the finer (3m + 1) × (3n − 2) grid) in Figure 5 with a circled vertex (n grid
points in total). We place a regular variable gadget at every grid point covered by the solid
black (or green) lines, and at every grid point just below any horizontal segment of a wire (to
account for the snaking), except for those on the bottommost row. We orient the propagation
such that the digraph of each of the n wires is an out-tree rooted at its initial variable gadget.
For every clause of C−, we place a clause gadget at the corresponding grid point occupied by
a square vertex in Figure 5, and link it accordingly to its literals. For every clause of C+, the
clause gadget is instead placed at the grid point just below the corresponding square vertex.
This is again because of the horizontal snaking (see Figure 8). Finally we put a dummy
gadget at every unoccupied grid point. This finishes the construction of the graph G, and its
vertex-partition B. We set N to |B|, that is, (3m + 1) × (3n − 2). The embedding witness η

is implicit from the construction.

Proof of Theorem 15. We now check the conditions (i) to (iv). Let us start with the
correctness of the reduction, namely (iv).

Assume φ admits a satisfying assignment A, and sets each variable to the value given
by A in each wire of G. Complete this solution by including all the isolated vertices of G.
By design this yields a set S of size N . By Lemma 16, every vertex in a wire is dominated.
The isolated vertices are dominated by themselves, and every vertex cj in a clause gadget is
dominated since A is a satisfying assignment. Thus S is a dominating set of G of size N

(intersecting every part of B exactly once).
Conversely, assume that G has a dominating set S of size N . As every gadget contains

a vertex whose neighborhood is included in its own part of B (namely d, and the isolated
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Cj

D D D D D D

D D D D D D

Figure 8 The vicinity of a clause gadget, for a clause Cj ∈ C+. Red edges materialize the edges
in between two parts: propagation and edges incident to the clause gadget. Due to the horizontal
snaking, the clause gadget is placed just below its position in Figure 5. Dummy gadgets are marked
with a D.

vertices), S should intersect every part of B exactly once. In the dummy and clause gadgets,
the picked vertex should thus be the isolated vertex. By Lemma 16, in each wire a consistent
choice (of taking only ⊤ or only ⊥) has to be made. Let A be the corresponding truth
assignment. As S dominates each vertex cj in the clause gadgets, it implies that A is a
satisfying assignment, and ϕ is satisfiable.

Condition (i). By construction B partitions V (G). We want to propose a partial
4-sequence from G to G/B. In other words, we wish to contract every part of B into a single
vertex, such that the red degree remains at most 4.

In any order, we contract the bull graph of each regular variable gadget adjacent to only two
other variable gadgets in the following way: (⊤, d), ({⊤, d}, t), ({⊤, d, t}, ⊥), ({⊤, d, t, ⊥}, f).
Internally this creates (at any moment) a single red edge. There can be up to four red edges
between this part and another part of B (since there are at most four leaving black edges).
Observe however that these four edges can be incident to a single vertex only after the last
internal contraction ({⊤, d, t, ⊥}, f). Thus the red degree of these vertices remains at most 4.

Meanwhile the red degree of vertices not falling in that category is bounded by 3, in
clause gadgets, and by 2, in other variable gadgets. We can then contract the initial variable
gadget and the clause gadgets (there is nothing to contract in dummy gadgets). Regular
variable gadgets adjacent to three parts of B are now adjacent to three vertices. Indeed there
is no pair of adjacent such gadgets. Thus the above suggested contraction of the bull keeps
red degree at most 4.

Condition (ii). By design, G/B is a subgraph of the (m + 1) × n snaking grid, witnessed
by η. It is spanning by introduction of the dummy gadgets.

Condition (iii). This was observed when checking the correctness of the reduction. ◀

As previously mentioned, this directly implies Theorem 14.
For Connected k-Dominating Set and Total k-Dominating Set on bounded

twin-width graphs (with an upper bound possibly larger than 4), one does not need the
snaking grid nor the dummy gadgets. In the propagation between two variable gadgets, one
can add an edge between the two ⊤ vertices, and an edge between the two ⊥ vertices. In the
clause gadgets, one can add a neighbor yj to zj , adjacent to the six vertices ⊤ and ⊥ in the
three incident variable gadgets.
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5 OR-cross-composition

We now describe the cross-composition from the NP-hard Dominating Set restricted as in
Theorem 14 to k-Dominating Set. We use the polynomial equivalence R to partition all
well-formed instances for the restricted k-Dominating Set (those satisfying Theorem 14)
with respect to the given parameter N and dimensions (p, q) of the corresponding snaking
grid. All ill-formed instances will then make a single class. Relation R satisfies the conditions
of Definition 11. For any two well-formed instances (Ii, Ni, Bi, pi, qi, ηi), (Iℓ, Nℓ, Bℓ, pℓ, qℓ, ηℓ),
we can check in polynomial time that Ni = Nℓ and (pi, qi) = (pℓ, qℓ), yielding (i). Now,
choosing some encoding such that all well-formed instances of Σ⩽n have at most n vertices,
their parameter and snaking grid dimensions must also be bounded by n. Then, the number
of equivalence classes on Σ⩽n accounting for the malformed instances is at most n3 + 1,
yielding (ii).

The conditions for our composition being set, consider t instances of the restricted Dom-
inating Set, equivalent with respect to R. If the instances are ill-formed we output an
ill-formed instance of k-Dominating Set. If not, their equivalence yields common even para-
meter N and snaking grid dimensions (p, q), letting us consider them as (Ii, N, Bi, p, q, ηi)i∈[t].
We will construct a k-Dominating Set instance (H, N), with the same parameter, admitting
a solution if and only if at least one input instance (Ii, N, Bi, p, q, ηi) admits a solution for
the restricted k-Dominating Set. Before composing the input graphs, we introduce a
dummy instance in the form of graph It+1 serving to ensure that any valid (H, N) further
admits a solution picking vertices in each column. It+1 is an independent set of size 2N on
which we partition V (It+1) through Bi+1 into N classes of exactly two vertices. Note that
since It+1/Bt+1 is an independent set, it is a spanning subgraph of the p × q snaking grid as
witnessed by any bijective ηt+1 onto the latter.

We first show how to order the partition classes of each instance in the same way
with respect to their mapping onto the snaking grid. This ordering will follow a fictitious
hamiltonian cycle (y1, ..., yN ) on the p × q snaking grid, which we now describe. From the
snaking grid, we take all edges of the first row, and all edges of the first and last columns.
Then, from the complete underlying grid, we take all but the first edge of each column and
we complete the cycle by taking all edges between two degree one vertices in the so-built
union of paths (see the darker red cycles in Figures 9 and 10). Referring to the partition of
instance i ∈ [t + 1] as Bi = {Bi,1, ..., Bi,N }, we can assume up to the reordering above that
ηi(Bi,j) = yj .

Now, considering all instances over H, a representation of the construction that follows
is given in Figure 3. It will be useful to consider the instances in a grid such that Bi,j is
the cell in the i-th row and j-th column, and we will use the term partition class or cell
interchangeably. We can then see instance Ii as row i, and define regular instance columns,
omitting the dummy instance, as Cj =

⋃
i∈[t] Bi,j for j ∈ [N ].

Construction. We start building our composed graph H as the union of all instances
(Ii)i∈[t+1], that is, V (H) =

⋃
i∈[t+1] V (Ii) and E(Ii) ⊆ E(H) for i ∈ [t + 1]. Then, our

cross-composition proceeds by adding a cycle of strict half-graphs over columns (Cj)j∈[N+1]:
for i ∈ [t + 1], j ∈ [N ], Bi,j forms a biclique with

⋃
i<ℓ⩽t+1 Bℓ,j+1 (accounting for indices j

modulo N). Notice then that the only edges added above lie between columns Cj , Cj′ with
|j′ − j| = 1, so any edge between two columns differing by at least two indices is an edge of
Ii. Each instance class Bt+1,j is then adjacent exactly to Cj−1. Having ordered the classes of
each instance in the same way with respect to their mapping onto the snaking grid, column
Cj consists of homologous vertices, all in the same position on their respective grids, see
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Figure 10. Then, the cycle of half-graphs follows the darker red fictitious hamiltonian cycles
mapping to (y1, ..., yN ).

The composed k-Dominating Set is then (H, N), which we can construct polynomially
in
∑t

i=1 |Ii|. Indeed, N is bounded by any |Ii| so the dummy instance is built linearly, then
graph union and addition of the bicliques takes time polynomial in

∑t
i=1 |Ii|. Moreover, the

reduction directly satisfies condition (i) of Definition 12 since the output parameter N is
bounded by any |Ii|.

5.1 The overall construction has twin-width at most 4
Consider the OR-cross-composition of t instances (Ii, N, Bi, p, q, ηi)i∈[t] of the restricted
k-Dominating Set described Section 5, letting (H, N) be the composed instance. Towards
showing that the twin-width of H is bounded by 4, we first show that there is a partial
4-sequence contracting each Bi,j for i ∈ [t + 1], j ∈ [N ] into a single vertex in H. After these
contractions, each instance Ii/Bi can be considered as a red snaking grid augmented by a
hamiltonian path (Figure 9). We call augmented snaking grid the graph obtained by adding
the (darker red) hamiltonian cycle to the snaking grid. The cycle of strict half-graphs added
between the instances will then follow the hamiltonian cycles of each augmented snaking
grid. Finally, we show that there is a partial 4-contraction sequence contracting these t + 1
grids into a single one, which is of twin-width four.

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

1

2 3

4 5

6 7

8 9

. . .

Figure 9 The maximal set of red edges, with the hamiltonian cycle in darker red, and the edges
of the snaking grid that are not already in the hamiltonian cycle in lighter red. A partial 4-sequence
goes as follows. First contract every blue vertex with their homologous in the next layer, in any
order. Then similarly contract every purple vertex, followed by every orange vertex. Finally follow
the order indicated by positive integers (in increasing value). This way a vertex contracted with the
next layer has at most two neighbors, or at most one non-contracted neighbor.

▶ Lemma 17. The composed graph admits a partial 4-contraction sequence to H/
(⋃

i∈[t+1] Bi

)
.

Proof. Theorem 14 yields that each input graph Ii, i ∈ [t] admits a partial 4-sequence to
Ii/Bi yielding a subgraph of the snaking grid, this is also the case for dummy instance It+1
as an independent set. Our contraction sequence will consist exactly of those contractions, so
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Figure 10 The different layers (instances) linked by the cycle of half-graphs. Only four half-graphs
are drawn for the sake of legibility.

let us see how they behave over H. Notice that for any Ii, the only contractions made above
involve vertices of a single class Bi,j , which is a module with respect to H − Ii. Therefore,
in H, the partial contraction sequence of each Ii does not create red edges towards H − Ii.
In turn, we can contract each Ii to Ii/Bi through a partial 4-sequence over H, and the only
resulting red edges will belong to a single instance. ◀

Now, for the purpose of bounding the twin-width of the composed graph, it is useful to
note that Observation 7 allows us to add red edges. At this point, the only vertices of large
degree stem from the strict half-graphs. We keep those edges black, and we now turn each
instance into a red augmented snaking grid as depicted in Figure 9 as follows. Since each
instance is a spanning subgraph of the p × q snaking grid, we can first assume that it is a
(fully) red snaking grid. Then, the red augmented snaking grid is built by further adding red
cycle (Bi,1, ..., Bi,N ). By our choice of ordering in the composition, this cycle is the same on
every instance with respect to their mapping on the p × q snaking grid.

▶ Lemma 18. The composed graph H has twin-width at most 4.

Proof. By Lemma 17 and the above remarks, we can now describe the contraction of t + 1
red augmented snaking grids (Ii)i∈[t+1], abusing notation for the now quotiented instances,
with the black edges of our composition. We will exhibit a partial 4-contraction sequence
eventually contracting every column, now consisting of t + 1 homologous vertices, that is, all
vertices at the same position on their respective snaking grid into a single one. The proof
will proceed by induction on the number of augmented snaking grids, our hypothesis at step
t being that there exists a partial 4-contraction sequence from t augmented snaking grids to
a single one, accounting for the black edges added in the composition. This being true for
t = 1, assume the result holds for some t and let us consider case t + 1.

We will deal with the two bottommost augmented snaking grids I1, I2 in the half-graphs,
contracting pairs of homologous vertices, corresponding to the quotiented (B1,j , B2,j) thanks
to the ordering chosen in the composition. Before proceeding, it is useful to make the
following observations:
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For any grid Ii with i > 2, the vertices of any homologous pair (B1,j , B2,j) are each
adjacent exactly to Bi,j+1 in Ii. Their contraction yields no red edges, allowing us to
omit other instances and only consider the two to be contracted.
The edges involving both snaking grids consist in the matching (B1,j , B2,j+1)j , see
Figure 10, which can be assumed red while keeping red degree at most four. In our
contraction sequence, this enables us to only bound the total degree at any point. Now,
when contracting a pair of vertices, any vertex in the above matching adjacent to one of
the vertices of our pair is also adjacent to the other because of the additional hamiltonian
cycle. Therefore, the neighbors of the contracted pair will be exactly the neighbors of
each vertex in its respective instance.
Contracting a pair coarsens the partition of our vertices, so the degree of a vertex not in
the pair cannot increase, thus it is enough to bound the degree of the contracted pair.

Now, consider any pair (a, b) to be contracted, such that both vertices have C already
contracted, common neighbors and each P non-contracted neighbors in their respective
instance. According to the second observation above, the resulting degree will be C + 2P .
Since any vertex is of degree at most three in its respective grid C + P ⩽ 3, which would
already allow us to contract the pairs in any order with degree at most six. Therefore,
to bound the degree by four, the order in which we contract the pairs must be carefully
chosen with respect to their position on the respective augmented snaking grids. We want
to iteratively contract pairs of vertices satisfying C + 2P ⩽ 4, at each step propagating
this bound to more non-contracted vertices to eventually contract all pairs. We proceed by
groups of colors as depicted in Figure 9. We first contract pairs of blue vertices, those of
degree two in their respective augmented snaking grid. Second, we contract pairs of purple
vertices, those of degree three adjacent to two contracted vertices (necessarily blue). Third,
we proceed with pairs of orange vertices, those still non contracted on the second row of
the snaking grids, which are of degree three and adjacent to a blue and a purple vertex.
Finally, numbered in white, we will contract the remaining degree three vertices along the
corresponding snaking path.

We are now ready to describe the contraction sequence. For the blue, orange and purple
pairs, the contractions can be done in any order, while we will describe the order for the last
ones. For any blue pair, depending on the order of contraction we either have (C, P ) = (0, 2),
(C, P ) = (1, 1) or (C, P ) = (2, 0). Thus, regardless of the order the contraction yields degree
C + 2P at most four. For any purple pair, we either have (C, P ) = (2, 1) or (C, P ) = (3, 0),
again regardless of order contracting the pair yields degree at most four. The case is the same
for orange pairs, and we can again contract them in any order. The graph induced by the
non-contracted vertices on each instance now consists in an union of paths, with endpoints
satisfying (C, P ) = (2, 1) and interior points such that (C, P ) = (1, 2). We can iteratively
contract the pairs corresponding to the endpoints, satisfying (C, P ) = (2, 1), decreasing the
length of the path by one at each step. This can be done until we are left with single vertices
for each path, the corresponding pairs are then adjacent exactly to three already contracted
vertices, and their contraction yields degree three.

This finishes to prove that the contraction of the first two red snaking grids can be done
while bounding the red degree by four. Since the only contracted pairs were homologous, this
results in a red augmented snaking grid with no red edges towards grids i > 2. The remaining
edges of the strict half-graph cycle still form one of height t, which is exactly the induction
case for t and achieves to prove the induction. Therefore, there is a partial 4-contraction
sequence from our composed graph into a red augmented snaking grid. Then, as the latter is
a subgraph of the red complete grid, Lemma 10 yields twin-width at most 4. ◀
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5.2 Correctness
Having verified that the reduction runs in polynomial time and satisfies condition (i) of
Definition 12, for the OR-cross-composition to be sound it remains to show equivalence of
the instances.

▶ Lemma 19. The composed instance is positive for k-Dominating Set if and only if at
least one input instance is positive for the restricted k-Dominating Set.

Proof. Consider the OR-cross-composition of R-equivalent instances (Ii, N)i, i ∈ [t] of the
restricted k-Dominating Set into k-Dominating Set instance (H, N) as described in
Section 5. We start by showing the easier direction, the existence of a positive input instance
implies that the composed instance is also positive, then we prove the converse. The reduction
is such that for any set D ∈ H, D dominates H if and only if it dominates some input
instance Ii.

One input instance is positive implies that the composed instance is positive

Assume there exists some ℓ ̸= t + 1 such that (Iℓ, N) is a positive instance for the restricted
k-Dominating Set, let us consider dominating set D for Iℓ, with |D| = N and satisfying
the conditions of Theorem 14. We show that D is also a dominating set for H.

Since our reduction preserves the edges of each instance, D dominates V (Iℓ) over H by
assumption. To show that V (H) − V (Iℓ) =

⋃
i ̸=ℓ,j∈[N ] Bi,j is dominated, let us consider

any cell Bi,j with i ̸= ℓ. If i < ℓ, by construction Bℓ,j−1, Bi,j form a biclique in H, then
D intersects Bℓ,j−1 via item (iii) of Theorem 14 so Bi,j is dominated. Otherwise, i > ℓ

and Bℓ,j+1, Bi,j form a biclique in H, now D must intersect Bℓ,j+1 and again Bi,j is also
dominated. Therefore D is indeed a dominating set of H, yielding the backwards implication.

The composed instance is positive implies that one input instance is positive

Conversely, assume (H, N) is a positive instance for k-Dominating Set, considering any
solution D ⊆ V (H), we show that D is necessarily also a dominating set of some Iℓ, yielding
a positive instance among the input ones.

We leverage the fact that D dominates each dummy partition class Bt+1,j+1 to yield that
|D ∩ Cj | ⩾ 1 for any j. By construction, each Bt+1,j+1 is only adjacent to vertices in column
Cj , so we already know D intersects each Cj ∪ Bt+1,j+1 for j ∈ [N ], and since |D| = N each
such intersection consists of a single vertex dj . Now, the two vertices of Bt+1,j+1 are adjacent
exactly to Cj , so the choice of dj as one of them would prevent our solution from dominating
the other. Then dj ∈ Cj =

⋃t
i=1 Bi,j , letting us define the row choice rj for column j as the

unique rj ∈ [t] such that dj ∈ Brj ,j .
We now show the existence of some i ∈ [t] such that D ⊆ V (Ii). From the necessity

to choose one vertex per column shown above, this is equivalent to showing that for some
i ∈ [N ] the row choices are constant: rj = i for j ∈ [N ]. We first argue that both the even
choice sequence (r2j)j and the odd choice sequence (r2j+1)j must be constant. Considered
on indices modulo N , both sequences are periodic, so if one is not constant we consider a
pair of indices (j, j + 2) such that corresponding row choices k = rj , k′′ = rj+2 are such that
k > k′′.

With dj ∈ Bk,j , dj+2 ∈ Bk′′,j , let us consider the adjacencies between D and column
Cj+1 towards showing an absurdity. On the one hand, the edges added in our composition
between {dj , dj+2} and Cj+1 are exactly {(dj , v) : v ∈

⋃
i>k Bi,j+1} and {(dj+2, v) : v ∈⋃

i<k′′ Bi,j+1}. On the other hand, for any d ∈ D\{dj , dj+2}, any edge between d and Cj+1
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necessarily belongs to some instance Ii, i ∈ [t]. Combining the two observations above: for
i ∈ [k′′, k], any edge (a, d) with a ∈ Bi,j+1, d ∈ D must be an edge of Ii. Since k > k′′,
interval [k′′, k] is of size at least two. We get that Bk,j+1 is dominated by D ∩ V (Ik) in Ik,
while Bk′′,j+1 is dominated by D ∩ Ik−1 in Ik−1, see Figure 11. Now, by Theorem 14 (iii),
for any i ∈ [t], Bi,j+1 ⊈ N(V (Ii)\Bi,j+1), yielding that both D ∩ Bk,j+1 and D ∩ Bk′′,j+1
are non-empty. This is absurd since D must intersect Cj+1 in exactly one vertex, so both
(r2j)j and (r2j+1)j are constant.

Now, let us call k the row choice for even columns and k′ the row choice for odd ones. If
k ̸= k′, we can choose without loss of generality three consecutive columns Cj , Cj+1, Cj+2
such that rj = rj+2 = k and rj+1 = k′ with k′ > k. Then, we proceed similarly to the
last paragraph. Since k′ > k, Bk,j+1 is not dominated by dj , dj+2 by construction of the
half-graph. Therefore, it is necessarily dominated by D ∩ V (Ik) in H and in Ik. Again,
Theorem 14 (iii) yields that Bk,j+1 ⊈ N(V (Ik)\Bk,j+1) so dj+1 ∈ Bk,j+1, contradicting
with dj+1 ∈ Bk′,j+1. Therefore k = k′ and the sequence of row choices (rj)j is constant.

The latter yields k ∈ [t] such that D ⊆ V (Ik), by assumption D dominates V (Ik) on H,
while no edges are added between two vertices in V (Ik) by our construction, thus D is a
dominating set of Ik. ◀

▶ Theorem 1. Unless coNP ⊆ NP/poly, k-Dominating Set on graphs of twin-width at
most 4 does not admit a polynomial kernel, even if a 4-sequence of the graph is given.

Proof. Lemma 19 proves that the OR-cross-compositions described in the beginning of
Section 5 is correct. The twin-width bound of the composed instance is given in Lemma 18.
We can thus invoke Theorem 13 in order to obtain the desired result. ◀

Ik′′−3

Ik′′−2

Ik′′−1

Ik′′

...
...

...
...

...
...

Ik

Ik+1

Ik+2

Ik+3

Figure 11 In the middle column Cj+1, pink classes are those dominated by the choice of dj and
dj+2 in the neighboring columns. At least two classes, highlighted in green and corresponding to the
interval [k′′, k], would need to be dominated by a single vertex within the column, which cannot be
done.

6 Polynomial kernels

We present two simple kernelization algorithms for Connected k-Vertex Cover and
Capacitated k-Vertex Cover with kernels on O(k2) vertices. We also provide an
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improved kernel on O(k1.5) vertices for Connected k-Vertex Cover.
A folklore in the context of k-Vertex Cover kernelization is that keeping at most

k + 1 twin vertices is a safe reduction rule. Hence any module outside of a vertex cover
X can be trimmed down to k + 1 vertices. Similar reduction rules are also known for
Connected k-Vertex Cover and Capacitated k-Vertex Cover [16]. Therefore to
get a polynomial kernel, one simply needs to polynomially bound the number of modules
outside X, or equivalently, the number of distinct neighborhoods in X.

This will be done by proving Lemma 3 which, we repeat, is equivalent to saying that
the neighborhood hypergraphs of graphs of bounded twin-width have VC density 1. This
feature is shared with classes of bounded expansion. Lemma 3 is of independent interest as
it opens the door to a common algorithmic treatment for classes of bounded twin-width and
of bounded expansion.

To state the next two theorems, we need to introduce some vocabulary on 0, 1-matrices.
A row (resp. column) partition of a matrix M is a partition of its row set (resp. column
set). A row (resp. column) division is a row (resp. column) partition where every part is
a consecutive set of rows (resp. columns), or interval. A division of a matrix M is a pair
(R, C) where R is a row division and C is a column division. A cell or zone of a matrix M

with division (R, C) is a submatrix M [Ri, Cj ] with Ri ∈ R and Cj ∈ C. A t-division is a
division (R, C) with |R| = |C| = t. A t-grid minor of a 0, 1-matrix M is a t-division of M

where every cell contains at least one 1-entry. A matrix is mixed if it has at least two distinct
rows and at least two distinct columns. A corner is a 2 × 2 contiguous submatrix which is
mixed. A t-mixed minor of a matrix M is a t-division of M where every cell is mixed. It can
be observed that this is equivalent to the existence of a t-division where every cell contains a
corner [6].

We first recall the Marcus-Tardos theorem, a celebrated result in combinatorics.

▶ Theorem 20 ([41]). For every integer t, there is some ct such that every n × m 0, 1-
matrix M with at least ct max(n, m) entries 1 has a t-grid minor.

In what follows ct will always denote the bound in Theorem 20. The best upper bound for
ct is currently 8/3(t + 1)224t [11], that we take as the definition of ct.

The following result is shown in the first paper of the series dedicated to twin-width.

▶ Theorem 21 ([6]). If, for every vertex ordering, the adjacency matrix of a graph G has a
2t + 2-mixed minor, then G has twin-width larger than t.

We prove that in a 0, 1-matrix of small twin-width, the number of distinct columns is
linearly bounded in the total number of rows.

▶ Theorem 22. Let t be a positive integer. Let M be a 0, 1-matrix with s rows, and at least
24c2t+2 · s distinct columns. Then M has a 2t + 2-mixed minor.

Proof. We denote by R and C the sets of rows and columns, respectively, of M . Without
loss of generality, we may assume that all the columns of M are distinct. We consider a
division of C into s parts {C1, . . . , Cs}, each Ci consisting of 24c2t+2 consecutive (distinct)
columns. Note that the submatrix of M consisting of the columns Ci has rank at least 4c2t+2
in the binary field F2, for all i ∈ [s].

Therefore there is a row division of M [R, Ci] into at least 2c2t+2 (row) parts, each zone
of which has rank at least 2, thus is mixed, and, by an observation in [6], contains a corner.
These 2c2t+2 corners in M [R, Ci] are on pairwise disjoint pairs of consecutive rows. Let
us consider R1 the row division grouping each pair of rows with indices 2i − 1, 2i, and R2,



É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, R. Watrigant 25

grouping each pair of rows 2i, 2i + 1, for i ∈ [⌈s/2⌉]. Observe that one of the two divisions
(R1, {Ci}), (R2, {Ci}) of M [R, Ci] contains at least c2t+2 zones with a corner, hence mixed.

Without loss of generality, we may assume that at least ⌈s/2⌉ column parts among
C1, . . . , Cs have at least c2t+2 mixed zones when divided by, say, R1. Consider the column
division {C ′

1, . . . , C ′
s′} with s′ ⩾ ⌈s/2⌉, coarsening of {C1, . . . , Cs} such that each part C ′

j

contains exactly one column part Ci with the property of the previous sentence.
Let M ′ be a |R1|×s′ 0, 1-matrix with a 1-entry at positions where the cell of (R1, {C ′

1, . . . ,

C ′
s′}) is mixed, and a 0-entry otherwise. Note that M ′ has at most ⌊s/2⌋ rows and s′ ⩾

⌈s/2⌉ columns. Moreover each column of M ′ contains by design at least c2t+2 1-entries.
By Theorem 20, M ′ admits a (2t + 2)-grid minor. Thus M has a (2t + 2)-mixed minor, which
implies that M has twin-width larger than t by Theorem 21. ◀

We conclude the following.

▶ Lemma 3. For every graph G of twin-width t and X ⊆ V (G), the number of distinct
neighborhoods in X, |{N(v) ∩ X : v ∈ V (G)}|, is at most 24c2t+2 |X|.

Proof. We assume for the sake of contradiction that |{N(v) ∩ X : v ∈ V (G)}| > 24c2t+2 |X|.
For every vertex ordering of G, its adjacency matrix M along this order contains an |X| ×
24c2t+2 submatrix without two equal columns; namely the submatrix of the adjacencies
between X and 24c2t+2 vertices with a pairwise distinct neighborhood in X. By Theorem 22,
it implies that M has a 2t + 2-mixed minor. By Theorem 21, this in turn implies that G has
twin-width more than t. ◀

6.1 Quadratic vertex kernels
For completeness, we state and prove the folklore reduction rule for k-Vertex Cover
variants.

▶ Reduction Rule 1 (Reduction Rule for Connected k-Vertex Cover). Let X be a vertex
cover of G. If there is a set S ⊆ V (G) \ X with the same neighborhood in X and |S| > k,
delete a vertex of S.

▶ Lemma 23. Let G be a graph and G′ be a graph obtained by applying Reduction Rule 1.
Then (G, k) is a yes-instance to Connected k-Vertex Cover if and only if (G′, k) is.

Proof. Let s ∈ S be the vertex such that G′ := G − s. Suppose that T is a connected vertex
cover of G of size at most k. If s /∈ T , then T is a connected vertex cover of G′. If s ∈ T ,
there is at least one vertex s′ in S \ T . Now T ′ := (T \ {s}) ∪ {s′} is a connected vertex cover
of G′ of size |T |.

Conversely let T be a connected vertex cover of G′ of size at most k. We claim that T is
also a connected vertex cover in G. As G[T ] is connected and |T | ⩽ k, we shall just check
that all the edges of G are covered by T . This is because S \ s cannot be totally included
in T ; if so, T is not connected because S \ s consists of (at least) k pairwise independent
vertices. Therefore, the common neighborhood N(S) should be included in T . ◀

▶ Proposition 24. Connected k-Vertex Cover admits a kernel on Ot(k2) vertices when
the input graphs have twin-width at most t.

Proof. Let (G, k) be an instance of Connected k-Vertex Cover and let X be a vertex
cover obtained using a 2-approximation algorithm for Min Vertex Cover (given by any
maximal matching). If |X| ⩾ 2k + 1, an optimal vertex cover and thus an optimal connected
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vertex cover has size at least k + 1. Then one can correctly output a trivial no-instance.
Henceforth we assume that |X| ⩽ 2k. Apply Reduction Rule 1 exhaustively, and let (G′, k)
be the resulting instance. By Lemma 3 and by the construction of G′, V (G′) \ X can be
partitioned into at most 24c2t+2 · |X| modules and each module consists of at most k + 1
vertices. Therefore, V (G′) has at most ct · (k + 1) + 2k vertices. That (G′, k) is an equivalent
to (G, k) is implied by Lemma 23. ◀

▶ Reduction Rule 2 (Reduction Rule for Capacitated k-Vertex Cover). Let (G, k, c :
V (G) → N) be an instance to Capacitated k-Vertex Cover and X be a vertex cover
of G. If there is a set S ⊆ V (G) \X with the same neighborhood in X and |S| > k + 1, delete
a vertex of s ∈ S with the minimum capacity and decrease the capacity of each neighbor of s

by one.

▶ Lemma 25. Let (G, k, c) be an instance to Capacitated k-Vertex Cover and (G′, k, c′)
be an instance obtained by applying Reduction Rule 2. Then (G, k, c) is a yes-instance if
and only if (G′, k, c′) is.

Proof. Again let s be such that G′ := G − s. We first check the forward direction. A
c-capacitated vertex cover of G is not necessarily a c′-capacitated vertex cover of G′ as we
decreased the capacities of neighbors of s. However we claim that if G admits a c-capacitated
vertex cover T of size at most k, then it also admits a c-capacitated vertex cover of G of size
at most k not containing s. Indeed, if s ∈ T , then there exists a vertex s′ ∈ S \ T and not
that all neighbors of s′ (thus s) are in T . Therefore, (T \ {s}) ∪ {s′} is a vertex cover of G of
size at most k. It is further c-capacitated because c(s′) ⩾ c(s). Now we may assume that
T does not contains s. Set T is a c′-capacitated vertex cover of G′ because the decrease of
capacity of each vertex v ∈ N(s) by one unit is canceled out by the absence of edge sv in G′.

Conversely, if there is a c′-capacitated vertex cover T of G′ of size at most k, note that all
neighbors of S \ {s} must be in T . Therefore, T is a c-capacitated vertex cover of G where
each edge incident with s is covered by the residual capacity of the other endpoint. ◀

Therefore, Capacitated k-Vertex Cover admits a quadratic vertex kernel, which
follows the proof of Proposition 24 verbatim.

▶ Proposition 26. Capacitated k-Vertex Cover admits a kernel on Ot(k2) vertices
when the input graphs have twin-width at most t.

Theorem 2 is a direct consequence of Propositions 24 and 26.

6.2 Improved kernel for Connected k-Vertex Cover
We present here a kernelization algorithm for Connected k-Vertex Cover on bounded
twin-width graphs which leads to an instance on O(k1.5) vertices, and a simple linear kernel
when the input class is further restricted to be sparse, that is, Ks,s-free.

Let X be a vertex cover of G, and let Xb (resp. Xs) be the subsets of X containing
all vertices of X with at least k + 1, respectively at most k, neighbors in V (G) \ X. Let
Y1, . . . , Yq be the partition of V (G) \ X into maximal modules. For each i ∈ [q], let Xi be
the neighbors of Yi in Xs.

▶ Reduction Rule 3. If there is i ∈ [q] with Xi ̸= ∅ and |Yi| ⩾ |Xi| + 2, then delete a vertex
of Yi.

▶ Lemma 27. Let G be a graph and G′ be a graph obtained by applying Reduction Rule 3.
Then (G, k) is a yes-instance to Connected k-Vertex Cover if and only if (G′, k) is.



É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, R. Watrigant 27

Proof. Let Yi ⊆ V (G) \ X be a module within which Reduction Rule 3 is applied, and y ∈ Yi

be the deleted vertex, that is, such that G′ := G−y. Set Y ′
i := Yi \{y}. We first observe that

the vertices of Xb are mandatory for any feasible solution to (G′, k). Let T be an arbitrary
connected vertex cover of G′ of size at most k.

▷ Claim 28. Xb ⊆ T .

Proof of the Claim: Suppose some vertex w ∈ Xb is not contained in T and thus all its
neighbors belong to T . Note that w has at least k neighbors outside X in G′, even when
the deleted vertex y was a neighbor of w in G. We conclude that T = NG′(w) \ X, which
contradicts that G′[T ] is connected. ♢

Because there are all possible edges between Y ′
i and Xi, T must contain at least one of

Y ′
i and Xi entirely. The next claim says that T can be assumed to fully contain Xi.

▷ Claim 29. Let y′ be a vertex of Y ′
i . If Y ′

i ⊆ T , then T ′ := (T \ Y ′
i ) ∪ (Xi ∪ {y′}) is a

connected vertex cover of G′ of size at most k.

Proof of the Claim: Notice that Xb ∪ Xi is the neighborhood of Y ′
i in G′. By Claim 28,

T ′ is clearly a vertex cover of G′ and y′ provides any connection between a pair of vertices
in T ′ that Y ′

i used to provide. Finally, that Y ′
i is obtained from Yi after Reduction Rule 3

means that |Y ′
i | ⩾ |Xi| + 1 = |Xi ∪ {y′}|, and thus |T ′| ⩽ |T |. ♢

Due to Claim 29, we may assume that T contains Xi. Now for any edge xy incident
with the deleted vertex y, x is either in Xb or Xi, and thus the edge xy is covered by T

by Claim 28 and the assumption Xi ⊆ T . It follows that T is a feasible solution to (G, k).
Conversely, let T be a connected vertex cover of (G, k) of size at most k. Following the

same arguments as the above claims, one can easily check that T must contain both Xb and
Xi, and contains at most one vertex of Yi. As we can modify T so that it does not contain y,
T is a feasible solution to (G′, k). ◀

▶ Proposition 30. Connected k-Vertex Cover admits a kernel on Ot(k1.5) vertices
when the input graphs have twin-width at most t.

Proof. Let (G, k) be the input instance of Connected k-Vertex Cover. We can safely
remove any isolated vertex, and assume that every connected component of G contains at
least one edge. If G contains more than one connected component, then clearly (G, k) is a
no-instance and we output the 4-vertex graph with two isolated edges. Therefore, we can
assume that G is connected. With a 2-approximation algorithm for Vertex Cover, one
can find a vertex cover X of G and assume that |X| ⩽ 2k. Indeed if this is not the case,
we can correctly output a trivial no-instance because G does not admit a connected vertex
cover of size at most k.

Note that Reduction Rule 3 does not disconnect the given graph as we remove a vertex only
when it has a twin. Let (G′, k) be an instance obtained by exhaustively applying Reduction
Rule 3 with the vertex cover X at hand. We classify X into Xb and Xs as before, and
Y1, . . . , Yq denote the partition of Y := V (G′) \ X into maximal modules. For each i ∈ [q],
Xi is the neighbors of Yi in Xs. By Lemma 3, we have q ⩽ 2 · 24c2t+2k. Because the edge set
between Xs and Y is decomposed into the edge sets of complete bipartite graphs on (Yi, Xi)
over i ∈ [q], the number of edges between Xs and Y is at least

q∑
i=1

|Yi| · |Xi| ⩾
q∑

i=1
(|Yi| − 1)2 ⩾

1
q

·

(
q∑

i=1
(|Yi| − 1)

)2

⩾
1
q

· (|Y | − q)2.
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Suppose that |Y | − q > 2 · 22c2t+2 · k1.5. Now,

1
q

· (|Y | − q)2 >
4 · 24c2t+2 · k3

2 · 24c2t+2 · k
= 2k2,

and hence there are more than 2k2 edges between Xs and Y . With |Xs| ⩽ 2k, this implies
that there exists a vertex in Xs which has more than k neighbors in Y , contradicting the
definition of Xs. To conclude, G′ has at most

|X| + |Y | ⩽ 2k + 2 · 22c2t+2 · k1.5 + q ⩽ 2k + 2 · 22c2t+2 · k1.5 + 2 · 24c2t+2 · k = Ot(k1.5)

vertices as claimed. ◀

Note that the proof of Proposition 30 only uses the fact that the input graphs have VC
density at most 1, so we in fact established Theorem 4.

7 Graphs of twin-width 1

Cycles on at least five vertices and their complements have twin-width 2. Thus graphs of
twin-width 1 do not have induced cycles of length at least 5, nor their complements. In
particular, they are perfect. Hence computing the independence, clique, and coloring numbers
can be done in polynomial-time [34].

Graphs of twin-width 0 are cographs, and can be recognized in linear time [36]. It turns
out that twin-width 1 graphs are also efficiently recognizable. For that, we need the following
technical lemma.

▶ Lemma 31. Let G be a prime graph of twin-width 1, and let G = Gn, . . . , G2, G1 be a
1-contraction sequence. Then the trigraphs Gi have exactly one red edge, except for Gn and
G1 which have no red edge.

Proof. The idea of the proof is to start with the 3-vertex trigraph G3 and to rewind the
contraction sequence back to Gn = G. Let a, b, c be the three vertices of G3. Since G3 is a
1-trigraph, there is at most one red edge in G3. Since G is a prime graph, there has to be
at least one red edge in G3, say between b and c. Furthermore, a has to be a vertex in G,
otherwise a(G) is a module of size at least two in G. Moreover, a is adjacent to, say, b, but
non-adjacent to the other vertex, c since otherwise b(G) ∪ c(G) is a module.

We show by induction the following property (P) for i ∈ [2, n − 1]:

Property P: in Gi, there is exactly one red edge, say, uv (u and v can depend on i) and all
the vertices that are not u nor v are original vertices of G.

We already observed that Property P holds for G3. It also holds for G2 because G contains no
non-trivial module. Assuming that Gi satisfies Property P for some i ∈ [3, n − 2], let us prove
that Gi+1 also satisfies Property P. Let uv be the red edge in Gi. By assumption, all the
other vertices are vertices in G. Hence, the graph Gi+1 is obtained from Gi by splitting u or
v, say u, into two vertices u1 and u2. Now, there is at most one red edge in Gi+1[{u1, u2, v}]
since otherwise a vertex shall be incident with two red edges. Recall that at least one vertex
of Gi+1, thus one of {u1, u2, v} is not an original vertex of G. Such a vertex must be incident
with a red edge because it is not a module. Therefore, Gi+1[{u1, u2, v}] has a unique red
edge. Without loss of generality, assume that the red edge is u2v. Again, u1 should be an
original vertex of G, i.e., |u1(G)| = 1, because it has no incident red edge and therefore u1(G)
forms a module. So Property P holds for Gi+1. ◀
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We can efficiently detect graphs of twin-width 1 using the previous lemma and an inductive
scheme.

▶ Theorem 32. Twin-width 1 graphs can be recognized in polynomial time. Moreover, a
1-contraction sequence where each trigraph has at most one red edge can be constructed in
polynomial time.

Proof. Let G be a given graph. We show by induction on n, the number of vertices of G,
how to decide whether or not it has twin-width 1. If G has one vertex, it has twin-width 1
(even 0). If G is not a prime graph, then each maximal module of G and the quotient graph
of G by its (pairwise disjoint) maximal modules all have at most n − 1 vertices. So Lemma 9
and the inductive step allow us to conclude. We can therefore assume that G is a prime
graph.

As a technicality, it is more convenient to assume that G is a trigraph with exactly one
red edge. We can in quadratic time guess the first 1-contraction (which creates exactly one
red edge since the contractions of twins are safe by Observation 6). Recall that G has exactly
one red edge, say uv. Let us establish the next 1-contraction. By Lemma 31, we can limit
ourselves to contractions which keep the number of red edges to at most one. Therefore, the
next contraction cannot be between two vertices in V (G) \ {u, v}. Indeed, that would either
add at least one new red edge to the trigraph or the two contracted vertices would be twins,
and as such, in a module of size at least two.

Any contraction between w ∈ V (G) \ {u, v} and u (or v) that creates a new red edge
can be disregarded again by Lemma 31. The only way that such a contraction does not
increase the number of red edges is if the contraction actually results in the induced subgraph
G − {w}. By Observation 6, this contraction can be safely performed. When no such safe
contraction is available, we know that only the current red edge can possibly be contracted.
Hence, we can safely make this contraction, and we obtain a new graph with n − 1 vertices.
Observe that in this process, we never branch on two possible contractions.

The second statement immediately follows by concatenating the 1-contraction sequence
of modules and the quotient graph, each of twin-width at most 1, as in Lemma 9. ◀

We remark that polynomial time algorithms are not hard to obtain for, say, Connected
k-Vertex Cover, k-Dominating Set or Connected k-DS, when a 1-contraction sequence
as in Theorem 32 is given. Consider Connected k-Vertex Cover for instance. For each
red component, we "trace" a partial solution X, i.e., a vertex set covering all original edges
whose endpoints belong to the said red component, by recording for each vertex u of the
component whether u(G) is fully contained in X, intersecting (but not fully contained in) X,
or not intersecting at all. Among all partial solutions leaving the same trace over the red
component, we remember the minimum size of a solution. One can readily check that the
optimal value of a partial solution per trace can be updated in constant time for each newly
created red component.

Readers may further notice that this dynamic programming works not only when there
is at most one red edge, but more generally when a red component size is bounded by a
constant. In a manuscript under preparation, the authors show that MSOL1-expressible
problems can be solved in f(d) · nO(1)-time if the input graph admits a contraction sequence
in which each red component has size at most d.
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