
1

Twin-width I: tractable FO model checking∗

ÉDOUARD BONNET, Univ Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, LIP UMR5668,

France

EUN JUNG KIM, Université Paris-Dauphine, PSL University, CNRS UMR, LAMSADE, France

STÉPHAN THOMASSÉ, Université de Lyon (COMUE), CNRS, ENS de Lyon, Université Claude-Bernard

Lyon 1, LIP, France and Institut Universitaire de France

RÉMI WATRIGANT, Univ Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, LIP UMR5668,

France

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA ’14], we introduce the

notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs,

map graphs, 𝐾𝑡 -free unit 𝑑-dimensional ball graphs, posets with antichains of bounded size, and proper

subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs

without geometric embedding) we show how to compute in polynomial time a sequence of 𝑑-contractions,

witness that the twin-width is at most 𝑑 . We show that FO model checking, that is deciding if a given first-order

formula 𝜙 evaluates to true for a given binary structure 𝐺 on a domain 𝐷 , is FPT in |𝜙 | on classes of bounded

twin-width, provided the witness is given. More precisely, being given a 𝑑-contraction sequence for𝐺 , our

algorithm runs in time 𝑓 (𝑑, |𝜙 |) · |𝐷 | where 𝑓 is a computable but non-elementary function. We also prove that

bounded twin-width is preserved under FO interpretations and transductions (allowing operations such as

squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter

tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width

posets by Gajarský et al. [FOCS ’15].

CCS Concepts: • Design and analysis of algorithms → Graph algorithms analysis; Parameterized
complexity and exact algorithms; • Logic → Finite Model Theory;

Additional Key Words and Phrases: Contraction sequence, FO model checking, fixed-parameter tractability

ACM Reference Format:
Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. 2020. Twin-width I: tractable FO

model checking. J. ACM 1, 1, Article 1 (January 2020), 46 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗
An extended abstract of this paper will appear at FOCS 2020. The first, third, and fourth authors were supported by

the ANR project DIGRAPHS (ANR-19-CE48-0013-01), while the second author was supported by the ANR project ASSK

(ANR-18-CE40-0025-01) from French National Research Agency.

Authors’ addresses: Édouard Bonnet, Univ Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, LIP UMR5668, Lyon,

France, edouard.bonnet@ens-lyon.fr; Eun Jung Kim, Université Paris-Dauphine, PSL University, CNRS UMR, LAMSADE,

Paris, 75016, France, eun-jung.kim@dauphine.fr; Stéphan Thomassé, Université de Lyon (COMUE), CNRS, ENS de Lyon,

Université Claude-Bernard Lyon 1, LIP, Lyon, France, Institut Universitaire de France, stephan.thomasse@ens-lyon.fr;

Rémi Watrigant, Univ Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, LIP UMR5668, Lyon, France, remi.

watrigant@ens-lyon.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0004-5411/2020/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

1 INTRODUCTION
Measuring how complex a class of structures is often depends on the context. Complexity can be

related to algorithms (are computations easier on the class?), counting (how many structures exist

per slice of the class?), size (can structures be encoded in a compact way?), decomposition (can

structures be built with easy operations?), and so on. The most successful and central complexity

invariants like treewidth and VC-dimension tick many of these boxes and, as such, stand as

cornerstone notions in both discrete mathematics and computer science.

In 2014, Guillemot and Marx [30] solved a long-standing question by showing that detecting a

fixed pattern in some input permutation can be done in linear time. This result came as a surprise:

Many researchers thought the problem was W[1]-hard since all known techniques had failed so far.

In their paper, Guillemot and Marx observed that their proof introduces a parameter and a dynamic

programming scheme of a new kind and wondered whether a graph-theoretic generalization of

their permutation parameter could exist.

The starting point of our paper is to answer that question positively, by generalizing their width

parameter to graphs and even matrices. This new notion, dubbed twin-width, proves remarkably

well connected to other areas of computer science, logic, and combinatorics. We will show that

graphs of bounded twin-width define a very natural class with respect to computational complexity

(FO model checking is linear), to model theory (they are stable under first-order interpretations),

to enumerative combinatorics (they form small classes [5]), and to decomposition methods (as a

generalization of both proper minor-closed and bounded rank-width/clique-width classes).

1.1 A dynamic generalization of cographs
When it comes to graph decompositions, arguably one of the simplest graph classes is the class

of cographs. Starting from a single vertex, cographs can be built by iterating disjoint unions and

complete sums. Another way to decompose cographs is to observe that they always contain

twins, that is two vertices 𝑢 and 𝑣 with the same neighborhood outside {𝑢, 𝑣} (hence contracting
𝑢, 𝑣 is equivalent to deleting 𝑢). Cographs are then exactly graphs which can be contracted to a

single vertex by iterating contractions of twins. Generalizing the decomposition by allowing more

complex bipartitions provides the celebrated notions of clique-width and rank-width, which extends

treewidth to dense graphs. However, bounded rank-width do not capture simple graphs such as

unit interval graphs which have a simple linear structure, and allow polynomial-time algorithms

for various problems. Also, bounded rank-width does not capture large 2-dimensional grids, on

which we know how to design FPT algorithms.

The goal of this paper is to propose a width parameter which is not only bounded on 𝑑-

dimensional grids, proper minor-closed classes and bounded rank-width graphs, but also provides a

very versatile and simple scheme which can be applied to many structures, for instance, patterns of

permutations, hypergraphs, and posets. The idea is very simple: a graph has bounded twin-width if

it can be iteratively contracted to a singleton, where each contracted pair consists of near-twins

(two vertices whose neighborhoods differ only on a bounded number of elements). The crucial

ingredient to add to this simplified picture is to keep track of the errors with another type of edges,

that we call red edges, and to require that the degree in red edges remains bounded by a threshold,

say 𝑑 .

In a nutshell (a more formal definition will be given in Section 3), we consider a sequence of

graphs 𝐺𝑛,𝐺𝑛−1, . . . ,𝐺2,𝐺1, where 𝐺𝑛 is the original graph 𝐺 , 𝐺1 is the one-vertex graph, 𝐺𝑖 has 𝑖

vertices, and 𝐺𝑖−1 is obtained from 𝐺𝑖 by performing a single contraction of two (non-necessarily

adjacent) vertices. For every vertex 𝑢 ∈ 𝑉 (𝐺𝑖), let us denote by 𝑢 (𝐺) the vertices of 𝐺 which have

been contracted to𝑢 along the sequence𝐺𝑛, . . . ,𝐺𝑖 . A pair of disjoint sets of vertices is homogeneous

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:3

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

𝑎

𝑏

𝑐

𝑑

𝑔𝑒

𝑓

ef

𝑏

𝑐

𝑔𝑒 𝑓

𝑎 𝑑ad

𝑐

𝑔

𝑎𝑑

𝑏 𝑒 𝑓bef

𝑐

adg

bef

adg

bcef

abcdefg

Fig. 1. A 2-sequence of contractions to a single vertex shows that the original graph has twin-width at most 2.

if, between these sets, there are either all possible edges or no edge at all. The red edges mentioned

previously consist of all pairs 𝑢𝑣 of vertices of 𝐺𝑖 such that 𝑢 (𝐺) and 𝑣 (𝐺) are not homogeneous

in 𝐺 . If the red degree of every 𝐺𝑖 is at most 𝑑 , then 𝐺𝑛,𝐺𝑛−1, . . . ,𝐺2,𝐺1 is called a sequence of

𝑑-contractions, or 𝑑-sequence. The twin-width of 𝐺 is the minimum 𝑑 for which there exists a

sequence of 𝑑-contractions. Hence, graphs of twin-width 0 are exactly the cographs (since a red

edge never appears along the sequence when contracting twins). See Fig. 1 for an illustration of a

2-sequence.

1.2 How to compute the contraction sequences?
Given an arbitrary graph or binary structure, it seems tremendously hard to compute a good –let

alone, optimum– contraction sequence. Fortunately on classes with bounded twin-width, for which

this endeavor is algorithmically useful (in light of Theorem 1.1), we can often exploit structural

properties of the class to achieve our goal. In Section 4 we present a simple polynomial-time

algorithm outputting a (2𝑘+1 − 1)-contraction sequence on graphs of boolean-width at most 𝑘

(see Theorem 4.2) and a linear-time algorithm for a 3𝑑-contraction sequence of (subgraphs of) the

𝑑-dimensional grid of side-length 𝑛 (see Theorem 4.3). The bottleneck for the former algorithm

would lie in finding the boolean-width decomposition in the first place. The latter result enables to

find in polynomial time (3⌈
√
𝑑⌉)𝑑𝑘-contraction sequences for unit 𝑑-dimensional ball graphs with

clique number 𝑘 , provided the geometric representation is given.

For other classes, such as planar graphs, directly finding the sequence proves challenging.

Therefore we design in Section 5 a framework that reduces this task to finding an ordering 𝜎 –later

called mixed-free order– of the 𝑛 vertices such that the adjacency matrix 𝐴 written compliantly

to 𝜎 is simple. Here by “simple” we mean that 𝐴 cannot be divided into a large number of blocks

of consecutive rows and columns, such that no cell of the division is vertical (repetition of the

same row subvector) or horizontal (repetition of the same column subvector). An important local

object to handle this type of division is the notion of corner, namely a consecutive 2-by-2 submatrix

which is neither horizontal nor vertical. The principal ingredient to show that simple matrices have

bounded twin-width is the use of a theorem by Marcus and Tardos [34] which states that 𝑛 × 𝑛

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

binary structure 𝐺

of bounded twin-width

binary structure 𝐺

of bounded twin-width

𝑡-mixed-free order

𝑑-contraction sequence

𝐺 = 𝐺𝑛, . . . ,𝐺1 = 𝐾1

𝑑-contraction sequence

𝐺 = 𝐺𝑛, . . . ,𝐺1 = 𝐾1

Section 6

𝑛𝑂 (1)
Theorem 5.4

𝑛𝑂 (1)

Section 4

𝑛𝑂 (1)

reduced morphism-tree

𝑀𝑇 ′
ℓ (𝐺) of size ℎ(ℓ)

reduced morphism-tree

𝑀𝑇 ′
ℓ (𝐺) of size ℎ(ℓ)

Query 𝐺 |= 𝜙
for any prenex 𝜙 of depth ℓ

Query 𝐺 |= 𝜙
for any prenex 𝜙 of depth ℓ

Theorem 7.5

𝑂ℓ,𝑑 (𝑛)

Lemma 7.4

𝑂ℓ (1)

Fig. 2. The overall workflow. Two paths are possible to get a 𝑑-contraction sequence from a bounded twin-
width structure𝐺 . Either a direct polytime algorithm as for bounded boolean-width, or via a domain-ordering
yielding a 𝑡-mixed free matrix followed by Theorem 5.4 which converts it into a 𝑑-contraction sequence. From
there, a tree of constant size (function of ℓ only) can be computed in linear FPT time. This tree captures the
evaluation of all prenex sentences 𝜙 on ℓ variables for 𝐺 . Queries “𝐺 |= 𝜙” can then be answered in constant
time.

0,1-matrices with at least 𝑐𝑛 1 entries (for a large enough constant 𝑐) admit large divisions with at

least one 1 entry in each cell. This result is at the core of Guillemot and Marx’s algorithm [30] to

solve Permutation Pattern in linear FPT time. As we now apply the Marcus-Tardos theorem to

the corners (and not the 1 entries), we bring this engine to the dense setting. Indeed the matrix can

be packed with 1 entries, and yet we learn something non-trivial from the number of corners.

By the Marcus-Tardos theorem the number of corners cannot be too large, otherwise the matrix

would not be simple. From this fact, we are eventually able to find two rows or two columns

with sufficiently small Hamming distance. Therefore they can be contracted. Admittedly some

technicalities are involved to preserve the simplicity of the matrix throughout the contraction

process. So we adopt a two-step algorithm: In the first step, we build a sequence of partition

coarsenings over the matrix, and in the second step, we extract the actual sequence of contractions.

The overall algorithm taking 𝐴 (or 𝜎) as input, and outputting the contraction sequence, takes

polynomial time in 𝑛. It can be implemented in quadratic time, or even faster if instead of the raw

matrix, we get a list of pointers to corners of 𝐴.

We shall now find mixed-free orders. Section 6 is devoted to this task for three different classes.

Dealing with permutations avoiding a fixed pattern (equivalently, a proper subclass of posets of

dimension 2), the order is easy to find: it is imposed. For posets of bounded width (that is, maximum

size of an antichain or minimum size of a chain partition), a mixed-free order is attained by putting

the chains in increasing order, one after the other. Finally for 𝐾𝑡 -minor free graphs, a Hamiltonian

path would provide a good order. As we cannot always expect to find a Hamiltonian path, we

simulate it by a specific Lex-DFS. The top part of Fig. 2 provides a visual summary of this section.

1.3 How general are classes of bounded twin-width?
As announced in the previous section, we will show that proper minor-closed classes have bounded

twin-width. As far as we know, all classes of polynomial expansion may also have bounded twin-

width. However on the one hand, as we will show in an upcoming paper [5], cubic graphs have

unbounded twin-width, whereas on the other hand, cliques have twin-width 0. Thus bounded

twin-width is incomparable with bounded degree, bounded expansion, and nowhere denseness.

Examples of graphs for which it is easy to show unbounded twin-width include line graphs of

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:5

bipartite complete graphs (also known as rook graphs), high-degree graphs with girth at least 5, and

Erdős-Rényi random graphs drawn from G(𝑛, 1/2). Indeed in all three cases, the first contraction

would already create a vertex with large red degree, since no pair of near-twins exists.

Nowhere dense classes are stable, that is, no arbitrarily-long total order can be first-order

interpreted from graphs of this class. In particular, unit interval graphs are not FO interpretations

(even FO transductions, where in addition copying the structure and coloring it with a constant

number of unary relations is allowed) of nowhere dense graphs. Thus even any class of first-

order transductions of nowhere dense graphs, called structurally nowhere dense, is incomparable

with bounded twin-width graphs. There have been recent efforts aiming to eventually show

that FO model checking is fixed-parameter tractable on any structurally nowhere dense class.

Gajarský et al. [24] introduce near-uniform classes based on a so-called near-𝑘-twin relation, and

the equivalent near-covered classes. They show that FOmodel checking admits an FPT algorithm on

near-covered classes, and that these classes correspond to FO interpretations (even transductions)

of bounded-degree graph classes. Let us observe that the near-𝑘-twin relation, as well as the related

neighborhood diversity [33], can be thought as a static version of our twin-width. Gajarský et

al. [27] gave the first step towards an FPT algorithm on classes with structurally bounded expansion

by characterizing them via low shrub-depth decompositions. A second step was realized by Gajarský

and Kreutzer who presented a direct FPT algorithm computing shrub-depth decompositions [26].

Despite cubic graphs having unbounded twin-width, some particular classes with bounded

degree, such as subgraphs of 𝑑-dimensional grids, have bounded twin-width. More surprisingly,

some classes of expanders, will be shown to have bounded twin-width [5]. This showcases the

ubiquity of bounded twin-width, and the wide scope of Theorem 1.1. As we will generalize twin-

width to matrices, in order to handle permutations, posets, and digraphs, we can potentially define

a twin-width notion on hypergraphs, groups, and lattices. Furthermore we will see next that FO

transductions preserve bounded twin-width.

As we saw, bounded twin-width proves to be quite rich. The main algorithmic application

presented in this paper is the design of a linear-time FPT algorithm for FO model checking on

binary structures with bounded twin-width, provided a sequence of 𝑑-contractions is given.

1.4 FO model checking
A natural algorithmic question given a graph class C (i.e., a set of graphs closed under isomorphism)

is whether or not deciding first-order formulas 𝜑 on graphs 𝐺 ∈ C can be done in time whose

superpolynomial blow-up is a function of |𝜑 | and C only. A line of works spanning two decades

settled this question for monotone (that is, closed under taking subgraphs) graph classes. It was

shown that one can decide first-order (FO) formulas in fixed-parameter time (FPT) in the formula

size on bounded-degree graphs [38], planar graphs, andmore generally, graphs with locally bounded

treewidth [20], 𝐻 -minor free graphs [18], locally 𝐻 -minor free graphs [14], classes with (locally)

bounded expansion [15], and finally nowhere dense classes [29]. The latter result generalizes all

previous ones, since nowhere dense graphs contain all the aforementioned classes. Let us observe

that the dependency on |𝑉 (𝐺) | of the FPT model checking algorithm on classes with bounded

expansion is linear [15], while it is almost linear (i.e., |𝑉 (𝐺) |1+Y for every Y > 0) for nowhere dense

classes [29]. In sharp contrast, if a monotone class C is not nowhere dense then FO model checking

on C is AW[∗]-complete [32], hence highly unlikely to be FPT. Thus the result of Grohe et al. [29]

gives a final answer in the case of monotone classes. We refer the reader interested in structural

and algorithmic properties of nowhere dense classes to Nestril and Ossona de Mendez’s book [35].

Since then, the focus has shifted to the complexity of model checking on (dense) non-monotone

graph classes. Our main result is that FOmodel checking is FPT on classes with bounded twin-width.

More precisely, we show that:

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded

degree

sparse

classes

bounded twin-width

bounded

rank-width

cographs

posets of

bounded

width

𝐿-interval

unit interval

pattern

avoiding

permuta-

tions

map

graphs

dense

classes

Fig. 3. Hasse diagram of classes on which FO model checking is FPT, with the newcomer twin-width. The
dash-dotted edge means that polynomial expansion may well be included in bounded twin-width. Bounded
twin-width and nowhere dense classes roughly subsume all the current knowledge on the fixed-parameter
tractability of FOmodel checking. Do they admit a natural common superclass still admitting an FPT algorithm
for FO model checking?

Theorem 1.1. Given an 𝑛-vertex (di)graph 𝐺 , a sequence of 𝑑-contractions 𝐺 = 𝐺𝑛,𝐺𝑛−1, . . . ,𝐺1 =

𝐾1, and a first-order sentence 𝜑 , we can decide 𝐺 |= 𝜑 in time 𝑓 (|𝜑 |, 𝑑) · 𝑛 for some computable, yet

non-elementary, function 𝑓 .

This unifies and extends known FPT algorithms for

• 𝐻 -minor free graphs [18],

• posets of bounded width (i.e., size of the largest antichain) [23],

• permutations avoiding a fixed pattern [30]
1
and hereditary (that is, closed under taking

induced subgraphs) proper subclasses of permutation graphs,

• graphs of bounded rank-width or bounded clique-width [13],
2

since we will establish that these classes have bounded twin-width, and that, on them, a sequence

of 𝑑-contractions can be found efficiently. By transitivity, this also generalizes the FPT algorithm for

𝐿-interval graphs [28], and may shed a new unified light on geometric graph classes for which FO

model checking is FPT [31]. In that direction we show that a large class of geometric intersection

graphs with bounded clique number, including 𝐾𝑡 -free unit 𝑑-dimensional ball graphs, admits such

an algorithm. We also show that map graphs have bounded twin-width but we only provide a

𝑑-contraction sequence when the input comes with a planar embedding of the map. FO model

checking was proven FPT on map graphs even when no geometric embedding is provided [16]. See

Fig. 3 for the Hasse diagram of classes with a fixed-parameter tractable FO model checking.

Permutation patterns can be represented as posets of dimension 2. Any proper hereditary subclass

of posets of dimension 2 contains all permutations avoiding a fixed pattern. In turn, posets can be

encoded by directed graphs (or digraphs), with an arc from 𝑢 to 𝑣 if 𝑢 is smaller than 𝑣 . Thus we

formulated Theorem 1.1 with graphs and digraphs, to cover all the classes of bounded twin-width

listed after the theorem (in particular, permutations excluding a fixed pattern). Twin-width and

the applicability of Theorem 1.1 is actually broader: one may replace “an 𝑛-vertex (di)graph 𝐺”

1
Guillemot andMarx show that Permutation Pattern (not FOmodel checking in general) is FPTwhen the host permutation

avoids a pattern, then a win-win argument proper to Permutation Pattern allows them to achieve an FPT algorithm for

the class of all permutations.

2
for this class, even deciding MSO1 is FPT, which is something that we do not capture.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:7

by “a binary structure 𝐺 on a domain of size 𝑛” in the statement of the theorem, where a binary

structure is a finite set of binary relations.

Roadmap for the proof of Theorem 1.1. Instead of deciding “𝐺 |= 𝜑” for a specific sentence 𝜑 , we
build in FPT time a tree which contains enough information to answer all the queries of the form

“is 𝜙 true on 𝐺?,” for every prenex sentence 𝜙 on ℓ variables. A prenex sentence 𝜙 starts with a

quantification (existential and universal) over the ℓ variables, followed, in the case of graphs, by a

Boolean combination 𝜙 ′(𝑥1, . . . , 𝑥ℓ) of atoms of the form 𝑥 = 𝑦 (interpreted as: vertex 𝑥 is vertex 𝑦)

and 𝐸 (𝑥,𝑦) (interpreted as: there is an edge between 𝑥 and 𝑦). A simple but important insight is

that once Existential and Universal players have chosen the assignment 𝑣1, . . . , 𝑣ℓ , the truth of

𝜙 ′(𝑣1, . . . , 𝑣ℓ) only depends on the induced subgraph 𝐺 [{𝑣1, . . . , 𝑣ℓ }] and the pattern of equality

classes of the tuple (𝑣1, . . . , 𝑣ℓ). Indeed the latter pair carries the truth value of each possible atom.

Imagine now the complete tree of all the possible “moves” assigning vertex 𝑣𝑖 to variable 𝑥𝑖 . Let

us call it the game tree for now (later it will be called morphism-tree). This tree has arity |𝑉 (𝐺) |
and depth ℓ . Thus it is too large to explicitly compute. However, up to labeling its different levels

with ∃ and ∀, it contains what is needed to evaluate any ℓ-variable prenex formula on𝐺 . It actually

contains way too much information. Assume, for instance, that two of its leaves 𝑣ℓ , 𝑣
′
ℓ with the same

parent node define the same induced subgraph 𝐺 [{𝑣1, . . . , 𝑣ℓ−1, 𝑣ℓ }] � 𝐺 [{𝑣1, . . . , 𝑣ℓ−1, 𝑣 ′ℓ }] and the

same pattern of equality classes. Then it is safe to delete the “move 𝑣 ′ℓ” from the possibilities of

whichever player shall play at level ℓ . Indeed “move 𝑣ℓ” is perfectly equivalent: As it sets to true

the same list of atoms, it will satisfy exactly the same formulas 𝜙 ′
, irrelevant of the nature of the

quantifier preceding 𝑥ℓ . This notion of equivalent sibling nodes can be generalized to any level of

the game tree. If one iteratively deletes equivalent moves (and their subtrees) while possible, it can

be observed that the resulting tree is of size bounded by ℓ only. We call reduct such a tree.

Now the contraction sequence comes in. Actually, more convenient here than the successive

trigraphs𝐺 = 𝐺𝑛,𝐺𝑛−1, . . . ,𝐺1, we consider the corresponding partition sequence: P𝑛,P𝑛−1, . . . ,P1,

where P𝑖 is the partition {𝑢 (𝐺) | 𝑢 ∈ 𝑉 (𝐺𝑖)} of 𝑉 (𝐺). Recall that 𝑢 (𝐺) denotes the set of vertices
of 𝐺 contracted into the single vertex 𝑢 ∈ 𝑉 (𝐺𝑖). Recall also that two parts of P𝑖 are homogeneous

if they are fully adjacent or fully non-adjacent in 𝐺 . Let 𝐺P𝑖
be the graph whose vertices are the

parts of P𝑖 , and edges link every pair of non-homogeneous parts. This graph is actually made of

the red edges of trigraph 𝐺𝑖 . We extend game trees and their reducts to partitioned graphs (𝐺,P𝑖),
where equivalent moves have to further respect the partition. More specifically we are interested in

reducts of local game trees, i.e., game trees where all the moves are played in the close neighborhood

of a fixed vertex of 𝐺P𝑖
, or equivalently a fixed part of P𝑖 .

By dynamic programming, we will maintain for 𝑖 going from 𝑛 down to 1, every game tree local

to part 𝑃 ∈ P𝑖 . P𝑛 is a partition into singletons {𝑣} (for each 𝑣 ∈ 𝑉 (𝐺)), so the local game tree is

easy to determine, and is naturally a reduct. Indeed all the variables can only be instantiated to

𝑣 , hence a simple tree of out-degree 1. P1 is the trivial partition {𝑉 (𝐺)}. So the reduct of its local

game tree coincides with the reduct of the (global) game tree, which is exactly what we are looking

for.

Say that, to go from P𝑖+1 to P𝑖 , we fuse two sets 𝑋
′
𝑖 , 𝑋

′′
𝑖 into 𝑋𝑖 . We shall now update the reducts

of the local game trees in (𝐺,P𝑖). For the parts that are far enough from 𝑋𝑖 , the local game trees

(and their reducts) are unchanged. Thus no update is needed. This is because these parts are too far

to “interact” with 𝑋𝑖 via non-homogeneous pairs of parts.

We therefore focus on the parts 𝑃 that are close to 𝑋𝑖 in 𝐺P𝑖
. We first combine, by a shuffle

operation, a bounded (by a function of the depth ℓ and the twin-width 𝑑) number of reducts of

game trees that are local to parts 𝑃 ′
sufficiently close to 𝑃 . We then strategically prune redundant

nodes, and delete further equivalent nodes. The aggregation of the two former steps is dubbed

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

pruned shuffle and is the central operation of our algorithm. To finally obtain the desired updated

reduct, we project the pruned shuffle on the nodes that are inherently rooted at 𝑃 . To be formalized

the latter requires to introduce an auxiliary graph, called tuple graph, and a notion of local root.

These objects are instrumental in handling overlap or redundant information.

A crucial aspect of the algorithm relies on the following fact, reminiscent of the Feferman-Vaught

theorem [17]. If two connected subsets, say, 𝑋 and 𝑌 of 𝐺P𝑖+1 are united in 𝐺P𝑖
, the reducts of

games trees local to a part of 𝑋 ∪ 𝑌 are simply obtained by interleaving (actually shuffling) the

reducts of game trees local to parts of 𝑋 with reducts of game trees local to parts of 𝑌 . Indeed

pairs of parts in (𝑋,𝑌) are by construction homogeneous to each other, so the precise choices of

vertices within these parts is immaterial. We finally observe that at each step 𝑖 , we are updating a

bounded number of reducts of bounded size. Therefore the overall algorithm takes linear FPT time

(see bottom part of Fig. 2).

We take a very combinatorial stance towards FO model checking. Formulas are quickly converted

into trees whose nodes are naturallymapped to subgraphs induced by tuples. Our use of the bounded-

degree graphs𝐺P𝑖
(red graphs) should remind of Gaifman’s locality theorem [22]. And indeed, it is

an exact transcription of it in combinatorial terms. Apart from the fact that every sentence can

be put in prenex normal form, our algorithm and its presentation in Section 7 are self-contained,

thereby not assuming from the reader any knowledge in finite model theory. As a by-product of

the algorithm, we will show that bounded twin-width is preserved under FO interpretations and

transductions, which makes it a robust class as far as first-order model checking is concerned.

1.5 Organization of the paper
Section 2 gives the necessary graph-theoretic and logic background. In Section 3 we formally

introduce contraction sequences and the twin-width of a graph. In Section 4 we get familiar with

these new notions. In particular we show with direct arguments that bounded rank-width graphs,

𝑑-dimensional grids, and unit𝑑-dimensional ball graphs with bounded clique number, have bounded

twin-width. In Section 5 we extend twin-width to matrices and show a grid-minor-like theorem,

which informally states that a graph has large twin-width if and only if all its vertex orderings yield

an adjacency matrix with a complex large submatrix. This turns out to be a useful characterization

for the next section. In Section 6 we show how, thanks to this characterization, we can compute a

witness of bounded twin-width, for permutations avoiding a fixed pattern, comparability graphs

with bounded independence number (equivalently, bounded-width posets), and 𝐾𝑡 -minor free

graphs. In Section 7 we present a linear-time FPT algorithm for FO model checking on graphs

given with a witness of bounded twin-width. In Section 8 we show that FO interpretations (even

transductions) of classes of bounded twin-width still have bounded twin-width. Finally in Section 9

we list a handful of promising questions left for future work.

2 PRELIMINARIES
We denote by [𝑖, 𝑗] the set of integers {𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗}, and by [𝑖] the set of integers [1, 𝑖]. If X
is a set of sets, we denote by ∪X the union of them.

2.1 Graph definitions and notations
All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by 𝑉 (𝐺),
respectively 𝐸 (𝐺), the set of vertices, respectively of edges, of the graph 𝐺 . For 𝑆 ⊆ 𝑉 (𝐺), we
denote the open neighborhood (or simply neighborhood) of 𝑆 by 𝑁𝐺 (𝑆), i.e., the set of neighbors of
𝑆 deprived of 𝑆 , and the closed neighborhood of 𝑆 by 𝑁𝐺 [𝑆], i.e., the set 𝑁𝐺 (𝑆) ∪ 𝑆 . For singletons,
we simplify 𝑁𝐺 ({𝑣}) into 𝑁𝐺 (𝑣), and 𝑁𝐺 [{𝑣}] into 𝑁𝐺 [𝑣]. We denote by 𝐺 [𝑆] the subgraph of 𝐺

induced by 𝑆 , and𝐺 − 𝑆 := 𝐺 [𝑉 (𝐺) \ 𝑆]. For 𝐴, 𝐵 ⊆ 𝑉 (𝐺), 𝐸 (𝐴, 𝐵) denotes the set of edges in 𝐸 (𝐺)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:9

with one endpoint in𝐴 and the other one in 𝐵. Two distinct vertices 𝑢, 𝑣 such that 𝑁 (𝑢) = 𝑁 (𝑣) are
called false twins, and true twins if 𝑁 [𝑢] = 𝑁 [𝑣]. In particular, true twins are adjacent. Two vertices

are twins if they are false twins or true twins. If 𝐺 is an 𝑛-vertex graph and 𝜎 is a total ordering of

𝑉 (𝐺), say, 𝑣1, . . . , 𝑣𝑛 , then 𝐴𝜎 (𝐺) denotes the adjacency matrix of 𝐺 in the order 𝜎 . Thus the entry

in the 𝑖-th row and 𝑗-th column is a 1 if 𝑣𝑖𝑣 𝑗 ∈ 𝐸 (𝐺) and a 0 otherwise.

The length of a path in an unweighted graph is simply the number of edges of the path. For two

vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we denote by 𝑑𝐺 (𝑢, 𝑣), the distance between 𝑢 and 𝑣 in𝐺 , that is the length of

the shortest path between 𝑢 and 𝑣 . The diameter of a graph is the longest distance between a pair

of its vertices. In all the above notations with a subscript, we omit it whenever the graph is implicit

from the context.

An edge contraction of two adjacent vertices 𝑢, 𝑣 consists of merging 𝑢 and 𝑣 into a single vertex

adjacent to 𝑁 ({𝑢, 𝑣}) (and deleting 𝑢 and 𝑣). A graph 𝐻 is aminor of a graph𝐺 if 𝐻 can be obtained

from 𝐺 by a sequence of vertex and edge deletions, and edge contractions. A graph 𝐺 is said

𝐻 -minor free if 𝐻 is not a minor of 𝐺 . Importantly we will overload the term “contraction”. In this

paper, we call contraction the same as an edge contraction without the requirement that the two

vertices 𝑢 and 𝑣 are adjacent. This is sometimes called an identification, but we stick to the shorter

contraction since we will use that word often. In the very rare cases in which we actually mean the

classical (edge) contraction, the context will lift the ambiguity. We will also somewhat overload the

term “minor”. Indeed, in Section 5 we introduce the notions of “𝑑-grid minor” and “𝑑-mixed minor”

on matrices. They are only loosely related to (classical) graph minors, and it will always be clear

which notion is meant.

2.2 First-order logic, model checking, FO interpretations/transductions
For our purposes, we define first-order logic without function symbols. A finite relational signature

is a set 𝜏 of relation (or predicate) symbols given with their arity {𝑅1𝑎1 , . . . , 𝑅
ℎ
𝑎ℎ
}; that is, relation 𝑅𝑖𝑎𝑖

has arity 𝑎𝑖 . A first-order formula 𝜙 ∈ FO(𝜏) over 𝜏 is any string generated from letter 𝜓 by the

grammar:

𝜓 → ∃𝑥𝜓, ∀𝑥𝜓, 𝜓 ∨𝜓, 𝜓 ∧𝜓, ¬𝜓, (𝜓), 𝑅1𝑎1 (𝑥, . . . , 𝑥), . . . , 𝑅
ℎ
𝑎ℎ
(𝑥, . . . , 𝑥), 𝑥 = 𝑥, and

𝑥 → 𝑥1, 𝑥2, . . . an infinite set of fresh variable labels.

For the sake of simplicity, we will further impose that the same label cannot be reused for two

different variables. A variable 𝑥𝑖 is then said quantified if it appears next to a quantifier (∀𝑥𝑖 or
∃𝑥𝑖), and free otherwise. We usually denote by 𝜙 (𝑥 𝑓1 , . . . , 𝑥 𝑓ℎ) a formula whose free variables are

precisely 𝑥 𝑓1 , . . . , 𝑥 𝑓ℎ . A formula without quantified variables is said quantifier-free. A sentence

is a formula without free variables. With our simplification that the same label is not used for

two distinct variables, when a formula 𝜙 contains a subformula 𝑄𝑥𝑖𝜙
′
(with 𝑄 ∈ {∃,∀}), all the

occurrences of 𝑥𝑖 in 𝜙 lie in 𝜙 ′
.

Model checking. A first-order (FO) formula is purely syntactical. An interpretation, model, or

structure M of the FO language FO(𝜏) specifies a domain of discourse 𝐷 for the variables, and

a relation M(𝑅𝑖𝑎𝑖) = 𝑅𝑖 ⊆ 𝐷𝑎𝑖
for each symbol 𝑅𝑖𝑎𝑖 . M is sometimes called a 𝜏-structure. M is

a binary structure if 𝜏 has only relation symbols of arity 2. It is said finite if the domain 𝐷 is

finite. A sentence 𝜙 interpreted byM is true, denoted byM |= 𝜙 , if it evaluates to true with the

usual semantics for quantified Boolean logic, the equality, and 𝑅𝑖𝑎𝑖 (𝑑1, . . . , 𝑑𝑎𝑖) is true if and only

if (𝑑1, . . . , 𝑑𝑎𝑖) ∈ M(𝑅𝑖𝑎𝑖). For a fixed interpretation, a formula 𝜙 with free variables 𝑥 𝑓1 , . . . , 𝑥 𝑓ℎ is

satisfiable if ∃𝑥 𝑓1 · · · ∃𝑥 𝑓ℎ𝜙 is true.

In the FO model checking problem, given a first-order sentence 𝜙 ∈ FO(𝜏) and a finite modelM
of FO(𝜏), one has to decide whether M |= 𝜙 holds. The input size is |𝜙 | + |M|, the number of bits

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

necessary to encode the sentence 𝜙 and the model M. The brute-force algorithm decides M |= 𝜙
in time |M| |𝜙 |

, by building the tree of all possible assignments. We will consider 𝜙 to be fixed or

rather small compared to |M|. Therefore we wish to find an FPT algorithm for FO model checking

parameterized by |𝜙 |, that is, running in time 𝑓 (|𝜙 |) |M|𝑂 (1)
, or even better 𝑓 (|𝜙 |) |𝐷 |.

FO(𝜏) Model Checking Parameter: |𝜙 |
Input: A 𝜏-structure M and a sentence 𝜙 of FO(𝜏).
Question: DoesM |= 𝜙 hold?

We restrict ourselves to FO model checking on finite binary structures, for which twin-width will

be eventually defined. For the most part, we will consider FO model checking on graphs (and we

may omit the signature 𝜏). Let us give a simple example. Let 𝜏 = {𝐸2} be a signature with a single

binary relation. Finite models of the language FO(𝜏) correspond to finite directed graphs with

possible self-loops. Let 𝜙 be the sentence ∃𝑥1∃𝑥2 · · · ∃𝑥𝑘
∧

𝑖< 𝑗 ¬(𝑥𝑖 = 𝑥 𝑗) ∧
∧

𝑖≠𝑗 ¬𝐸 (𝑥𝑖 , 𝑥 𝑗). Let 𝐺
be a 𝜏-structure or graph. 𝐺 |= 𝜙 holds if and if𝐺 has an independent set of size 𝑘 . This particular

problem parameterized by |𝜙 | (or equivalently 𝑘) is W[1]-hard on general graphs. However it may

admit an FPT algorithm when𝐺 belongs to a specific class of graphs, as in the case, for instance, of

planar graphs or bounded-degree graphs.

FO interpretations and transductions. An FO interpretation of a 𝜏-structureM is a 𝜏-structure

M ′
such that for every relation 𝑅 ofM ′

, 𝑅(𝑎1, . . . , 𝑎ℎ) is true if and only ifM |= 𝜙𝑅 (𝑎1, . . . , 𝑎ℎ) for
a fixed formula 𝜙𝑅 (𝑥1, . . . , 𝑥ℎ) ∈ FO(𝜏). Informally every relation of M ′

can be characterized by a

formula evaluated on M.

Again we shall give some example on graphs since it is our main focus. Let 𝐺 be a simple

undirected graph (in particular, 𝐸 (𝑥,𝑦) holds whenever 𝐸 (𝑦, 𝑥) holds). Then the FO (𝜙-)interpretation

𝐼𝜙 (𝐺) is a graph 𝐻 with vertex set 𝑉 (𝐺) and 𝑢𝑣 ∈ 𝐸 (𝐻) if and only if 𝐺 |= 𝜙 (𝑥,𝑦) ∧ 𝜙 (𝑦, 𝑥). If for
instance 𝜙 (𝑥,𝑦) is the formula ¬𝐸 (𝑥,𝑦), then 𝐼𝜙 (𝐺) is the complement of 𝐺 . If instead 𝜙 (𝑥,𝑦) is
𝐸 (𝑥,𝑦) ∨ ∃𝑧 (𝐸 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦)), then 𝐼𝜙 (𝐺) is the square of 𝐺 . The FO (𝜙-)interpretation of a class

C of graphs is the set of all graphs that are 𝜙-interpretations of graphs in C, namely 𝐼𝜙 (C) := {𝐻 |
𝐻 = 𝐼𝜙 (𝐺), 𝐺 ∈ C}. It is not very satisfactory that 𝐼𝜙 (C) is not hereditary. We will therefore either

close 𝐼𝜙 (C) by taking induced subgraphs, or use the more general notion of FO transductions (see

for instance [3]).

An FO transduction is an enhanced FO interpretation. We give a simplified definition for undi-

rected graphs, but the same definition generalizes to general (binary) structures. First a basic FO

transduction is slightly more general than an FO interpretation. It is a triple (𝛿, a, [), with 0, 1,

and, 2 free variables respectively, which maps every graph 𝐺 such that 𝐺 |= 𝛿 to the graph ({𝑣 |
𝐺 |= a (𝑣)}, {𝑢𝑣 | 𝐺 |= a (𝑢) ∧ a (𝑣) ∧ [(𝑢, 𝑣)}). Before we apply the basic FO transduction, we allow

two operations: an expansion and a copy operation. An ℎ-expansion maps a graph 𝐺 to the set of

all the structures obtained by augmenting 𝐺 with ℎ unary relations𝑈 1, . . . ,𝑈 ℎ
. A 𝛾-copy operation

maps a graph 𝐺 to the disjoint union of 𝛾 copies of 𝐺 , say, 𝐺1, . . . ,𝐺𝛾
, where 𝑉 (𝐺 𝑗) = {(𝑣, 𝑗) |

𝑣 ∈ 𝑉 (𝐺)}. Moreover, it adds 𝛾 unary relations 𝐶1, . . . ,𝐶𝛾 , and a binary relation ∼, where 𝐶𝑖 (𝑣)
holds whenever 𝑣 ∈ 𝑉 (𝐺𝑖) and (𝑢, 𝑖) ∼ (𝑣, 𝑗) holds when 𝑢 = 𝑣 . Informally the unary relations

indicate in which copy a vertex is, while the binary relation ∼ links the copies of a same vertex.

Now, the (𝜙,𝛾, ℎ)-transduction T𝜙,𝛾,ℎ (𝐺) of a graph 𝐺 is the set 𝜏 ◦ 𝛾op ◦ ℎop (𝐺) where ℎop is the
ℎ-expansion, 𝛾op is the 𝛾-copy operation, and 𝜏 = (𝛿, a, [) is a basic FO transduction. Note that the

formulas a and [may depend on the edge relation of 𝐺 as well as all the added unary relations

and the binary relation ∼. Similarly to FO interpretations of classes, we define T𝜙,𝛾,ℎ (C) := {𝐻 |
𝐻 ∈ T𝜙,𝛾,ℎ (𝐺), 𝐺 ∈ C}.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:11

As we will see in Section 8, a worthwhile property of twin-width is that every FO interpreta-

tion/transduction of a bounded twin-width class has bounded twin-width itself.

3 SEQUENCE OF CONTRACTIONS AND TWIN-WIDTH
We say that two vertices 𝑢 and 𝑣 are twins if they have the same neighborhood outside {𝑢, 𝑣}. A
natural operation is to contract (or identify) them and try to iterate the process. If this algorithm

leads to a single vertex, the graph was initially a cograph. Many intractable problems become

easy on cographs. It is thus tempting to try and extend this tractability to larger classes. One such

example is the class of graphs with bounded clique-width (or equivalently bounded rank-width)

for which any problem expressible in MSO1 logic can be solved in polynomial-time [13]. A perhaps

more direct generalization (than defining clique-width) would be to allow contractions of near

twins, but the cumulative effect of the errors
3
stands as a barrier to algorithm design.

An illuminating example is provided by a bipartite graph 𝐺 , with bipartition (𝐴, 𝐵), such that

for every subset 𝑋 of 𝐴 there is a vertex 𝑏 ∈ 𝐵 with neighborhood 𝑋 in 𝐴. Surely 𝐺 is complex

enough so that we should not entertain any hope of solving a problem like, say, 𝑘-Dominating Set

significantly faster on any class containing𝐺 than on general graphs. For one thing, graphs like𝐺

contain all the bipartite graphs as induced subgraphs. Nonetheless 𝐺 can be contracted to a single

vertex by iterating contractions of vertices whose neighborhoods differ on only one vertex. Indeed,

consider 𝑎 ∈ 𝐴 and contract all pairs of vertices of 𝐵 differing exactly at 𝑎. Applying this process

for every 𝑎 ∈ 𝐴, we end up by contracting the whole set 𝐵, and we can eventually contract 𝐴.

Thus the admissibility of a contraction sequence should not solely be based on the current

neighborhoods. The key idea is to keep track of the past errors in the contraction history and

always require all the vertices to be involved in only a limited number of mistakes. Say the errors are

carried by the edges, and an erroneous edge is recorded as red. Note that in the previous contraction

sequence of 𝐺 , after contracting all pairs of vertices of 𝐵 differing at 𝑎, all the edges incident to 𝑎

are red, and vertex 𝑎 witnesses the non-admissibility of the sequence. Let us now get more formal.

It appears, from the previous paragraphs, that the appropriate structure to define twin-width is

a graph in which some edges are colored red. A trigraph is a triple 𝐺 = (𝑉 , 𝐸, 𝑅) where 𝐸 and 𝑅

are two disjoint sets of edges on 𝑉 : the (usual) edges and the red edges. An informal interpretation

of a red edge 𝑢𝑣 ∈ 𝑅 is that some errors have been made while handling 𝐺 and the existence of

an edge between 𝑢 and 𝑣 , or lack thereof, is uncertain. A trigraph (𝑉 , 𝐸, 𝑅) such that (𝑉 , 𝑅) has
maximum degree at most 𝑑 is a 𝑑-trigraph. We observe that any graph (𝑉 , 𝐸) may be interpreted as

the trigraph (𝑉 , 𝐸, ∅).
Given a trigraph 𝐺 = (𝑉 , 𝐸, 𝑅) and two vertices 𝑢, 𝑣 in 𝑉 , we define the trigraph 𝐺/𝑢, 𝑣 =

(𝑉 ′, 𝐸 ′, 𝑅′) obtained by contracting
4 𝑢, 𝑣 into a new vertex 𝑤 as the trigraph on vertex set 𝑉 ′ =

(𝑉 \ {𝑢, 𝑣}) ∪ {𝑤} such that𝐺 − {𝑢, 𝑣} = (𝐺/𝑢, 𝑣) − {𝑤} and with the following edges incident to𝑤 :

• 𝑤𝑥 ∈ 𝐸 ′ if and only if 𝑢𝑥 ∈ 𝐸 and 𝑣𝑥 ∈ 𝐸,
• 𝑤𝑥 ∉ 𝐸 ′ ∪ 𝑅′

if and only if 𝑢𝑥 ∉ 𝐸 ∪ 𝑅 and 𝑣𝑥 ∉ 𝐸 ∪ 𝑅, and
• 𝑤𝑥 ∈ 𝑅′

otherwise.

In other words, when contracting two vertices 𝑢, 𝑣 , red edges stay red, and red edges are created

for every vertex 𝑥 which is not joined to𝑢 and 𝑣 at the same time. We say that𝐺/𝑢, 𝑣 is a contraction
of 𝐺 . If both 𝐺 and 𝐺/𝑢, 𝑣 are 𝑑-trigraphs, 𝐺/𝑢, 𝑣 is a 𝑑-contraction. We may denote by 𝑉 (𝐺) the
vertex set, 𝐸 (𝐺) the set of black edges, and 𝑅(𝐺) the set of red edges, of the trigraph 𝐺 .

3
By error we informally refer to the elements in the (non-empty) symmetric difference in the neighborhoods of the contracted

vertices.

4
Or identifying. Let us insist that 𝑢 and 𝑣 do not have to be adjacent.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

A (tri)graph𝐺 on 𝑛 vertices is 𝑑-collapsible if there exists a sequence of 𝑑-contractions which con-

tracts𝐺 to a single vertex.More precisely, there is a𝑑-sequence of𝑑-trigraphs𝐺 = 𝐺𝑛,𝐺𝑛−1, . . . ,𝐺2,𝐺1

such that 𝐺𝑖−1 is a contraction of 𝐺𝑖 (hence 𝐺1 is the singleton graph). See Fig. 1 for an example of

a sequence of 2-contractions of a 7-vertex graph. The minimum 𝑑 for which 𝐺 is 𝑑-collapsible is

the twin-width of 𝐺 , denoted by tww(𝐺).
If 𝑣 is a vertex of 𝐺𝑖 and 𝑗 ⩾ 𝑖 , then 𝑣 (𝐺 𝑗) denotes the subset of vertices of 𝐺 𝑗 eventually

contracted into 𝑣 in 𝐺𝑖 . Two disjoint vertex subsets 𝐴, 𝐵 of a trigraph are said homogeneous if there

is no red edge between 𝐴 and 𝐵, and there are not both an edge and a non-edge between 𝐴 and 𝐵.

In other words, 𝐴 and 𝐵 are fully linked by black edges or there is no (black or red) edge between

them. Observe that in any contraction sequence𝐺 = 𝐺𝑛, . . . ,𝐺𝑖 , . . . ,𝐺1, there is a red edge between

𝑢 and 𝑣 in 𝐺𝑖 if and only if 𝑢 (𝐺) and 𝑣 (𝐺) are not homogeneous. We may sometimes (abusively)

identify a vertex 𝑣 ∈ 𝐺𝑖 with the subset of vertices of 𝐺 contracted to form 𝑣 .

One can check that cographs have twin-width 0 (the class of graphs with twin-width 0 actually

coincides with cographs), paths of length at least three have twin-width 1, red paths have twin-

width at most 2, and trees have twin-width 2. Indeed, they are not 1-collapsible, as exemplified by

the 1-subdivision of 𝐾1,3, and they admit the following 2-sequence. Choose an arbitrary root and

contract two leaves with the same neighbor, or, if not applicable, contract the highest leaf with its

neighbor. We observe that in this 2-sequence, every 𝐺𝑖 only contains red edges which are adjacent

to leaves. In particular, red edges are either isolated or are contained in a path of length two.

The definition of twin-width readily generalizes to directed graphs, where we create a red edge

whenever the contracted vertices 𝑢, 𝑣 are not linked to 𝑥 in the same way. This way we may speak

of the twin-width of a directed graph or of a partial order. One could also wish to define twin-width

on graphs “colored” by a constant number of unary relations. To have a unifying framework, we

will later work with matrices (Section 5). Before that, we present in the next section some basic

results about twin-width of graphs.

4 FIRST PROPERTIES AND EXAMPLES OF CLASSES WITH BOUNDED TWIN-WIDTH
Let us get familiar with contraction sequences and twin-width through simple operations: comple-

menting the graph, taking induced subgraphs, and adding apices.

4.1 Complementation, induced subgraphs, and adding apices
The complement of a trigraph𝐺 is the trigraph𝐺 obtained by keeping all its red edges while making

edges its non-edges, and non-edges its edges. Thus if 𝐺 = (𝑉 , 𝐸, 𝑅), then 𝐺 = (𝑉 ,
(
𝑉
2

)
\ (𝐸 ∪ 𝑅), 𝑅),

and it holds that 𝐺 = 𝐺 . Twin-width is invariant under complementation. One can observe that

any sequence of 𝑑-contractions for𝐺 is also a sequence of 𝑑-contractions for𝐺 . Indeed there is a

red edge between two vertices 𝑢, 𝑣 in a trigraph obtained along the sequence if and only if 𝑢 (𝐺)
and 𝑣 (𝐺) are homogeneous if and only if 𝑢 (𝐺) and 𝑣 (𝐺) are homogeneous.

We can extend the notion of induced subgraphs to trigraphs in a natural way. A trigraph 𝐻 is

an induced subgraph of a trigraph 𝐺 if 𝑉 (𝐻) ⊆ 𝑉 (𝐺), 𝐸 (𝐻) = 𝐸 (𝐺) ∩
(
𝐻
2

)
, and 𝑅(𝐻) = 𝑅(𝐺) ∩

(
𝐻
2

)
.

The twin-width of an induced subgraph 𝐻 of a trigraph 𝐺 is at most the twin-width of𝐺 . Indeed

the sequence of contractions for 𝐺 can be projected to 𝐻 by just ignoring contractions involving

vertices outside𝑉 (𝐻). Then the red degree of trigraphs in the contraction sequence of 𝐻 is at most

the red degree of the corresponding trigraphs in the contraction sequence of 𝐺 .

We now show that adding a vertex linked by black edges to an arbitrary subset of the vertices

essentially at most doubles the twin-width.

Theorem 4.1. Let 𝐺 ′
be a trigraph obtained from a trigraph 𝐺 by adding one vertex 𝑣 and linking

it with black edges to an arbitrary subset 𝑋 ⊆ 𝑉 (𝐺). Then tww(𝐺 ′) ⩽ 2(tww(𝐺) + 1).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:13

Proof. Let 𝑑 = tww(𝐺) and let𝐺 = 𝐺𝑛, . . . ,𝐺1 be a sequence of 𝑑-contractions. We want to build

a good sequence of contractions for𝐺 ′
. The rules are that, while there are more than three vertices

in the trigraph, we never contract two vertices 𝑢 and 𝑢 ′ such that 𝑢 (𝐺) ⊆ 𝑋 and 𝑢 ′(𝐺) ⊆ 𝑉 (𝐺) \𝑋 ,
neither do we contract 𝑣 with another vertex. In words, until the very end, we do not touch 𝑣 , and

we do only contractions internal to 𝑋 or to 𝑉 (𝐺) \ 𝑋 .
We start with 𝐺 ′

. For 𝑖 ranging from 𝑛 down to 2, let us denote by 𝑢𝑖 , 𝑢
′
𝑖 the 𝑑-contraction

performed from𝐺𝑖 to𝐺𝑖−1. With our imposed rules, instead of having one set 𝑢𝑖 (𝐺) of contracted
vertices, we have two: 𝑈𝑖,𝑋 := 𝑢𝑖 (𝐺) ∩ 𝑋 and 𝑈

𝑖,𝑋
:= 𝑢𝑖 (𝐺) \ 𝑋 . Similarly we can define the

(potentially empty)𝑈 ′
𝑖,𝑋

and𝑈 ′
𝑖,𝑋

based on 𝑢 ′𝑖 (𝐺). Any of these sets, if non-empty, corresponds to a

currently contracted vertex, that we denote with the same label. In the current trigraph obtained

from 𝐺 ′
, we contract𝑈𝑖,𝑋 and𝑈 ′

𝑖,𝑋
if they both exist. Next we contract𝑈

𝑖,𝑋
and𝑈 ′

𝑖,𝑋
(again if they

both exist). This preserves our announced invariant, and terminates with a 3-vertex trigraph made

of 𝑣 , all the vertices of 𝑋 contracted in a single vertex, all the vertices of 𝑉 (𝐺) \ 𝑋 contracted in a

single vertex. Observe that a 3-vertex trigraph is 2-collapsible and 2 ⩽ 2(tww(𝐺) + 1).
We shall finally justify that in the sequence of contractions built for𝐺 ′

, all the trigraphs have red

degree at most 2(tww(𝐺) + 1). Before we simulate the contraction 𝑢𝑖 , 𝑢
′
𝑖 , each contracted vertex

𝑢 (𝐺) ∩𝑋 (resp. 𝑢 (𝐺) \𝑋) of𝐺 ′
has red degree at most 2𝑑 + 1. Indeed 𝑢 (𝐺) ∩𝑋 (resp. 𝑢 (𝐺) \𝑋) can

only have red edges to vertices𝑤 (𝐺) ∩ 𝑋 and𝑤 (𝐺) \ 𝑋 such that𝑤 is a red neighbor of 𝑢, and to

𝑢 (𝐺) \ 𝑋 (resp. 𝑢 (𝐺) ∩ 𝑋). After we contract (if they exist)𝑈𝑖,𝑋 and𝑈 ′
𝑖,𝑋

, the newly created vertex,

say𝑈 , has red degree at most 2𝑑 + 2. The +2 accounts for𝑈
𝑖,𝑋

and𝑈 ′
𝑖,𝑋

. The red degree of𝑈
𝑖,𝑋

and

𝑈 ′
𝑖,𝑋

is at most 2𝑑 + 1, where the +1 accounts for 𝑈 . All the other vertices have their red degree

bounded by 2𝑑 + 1. After we also contract (if they exist)𝑈
𝑖,𝑋

and𝑈 ′
𝑖,𝑋

, all the vertices have degree

at most 2𝑑 + 1. Overall the red degree never exceeds 2𝑑 + 2 = 2(tww(𝐺) + 1). □

The previous result implies that bounded twin-width is preserved by adding a constant number

of apices. In Section 6 we will show a far-reaching generalization of this fact: 𝐻 -minor free graphs

have bounded twin-width. We will not have to resort to the graph structure theorem. Now if we

have a second look at the proof of Theorem 4.1, we showed that twin-width does not arbitrarily

increase when we add one or a constant number of unary relations (in Section 5 we will formally

define twin-width for graphs colored by unary relations, and even for arbitrary matrices on a

constant-size alphabet). Again we will see in Section 8 a considerable generalization of that fact

and of the conservation of twin-width by complementation: bounded twin-width classes are closed

by first-order transductions.

As cliques have bounded twin-width (more precisely twin-width 0), bounded twin-width is not

preserved under (non-induced) subgraphs and minors. Indeed the class of all graphs has unbounded

twin-width. To see that, consider 𝐿 the line graph of the biclique 𝐾𝑛,𝑛 (with the edge set of 𝐾𝑛,𝑛
as vertex set, and edges between every pair of incident edges in 𝐾𝑛,𝑛). Every pair of vertices in 𝐿

has at least 2(𝑛 − 1) private neighbors (at least 𝑛 − 1 private neighbors for each vertex), hence its

twin-width is at least 2(𝑛 − 1).

4.2 Bounded rank-width/clique-width, and 𝑑-dimensional grids
We now show that bounded rank-width graphs and 𝑑-dimensional grids (with or without diagonals)

have bounded twin-width. We transfer the twin-width boundedness of 𝑑-dimensional grids with

diagonals to unit 𝑑-dimensional ball graphs with bounded clique number.

A natural inquiry is to compare twin-width with the width measures designed for dense graphs:

rank-width rw, clique-width cw, module-width modw, and boolean-width boolw. It is known that,

for any graph 𝐺 , boolw(𝐺) ⩽ modw(𝐺) ⩽ cw(𝐺) ⩽ 2
rw(𝐺)+1 − 1 (see for instance Chapter 4

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

of Vatshelle’s PhD thesis [39]). It is thus sufficient to show that graphs with bounded boolean-

width have bounded twin-width, to establish that bounded twin-width classes capture all these

parameters.

Crucially twin-width does not capture bounded mim-width graphs (the actual definition of

mim-width is not important here, and thus omitted). This is but a fortunate fact, since the main

result of the paper is an FPT algorithm for FO model checking on any bounded twin-width classes.

Indeed, interval graphs have mim-width 1 [2] and do not admit an FPT algorithm for FO model

checking (see for instance [28]).

We briefly recall the definition of boolean-width. The boolean-width of a partition (𝐴, 𝐵) of the
vertex set of a graph is the base-2 logarithm of the number of different neighborhoods in 𝐵 of

subsets of vertices of 𝐴 (or equivalently, of different neighborhoods in 𝐴 of subset of vertices of 𝐵).

A decomposition tree of a graph𝐺 is a binary tree
5 𝑇 whose leaves are in one-to-one correspondence

with 𝑉 (𝐺). Each edge 𝑒 of 𝑇 naturally maps to a partition 𝑃𝑒 = (𝐴𝑒 , 𝐵𝑒) of 𝑉 (𝐺), where the two
connected components of 𝑇 − 𝑒 contain the leaves labeled by 𝐴𝑒 and 𝐵𝑒 , respectively. The boolean-

width of a decomposition tree 𝑇 is the maximum boolean-width of 𝑃𝑒 taken among every edge 𝑒 of

𝑇 . Finally, the boolean-width of a graph𝐺 , denoted by boolw(𝐺), is the minimum boolean-width of

𝑇 taken among every decomposition tree 𝑇 .

Theorem 4.2. Every graph with boolean-width 𝑘 has twin-width at most 2
𝑘+1 − 1.

Proof. Let𝐺 be graph and let𝑇 be a decomposition tree of𝐺 with boolean-width 𝑘 := boolw(𝐺).
We assume that 𝐺 has at least 2

𝑘 + 1 vertices, otherwise the twin-width is immediately bounded

by 2
𝑘
. Starting from the root 𝑟 of 𝑇 , we find a rooted subtree of 𝑇 with at least 2

𝑘 + 1 and at most

2
𝑘+1

leaves. If the current subtree has more than 2
𝑘+1

leaves, we move to the child node with the

larger subtree. That way we guarantee that the new subtree has at least 2
𝑘 + 1 leaves. We stop

when we reach a subtree 𝑇 ′
with at most 2

𝑘+1
leaves, and let 𝑒 be the last edge that we followed in

the process of finding 𝑇 ′
(the one whose removal disconnects 𝑇 ′

from the rest of 𝑇).

By definition, the boolean-width of the partition 𝑃𝑒 = (𝐴𝑒 , 𝐵𝑒) is at most 𝑘 , which upperbounds

the number of different neighborhoods of 𝐴𝑒 in 𝐵𝑒 by 2
𝑘
. In particular, among the 2

𝑘 + 1 leaves of

𝑇 ′
, corresponding to, say, 𝐴𝑒 , two vertices 𝑢, 𝑣 have the same neighborhood in 𝐵𝑒 . We contract 𝑢

and 𝑣 in 𝐺 (and obtain the graph 𝐺/𝑢, 𝑣). The only red edges in 𝐺/𝑢, 𝑣 are within 𝐴𝑒 , so the red

degree is bounded by 2
𝑘+1 − 1. We update 𝑇 by removing the leaf labeled by 𝑣 , and smoothing

its parent node which became a degree-2 vertex (to keep a binary tree). We denote by 𝑇 /𝑢, 𝑣 the
obtained binary decomposition tree of 𝐺/𝑢, 𝑣 .
What we described so far yielded the first contraction. We start over with trigraph 𝐺/𝑢, 𝑣 and

decomposition tree 𝑇 /𝑢, 𝑣 to find the second contraction. We iterate this process until the current

trigraph is a singleton. We claim that the built sequence of contractions only contains trigraphs

with red degree at most 2
𝑘+1 − 1. The crucial invariant is that our contractions never create a red

component of size more than 2
𝑘+1

. Hence the red degree remains bounded by 2
𝑘+1 − 1. □

The 𝑑-dimensional 𝑛-grid is the graph with vertex set [𝑛]𝑑 with an edge between two vertices

(𝑥1, . . . , 𝑥𝑑) and (𝑦1, . . . , 𝑦𝑑) if and only if

∑𝑑
𝑖=1 |𝑥𝑖 − 𝑦𝑖 | = 1. Equivalently the 𝑑-dimensional 𝑛-grid

is the Cartesian product of 𝑑 paths on 𝑛 vertices, hence we write it 𝑃𝑑𝑛 . Thus the 1-dimensional

𝑛-grid is the path on 𝑛 vertices 𝑃𝑛 , while the 2-dimensional 𝑛-grid is the usual (planar) 𝑛 × 𝑛-grid.
While all the width parameters presented so far (including mim-width) are unbounded on the

𝑛 × 𝑛-grid, twin-width remains constant even on the 𝑑-dimensional 𝑛-grid, for any fixed 𝑑 .

5
All internal nodes have degree 3, except the root which has degree 2. Equivalently all internal nodes have exactly two

children.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:15

Theorem 4.3. For every positive integers 𝑑 and 𝑛, the 𝑑-dimensional 𝑛-grid has twin-width at

most 3𝑑 .

Proof. Let 𝑅𝑑𝑛 the trigraph with vertex set 𝑉 (𝑃𝑑𝑛), red edges 𝐸 (𝑃𝑑𝑛), and no black edge. We will

prove, by induction on 𝑑 , that 𝑅𝑑𝑛 has twin-width at most 3𝑑 . The base case (𝑑 = 1) holds since, as

observed in Section 3, the twin-width of a red path is at most 2. As all the edges will be red (no

black edge can appear), we allow ourselves the following abuse of language. For this proof only, by

edge (resp. degree) we mean red edge (resp. red degree). We now assume that 𝑑 > 1.

We see 𝑅𝑑𝑛 as the Cartesian product of 𝑅𝑑−1𝑛 and 𝑅1𝑛 = 𝑅𝑛 . In other words,𝑉 (𝑅𝑑𝑛) can be partitioned

into 𝑛 sets 𝑉1, . . . ,𝑉𝑛 , where each 𝑉𝑖 = {𝑣𝑖
1
, . . . 𝑣𝑖

𝑛𝑑−1
} induces a trigraph isomorphic to 𝑅𝑑−1𝑛 , and

there is an edge between 𝑣𝑖𝑗 and 𝑣
𝑖+1
𝑗 for all 𝑖 ∈ [𝑛 − 1], 𝑗 ∈ [𝑛𝑑−1]. By induction hypothesis, there

is a sequence of 3(𝑑 − 1)-contractions of 𝑃𝑑−1𝑛 . The idea is to follow this sequence in each 𝑉𝑖 “in

parallel”, i.e., performing the first contraction in𝑉1, then in𝑉2, up to𝑉𝑛 , then the second contraction

in 𝑉1, then in 𝑉2, up to 𝑉𝑛 , and so on. By doing so, the following invariants are maintained:

• when performing a contraction in 𝑉1, the newly created vertex has degree at most 3𝑑 − 3 in

𝑉1, and 2 in 𝑉2 (and 0 elsewhere), so 3𝑑 − 1 in total.

• when performing a contraction in𝑉𝑖 , 𝑖 ∈ {2, . . . , 𝑛 − 1}, the created vertex has degree at most

3𝑑 − 3 in 𝑉𝑖 , 1 in 𝑉𝑖−1 (since the same pair has been contracted in 𝑉𝑖−1 at the previous step)
and 2 in 𝑉𝑖+1 (and 0 elsewhere), so 3𝑑 in total.

• when performing a contraction in 𝑉𝑛 , the created vertex has degree at most 3𝑑 − 3 in 𝑉𝑛 , and

at most one in 𝑉𝑛−1 (and 0 elsewhere), so 3𝑑 − 2 in total.

Furthermore every vertex not involved in the current contraction has degree at most 3𝑑 − 2: Its

degree within its own 𝑉𝑖 is 3𝑑 − 3 (by induction hypothesis) and it has exactly one neighbor in 𝑉𝑖−1
(if this set exists) and exactly one neighbor in 𝑉𝑖+1 (if this set exists). When this process terminates,

each 𝑉𝑖 has been contracted into a single vertex. Hence the current trigraph is the red path 𝑅𝑛 ,

which admits a sequence of 2-contractions. □

As we even showed that the twin-width of the red graph 𝑅𝑑𝑛 is at most 3𝑑 , it implies that the

twin-width of any subgraph of the 𝑑-dimensional 𝑛-grid is bounded by 3𝑑 .

The 𝑑-dimensional 𝑛-grid with diagonals is the graph on [𝑛]𝑑 with an edge between two distinct

vertices (𝑥1, . . . , 𝑥𝑑) and (𝑦1, . . . , 𝑦𝑑) if and only ifmax
𝑑
𝑖=1 |𝑥𝑖 −𝑦𝑖 | ⩽ 1. We denote this graph byK𝑛,𝑑

and by, K𝑟
𝑛,𝑑

the trigraph ([𝑛]𝑑 , ∅, 𝐸 (K𝑛,𝑑)) with only red edges. By the arguments of Theorem 4.3,

one can see that every subgraph of K𝑛,𝑑 (even of K𝑟
𝑛,𝑑

) has twin-width bounded by a function of 𝑑

(observe that 𝐾𝑟
𝑛,𝑑

has red degree at most 3
𝑑
).

Lemma 4.4. Every subgraph of K𝑟
𝑛,𝑑

has twin-width at most 2(3𝑑 − 1).

This fact permits to bound the twin-width of unit 𝑑-dimensional ball graphs with bounded clique

number; actually even their subgraphs.

Theorem 4.5. Every subgraph 𝐻 of a unit 𝑑-dimensional ball graph 𝐺 with clique number 𝑘 has

twin-width at most 𝑑 ′ := (3⌈
√
𝑑⌉)𝑑𝑘 . Furthermore if 𝐺 comes with a geometric representation (i.e.,

coordinates for each vertex of𝐺 in a possible model), then a 𝑑 ′-contraction sequence of 𝐻 can be found

in polynomial time.

Proof. The result is immediate for 𝑘 = 1, so we assume that 𝑘 ⩾ 2. We even show the result

when all the edges of 𝐻 are in fact red edges, by exhibiting a sequence of contractions which

keeps the (red) degree below 𝑑 ′. We draw a geometric regular 𝑑-dimensional fine grid on top of the

geometric representation of 𝐺 . The spacing of the grid is 2/
√
𝑑 so that a largest diagonal of each

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

hypercubic cell has length exactly 2. Hence the unit balls centered within a given cell form a clique.

In particular, each cell contains at most 𝑘 centers. We also consider the coarser tesselation where a

supercell is a hypercube made of ⌈
√
𝑑⌉𝑑 (smaller) cells. Hence a supercell contains at most ⌈

√
𝑑⌉𝑑𝑘

centers.

We contract the vertices of each supercell into a single vertex. This can be done in any order of

the supercells, and in any order of the vertices within each supercell. Observe that, throughout this

process, the (red) degree does not exceed (3⌈
√
𝑑⌉)𝑑𝑘 .

After these 𝑑 ′-contractions, the graph that we obtain is a subgraph of K𝑟
𝑛,𝑑

. Hence it admits a

2(3𝑑 − 1)-sequence by Lemma 4.4. We conclude since 2(3𝑑 − 1) ⩽ (3⌈
√
𝑑⌉)𝑑𝑘 . □

Of course the constructive result of Theorem 4.5 can be proved in greater generality. It would

work with any collection of objects where the ratio between the smallest (taken over the objects)

radius of a largest enclosed ball and the largest radius of a smallest enclosing ball is bounded, as

well as the clique number. In [5] we will see that unit disk graphs (with no restriction on the clique

number), as well as interval graphs and 𝐾𝑡 -free unit segment graphs, have unbounded twin-width.

5 THE GRID THEOREM FOR TWIN-WIDTH
In this section, we will deal with matrices instead of graphs. Our matrices have their entries on

a finite alphabet with a special additional value 𝑟 (for red) representing errors made along the

computations. This is the analog of the red edges of the previous section.

5.1 Twin-width of matrices, digraphs, and binary structures
The red number of a matrix is the maximum number of red entries taken over all rows and all

columns. Given an 𝑛 ×𝑚 matrix 𝑀 and two columns 𝐶𝑖 and 𝐶 𝑗 , the contraction of 𝐶𝑖 and 𝐶 𝑗 is

obtained by deleting 𝐶 𝑗 and replacing every entry𝑚𝑘,𝑖 of 𝐶𝑖 by 𝑟 whenever𝑚𝑘,𝑖 ≠𝑚𝑘,𝑗 . The same

contraction operation is defined for rows. A matrix𝑀 has twin-width at most 𝑘 if one can perform

a sequence of contractions starting from𝑀 and ending in some 1 × 1 matrix in such a way that all

matrices occurring in the process have red number at most 𝑘 . Note that when𝑀 has twin-width at

most 𝑘 , one can reorder its rows and columns in such a way that every contraction will identify

consecutive rows or columns. The reordered matrix is then called 𝑘-twin-ordered. The symmetric

twin-width of an 𝑛 × 𝑛 matrix 𝑀 is defined similarly, except that the contraction of rows 𝑖 and 𝑗

(resp. columns 𝑖 and 𝑗) is immediately followed by the contraction of columns 𝑖 and 𝑗 (resp. rows 𝑖

and 𝑗), and the new red number is only computed after the two contractions are performed.

We can now extend the twin-width to digraphs, which in particular capture posets. Unsurprisingly

the twin-width of a digraph is defined as the symmetric twin-width of its adjacency matrix; only

we write the adjacency matrix in a specific way. Say, the vertices are labeled 𝑣1, . . . , 𝑣𝑛 . If there is

an arc 𝑣𝑖𝑣 𝑗 (but no arc 𝑣 𝑗𝑣𝑖), we place a 1 entry in the 𝑖-th row 𝑗-column of the matrix and a -1

entry in the 𝑗-th row 𝑖-th column. If there are two arcs 𝑣𝑖𝑣 𝑗 and 𝑣 𝑗𝑣𝑖 , we place a 2 entry in both

the 𝑖-th row 𝑗-column and 𝑗-th row 𝑖-th column. If there is no arc 𝑣𝑖𝑣 𝑗 nor 𝑣 𝑗𝑣𝑖 , we place a 0 entry

in both the 𝑖-th row 𝑗-column and 𝑗-th row 𝑖-th column. We then further extend twin-width to a

binary structure 𝑆 with binary relations 𝐸1, . . . , 𝐸ℎ . When building the adjacency matrix, the entry

at 𝑣𝑖 , 𝑣 𝑗 is now (𝑒1, . . . , 𝑒ℎ) where 𝑒𝑝 ∈ {−1, 0, 1, 2} is chosen accordingly to the encoding of the

“digraph 𝐸𝑝”. Again the twin-width of a binary structure is the symmetric twin-width of the so-built

adjacency matrix.

We call augmented binary structure a binary structure augmented by a constant number of unary

relations. The twin-width is extended to augmented binary structures by seeing unary relations

as hard constraints. More concretely, contractions between two vertices 𝑢 and 𝑣 are only allowed

if they are in the exact same unary relations. Formally, in a binary structure 𝐺 augmented by

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:17

unary relations 𝑈1, . . . ,𝑈ℎ , the contraction of 𝑢 and 𝑣 is only possible when for every 𝑗 ∈ [ℎ],
𝐺 |= 𝑈 𝑗 (𝑢) ⇔ 𝐺 |= 𝑈 𝑗 (𝑣). When this happens, the contracted vertex 𝑧 inherits the unary relations

containing 𝑢 (or equivalently 𝑣).

Contrary to the contraction sequence of a binary structure (without unary relations), we cannot

expect the contraction sequence to end on a single vertex. Instead a sequence now ends when

no pair of vertices are included in the same unary relations. When this eventually happens, the

number of vertices is nevertheless bounded by the constant 2
ℎ
. We could continue the contraction

sequence arbitrarily, but, anticipating our use of augmented binary structures in Section 8, it is

preferable to stop the sequence there.

By a straightforward generalization of the proof of Theorem 4.1, one can see that adding ℎ unary

relations can at most multiply the twin-width by 2
ℎ
.

Lemma 5.1. The twin-width of a binary structure 𝐺 augmented by ℎ unary relations is at most

2
ℎ · tww(𝐺).

Given a total order 𝜎 on the domain of a binary structure 𝐺 , we denote by 𝐴𝜎 (𝐺) the adjacency
matrix encoded accordingly to the previous paragraph and following the order 𝜎 . Denoting𝑀 :=

𝐴𝜎 (𝐺) = (𝑚𝑖 𝑗 = (𝑒𝑖 𝑗
1
, . . . , 𝑒

𝑖 𝑗

ℎ
))𝑖, 𝑗 , the matrix𝑀 satisfies the important following property, mixing

symmetry and skew-symmetry. If 𝑒
𝑖 𝑗
𝑝 ∈ {0, 2} then 𝑒𝑖 𝑗𝑝 = 𝑒

𝑗𝑖
𝑝 , and if 𝑒

𝑖 𝑗
𝑝 ∈ {−1, 1} then 𝑒𝑖 𝑗𝑝 = −𝑒 𝑗𝑖𝑝 .

We call this property mixed-symmetry and𝑀 is said mixed-symmetric. This will be useful to find

symmetric sequences of contractions.

5.2 Partition coarsening, contraction sequence, and error value
Here we present an equivalent way of seeing the twin-width with a successive coarsening of a

partition, instead of explicitly performing the contractions with deletion.

A partition P of a set 𝑆 refines a partition P ′
of 𝑆 if every part of P is contained in a part of P ′

.

Conversely we say that P ′
is a coarsening of P, or contains P. When every part of P ′

contains at

most 𝑘 parts of P, we say that P 𝑘-refines P ′
. Given a partition P and two distinct parts 𝑃, 𝑃 ′

of P,

the contraction of 𝑃 and 𝑃 ′
yields the partition P \ {𝑃, 𝑃 ′} ∪ {𝑃 ∪ 𝑃 ′}.

Given an 𝑛 ×𝑚 matrix 𝑀 , a row-partition (resp. column-partition) is a partition of the rows

(resp. columns) of𝑀 . A (𝑘, ℓ)-partition (or simply partition) of a matrix𝑀 is a pair (R = {𝑅1, . . . , 𝑅𝑘 },
C = {𝐶1, . . . ,𝐶ℓ }) whereR is a row-partition and C is a column-partition. A contraction of a partition

(R, C) of a matrix𝑀 is obtained by performing one contraction in R or in C.
We distinguish two extreme partitions of an 𝑛 ×𝑚 matrix𝑀 : the finest partition where (R, C)

have size 𝑛 and𝑚, respectively, and the coarsest partition where they both have size one. The finest

partition is sometimes called the partition of singletons, since all its parts are singletons, and the

coarsest partition is sometimes called the trivial partition. A contraction sequence of an 𝑛 ×𝑚 matrix

𝑀 is a sequence of partitions (R1, C1), . . . , (R𝑛+𝑚−1, C𝑛+𝑚−1) where
• (R1, C1) is the finest partition,
• (R𝑛+𝑚−1, C𝑛+𝑚−1) is the coarsest partition, and
• for every 𝑖 ∈ [𝑛 +𝑚 − 2], (R𝑖+1, C𝑖+1) is a contraction of (R𝑖 , C𝑖).

Given a subset 𝑅 of rows and a subset 𝐶 of columns in a matrix𝑀 , the zone 𝑅 ∩𝐶 denotes the

submatrix of all entries of𝑀 at the intersection between a row of 𝑅 and a column of 𝐶 . A zone of a

partition pair (R, C) = ({𝑅1, . . . , 𝑅𝑘 }, {𝐶1, . . . ,𝐶ℓ }) is any 𝑅𝑖 ∩𝐶 𝑗 for 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ]. A zone is

constant if all its entries are identical. The error value of 𝑅𝑖 is the number of non constant zones

among all zones in {𝑅𝑖 ∩𝐶1, . . . , 𝑅𝑖 ∩𝐶ℓ }. We adopt a similar definition for the error value of 𝐶 𝑗 .

The error value of (R, C) is the maximum error value taken over all 𝑅𝑖 and 𝐶 𝑗 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

We can now restate the definition of twin-width of a matrix 𝑀 as the minimum 𝑡 for which

there exists a contraction sequence of𝑀 consisting of partitions with error value at most 𝑡 . The

following easy technical lemma will be used later to upper bound twin-width.

Lemma 5.2. If (R1, C1), . . . , (R𝑠 , C𝑠) is a sequence of partitions of a matrix𝑀 such that:

• (R1, C1) is the finest partition,
• (R𝑠 , C𝑠) is the coarsest partition,
• R𝑖 𝑟 -refines R𝑖+1

and C𝑖 𝑟 -refines C𝑖+1
, and

• all (R𝑖 , C𝑖) have error value at most 𝑡 ,

then the twin-width of𝑀 is at most 𝑟𝑡 .

Proof. We extend the sequence (R𝑖 , C𝑖) into a contraction sequence by performing in any order

the contractions to go from every pair (R𝑖 , C𝑖) to the next pair (R𝑖+1, C𝑖+1). A worst-case argument

gives that the error value cannot exceed 𝑟𝑡 . Indeed, assume that a partition (R, C) contains (R𝑖 , C𝑖)
and refines (R𝑖+1, C𝑖+1) and that 𝑅 is a part of R. Every part of C is contained in a part of C𝑖+1

and

every part of C𝑖+1
contains at most 𝑟 parts of C. Moreover, at most 𝑡 parts of C𝑖+1

form non-constant

zones with 𝑅. Therefore, at most 𝑟𝑡 parts of C form non-constant zones with 𝑅. □

5.3 Matrix division and the Marcus-Tardos theorem
In a contraction sequence of a matrix𝑀 , one can always reorder the rows and the columns of𝑀 in

such a way that all parts of all partitions in the contraction sequence consist of consecutive rows or

consecutive columns. To mark this distinction, a row-division is a row-partition where every part

consists of consecutive rows; with the analogous definition for column-division. A (𝑘, ℓ)-division
(or simply division) of a matrix 𝑀 is a pair (R, C) of a row-division and a column-division with

respectively 𝑘 and ℓ parts. A fusion of a division is obtained by contraction of two consecutive parts

of R or of C. Fusions are just contractions preserving divisions. A division sequence is a contraction

sequence in which all partitions are divisions.

We now turn to the fundamental tool which is basically only applied once but is the cornerstone

of twin-width. Given a 0, 1-matrix𝑀 = (𝑚𝑖, 𝑗), a 𝑡-grid minor in𝑀 is a (𝑡, 𝑡)-division (R, C) of𝑀
in which every zone contains a 1 (see left of Fig. 4). We say that a matrix is 𝑡-grid free if it does not

have a 𝑡-grid minor. A celebrated result by Marcus and Tardos [34] (henceforth the Marcus-Tardos

theorem) asserts that every 0, 1-matrix with large enough linear density has a 𝑡-grid minor. Precisely:

Theorem 5.3 ([34]). For every integer 𝑡 , there is some 𝑐𝑡 such that every 𝑛 ×𝑚 0, 1-matrix𝑀 with

at least 𝑐𝑡 max(𝑛,𝑚) entries 1 has a 𝑡-grid minor.

Marcus and Tardos established this theorem with 𝑐𝑡 = 2𝑡4
(
𝑡2

𝑡

)
. Fox [19] subsequently improved

the bound to 3𝑡28𝑡 . He also showed that 𝑐𝑡 has to be superpolynomial in 𝑡 (at least 2Ω (𝑡1/4)
). Then

Cibulka and Kynčl [12] decreased 𝑐𝑡 further down to 8/3(𝑡 + 1)224𝑡 .
Matrices with enough 1 entries are complex in the sense that they contain large 𝑡-grids minors.

However here the role of 1 is special compared to 0, and this result is only interesting for sparse

matrices. We would like to extend this notion of complexity to the dense case, that is to say for

all matrices. In the Marcus-Tardos theorem zones are not simple if they contain a 1, that is, if they

have rank at least 1. A natural definition would consist of substituting “rank at least 1” by “rank at

least 2” in the definition of a 𝑡-grid minor. Since we mostly deal with 0, 1-matrices, and exclusively

with discrete objects, we adopt a more combinatorial approach.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:19

1

0

1

0

0

0

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

1

0

1

0

0

0

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

1

1

1

1

1

0

0

1

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

Fig. 4. To the left a 4-grid minor: every zone contains at least one 1. To the right a 3-mixed minor on the same
matrix: no zone is horizontal or vertical.

5.4 Mixed minor and the grid theorem for twin-width
A matrix𝑀 = (𝑚𝑖, 𝑗) is vertical (resp. horizontal) if𝑚𝑖, 𝑗 =𝑚𝑖+1, 𝑗 (resp.𝑚𝑖, 𝑗 =𝑚𝑖, 𝑗+1) for all 𝑖, 𝑗 . Ob-
serve that amatrix which is both vertical and horizontal is constant.We say that𝑀 ismixed if it is nei-

ther vertical nor horizontal. A 𝑡-mixed minor in𝑀 is a division (R, C) = ({𝑅1, . . . , 𝑅𝑡 }, {𝐶1, . . . ,𝐶𝑡 })
such that every zone 𝑅𝑖 ∩ 𝐶 𝑗 is mixed (see right of Fig. 4). A matrix without 𝑡-mixed minor is

𝑡-mixed free. For instance, the 𝑛 × 𝑛 matrix with all entries equal to 1 is 1-mixed free but admits an

𝑛-grid minor.

The main result of this section is that 𝑡-mixed free matrices are exactly matrices with bounded

twin-width, modulo reordering the rows and columns. More precisely:

Theorem 5.4 (grid minor theorem for twin-width). Let 𝛼 be the alphabet size for the matrix

entries, and 𝑐𝑡 := 8/3(𝑡 + 1)224𝑡 .
• Every 𝑡-twin-ordered matrix is 2𝑡 + 2-mixed free.

• Every 𝑡-mixed free matrix has twin-width at most 4𝑐𝑡𝛼
4𝑐𝑡+2 = 2

2
𝑂 (𝑡)

.

A contraction sequence is a fairly complicated object. It can be seen as a sequence of coarser

and coarser partitions of the vertices, or as a sequence of pairs of vertices. The second bullet of

Theorem 5.4 simplifies the task of bounding the twin-width of a graph. One only needs to find

an ordering of the vertex set such that the adjacency matrix written down with that order has no

𝑡-mixed minor. A typical use to bound the twin-width of a class C:
(1) find a good vertex-ordering process based on properties of C,
(2) assume that the adjacency matrix in this order has a 𝑡-mixed minor,

(3) use this 𝑡-mixed minor to derive a contradiction to the membership to C, and
(4) conclude with Theorem 5.4.

Section 6 presents more and more elaborate instances of this framework and Table 1 reports the

orders and the bounds for different classes.

A sanity check of Theorem 5.4 is given by random 0,1-matrices. They have large grid minors for

any reordering of the rows and columns, and indeed, random bipartite graphs have unbounded

twin-width.

5.5 Corners
The proof of Theorem 5.4 will crucially rely on the notion of corner. Given a matrix𝑀 = (𝑚𝑖, 𝑗), a
corner is any 2-by-2 mixed submatrix of the form (𝑚𝑖, 𝑗 ,𝑚𝑖+1, 𝑗 ,𝑚𝑖, 𝑗+1, 𝑚𝑖+1, 𝑗+1). Corners will play
the same role as the 1 entries in the Marcus-Tardos theorem, as they localize the property of being

mixed:

Lemma 5.5. A matrix is mixed if and only if it contains a corner.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

1

0

1

0

1

1

1

0

1

1

1

0

0

1

1

1

0

0

1

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

𝑅1

𝑅2

𝑅3

𝑅4

𝐶1 𝐶2 𝐶3 𝐶4

1

0

1

0

1

1

1

0

1

1

1

0

0

1

1

1

0

0

1

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

𝑅1

𝑅4

𝑅2 ∪ 𝑅3

𝐶1 𝐶2 𝐶3 𝐶4

Fig. 5. To the left, the mixed value of 𝐶2 on {𝑅1, 𝑅2, 𝑅3, 𝑅4} is 3: one mixed zone and two mixed cuts (all
three in red, with a corner in each, highlighted by red dashed squares). To the right, the mixed value of 𝐶2
on {𝑅1, 𝑅2 ∪ 𝑅3, 𝑅4} is still 3. In general, the mixed value of a 𝐶 𝑗 ∈ C cannot increase after the fusion of
𝑅𝑖 , 𝑅𝑖+1 ∈ R since the only way for a new mixed zone to be created is that a mixed cut disappears, while new
mixed cuts cannot be created. On the contrary, the number of mixed zones in𝐶2 can increase as it went from
1 to 2.

Proof. A corner is certainly a witness of being mixed. Conversely let us assume that a matrix𝑀

has no corner. Either𝑀 is constant and we are done:𝑀 is not mixed. Or, without loss of generality,

there are in𝑀 two distinct entries𝑚𝑖, 𝑗 ≠𝑚𝑖+1, 𝑗 . To avoid a corner, both entries𝑚𝑖, 𝑗+1 and𝑚𝑖, 𝑗−1 are
equal to𝑚𝑖, 𝑗 . Similarly, both entries𝑚𝑖+1, 𝑗+1 and𝑚𝑖+1, 𝑗−1 are equal to𝑚𝑖+1, 𝑗 . Therefore the whole
𝑖-th row is constant as well as the 𝑖 + 1-st row. This forces the rows of index 𝑖 − 1 and 𝑖 + 2 to be

constant, and propagates to the whole matrix which is then horizontal. Observe that if the two

distinct adjacent entries would initially be𝑚𝑖, 𝑗 ≠𝑚𝑖, 𝑗+1, then the same arguments would show that

the matrix is vertical. □

5.6 Mixed zones, cuts, and values
Let R = {𝑅1, . . . , 𝑅𝑘 } be a row-division of a matrix𝑀 and let𝐶 be a set of consecutive columns. We

call mixed zone of 𝐶 on R any zone 𝑅𝑖 ∩𝐶 which is a mixed matrix. We call mixed cut of 𝐶 on R
any index 𝑖 ∈ [𝑘 − 1] for which the 2-by-|𝐶 | zone defined by the last row of 𝑅𝑖 , the first row of 𝑅𝑖+1,
and 𝐶 is a mixed matrix. Now the mixed value of 𝐶 on R is the sum of the number of mixed cuts

and the number of mixed zones. See Fig. 5 for an illustration, and for why we use the mixed value

instead of the mere number of mixed zones. Analogously we define the mixed value of a set 𝑅 of

consecutive rows on a column-division C.

Lemma 5.6. The contraction of two consecutive parts of R does not increase the mixed value of𝐶 on

R.

Proof. Assume that R = {𝑅1, . . . , 𝑅𝑘 } and R ′
is obtained by contraction of 𝑅𝑖 and 𝑅𝑖+1. We just

have to show that if 𝑅𝑖 ∩𝐶 , 𝑅𝑖+1∩𝐶 are not mixed zones and 𝑖 is not a mixed cut, then (𝑅𝑖 ∪𝑅𝑖+1) ∩𝐶
is not a mixed zone. Indeed, if (𝑅𝑖 ∪ 𝑅𝑖+1) ∩𝐶 is a mixed zone, it contains a corner which must be

in 𝑅𝑖 ∩𝐶 , or in 𝑅𝑖+1 ∩𝐶 , or otherwise sits in the mixed cut 𝑖 . □

The mixed value of a division (R, C) = ({𝑅1, . . . , 𝑅𝑘 }, {𝐶1, . . . ,𝐶ℓ }) is the maximum mixed value

of 𝑅𝑖 on C, and of 𝐶 𝑗 on R, taken over all 𝑅𝑖 ∈ R and 𝐶 𝑗 ∈ C. Observe that the finest division has

mixed value 0 and the coarsest division has mixed value at most 1.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:21

5.7 Finding a division sequence with bounded mixed value
Leveraging the Marcus-Tardos theorem, we are ready to compute, for any 𝑡-mixed free matrix,

a division sequence with bounded mixed value. This division sequence is not necessarily yet a

contraction sequence with bounded error value (indeed a non-constant horizontal or vertical zone

counts for 0 in the mixed value but for 1 in the error value). But this division sequence will serve as

a crucial frame to find the eventual contraction sequence.

Lemma 5.7. Every 𝑡-mixed free matrix𝑀 has a division sequence in which all divisions have mixed

value at most 2𝑐𝑡 (where 𝑐𝑡 is the one of Theorem 5.3).

Proof. We start with the finest division of𝑀 and greedily perform fusions as long as we can keep

mixed value at most 2𝑐𝑡 . Assume that we have reached a division (R, C) = ({𝑅1, . . . , 𝑅𝑘 }, {𝐶1, . . . ,

𝐶ℓ }), in which, without loss of generality, 𝑘 ⩾ ℓ . Assume also, for the sake of contradiction, that

each fusion 𝑅2𝑖−1, 𝑅2𝑖 for 𝑖 = 1, . . . , ⌊𝑘/2⌋ leads to a mixed value exceeding 2𝑐𝑡 . By Lemma 5.6, the

mixed value of 𝐶 𝑗 on R does not increase when performing a row-fusion. Thus, if the fusion of

𝑅2𝑖−1 and 𝑅2𝑖 is not possible, this is because the mixed value of 𝑅′
𝑖 = 𝑅2𝑖−1 ∪ 𝑅2𝑖 on C is more than

2𝑐𝑡 . Therefore the number of mixed cuts or zones of each 𝑅′
𝑖 (for 𝑖 = 1, . . . , ⌊𝑘/2⌋) on C is greater

than 2𝑐𝑡 ; hence 𝑅
′
𝑖 contains more than 2𝑐𝑡 corners in mixed zones and mixed cuts. Now we refine

C in two possible ways: either C′ = {𝐶1 ∪ 𝐶2,𝐶3 ∪ 𝐶4, . . . } or C′′ = {𝐶1,𝐶2 ∪ 𝐶3,𝐶4 ∪ 𝐶5, . . . }.
Observe that each mixed cut of 𝑅′

𝑖 on C′
(resp. C′′

) corresponds to a mixed zone of 𝑅′
𝑖 on C′′

(resp. C′
). Let R ′ = {𝑅′

1
, . . . , 𝑅′

⌊𝑘/2⌋} and consider the two divisions (R ′, C′) and (R ′, C′′). Thus, in
total, the zones contained in these two divisions contain at least ⌊𝑘/2⌋ · 2𝑐𝑡 corners. So one of these
subdivisions contains at least ⌊𝑘/2⌋𝑐𝑡 zones with a corner, hence ⌊𝑘/2⌋𝑐𝑡 mixed zones. By applying

the Marcus-Tardos theorem (Theorem 5.3) to the smaller auxiliary matrix with a 1 if the zone is

mixed and a 0 otherwise, one can find a 𝑡-mixed minor in𝑀 . □

5.8 Finding a contraction sequence with bounded error value
We are now equipped to prove the main result of this section, which is the second item of The-

orem 5.4. The division sequence with small mixed value, provided by Lemma 5.7, will guide the

construction of a contraction sequence (not necessarily a division sequence) of bounded error value.

This two-layered mechanism is also present in the proof of Guillemot and Marx, albeit in a simpler

form since they have it tailored for sparse matrices, and importantly they start from a permutation

matrix.

Proof of Theorem 5.4. We first show that every 𝑡-twin-ordered matrix𝑀 is 2𝑡 + 2-mixed free.

Let (R, C) = ({𝑅1, . . . , 𝑅2𝑡+2}, {𝐶1, . . . ,𝐶2𝑡+2}) be a division of an 𝑛 ×𝑚 matrix 𝑀 and assume for

contradiction that all its zones are mixed. Since𝑀 is 𝑡-twin-ordered, there is a division sequence

(R1, C1), . . . , (R𝑛+𝑚−1, C𝑛+𝑚−1) in which all divisions have error value at most 𝑡 . Let us consider

the first index 𝑠 such that some 𝑅𝑖 is contained in a part of R𝑠
or some 𝐶 𝑗 is contained in a part of

C𝑠
. Assume without loss of generality that 𝑅 ∈ R𝑠

contains 𝑅𝑖 . Since a zone 𝑅𝑖 ∩𝐶 𝑗 in𝑀 is mixed

for each 𝐶 𝑗 in C, it is not vertical, and therefore for each 𝑗 ∈ [2𝑡 + 2] there exists a choice 𝐶 ′
𝑗 in C𝑠

which intersects 𝐶 𝑗 such that 𝑅 ∩𝐶 ′
𝑗 is not constant. Observe that we cannot have 𝐶

′
𝑗 = 𝐶

′
𝑗+2 since

this would mean that 𝐶 ′
𝑗 contains 𝐶 𝑗+1, a contradiction to the choice of 𝑠 . In particular the error

value of 𝑅 in C𝑠
is at least (2𝑡 + 2)/2 > 𝑡 , a contradiction.

We now show that every 𝑛×𝑚 matrix𝑀 which does not contain a 𝑡-mixed minor has twin-width

at most 4𝑐𝑡𝛼
4𝑐𝑡+2

, where 𝑐𝑡 is as defined in Theorem 5.3, and 𝛼 is the alphabet size for the entries

of𝑀 . By Lemma 5.7, there exists a division sequence (R1, C1), . . . , (R𝑛+𝑚−1, C𝑛+𝑚−1) with mixed

value at most 𝑡 ′ := 2𝑐𝑡 . We now refine each division (R𝑠 , C𝑠) = ({𝑅1, . . . , 𝑅𝑎}, {𝐶1, . . . ,𝐶𝑏}), into a

partition (R ′𝑠 , C′𝑠) of𝑀 (which is not necessarily a division). We consider 𝑅𝑖 ∈ R𝑠
and we say that

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

a subset 𝐽 of consecutive indices of {1, . . . , 𝑏} is good if 𝑅𝑖 ∩ ∪𝑗 ∈𝐽𝐶 𝑗 is not mixed. Now, observe

that if 𝑗 ∈ [𝑏 − 1] is not a mixed cut, and if 𝑅𝑖 ∩𝐶 𝑗 and 𝑅𝑖 ∩𝐶 𝑗+1 are both non-mixed zones, then

𝑅𝑖 ∩ (𝐶 𝑗 ∪𝐶 𝑗+1) is a non-mixed zone. Since the mixed value of 𝑅𝑖 on C𝑠
is at most 𝑡 ′, one can find at

most 𝑡 ′ + 1 good subsets 𝐽1, . . . , 𝐽𝑟 covering all the non-mixed zones of 𝑅𝑖 (each good subset spans

all indices between two mixed zones/cuts). We observe that a zone 𝑍𝑐 := 𝑅𝑖 ∩ ∪𝑗 ∈𝐽𝑐𝐶 𝑗 is either

vertical or horizontal. When 𝑍𝑐 is vertical, all rows of 𝑅𝑖 are identical on indices in 𝐽𝑐 . When 𝑍𝑐 is

horizontal, there are at most 𝛼 possible rows of 𝑅𝑖 restricted to the indices in 𝐽𝑐 where 𝛼 is the size

of the alphabet. In particular, there are at most 𝛼𝑟 ⩽ 𝛼𝑡
′+1

different rows in 𝑅𝑖 , when we restrict

them to {1, . . . , 𝑏} \ { 𝑗 | 𝑅𝑖 ∩𝐶 𝑗 is mixed}. We then partition 𝑅𝑖 into these different types of rows

and proceed in the same way for all parts in R𝑠
and in C𝑠

to obtain a partition (R ′𝑠 , C′𝑠) of𝑀 .

We show that the error value of (R ′𝑠 , C′𝑠) does not exceed 𝑡 ′𝛼𝑡 ′+1. Suppose that a zone 𝑅 ∩𝐶
where 𝑅 ∈ R ′𝑠

and 𝐶 ∈ C′𝑠
is not constant. We denote by 𝑅𝑖 ∈ R𝑠

and 𝐶 𝑗 ∈ C𝑠
the parts such that

𝑅 ⊆ 𝑅𝑖 and 𝐶 ⊆ 𝐶 𝑗 . Note that the zone 𝑅𝑖 ∩𝐶 𝑗 must be mixed, since otherwise, it has been divided

into constant zones in (R ′𝑠 , C′𝑠). In particular, the total number of such 𝐶 𝑗 is at most 𝑡 ′. Since 𝐶 𝑗

has been partitioned at most 𝛼𝑡
′+1

times, the total number of zones 𝑅 ∩𝐶 is at most 𝑡 ′𝛼𝑡
′+1

.

Let us show that the partition (R ′𝑠 , C′𝑠) refines (R ′𝑠+1, C′𝑠+1). Take for instance 𝑅 ∈ R ′𝑠
and

denote by 𝑅𝑖 ∈ R𝑠
the part such that 𝑅 ⊆ 𝑅𝑖 . Now the rows in 𝑅 have been selected in 𝑅𝑖 as they

coincide on all zones 𝑅 ∩𝐶 where 𝐶 ∈ C′𝑠
and 𝑅𝑖 ∩𝐶 is not mixed. Since the zones of (R𝑠+1, C𝑠+1)

contain the zones of (R𝑠 , C𝑠), the selection at stage 𝑠 + 1 is based on potentially less 𝐶 𝑗 such that

𝑅𝑖 ∪𝐶 𝑗 is not mixed (in case of a column fusion) or potentially more rows to choose 𝑅 from (in

case of a row fusion with 𝑅𝑖). In both cases, 𝑅 has to appear in some part of R ′𝑠+1
. We established

that (R ′𝑠 , C′𝑠) refines (R ′𝑠+1, C′𝑠+1). Moreover, since (R ′𝑠 , C′𝑠) 𝛼𝑡 ′+1-refines (R𝑠 , C𝑠) which in turn

2-refines (R𝑠+1, C𝑠+1), we have that (R ′𝑠 , C′𝑠) 2𝛼𝑡 ′+1-refines (R𝑠+1, C𝑠+1). As (R ′𝑠+1, C′𝑠+1) refines
(R𝑠+1, C𝑠+1), (R ′𝑠 , C′𝑠) 2𝛼𝑡 ′+1-refines (R ′𝑠+1, C′𝑠+1).
Finally, we apply Lemma 5.2 to the sequence (R ′𝑠 , C′𝑠) and conclude that the twin-width of𝑀 is

at most 2𝛼𝑡
′+1 · 𝑡 ′𝛼𝑡 ′+1 = 2𝑡 ′𝛼2(𝑡

′+1) = 4𝑐𝑡𝛼
4𝑐𝑡+2

. □

The second item of Theorem 5.4 has the following consequence, which reduces the task of

bounding the twin-width of𝐺 and finding a contraction sequence to merely exhibiting a mixed free

order, that is a domain-ordering 𝜎 such that the matrix 𝐴𝜎 (𝐺) is 𝑡-mixed free for a bounded 𝑡 .

Theorem 5.8. Let 𝐺 be a (di)graph or even a binary structure. If there is an ordering 𝜎 : 𝑣1, . . . , 𝑣𝑛

of 𝑉 (𝐺) such that 𝐴𝜎 (𝐺) is 𝑘-mixed free, then tww(𝐺) = 2
2
𝑂 (𝑘)

.

Proof. We shall just revisit the proof of Theorem 5.4 and check that, starting from a mixed-

symmetric matrix𝑀 := 𝐴𝜎 (𝐺), we can design a symmetric contraction sequence. As𝑀 = (𝑚𝑖 𝑗)𝑖, 𝑗
is mixed-symmetric, it holds that𝑚𝑖 𝑗 =𝑚𝑖′ 𝑗 ′ ⇔𝑚 𝑗𝑖 =𝑚 𝑗 ′𝑖′ . In particular the symmetric 𝑍 ′

about

the diagonal of an off-diagonal zone 𝑍 is mixed if and only if 𝑍 ′
is mixed. More precisely, 𝑍 ′

is

horizontal (resp. vertical) if and only if 𝑍 is vertical (resp. horizontal).

The division sequence with bounded mixed value, greedily built in Lemma 5.7, can be then made

symmetric. Say the first fusion merges the 𝑖-th and 𝑖 + 1-st rows, and let us call 𝑅 this new row-part.

We perform the symmetric fusion of the 𝑖-th and 𝑖 + 1-st columns, and denote by 𝐶 the obtained

column-part. After that operation, no mixed value among the row-parts has increased. In particular

the mixed value of 𝑅 has not increased, and this new mixed value equals the mixed value of 𝐶 .

Therefore the symmetric fusion was indeed possible. We iterate this process and follow the rest of

the proof of Lemma 5.7 to obtain a symmetric division sequence.

The refinement of the division sequence into a sequence of partitions of bounded error value, in

the second step of the proof of Theorem 5.4, is now symmetric since the division is symmetric and

𝑀 is mixed-symmetric (so two columns are equal on a set of zones if and only if the symmetric

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:23

rows are equal on the symmetric set of zones). Finally the contraction sequence is provided by

Lemma 5.2. In this lemma, we observed that the contractions going from the (symmetric) (R𝑖 , C𝑖) to
the (symmetric) (R𝑖+1, C𝑖+1) can be done in any order. Thus we can perform a symmetric sequence

of contractions. Overall we constructed a symmetric contraction sequence with error value 2
2
𝑂 (𝑘)

.

Hence the twin-width of 𝐺 is bounded by that quantity. This can be interpreted as a contraction

sequence of the vertices of 𝐺 (or domain elements) with bounded red degree. □

We observe that the proof of Theorem 5.8 is constructive. It yields an algorithm which, given a

𝑘-mixed free 𝑛 × 𝑛 matrix𝑀 , outputs a 2
2
𝑂 (𝑘)

-sequence of𝑀 in 𝑂 (𝑛2)-time.

6 CLASSES WITH BOUNDED TWIN-WIDTH
In this section we show that some classical classes of graphs and matrices have bounded twin-width.

Let us start with the origin of twin-width, which is the method proposed by Guillemot andMarx [30]

to understand permutation matrices avoiding a certain pattern.

6.1 Pattern-avoiding permutations
We associate to a permutation 𝜎 over [𝑛] the 𝑛 × 𝑛 matrix𝑀𝜎 = (𝑚𝑖 𝑗)𝑖, 𝑗 where𝑚𝑖𝜎 (𝑖) = 1 and all

the other entries are set to 0. A permutation 𝜎 is a pattern of a permutation 𝜏 if𝑀𝜎 is a submatrix

of𝑀𝜏 . A central open question was the design of an algorithm deciding if a pattern 𝜎 appears in

a permutation 𝜏 in time 𝑓 (|𝜎 |) · |𝜏 |𝑂 (1)
. The brilliant idea of Guillemot and Marx, reminiscent of

treewidth and grid minors, is to observe that permutations avoiding a pattern 𝜎 can be iteratively

decomposed (or collapsed), and that the decomposition gives rise to a dynamic-programming

scheme. This lead them to a linear-time 𝑓 (|𝜎 |) · |𝜏 | algorithm for permutation pattern recognition.

In Sections 3 and 5 we generalized their decomposition to graphs and arbitrary (dense) matrices,

and leveraged the Marcus-Tardos theorem, also in the dense setting. Section 5 would in principle

readily apply here: If a permutation matrix 𝑀𝜏 does not contain a fixed pattern of size 𝑘 , then it

is certainly 𝑘-mixed free since otherwise the 𝑘-mixed minor would contain any pattern of size 𝑘 .

Hence by Theorem 5.4,𝑀𝜏 has bounded twin-width.

However, to be able to use our framework and derive that FO model checking is FPT in the class

of permutations avoiding a given pattern, we need to transform𝑀𝜏 into a different matrix. Namely,

we consider the directed graph 𝐷𝜏 whose vertex set is the union of two total orders, respectively

the natural increasing orders on {1, . . . , 𝑛} and on {1′, . . . , 𝑛′}, where we add double arcs between

𝑖 and 𝜏 (𝑖) ′. The adjacency matrix 𝐴(𝐷𝜏) of 𝐷𝜏 where the vertices are ordered 1, . . . , 𝑛, 1′, . . . , 𝑛′

(recall the encoding mentioned in Section 5.1) consists of four blocks. Two of them are 𝑀𝜏 and

its transpose, and the two others (encoding the total orders) both consist of a lower triangle of

1, including the diagonal, completed by an upper triangle of -1. If𝑀𝜏 is 𝑘-mixed free, the matrix

𝐴(𝐷𝜏) is 2𝑘-mixed free, and thus has bounded twin-width. Note also that every first-order formula

expressible in the permutation 𝜏 (where we can test equality and ⩽) is expressible in the structure

𝐷𝜏 . In Section 7 we will show that FO model checking is FPT for 𝐷𝜏 , as we can efficiently compute

a sequence of 𝑑-partitions. Therefore FO model checking is also FPT in the class of permutations

avoiding some fixed pattern 𝜎 .

As an illustrating example, let us consider the following artificial problem. Let ℓ be a positive

integer, and 𝜎, 𝜎 ′
be two fixed permutations. Given an input permutation 𝜏 , we ask if 𝜏 contains the

pattern 𝜎 ′
or every pattern of 𝜏 of size ℓ is contained in 𝜎 . There is an 𝑓 (ℓ, |𝜎 |, |𝜎 ′ |) · |𝜏 |2 algorithm

to solve this problem (actually the dependency in |𝜏 | could be made linear in this particular case).

We first compute an upper bound on the twin-width of the matrix 𝑀𝜏 associated to 𝜏 (as defined

previously). Either𝑀𝜏 has a |𝜎 ′ |-mixed minor (and we can answer positively: 𝜎 ′
appears in 𝜏), or 𝐷𝜏

has bounded twin-width. One of these two outcomes can be reached in time𝑂 (|𝜏 |2) by the previous

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

section (even 𝑂 (|𝜏 |)). We now assume that 𝐷𝜏 has bounded twin-width. Then we observe that the

property “every pattern of 𝜏 of size ℓ is contained in 𝜎” is expressible by a first-order formula of

size 𝑔(ℓ, |𝜎 |). By Section 7 that property can be tested in time 𝑓 (ℓ, |𝜎 |, |𝜎 ′ |) · |𝜏 |.
Given a permutation 𝜏 , we can form the permutation graph 𝐺𝜏 on vertex set [𝑛] where 𝑖 𝑗 is an

edge when 𝑖 < 𝑗 and 𝜏 (𝑖) > 𝜏 (𝑗). Note that 𝐺𝜏 can be first-order interpreted from the digraph 𝐷𝜏

(defined as above) and the partition of 𝑉 (𝐷𝜏) into {1, . . . , 𝑛} and {1′, . . . , 𝑛′}. In Section 8 we will

show that any FO interpretation of a graph 𝐺 by a formula 𝜙 (𝑥,𝑦) has twin-width bounded by a

function of 𝜙 and tww(𝐺). This implies the following:

Lemma 6.1. FO model checking is FPT on every hereditary proper subclass of permutation graphs.

Proof. By assumption, there is a permutation graph 𝐺𝜎 which is not an induced subgraph of

any graph 𝐺𝜏 in the class. We thus obtain that 𝐷𝜏 has bounded twin-width, as𝑀𝜏 does not contain

the pattern𝑀𝜎 . Therefore 𝐺𝜏 itself has bounded twin-width, and a sequence of contractions can

be efficiently found (by following the constructive proof of Section 5). We conclude by invoking

Section 7. □

A similar argument works for partial orders of (Dushnik-Miller) dimension 2, i.e., intersections

of two total orders defined on the same set. We obtain:

Lemma 6.2. FO model checking is FPT on every proper subclass of partial orders of dimension 2.

6.2 Posets of bounded width
The versatility of the grid minor theorem for twin-width is also illustrated with posets. Let 𝑃 =

(𝑋,⩽) be a poset of width 𝑘 , that is, its maximum antichain has size 𝑘 . For 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 , 𝑥𝑖 < 𝑥 𝑗
denotes that 𝑥𝑖 ⩽ 𝑥 𝑗 and 𝑥𝑖 ≠ 𝑥 𝑗 . We claim that the twin-width of 𝑃 is bounded by a function of 𝑘 .

By Dilworth’s theorem, 𝑃 can be partitioned into 𝑘 total orders (or chains) 𝑇1, . . . ,𝑇𝑘 . Now one can

enumerate the vertices precisely in this order, say 𝜎 , that is, increasingly with respect to 𝑇1, then

increasingly with respect to 𝑇2, and so on. We rename the elements of 𝑋 so that in the order 𝜎 ,

they read 𝑥1, 𝑥2, . . . , 𝑥𝑛 , with 𝑛 := |𝑋 |. Let us write the adjacency matrix 𝐴 = (𝑎𝑖 𝑗) := 𝐴𝜎 (𝑃) of 𝑃 :
𝑎𝑖 𝑗 = 1 if 𝑥𝑖 ⩽ 𝑥 𝑗 , 𝑎𝑖 𝑗 = −1 if 𝑥 𝑗 < 𝑥𝑖 , and 𝑎𝑖 𝑗 = 0 otherwise. Recall that this is consistent with

how we defined the adjacency matrix for the more general digraphs in Section 5. We assume for

contradiction that 𝐴 has a 3𝑘-mixed minor.

By the pigeon-hole principle, there is a submatrix of 𝐴 indexed by two chains, 𝑇𝑖 for the row

indices and 𝑇𝑗 for the column indices, which has a 3-mixed minor, realized by the (3, 3)-division
(𝑅1, 𝑅2, 𝑅3), (𝐶1,𝐶2,𝐶3). The zone 𝑅2 ∩𝐶2 is mixed, so it contains a -1 or a 1. If it is a -1, then by

transitivity the zone 𝑅3∩𝐶1 is entirely -1, a contradiction to its being mixed. A similar contradiction

holds when there is a 1 entry in 𝑅2 ∩𝐶2: zone 𝑅1 ∩𝐶3 is entirely 1. See Fig. 6 for an illustration.

Hence, by Theorem 5.4, the twin-width of 𝐴 (and the twin-width of 𝑃 seen as a directed graph) is

bounded by 4𝑐𝑘 · 44𝑐𝑘+2 = 2
2
𝑂 (𝑘)

.

Of course there was a bit of work to establish Theorem 5.4 inspired by the Guillemot-Marx

framework, and supported by the Marcus-Tardos theorem. There was even more work to prove

that FO model checking is FPT on bounded twin-width (di)graphs. It is nevertheless noteworthy

that once that theory is established, the proof that bounded twin-width captures the posets of

bounded width is lightning fast. Indeed the known FPT algorithm on posets of bounded width [23]

is a strong result, itself generalizing or implying the tractability of FO model checking on several

geometric classes [28, 31], as well as algorithms for existential FO model checking on posets of

bounded width [11, 25]. We observe that posets of bounded twin-width constitute a strict superset

of posets of bounded width. Arcless posets are trivial separating examples, which have unbounded

maximum antichain and twin-width 0. A more elaborate example would be posets whose cover

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:25

𝑇𝑗 𝑇𝑖

𝐶1

𝐶2

𝐶3

𝑅1

𝑅2

𝑅3

𝐶1 𝐶2 𝐶3

𝑇𝑗

𝑅1

𝑅2

𝑅3

𝑇𝑖
-1

-1

𝑇𝑗 𝑇𝑖

𝐶1

𝐶2

𝐶3

𝑅1

𝑅2

𝑅3

𝐶1 𝐶2 𝐶3

𝑇𝑗

𝑅1

𝑅2

𝑅3

𝑇𝑖 1

1

Fig. 6. Left: If there is one arc from 𝐶2 to 𝑅2, then by transitivity there are all arcs from 𝐶1 to 𝑅3. On the
matrix, this translates as: a -1 entry in 𝑅2 ∩𝐶2 implies that all the entries of 𝑅3 ∩𝐶1 are -1. Right: Similarly, a
1 entry in 𝑅2 ∩𝐶2 implies that all the entries of 𝑅1 ∩𝐶3 are 1. Hence at least one zone among 𝑅3 ∩𝐶1, 𝑅2 ∩𝐶2,
𝑅1 ∩𝐶3 is constant, a contradiction to the 3𝑘-mixed minor.

Permutations avoiding 𝜎 Posets of width𝑤 𝐾𝑡 -minor free graphs

ordering imposed chains put one after the other ad-hoc Lex-DFS

bound 2
𝑂 (|𝜎 |)

2
2
𝑂 (𝑤)

2
2
2
𝑂 (𝑡)

Table 1. Choice of the ordering and bound on the twin-width for the classes tackled in Section 6.

digraph is a directed path on

√
𝑛 vertices in which all vertices are substituted by an independent

set of size

√
𝑛. These posets have width

√
𝑛 and twin-width 1.

We observe that while this paper was under review, Balabán and Hlinený showed a linear

upper bound 𝑂 (𝑘) in the twin-width of posets of width 𝑘 [1]. Their proof does not rely on the

Marcus-Tardos theorem and gives directly a good contraction sequence.

The next example does not qualify as a “lightning fast” membership proof to bounded twin-width.

It shows however that the good vertex-ordering can be far less straightforward.

6.3 Proper minor-closed classes
A more intricate example is given by proper minor-closed classes. By definition, a proper minor-

closed class does not contain some graph 𝐻 as a minor. This implies in particular that it does not

contain 𝐾 |𝑉 (𝐻) | as a minor. Thus we only need to show that 𝐾𝑡 -minor free graphs have bounded

twin-width.

If the 𝐾𝑡 -minor free graph 𝐺 admits a Hamiltonian path, things become considerably simpler.

We can enumerate the vertices of 𝐺 according to this path and write the corresponding adjacency

matrix 𝐴. The crucial observation is that a 𝑘-mixed minor yields a 𝐾𝑘/2,𝑘/2-minor, hence a 𝐾𝑘/2-
minor. So 𝐴 cannot have a 2𝑡-mixed minor, and by Theorem 5.4, the twin-width of 𝐺 bounded

(by 4𝑐2𝑡2
4𝑐2𝑡+2 = 2

𝑡𝑂 (𝑡)
). Unfortunately, a Hamiltonian path is not always granted in 𝐺 . A depth-

first search (DFS for short) tree may emulate the path, but any DFS will not necessarily work.

Interestingly the main tool of the following theorem is a carefully chosen Lex-DFS.

We note that a much simpler proof of the following theorem is obtained in [9] via a directed

version of twin-width (where red edges come with an orientation). However a different result in

the same paper requires the proof that we are about to give here.

Theorem 6.3. We set 𝑔 : 𝑡 ↦→ 2(24𝑡+1 + 1)2, 𝑐𝑘 := 8/3(𝑘 + 1)224𝑘 , and 𝑓 : 𝑡 ↦→ 4𝑐𝑔 (𝑡)2
4𝑐𝑔 (𝑡)+2

. Every

𝐾𝑡 -minor free graph have twin-width at most 𝑓 (𝑡) = 2
2
2
𝑂 (𝑡)

.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Proof. Let𝐺 be a 𝐾𝑡 -minor free graph, and 𝑛 := |𝑉 (𝐺) |. We wish to upperbound the twin-width

of𝐺 . We may assume that𝐺 is connected since the twin-width of a graph is equal to the maximum

twin-width of its connected components.

Definition of the appropriate Lex-DFS. Let 𝑣1 be an arbitrary vertex of 𝐺 . We perform a

specific depth-first search from 𝑣1. A vertex is said discovered when it is visited (for the first time) in

the DFS. The current discovery order is a total order 𝑣1, . . . , 𝑣ℓ among the discovered vertices, where

𝑣𝑖 was discovered before 𝑣 𝑗 whenever 𝑖 < 𝑗 . We may denote that fact by 𝑣𝑖 ≺ 𝑣 𝑗 , and 𝑣𝑖 ≼ 𝑣 𝑗 if 𝑖 and

𝑗 may potentially be equal. The current DFS tree is the tree on the discovered vertices whose edges

correspond to the usual parent-to-child exploration. The active vertex is the lastly discovered vertex

which still has at least one undiscovered neighbor. Initially the active vertex is 𝑣1, and when all

vertices have been discovered, there is no longer an active vertex. Before that, since𝐺 is connected,

the active vertex is always well-defined. The (full) discovery order is the same total order when all

the vertices have been discovered.

We shall now describe how we break ties among the undiscovered neighbors of the active vertex.

Let 𝑣1, . . . , 𝑣ℓ be the discovered vertices (with ℓ < 𝑛), Tℓ be the current DFS tree, and 𝑣 be the active
vertex. Let 𝐶1, . . . ,𝐶𝑠 be the vertex sets of the connected components of 𝐺 − 𝑉 (Tℓ) intersecting
𝑁𝐺 (𝑣). By definition of the active vertex, 𝑠 ⩾ 1. For each 𝑖 ∈ [𝑠], we interpret 𝑁𝐺 (𝐶𝑖) ∩ 𝑉 (Tℓ)
as a word 𝑤ℓ (𝐶𝑖) of {0, 1}ℓ where, for every 𝑗 ∈ [𝑙], the 𝑗-th letter of 𝑤ℓ (𝐶𝑖) is a 1 if and only if

𝑣 𝑗 ∈ 𝑁𝐺 (𝐶𝑖) ∩𝑉 (Tℓ). If𝑤 and𝑤 ′
are two words on the alphabet {0, 1}, we denote by𝑤 ⩽lex 𝑤

′
the

fact that𝑤 is not greater than𝑤 ′
in the lexicographic order derived from 0 < 1. We can now define

the successor of 𝑣ℓ in the discovery order. The new vertex 𝑣ℓ+1 is chosen as an arbitrary vertex of

𝐶𝑖 ∩ 𝑁𝐺 (𝑣) where 𝑤ℓ (𝐶 𝑗) ⩽lex 𝑤ℓ (𝐶𝑖) for every 𝑗 ∈ [𝑠]. Informally we visit first the component

having the neighbors appearing first in the current discovery order.

The Lex-DFS discovery to order the adjacency matrix M. Let 𝑣1, . . . , 𝑣𝑛 be the eventual

discovery order, and let T be the complete DFS tree. Let 𝑀 be the {0, 1}𝑛×𝑛 matrix obtained by

ordering the rows and columns of the adjacency matrix of 𝐺 accordingly to the discovery order.

We set 𝑔(𝑡) := 2ℎ(𝑡)2 and ℎ(𝑡) := 2
4𝑡+1 + 2. We will show that𝑀 is 𝑔(𝑡)-mixed free, actually even

𝑔(𝑡)-grid free. For the sake of contradiction, let us suppose that𝑀 has a 𝑔(𝑡)-grid minor defined by

the consecutive sets of columns 𝐶1,𝐶2, . . . ,𝐶𝑔 (𝑡) and the consecutive sets of rows 𝑅1, 𝑅2, . . . , 𝑅𝑔 (𝑡) .
Now our goal is to show that we can contract a non-negligible amount of the 𝐶 𝑗 and 𝑅𝑖 , thereby

exhibiting a 𝐾𝑡 -minor. Actually the 𝐾𝑡 -minors will arise from 𝐾𝑎,𝑏-minors with 𝑡 ⩽ min(𝑎, 𝑏). We

observe that either

⋃
𝑗 ∈[1,𝑔 (𝑡)/2] 𝐶 𝑗 and

⋃
𝑖∈[𝑔 (𝑡)/2+1,𝑔 (𝑡)] 𝑅𝑖 are disjoint, or

⋃
𝑗 ∈[𝑔 (𝑡)/2+1,𝑔 (𝑡)] 𝐶 𝑗 and⋃

𝑖∈[1,𝑔 (𝑡)/2] 𝑅𝑖 are disjoint. Without loss of generality, let us assume that the former condition

holds, and we will now try to find a 𝐾𝑡,𝑡 -minor between 𝐶1, . . . ,𝐶𝑔 (𝑡)/2 and 𝑅𝑔 (𝑡)/2+1, . . . , 𝑅𝑔 (𝑡) . To
emphasize the irrelevance of the first sets being columns and the second sets being rows, we rename

𝐶1, . . . ,𝐶𝑔 (𝑡)/2 by 𝐴1, . . . , 𝐴𝑔 (𝑡)/2, and 𝑅𝑔 (𝑡)/2+1, . . . , 𝑅𝑔 (𝑡) by 𝐵1, . . . , 𝐵𝑔 (𝑡)/2.
Note that all the vertices of

⋃
𝑖∈[𝑔 (𝑡)/2] 𝐴𝑖 are consecutive in the discovery order and appear

before the consecutive vertices

⋃
𝑖∈[𝑔 (𝑡)/2] 𝐵𝑖 . Another important fact is that there is at least one

edge between every pair (𝐴𝑖 , 𝐵 𝑗) (by definition of a mixed minor, or even grid minor). Thus let

𝑎𝑖, 𝑗 ∈ 𝐴𝑖 be an arbitrary vertex with at least one neighbor 𝑏𝑖, 𝑗 in 𝐵 𝑗 . At this point, if we could

contract each 𝐴𝑖 and 𝐵 𝑗 , we would be immediately done. This is possible if all these sets induce a

connected subgraph. We will see that this is essentially the case for the sets of {𝐴𝑖 }𝑖∈[𝑔 (𝑡)/2] , but
not necessarily for the {𝐵 𝑗 }𝑗 ∈[𝑔 (𝑡)/2] .

The {Ai}i essentially induce disjoint paths along the same branch. Let 𝐴′
𝑖 be the vertex

set of the minimal subtree of T containing

⋃
𝑗 ∈[𝑔 (𝑡)/2]{𝑎𝑖, 𝑗 }. The following lemma only uses the

definition of a DFS, and not our specific tie-breaking rules.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:27

Lemma 6.4. All the vertices 𝑎𝑖, 𝑗 , for 𝑖, 𝑗 ∈ [𝑔(𝑡)/2], lie on a single branch of the DFS tree with, in the
discovery order, first

⋃
𝑗 ∈[𝑔 (𝑡)/2]{𝑎1, 𝑗 }, then

⋃
𝑗 ∈[𝑔 (𝑡)/2]{𝑎2, 𝑗 }, and so on, up to

⋃
𝑗 ∈[𝑔 (𝑡)/2]{𝑎𝑔 (𝑡)/2, 𝑗 }.

In particular, the sets 𝐴′
𝑖 induce pairwise-disjoint paths in T along the same branch.

Proof. Assume for the sake of contradiction that 𝑎𝑖, 𝑗 and 𝑎𝑖′, 𝑗 ′ , with 𝑎𝑖, 𝑗 ≺ 𝑎𝑖′, 𝑗 ′ , are not in an

ancestor-descendant relationship in T . Let𝑤 be the least common ancestor of 𝑎𝑖, 𝑗 and 𝑎𝑖′, 𝑗 ′ , and

T𝑤 the current DFS tree the moment𝑤 is discovered. Hence𝑤 ≺ 𝑎𝑖, 𝑗 . We claim that 𝑏𝑖, 𝑗 would be

discovered before 𝑎𝑖′, 𝑗 ′ , a contradiction. Indeed when 𝑎𝑖, 𝑗 is discovered, it becomes the active vertex

(due, for instance, to the mere existence of 𝑏𝑖, 𝑗). By design of a DFS, 𝑎𝑖, 𝑗 is not in the same connected

component of 𝐺 − T𝑤 as 𝑎𝑖′, 𝑗 ′ , but its neighbor 𝑏𝑖, 𝑗 obviously is. So this connected component, and

in particular 𝑏𝑖, 𝑗 , is fully discovered before 𝑎𝑖′, 𝑗 ′ . This proves that the sets 𝐴
′
𝑖 induce paths in T

along the same branch.

We claim that these paths are pairwise disjoint and in the order (from root to bottom) 𝐴′
1
, 𝐴′

2
, . . . ,

𝐴′
𝑔 (𝑡)/2. This is immediate since, for every 𝑖 < 𝑖 ′, 𝑎𝑖, 𝑗 ≺ 𝑎𝑖′, 𝑗 ′ . Thus 𝑎𝑖, 𝑗 can only be an ancestor of

𝑎𝑖′, 𝑗 ′ in T . One can also observe that 𝐴′
𝑖 ⊆ 𝐴𝑖 for every 𝑖 ∈ [𝑔(𝑡)/2]. □

Handling the {Bj}j with the enhancements {B∗
j }j. Let 𝐵∗𝑗 be the vertex set of the minimum

subtree of T containing 𝐵 𝑗 . Since 𝐵 𝑗 consist of consecutive vertices in the discovery order, 𝐵∗𝑗 =
𝐵 𝑗 ⊎ 𝑃 𝑗 where 𝑃 𝑗 is a path on a single branch of T . One can see 𝐵∗𝑗 as an enhancement of 𝐵 𝑗 .

We show that except maybe the last 𝐴′
𝑖 , namely 𝐴′

𝑔 (𝑡)/2, every set enhancement 𝐵∗𝑗 is disjoint

from every 𝐴′
𝑖 .

Lemma 6.5. For every 𝑗 ∈ [𝑔(𝑡)/2], for every 𝑖 ∈ [𝑔(𝑡)/2 − 1], 𝐵∗𝑗 ∩𝐴′
𝑖 = ∅.

Proof. There is an edge between 𝐴′
𝑔 (𝑡)/2 and each 𝐵 𝑗 . Every 𝐵 𝑗 succeeds 𝐴

′
𝑔 (𝑡)/2 in the discovery

order. Therefore all the vertices of

⋃
𝑗 ∈[𝑔 (𝑡)/2] 𝐵 𝑗 appear in T in the subtree of the firstly discovered

vertex, say 𝑢, of 𝐴′
𝑔 (𝑡)/2. Hence all the trees 𝐵

∗
𝑗 are fully contained in T [𝑢] the subtree of T rooted

at 𝑢. We can then conclude since, by Lemma 6.4, all the vertices of

⋃
𝑗 ∈[𝑔 (𝑡)/2−1] 𝐴

′
𝑗 are ancestors

of 𝑢. □

An enhancement is connected by design. Furthermore, by Lemma 6.5 contracting (in the usual

minor sense) a 𝐵∗𝑗 would not affect almost all 𝐴′
𝑖 . The remaining obvious issue that we are facing is

that a pair of enhancements 𝐵∗𝑗 and 𝐵
∗
𝑗 ′ may very well overlap. Thus we turn our attention to their

intersection graph.

The intersection graph H of the enhancements. Let 𝐻 be the intersection graph whose

vertices are 𝐵∗
1
, . . . , 𝐵∗

𝑔 (𝑡)/2 and there is an edge between two vertices whenever the corresponding

sets intersect. As an intersection graph of subtrees in a tree, 𝐻 is a chordal graph. In particular

𝐻 is a perfect graph, thus 𝛼 (𝐻)𝜔 (𝐻) ⩾ |𝑉 (𝐻) | = 𝑔(𝑡)/2. Therefore either 𝛼 (𝐻) ⩾
√
𝑔(𝑡)/2 or

𝜔 (𝐻) ⩾
√
𝑔(𝑡)/2. Moreover in polynomial-time, we can compute an independent or a clique of

size

√
𝑔(𝑡)/2 = ℎ(𝑡) = 2

4𝑡+1 + 2 > 𝑡 . If we get a large independent set 𝐼 in 𝐻 , we can contract the

edges of each 𝐵∗𝑗 corresponding to a vertex of 𝐼 . By Lemma 6.5 we can also contract any ℎ(𝑡) paths
𝐴′
𝑖 which are not 𝐴′

𝑔 (𝑡)/2, and obtain a 𝐾ℎ (𝑡),ℎ (𝑡) (which contains a 𝐾ℎ (𝑡) -minor, hence a 𝐾𝑡 -minor).

We thus assume that we get a large clique 𝐶 in 𝐻 .

H has a clique C of size at least h(t). By the Helly property satisfied by the subtrees of a tree,

there is a vertex 𝑣 of T (or of𝐺) such that every 𝐵∗𝑗 ∈ 𝐶 contains 𝑣 . If we potentially exclude the 𝐵∗𝑗
of 𝐶 with smallest and largest index, all the other elements of 𝐶 are fully contained in T [𝑣] the
subtree of T rooted at 𝑣 . Let 𝐶1, . . . ,𝐶𝑠 be the connected components of T [𝑣] − {𝑣}, ordered by

the Lex-DFS discovery order. Thus 𝑣 has 𝑠 children in T .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

The enhancements of C essentially intersect only at v. We show that each connected

component may intersect only a very limited number of 𝐵∗𝑗 ∈ 𝐶 .

Lemma 6.6. For every 𝑖 ∈ [𝑠], the connected component 𝐶𝑖 intersects at most two 𝐵∗𝑗 ∈ 𝐶 .

Proof. Assume by contradiction that there is a connected component𝐶𝑖 intersecting𝐵
∗
𝑗1
, 𝐵∗𝑗2 , 𝐵

∗
𝑗3
∈

𝐶 , with 𝑗1 < 𝑗2 < 𝑗3. Since 𝐵 𝑗2 appears after 𝐵 𝑗1 and before 𝐵 𝑗3 in the discovery order, 𝐵 𝑗2 is fully

contained in 𝐶𝑖 . Hence 𝐵
∗
𝑗2
is also contained in 𝐶𝑖 and cannot contain 𝑣 , a contradiction. □

Moreover Lemma 6.6 shows that only two consecutive 𝐵∗𝑗1 , 𝐵
∗
𝑗2
∈ 𝐶 (by consecutive, we mean that

there is no 𝐵∗𝑗 ∈ 𝐶 with 𝑗1 < 𝑗 < 𝑗2) may intersect the same connected component of T [𝑣] − {𝑣}.
Let us relabel 𝐷1, . . . , 𝐷 (ℎ (𝑡)−1)/2, every other elements of 𝐶 except the last one (keeping the same

order). Now no connected component 𝐶𝑖 intersects two distinct sets 𝐷 𝑗 , 𝐷 𝑗 ′ . Each 𝐷 𝑗 defines an

interval 𝐼 𝑗 := [ℓ (𝑗), 𝑟 (𝑗)] of the indices 𝑖 such that 𝐷 𝑗 intersects𝐶𝑖 . The sets 𝐼 𝑗 are pairwise-disjoint

intervals.

Definitions of the pointers z, jb, je to iteratively build S and L. Let 𝑧1 ∈ 𝑁𝐺 (𝐶𝑟 (1)) be such
that for every 𝑧 ′ ∈ 𝑁𝐺 (𝐶𝑟 (1)), 𝑧1 ≼ 𝑧 ′. This vertex exists by our DFS tie-breaking rule and the fact

that there is an edge between, say, 𝑎2,1 and 𝑏2,1 (recall that this edge links 𝐴2 and 𝐵1). We initialize

three pointers 𝑧, 𝑗𝑏, 𝑗𝑒 and two sets S,L as follows: 𝑧 := 𝑣1 (the starting vertex in the DFS discovery

order), 𝑗𝑏 := 1, 𝑗𝑒 := (ℎ(𝑡) − 2)/2 = 2
4𝑡
, S := ∅, and L := ∅. Informally the indices 𝑗𝑏 (begin) and 𝑗𝑒

(end) lowerbound and upperbound, respectively, the indices of the sets {𝐷 𝑗 }𝑗 we are still working
with. Every vertex 𝑣 ≺ 𝑧 is simply disregarded.

The sets S and L collect vertices (all discovered before 𝐵1 in the Lex-DFS order) which can be

utilized to form a large biclique minor in two different ways. Vertices stored in S are not adjacent

to too many {𝐷 𝑗 }𝑗 , thus they can be used to “connect” the components of some 𝐷 𝑗 − {𝑣} without
losing too many other 𝐷 𝑗 ′ . Vertices stored in L are adjacent to very many {𝐷 𝑗 }𝑗 , so they can

directly form a biclique minor with the leftmost connected component of the corresponding {𝐷 𝑗 }𝑗 .
Let 𝑗1 ∈ [(ℎ(𝑡) − 2)/2] be the smallest index such that 𝑁𝐺 (𝐶ℓ (𝑗1)) does not contain 𝑧1. We

distinguish two cases: 𝑗1 ⩽ (ℎ(𝑡) − 2)/4 = 2
4𝑡−1

and 𝑗1 > 2
4𝑡−1

. If 𝑗1 ⩽ 2
4𝑡−1

, we will use 𝑧1 to

connect all connected components intersecting 𝐷1: that is, 𝐶ℓ (1) ,𝐶ℓ (1)+1, . . . ,𝐶𝑟 (1) . In that case, we

set: 𝑗𝑏 := 𝑗1 and S := S ∪ {𝑧1}.
If instead 𝑗1 > 2

4𝑡−1
, we will use 𝑧1 itself as a possible vertex of a biclique minor. In that case we

set: 𝑗𝑒 := 𝑗1 − 1 and L := L ∪ {𝑧1}. Observe that in both cases the length | 𝑗𝑒 − 𝑗𝑏 | is at most halved.

Hence we can repeat this process log 2
4𝑡/2 = 2𝑡 times. In both cases we replace the current 𝑧 by

the successor of 𝑧1 in the DFS discovery order.

At the second step, we let 𝑧2 ∈ 𝑁𝐺 (𝐶𝑟 (𝑗𝑏)) be such that for every 𝑧 ′ ∈ 𝑁𝐺 (𝐶𝑟 (𝑗𝑏)) with 𝑧 ≼ 𝑧 ′,
then 𝑧2 ≺ 𝑧 ′. In words, 𝑧2 is the first vertex (in the discovery order) appearing after 𝑧 with a

neighbor in the last connected component 𝐶𝑖 intersecting the current first 𝐷 𝑗 , namely 𝐷 𝑗𝑏 . Again

this vertex exists by the DFS tie-breaking rule. We define 𝑗2 ∈ [𝑗𝑏, 𝑗𝑒] as the smallest index such

that 𝑁𝐺 (𝐶ℓ (𝑗2)) does not contain 𝑧2. We distinguish two cases: 𝑗2 below or above the threshold

(𝑗𝑏 + 𝑗𝑒)/2, and so on.

Building a largeminorwhen |L| is large.After log ((ℎ(𝑡) − 2)/2)/2 = 2𝑡 steps,max(|S|, |L|)
⩾ 𝑡 . Indeed at each step, we increase |S| + |L| by one unit. Also the length | 𝑗𝑒 − 𝑗𝑏 | after these steps
is still not smaller than 2

4𝑡/22𝑡 = 2
2𝑡
. If |L| ⩾ 𝑡 , then we exhibit a 𝐾𝑡,𝑡 -minor in 𝐺 in the following

way. We contract 𝐶ℓ (𝑗) to a single vertex, for every 𝑗 ∈ [𝑗𝑏, 𝑗𝑒] (recall that | 𝑗𝑒 − 𝑗𝑏 | > 2
2𝑡
). These

vertices form with the vertices of L a 𝐾
2
2𝑡 , |L | , thus a 𝐾𝑡,𝑡 -minor, and a 𝐾𝑡 -minor.

Building a large minor when |S| is large. If instead |S| ⩾ 𝑡 , then we exhibit the following

𝐾𝑡,𝑡 -minor.We use each 𝑧𝑖 ∈ S, to connect the corresponding sets𝐷 𝑗 \{𝑣}. We contract {𝑧𝑖 }∪𝐷 𝑗 \{𝑣}
to a single vertex. We then contract all the disjoint paths𝐴′

𝑖 (recall Lemma 6.4) which are not𝐴′
𝑔 (𝑡)/2

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:29

nor contain a vertex in S. This represents at least 𝑔(𝑡)/2− 1− 2𝑡 > 𝑡 vertices. This yields a biclique

𝐾𝑡,𝑡 , hence 𝐺 as a 𝐾𝑡 -minor.

Concluding on the twin-width of G. The two previous paragraphs reach a contradiction.

Hence the adjacency matrix 𝑀 is 𝑔(𝑡)-mixed free, and even 𝑔(𝑡)-grid free. By Theorem 5.4 this

implies that the twin-width of 𝐺 is at most 4𝑐𝑔 (𝑡)2
4𝑐𝑔 (𝑡)+2

, where 𝑐𝑘 := 8/3(𝑘 + 1)224𝑘 , which was

the announced triple-exponential bound. □

Applied to planar graphs, which are 𝐾5-minor free, the previous theorem gives us a constant

bound on the twin-width, but that constant has billions of digits. We believe that the correct bound

should have only one digit. It is natural to ask for a more reasonable bound in the case of planar

graphs. An attempt could be to show that for a large enough integer 𝑑 , every planar 𝑑-trigraph

admits a 𝑑-contraction which preserves planarity. However Fig. 7 shows that this statement does

not hold.

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

Fig. 7. For every integer 𝑑 (here 𝑑 = 4), a planar 𝑑-trigraph without any 𝑑-contraction to a planar graph. The
graph should be thought of as wrapped around a cylinder: there are edges 𝑥1𝑥3 and 𝑦1𝑦3, and the leftmost
and rightmost vertices are actually the same vertex.

7 FO MODEL CHECKING
In this section, we show that deciding first-order properties in 𝑑-collapsible graphs is fixed-

parameter tractable in 𝑑 and the size of the formula. We let 𝐸 be a binary relation symbol. A graph𝐺

is seen as an {𝐸}-structure with universe 𝑉 (𝐺) and binary relation 𝐸 (𝐺) (matching the arity of 𝐸).

A sentence is a formula without free variables.

A formula 𝜙 in prenex normal form, or simply prenex formula, is any sentence written as a

sequence of non-negated quantifiers followed by a quantifier-free formula:

𝜙 = 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄ℓ𝑥ℓ𝜙
∗

where for each 𝑖 ∈ [ℓ], the variable 𝑥𝑖 ranges over 𝑉 (𝐺), 𝑄𝑖 ∈ {∀, ∃}, while 𝜙∗
is a Boolean

combination in atoms of the form 𝑥𝑖 = 𝑥 𝑗 and 𝐸 (𝑥𝑖 , 𝑥 𝑗). Here we call length of 𝜙 its number of

variables ℓ . Note that this also corresponds to its quantifier depth. Every formula with quantifier

depth 𝑘 can be rewritten as a prenex formula of depth Tower(𝑘 + log
∗ 𝑘 + 3) (see Theorem 2.2. and

inequalities (32) in [36]).

Theorem 7.1. Given as input a prenex formula 𝜙 of length ℓ , an 𝑛-vertex graph𝐺 , and a 𝑑-sequence

of 𝐺 , one can decide 𝐺 |= 𝜙 in time 𝑓 (ℓ, 𝑑) · 𝑛.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Our proof of Theorem 7.1 is not specific to a single formula. Instead we compute a tree of size

bounded by a function of ℓ , which is sufficient to check every prenex formula 𝜙 of length ℓ .

7.1 morphism-trees and shuffles
All our trees are rooted and the root is denoted by Y. An internal node is a node with at least one

child. Non-internal nodes are called leaves. Given a node 𝑥𝑖 in a tree 𝑇 , we call current path of 𝑥𝑖
the unique path Y, 𝑥1, . . . , 𝑥𝑖 from Y to 𝑥𝑖 in 𝑇 . We will see this current path as the tuple (𝑥1, . . . , 𝑥𝑖).
The current path of Y is the empty tuple, also denoted by Y. The depth of a node 𝑥 is the number of

edges in the current path of 𝑥 . A node 𝑥 is a descendant of 𝑦 if 𝑦 belongs to the current path of 𝑥 .

Given a tree 𝑇 , we denote the parent of 𝑥 by 𝑝𝑇 (𝑥). Two nodes with the same parent are siblings.

We denote by 𝑇 ∗
the set of nodes of 𝑇 distinct from its root Y, that is 𝑉 (𝑇) \ {Y}.

A bijection 𝑓 between the node sets of two trees 𝑇1,𝑇2 is an isomorphism if it commutes with

the parent relation, i.e., 𝑝𝑇2 (𝑓 (𝑥)) = 𝑓 (𝑝𝑇1 (𝑥)) for every node 𝑥 ∈ 𝑇 ∗
1
. One can observe that

𝑓 −1 : 𝑉 (𝑇2) → 𝑉 (𝑇1) is then also an isomorphism. Two trees are said isomorphic if there is an

isomorphism between them. An isomorphism mapping 𝑇 to itself is called an automorphism. Given

a node 𝑥 in 𝑇 , the subtree of 𝑥 , denoted by 𝐵𝑇 (𝑥), is the subtree of 𝑇 rooted at 𝑥 and containing all

descendants of 𝑥 .

An 𝑖-tuple is a tuple on exactly 𝑖 elements, and a ⩽ 𝑖-tuple is a tuple on at most 𝑖 elements. A

subtuple of a tuple 𝑎 is any tuple obtained by erasing some entries of 𝑎. Given a tuple 𝑎 = (𝑎𝑖) and
a set 𝑋 , the subtuple of 𝑎 induced by 𝑋 , denoted by 𝑎 |𝑋 is the subtuple consisting of the entries 𝑎𝑖
which belongs to 𝑋 . Given two disjoint sets 𝐴 and 𝐵, and two tuples 𝑎 ∈ 𝐴𝑠

and 𝑏 ∈ 𝐵𝑡 , a shuffle

𝑐 of 𝑎 and 𝑏 is any tuple of (𝐴 ∪ 𝐵)𝑠+𝑡 such that 𝑐 |𝐴 = 𝑎 and 𝑐 |𝐵 = 𝑏. For instance (2, 0, 3, 1, 0) is
one of the ten shuffles of (0, 1, 0) and (2, 3). Given a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘), the prefix of 𝑥 is

(𝑥1, . . . , 𝑥𝑘−1) if 𝑘 > 1, and Y if 𝑘 = 1.

Given two trees 𝑇1 and 𝑇2 whose nodes are supposed disjoint, the shuffle 𝑠 (𝑇1,𝑇2) of 𝑇1 and 𝑇2 is
the tree whose nodes are shuffles of all pairs of tuples 𝑃1, 𝑃2 where 𝑃1 is a current path in 𝑇1 and 𝑃2
is a current path in 𝑇2. The parent relation in 𝑠 (𝑇1,𝑇2) is the prefix relation. The ℓ-shuffle 𝑠ℓ (𝑇1,𝑇2)
of 𝑇1 and 𝑇2 is the subtree of 𝑠 (𝑇1,𝑇2) obtained by keeping only the nodes with depth at most ℓ .

The formal definition of shuffle is somewhat cumbersome since the current path of the node

(𝑥1, 𝑥2, . . . , 𝑥𝑖) is the tuple ((𝑥1), (𝑥1, 𝑥2), . . . , (𝑥1, 𝑥2, . . . , 𝑥𝑖)). Given a set𝑉 , a morphism-tree in𝑉 is

a pair (𝑇,𝑚) where 𝑇 is a tree and𝑚 is a mapping from 𝑇 ∗
to 𝑉 . Given a set 𝑉 and an integer ℓ ,

we define the (complete) ℓ-morphism-tree 𝑀𝑇ℓ (𝑉) = (𝑇𝑉 ,ℓ ,𝑚𝑉 ,ℓ) as the morphism-tree in 𝑉 such

that for every positive integer 𝑖 ⩽ ℓ and every 𝑖-tuple (𝑣1, . . . , 𝑣𝑖) of possibly repeated elements of

𝑉 , there is a unique node 𝑥𝑖 of 𝑇𝑉 ,ℓ whose current path (𝑥1, . . . , 𝑥𝑖) satisfies𝑚𝑉 ,ℓ (𝑥 𝑗) = 𝑣 𝑗 for all
𝑗 = 1, . . . , 𝑖 . Informally,𝑀𝑇ℓ (𝑉) represents all the ways of extending the empty set by iteratively

adding one (possibly repeated) element of 𝑉 up to depth ℓ in a tree-search fashion. Note that if 𝑉

has size 𝑛, the number of nodes of𝑀𝑇ℓ (𝑉) is 𝑛ℓ +𝑛ℓ−1 + . . . + 1. The formal way of defining𝑀𝑇ℓ (𝑉)
is to consider that 𝑇𝑉 ,ℓ is the set of all tuples 𝑢 = (𝑢1, . . . , 𝑢𝑖) of elements of 𝑉 with 0 ⩽ 𝑖 ⩽ ℓ , the

parent relation is the prefix relation, and the image by𝑚𝑉 ,ℓ of a tuple (𝑢1, . . . , 𝑢𝑖) is 𝑢𝑖 .
Again, the formal definition of 𝑀𝑇ℓ (𝑉) is cumbersome since the current path of the node

(𝑢1, 𝑢2, . . . , 𝑢𝑖) is the tuple ((𝑢1), (𝑢1, 𝑢2), . . . , (𝑢1, 𝑢2, . . . , 𝑢𝑖)). Hence, as an abuse of language, we

may identify a node (𝑢1, 𝑢2, . . . , 𝑢𝑖) to its current path. We can extend the notion of shuffle to

morphism-trees by defining (𝑇,𝑚) as the shuffle of (𝑇1,𝑚1) and (𝑇2,𝑚2) where 𝑇 is the shuffle of

𝑇1 and 𝑇2 (supposed again on disjoint node sets) and for every node 𝑥 = (𝑥1, . . . , 𝑥𝑘) of 𝑇 , we let
𝑚(𝑥) =𝑚1 (𝑥𝑘) if 𝑥𝑘 ∈ 𝑇 ∗

1
and𝑚(𝑥) =𝑚2 (𝑥𝑘) if 𝑥𝑘 ∈ 𝑇 ∗

2
. Again, we define the ℓ-shuffle by pruning

the nodes with depth more than ℓ .

Lemma 7.2. Let (𝑉1,𝑉2) be a partition of a set 𝑉 . The ℓ-shuffle of𝑀𝑇ℓ (𝑉1) and𝑀𝑇ℓ (𝑉2) is𝑀𝑇ℓ (𝑉).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:31

Proof. This follows from the fact that every ⩽ ℓ-tuple of 𝑉 is uniquely obtained as the shuffle

of some ⩽ ℓ-tuple of 𝑉1 and some ⩽ ℓ-tuple of 𝑉2. □

One can extend the definition of shuffle to several trees. Given a sequence of (node disjoint)

morphism-trees (𝑇1,𝑚1), . . . , (𝑇𝑘 ,𝑚𝑘), the nodes of the shuffle (𝑇,𝑚) are all tuples which are shuffles

𝑆 of current paths 𝑃1, . . . , 𝑃𝑘 . Precisely, a tuple 𝑆 is a node of (𝑇,𝑚) if all its entries are non-root
nodes of 𝑇𝑖 ’s, and such that each subtuple 𝑆𝑖 of 𝑆 induced by the nodes of 𝑇𝑖 is a (possibly empty)

current path of 𝑇𝑖 . As usual the parent relation is the prefix relation. Finally𝑚(𝑥1, . . . , 𝑥𝑖) is equal
to𝑚 𝑗 (𝑥𝑖) where 𝑥𝑖 ∈ 𝑇𝑗 . We speak of ℓ-shuffle when we prune out the nodes with depth more than

ℓ . Note that𝑀𝑇ℓ (𝑉) is the ℓ-shuffle of𝑀𝑇ℓ ({𝑣}) for all 𝑣 ∈ 𝑉 .

7.2 morphism-trees in graphs and reductions
We extend our previous definitions to graphs. The first step is to introduce graphs on tuples. A tuple

graph is a pair (𝑥,𝐺) where 𝑥 is a tuple (𝑥1, . . . , 𝑥𝑡) and 𝐺 is a graph on the vertex set {𝑥1, . . . , 𝑥𝑡 }
(where repeated vertices are counted only once). Thus there is an edge 𝑥𝑖𝑥 𝑗 in (𝑥,𝐺) if 𝑥𝑖𝑥 𝑗 is
an edge of 𝐺 . The main difference with graphs is that vertices can be repeated within a tuple.

In particular if 𝑥1 = 𝑥3 and there is an edge 𝑥1𝑥2, then the edge 𝑥2𝑥3 is also present. Two tuple

graphs (𝑥,𝐺) and (𝑦, 𝐻) are isomorphic if 𝑥 = (𝑥1, . . . , 𝑥𝑡), 𝑦 = (𝑦1, . . . , 𝑦𝑡) and we have both

𝑥𝑖 = 𝑥 𝑗 ⇔ 𝑦𝑖 = 𝑦 𝑗 , and 𝑥𝑖𝑥 𝑗 ∈ 𝐸 (𝐺) ⇔ 𝑦𝑖𝑦 𝑗 ∈ 𝐸 (𝐻), for every 𝑖, 𝑗 ∈ [𝑡].
A morphism-tree in 𝐺 is a morphism-tree (𝑇,𝑚) in 𝑉 (𝐺), supporting new notions based on the

edge set of𝐺 . Given a node 𝑥𝑖 of𝑇 with current path (𝑥1, . . . , 𝑥𝑖), the graph𝐺 induces a tuple graph

on (𝑚(𝑥1), . . . ,𝑚(𝑥𝑖)), namely ((𝑚(𝑥1), . . . ,𝑚(𝑥𝑖)),𝐺 [{𝑚(𝑥1), . . . ,𝑚(𝑥𝑖)}]). We call current graph

of 𝑥𝑖 this tuple graph. Given a node 𝑥𝑖 and one of its children 𝑥𝑖+1, observe that the current graph
of 𝑥𝑖+1 extends the one of 𝑥𝑖 by one (possibly repeated) vertex. Informally, a morphism-tree in 𝐺

can be seen as a way of iteratively extending induced subgraphs of 𝐺 in a tree-search fashion.

Two morphism-trees (𝑇,𝑚) in𝐺 and (𝑇 ′,𝑚′) in𝐺 ′
are isomorphic if there exists an isomorphism

𝑓 from 𝑇 to 𝑇 ′
such that for every node 𝑥 ∈ 𝑇 ∗

and 𝑦 descendant of 𝑥 :

• 𝑚(𝑥) =𝑚(𝑦) if and only𝑚′(𝑓 (𝑥)) =𝑚′(𝑓 (𝑦)).
• 𝑚(𝑥)𝑚(𝑦) is an edge of 𝐺 if and only𝑚′(𝑓 (𝑥))𝑚′(𝑓 (𝑦)) is an edge of 𝐺 ′

.

In particular, the current graph of a node is isomorphic to the current graph of its image. Again

an isomorphism 𝑓 from (𝑇,𝑚) into itself is called an automorphism. Two sibling nodes 𝑥, 𝑥 ′ of a
morphism-tree (𝑇,𝑚) are equivalent if there exists an automorphism 𝑓 of (𝑇,𝑚) such that 𝑓 (𝑥) = 𝑥 ′
and 𝑓 (𝑥 ′) = 𝑥 . Note that if such an automorphism exists, then there is one which is the identity

function outside of 𝐵𝑇 (𝑥) ∪ 𝐵𝑇 (𝑥 ′). The interpretation of 𝑥, 𝑥 ′ being equivalent is that the current

graph 𝐻 of their parent can be extended up to depth ℓ in𝐺 in exactly the same way starting from 𝑥

or from 𝑥 ′.
The (complete) ℓ-morphism-tree 𝑀𝑇ℓ (𝐺) of a graph𝐺 is simply

6 𝑀𝑇ℓ (𝑉 (𝐺)). Observe that while
𝐸 (𝐺) is irrelevant for the syntactic aspect of𝑀𝑇ℓ (𝐺), the structure of𝐺 is nonetheless important

for semantic properties of 𝑀𝑇ℓ (𝐺). Indeed equivalent nodes are defined in 𝑀𝑇ℓ (𝐺) but not in
𝑀𝑇ℓ (𝑉 (𝐺)). Let us give a couple of examples to clarify that point. When𝐺 is a clique, all the sibling

nodes are equivalent in 𝑀𝑇ℓ (𝐺). When 𝐺 is a path on the same vertex set, the depth-1 nodes of

𝑀𝑇ℓ (𝐺) mapped to the first and second vertices of the path are in general not equivalent.

Given two equivalent (sibling) nodes 𝑥, 𝑥 ′ of a morphism-tree (𝑇,𝑚) in 𝐺 , the 𝑥, 𝑥 ′-reduction of

(𝑇,𝑚) is the morphism-tree obtained by deleting all descendants of 𝑥 ′ (including itself). A reduction

of a morphism-tree is any morphism-tree obtained by iterating a sequence of 𝑥, 𝑥 ′-reductions.

6
Technically, we should denote it by (𝑀𝑇ℓ (𝑉 (𝐺)),𝐺) but we will stick to this simpler notation.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Finally a reduct of (𝑇,𝑚) is a reduction in which no further reduction can be performed; that is,

none of the pairs of siblings are equivalent.

Lemma 7.3. Any reduct of an ℓ-morphism-tree has size at most ℎ(ℓ) for some function ℎ.

Proof. Assume that (𝑇,𝑚) is a reduct of an ℓ-morphism-tree in a graph 𝐺 . Consider a node

𝑥ℓ−1 of depth ℓ − 1 in 𝑇 . The maximum number of pairwise non-equivalent children 𝑥ℓ of 𝑥ℓ−1 is at
most 2

ℓ−1 + ℓ − 1. Indeed there are (at most) 2
ℓ−1

non isomorphic extensions of the current graph of

𝑥ℓ−1 by adding the new node𝑚(𝑥ℓ), and (at most) ℓ − 1 possible ways for𝑚(𝑥ℓ) to be a repetition

of a vertex among𝑚(𝑥1), . . . ,𝑚(𝑥ℓ−1). In particular 𝑥ℓ−1 has a bounded number of children in the

reduct (𝑇,𝑚), and therefore, there exist only a bounded number of non-equivalent 𝑥ℓ−1 which are

children of some 𝑥ℓ−2. This bottom-up induction bounds the size of (𝑇,𝑚) by a tower function

in ℓ . □

Since 𝑀𝑇ℓ (𝐺) represents all possible ways of iterating at most ℓ vertex extensions of induced

subgraphs of 𝐺 (starting from the empty set), one can check any prenex formula 𝜙 of depth at

most ℓ on𝑀𝑇ℓ (𝐺). In the language of games,𝑀𝑇ℓ (𝐺) captures all possible games for Player ∃ and

Player ∀ to form a joint assignment of the variables 𝑥1, . . . , 𝑥ℓ . So far this does not constitute an

efficient algorithm since the size of𝑀𝑇ℓ (𝐺) is 𝑂 (𝑛ℓ+1). However reductions –deletions of one of
two equivalent alternatives for a player– do not change the score of the game. Thus we want to

compute reductions, or even reducts, and decide 𝜙 on these smaller trees.

Lemma 7.4. Given a reduction of𝑀𝑇ℓ (𝐺) of size 𝑠 and a prenex formula on ℓ variables, 𝐺 |= 𝜙 can

be decided in time 𝑂 (𝑠), and in time ℎ(ℓ) if the reduction is a reduct.

Proof. Let 𝜙 = 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄ℓ𝑥ℓ𝜙
∗
, where 𝜙∗

is quantifier-free. Let 𝑇 be the tree of the given

reduction of𝑀𝑇ℓ (𝐺). We relabel the nodes of 𝑇 in the following way. At each leaf (𝑣1, . . . , 𝑣ℓ) of 𝑇 ,
we put a 1 if 𝜙∗ (𝑣1, . . . , 𝑣ℓ) is true, and a 0 otherwise. For each 𝑖 ∈ [0, ℓ − 1], at each internal node of

depth 𝑖 , we place a max if 𝑄𝑖+1 = ∃, and a min if 𝑄𝑖+1 = ∀. The computed value at the root of this

minimax tree is 1 if 𝐺 |= 𝜙 , and 0 otherwise. Indeed this value does not change while we perform

reductions on𝑀𝑇ℓ (𝐺). The overall running time is 𝑂 (|𝑇 |). By Lemma 7.3, if 𝑇 is a reduct then the

overall running time is ℎ(ℓ) for some tower function ℎ. □

Let us now denote by𝑀𝑇 ′
ℓ (𝐺) any reduct of𝑀𝑇ℓ (𝐺). It can be shown by local confluence that

𝑀𝑇 ′
ℓ (𝐺) is indeed unique up to isomorphism, but we do not need this fact here. Now our strategy

is to compute𝑀𝑇 ′
ℓ (𝐺) in linear FPT time using bounded twin-width.

We base our computation on a sequence of partitions of 𝑉 (𝐺) achieving twin-width 𝑑 . Let

P = {𝑋1, . . . , 𝑋𝑝 } be a partition of 𝑉 (𝐺). Two distinct parts 𝑋𝑖 , 𝑋 𝑗 of P are homogeneous if there

are between 𝑋𝑖 and 𝑋 𝑗 either all the edges or no edges. Let 𝐺P be the graph on vertex set P and

edge set all the pairs 𝑋𝑖𝑋 𝑗 such that 𝑋𝑖 , 𝑋 𝑗 are distinct and not homogeneous. If 𝐺P has maximum

degree at most 𝑑 , we say that P is a 𝑑-partition of𝐺 . Note that an 𝑛-vertex graph𝐺 has twin-width

at most 𝑑 if it admits a sequence of 𝑑-partitions P𝑛,P𝑛−1, . . . ,P1 where P𝑛 is the finest partition,

and for every 𝑖 ∈ [𝑛 − 1], the partition P𝑖 is obtained by merging two parts of P𝑖+1.
Our central result is:

Theorem 7.5. A reduct𝑀𝑇 ′
ℓ (𝐺) can be computed in time 𝑓 (ℓ, 𝑑) · 𝑛, given as input a sequence of

𝑑-partitions of 𝐺 .

The proof will compute 𝑀𝑇 ′
ℓ (𝐺) iteratively by combining partial morphism-trees obtained

alongside the sequence of 𝑑-partitions. We start with the finest partition P𝑛 , where each morphism-

tree is defined on a single vertex, and we finish with the coarsest partition P1 which results in the

sought𝑀𝑇 ′
ℓ (𝐺). We will thus need to define a morphism-tree for a partitioned graph. Before coming

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:33

to these technicalities, let us illustrate how shuffles come into play for computing 𝑀𝑇 ′
ℓ (𝐺). The

following two lemmas are not needed for the rest of the proof, but they provide a good warm-up

for the more technical arguments involving partitions.

The disjoint union 𝐺1 ∪𝐺2 of two graphs 𝐺1,𝐺2 with pairwise-disjoint vertex sets is the graph

on𝑉 (𝐺1) ∪𝑉 (𝐺2) with no edges between the two graphs𝐺1,𝐺2. In this particular case, reductions

commute with shuffle.

Lemma 7.6. Let (𝑇1,𝑚1) and (𝑇2,𝑚2) be two morphism-trees in 𝐺1 and in 𝐺2, respectively (on

disjoint vertex sets). Let (𝑇,𝑚) be the shuffle of (𝑇1,𝑚1) and (𝑇2,𝑚2), defined in𝐺1 ∪𝐺2. Let (𝑇 ′
1
,𝑚′

1
)

be a reduction of (𝑇1,𝑚1). Then the shuffle (𝑇 ′,𝑚′) of (𝑇 ′
1
,𝑚′

1
) and (𝑇2,𝑚2) is a reduction of (𝑇,𝑚).

Proof. We just need to show the lemma for single-step reductions. Indeed after we prove that

shuffling morphism-trees defined on a disjoint union commutes with a single reduction performed

in the first morphism-tree, we can iterate this process to establish that it commutes with reductions

in general. Let 𝑓 be an automorphism of (𝑇1,𝑚1) which swaps the equivalent nodes 𝑥, 𝑥 ′ and is the

identity outside of the subtrees rooted at 𝑥 and 𝑥 ′. Let (𝑇 ′
1
,𝑚′

1
) be the 𝑥, 𝑥 ′-reduction of (𝑇1,𝑚1).

Consider the mapping 𝑔 from 𝑉 (𝑇) into itself which preserves the root Y and maps every node

𝑍 = (𝑧1, . . . , 𝑧𝑘) to 𝑍 ′ = (˜𝑓 (𝑧1), . . . , ˜𝑓 (𝑧𝑘)) where ˜𝑓 (𝑧𝑖) = 𝑓 (𝑧𝑖) if 𝑧𝑖 ∈ 𝑇 ∗
1
and

˜𝑓 (𝑧𝑖) = 𝑧𝑖 if 𝑧𝑖 ∈ 𝑇 ∗
2
.

We claim that 𝑔 is an automorphism of (𝑇,𝑚). It is bijective since 𝑓 is bijective. It commutes

with the parent relation since 𝑝𝑇 (𝑔(𝑍)) = 𝑝𝑇 (𝑔(𝑧1, . . . , 𝑧𝑘−1, 𝑧𝑘)) = 𝑝𝑇 (˜𝑓 (𝑧1), . . . , ˜𝑓 (𝑧𝑘−1), ˜𝑓 (𝑧𝑘)) =
(˜𝑓 (𝑧1), . . . , ˜𝑓 (𝑧𝑘−1)) = 𝑔(𝑝𝑇 (𝑍)). Furthermore 𝑔 behaves well with the morphism𝑚. Indeed, for

every node 𝑍1 = (𝑧1, . . . , 𝑧𝑖) of 𝑇 and descendant 𝑍2 = (𝑧1, . . . , 𝑧𝑖 , 𝑧𝑖+1, . . . , 𝑧𝑘), we have:
• If 𝑚(𝑍1) = 𝑚(𝑍2), we either have 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇 ∗

1
and 𝑚1 (𝑧𝑖) = 𝑚1 (𝑧𝑘) and thus 𝑚1 (𝑓 (𝑧𝑖)) =

𝑚1 (𝑓 (𝑧𝑘)) which implies 𝑚(𝑔(𝑍1)) = 𝑚1 (𝑓 (𝑧𝑖)) = 𝑚1 (𝑓 (𝑧𝑘)) = 𝑚(𝑔(𝑍2)). Or we have

𝑧𝑖 , 𝑧𝑘 ∈ 𝑇2 and𝑚2 (𝑧𝑖) =𝑚2 (𝑧𝑘) which implies𝑚(𝑔(𝑍1)) =𝑚2 (𝑧𝑖) =𝑚2 (𝑧𝑘) =𝑚(𝑔(𝑍2)).
• If𝑚(𝑍1)𝑚(𝑍2) is an edge of 𝐺1 ∪𝐺2 we either have 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇 ∗

1
and𝑚1 (𝑧𝑖)𝑚1 (𝑧𝑘) is an edge

of 𝐺1, or 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇2 and𝑚2 (𝑧𝑖)𝑚2 (𝑧𝑘) is an edge of 𝐺2. In the first case,𝑚1 (𝑓 (𝑧𝑖))𝑚1 (𝑓 (𝑧𝑘))
is an edge of 𝐺1 and we conclude since 𝑚1 (𝑓 (𝑧𝑖))𝑚1 (𝑓 (𝑧𝑘)) = 𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)). In the

second case,𝑚2 (𝑧𝑖)𝑚2 (𝑧𝑘) =𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)) is an edge of𝐺2. Thus𝑔maps edges to edges,

and therefore non-edges to non-edges.

Finally, consider any node 𝑍 = (𝑧1, . . . , 𝑧𝑘) of (𝑇,𝑚) such that 𝑧𝑘 = 𝑥 . By definition of the shuffle

and the fact that 𝑥, 𝑥 ′ are siblings, there is a node 𝑍 ′ = (𝑧1, . . . 𝑧𝑘−1, 𝑥 ′) in (𝑇,𝑚). By construction,

we have 𝑔(𝑍) = 𝑍 ′
and 𝑔(𝑍 ′) = 𝑍 and thus 𝑍, 𝑍 ′

are equivalent in (𝑇,𝑚). Therefore we can reduce

all such pairs 𝑍, 𝑍 ′
in (𝑇,𝑚) in order to find a reduction in which we have deleted all nodes of

(𝑇,𝑚) containing the entry 𝑥 ′, and therefore also all its descendants in𝑇1. This is exactly the shuffle

(𝑇 ′,𝑚′) of (𝑇 ′
1
,𝑚′

1
) and (𝑇2,𝑚2). □

The previous lemma similarly holds for ℓ-shuffles. We can now handle the disjoint union of two

graphs.

Lemma 7.7. Given as input 𝑀𝑇 ′
ℓ (𝐺) and 𝑀𝑇 ′

ℓ (𝐻), two reducts of the graphs 𝐺 and 𝐻 , one can

compute a reduct𝑀𝑇 ′
ℓ (𝐺 ∪ 𝐻) in time only depending on ℓ .

Proof. We just have to compute the ℓ-shuffle (𝑇,𝑚) of𝑀𝑇 ′
ℓ (𝐺) and𝑀𝑇 ′

ℓ (𝐻), in time depending

on ℓ only. Indeed, by Lemma 7.2 the ℓ-shuffle of𝑀𝑇ℓ (𝐺) and𝑀𝑇ℓ (𝐻) is𝑀𝑇ℓ (𝐺 ∪𝐻). Therefore, by
repeated use of Lemma 7.6 applied to the sequence of reductions from𝑀𝑇ℓ (𝐺) to𝑀𝑇 ′

ℓ (𝐺) and from
𝑀𝑇ℓ (𝐻) to𝑀𝑇 ′

ℓ (𝐻), the morphism-tree (𝑇,𝑚) is a reduction of𝑀𝑇ℓ (𝐺 ∪𝐻). Note that (𝑇,𝑚) is not
necessarily a reduct but its size is bounded, and we can therefore reduce it further by a brute-force

algorithm to obtain a reduct𝑀𝑇 ′
ℓ (𝐺 ∪ 𝐻). □

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

We now extend our definitions to partitioned graphs. Let 𝐺 be a graph and P be a partition of

𝑉 (𝐺). A morphism-tree (𝑇,𝑚) in (𝐺,P) is again a morphism-tree in 𝑉 (𝐺). The difference with a

morphism-tree in 𝐺 lies in the allowed reductions. Now an automorphism 𝑓 of (𝑇,𝑚) in (𝐺,P) is
an automorphism of (𝑇,𝑚) in𝐺 which respects the partition P. Formally, for any node 𝑥 ∈ 𝑇 ∗

, the

vertices𝑚(𝑥) and𝑚(𝑓 (𝑥)) belong to the same part of P. Two sibling nodes 𝑥, 𝑥 ′ in a morphism-tree

(𝑇,𝑚) in (𝐺,P) are equivalent if there is an automorphism of (𝑇,𝑚) in (𝐺,P) which swaps 𝑥 and

𝑥 ′ (and in particular,𝑚(𝑥) and𝑚(𝑥 ′) are in the same part of P).

As previously, we define𝑀𝑇ℓ (𝐺,P) for a partitioned graph (𝐺,P) as equal to𝑀𝑇ℓ (𝑉 (𝐺)), and we
define𝑀𝑇 ′

ℓ (𝐺,P) as any reduct of𝑀𝑇ℓ (𝐺,P), where reductions are performed in (𝐺,P). Observe
that𝑀𝑇 ′

ℓ (𝐺,P) can be very different from𝑀𝑇 ′
ℓ (𝐺). For instance if P is the partition into singletons,

no reduction is possible and thus 𝑀𝑇 ′
ℓ (𝐺,P) = 𝑀𝑇ℓ (𝐺,P). At the other extreme, if P = {𝑉 (𝐺)},

then𝑀𝑇 ′
ℓ (𝐺,P) is a reduct of𝑀𝑇ℓ (𝐺).

Our ultimate goal in order to use twin-width is to dynamically compute𝑀𝑇 ′
ℓ (𝐺,P1) by deriving

𝑀𝑇 ′
ℓ (𝐺,P𝑖) from𝑀𝑇 ′

ℓ (𝐺,P𝑖+1). This strategy cannot directly work since the initialization requires

𝑀𝑇 ′
ℓ (𝐺,P𝑛) which is equal to𝑀𝑇ℓ (𝐺,P𝑛) of size 𝑂 (𝑛ℓ). Instead, we only compute a partial infor-

mation for each (𝐺,P𝑖) consisting of all partial morphism-trees𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) centered around 𝑋 ,

where𝑋 is a part of P𝑖 . We will make this formal in the next section. Let us highlight though that for

the initialization, the graph𝐺P𝑛
consists of isolated vertices, therefore its connected components

are singletons. So the initialization step of our dynamic computation only consists of computing

𝑀𝑇 ′
ℓ ({𝑣}) for all vertices 𝑣 in 𝐺 . Since all such trees consist of a path of length ℓ whose non-root

nodes are mapped to 𝑣 , the total size of the initialization step is linear. However, observe that the

ℓ-shuffle of all these𝑀𝑇 ′
ℓ ({𝑣}) gives𝑀𝑇 ′

ℓ (𝐺,P𝑛). The essence of our algorithm can be summarized

as: Maintaining a linear amount of information, enough to build
7 𝑀𝑇 ′

ℓ (𝐺,P𝑖+1), and updating this

information at each step in time bounded by a function of 𝑑 and ℓ only.

To illustrate how we can make an update, let us assume that we are given a partitioned graph

(𝐺,Q1∪Q2) which can be obtained from the union of two partitioned graphs (𝐺1,Q1) and (𝐺2,Q2)
on disjoint sets of vertices by making every pair 𝑋 ∈ Q1, 𝑌 ∈ Q2 homogeneous. The proof of the

next lemma is similar to the proof of Lemma 7.6.

Lemma 7.8. The ℓ-shuffle of the reducts𝑀𝑇 ′
ℓ (𝐺1,Q1) and𝑀𝑇 ′

ℓ (𝐺2,Q2) is a reduction of𝑀𝑇ℓ (𝐺,Q1∪
Q2).

Lemma 7.8 indicates how tomerge two partial results into a larger one, when the partial computed

solutions behave well, i.e., are pairwise homogeneous. But we are now facing the main problem:

How to merge two partial solutions in the case of errors (red edges) in 𝐺P𝑖
? The solution is to

compute the morphism-trees of overlapping subsets of parts of P𝑖 . Dropping the disjointness

condition comes with a cost since shuffles of morphism-trees defined in overlapping subgraphs can

create several nodes which have the same current graph. The difficulty is then to keep at most one

copy of these nodes, in order to remain in the set of reductions of𝑀𝑇ℓ (𝐺,P) of bounded size. The

solution of pruning multiple copies of the same current graph is slightly technical, but relies on a

fundamental way of decomposing a tuple graph induced by a partitioned graph (𝐺,P).

7.3 Pruned shuffles
Let ℓ > 0 be some fixed integer,𝐺 be a graph and P be a partition of𝑉 (𝐺). Given, for 𝑖 ⩽ ℓ , a tuple

𝑆 = (𝑣1, . . . , 𝑣𝑖) of vertices of 𝐺 which respectively belong to the (non-necessarily distinct) parts

(𝑋1, 𝑋2, . . . , 𝑋𝑖) of P, the ℓ-sequence graph sgℓ (𝑆) on vertex set [𝑖] is defined as follows: there exists
an edge 𝑗𝑘 , with 𝑗 < 𝑘 , if the distance between the part 𝑋 𝑗 and the part 𝑋𝑘 is at most 3

ℓ−𝑘
in the

7
while not explicitly computing it since it has linear size and would entail a quadratic running time

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:35

𝑋1

𝑋2 𝑋3

𝑋4

𝑋5

𝑋6 𝑋7

𝑋8

𝑋9 𝑋10

𝑋11 𝑋12

𝑋13

𝑋14

𝑋15

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

(𝐺,P15)

1

2

3

4

5

27

9

3

1

𝑠𝑔5 (𝑆)

Fig. 8. Left: Partitioned graph (𝐺,P15) with the edges of 𝐺P15
in red. Right: The 5-sequence graph of

𝑆 := (𝑣1 ∈ 𝑋8, 𝑣2 ∈ 𝑋3, 𝑣3 ∈ 𝑋8, 𝑣4 ∈ 𝑋1, 𝑣5 ∈ 𝑋9). In blue beside vertex 𝑖 , the upperbound on the distance
in 𝐺P15

for 𝑗 < 𝑖 to be linked to 𝑖 . The graph 𝑠𝑔5 (𝑆) is connected so 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 have the same local root
𝑋8 ∋ 𝑣1 in 𝑆 . Thus 𝑆 is a connected tuple rooted at 𝑋8.

graph 𝐺P (see Fig. 8 for an illustration). Recall that 𝐺P has vertex set the parts of P, and edge set

all the pairs of non-homogeneous parts; in other words, it is the red graph of the corresponding

trigraph. This is rather technical, but sgℓ (𝑆) has some nice properties.

Lemma 7.9. If for 𝑎 < 𝑏 < 𝑐 ∈ [𝑖], 𝑎𝑐 and 𝑏𝑐 are edges of sgℓ (𝑆), then 𝑎𝑏 is also an edge.

Proof. In 𝐺P , both the distances between 𝑋𝑎 and 𝑋𝑐 , and between 𝑋𝑏 and 𝑋𝑐 , are at most 3
ℓ−𝑐

.

So the distance between 𝑋𝑎 and 𝑋𝑏 is at most 2 · 3ℓ−𝑐 which is less than 3
ℓ−𝑏

. Hence 𝑎𝑏 is also an

edge. □

Let 𝑗 ∈ [𝑖] be the minimum index of an element of the connected component of 𝑘 ∈ [𝑖] in sgℓ (𝑆).
We call 𝑋 𝑗 the local root of 𝑣𝑘 in 𝑆 .

Lemma 7.10. Let 𝑆 = (𝑣1, . . . , 𝑣𝑖) and 𝑘 < 𝑖 . The local root 𝑋 𝑗 of 𝑣𝑘 in 𝑆 is equal to the local root of

𝑣𝑘 in the prefix 𝑆 ′ = (𝑣1, . . . , 𝑣𝑖−1). Thus by induction the local root of 𝑣𝑘 in 𝑆 is the local root of 𝑣𝑘 in

(𝑣1, . . . , 𝑣𝑘).

Proof. From the definition, sgℓ (𝑆 ′) is an induced subgraph of sgℓ (𝑆). We just have to show that

if there exists a path 𝑃 from 𝑗 to 𝑘 in sgℓ (𝑆), then there exists also a path in sgℓ (𝑆 ′). Let 𝑃 be a

shortest path from 𝑗 to 𝑘 in sgℓ (𝑆). If 𝑃 does not go through 𝑖 , we are done. If 𝑃 goes through 𝑖 , by

Lemma 7.9 the two neighbors of 𝑖 in 𝑃 are joined by an edge, contradicting the minimality of 𝑃 . □

Note that by the definition of sgℓ , if 𝑆
′
is a subtuple of 𝑆 , the graph sgℓ (𝑆 ′) is a supergraph of the

induced restriction of sgℓ (𝑆) to the indices of 𝑆 ′. Indeed, an entry 𝑣𝑘 with index 𝑘 of the tuple 𝑆

which appears in 𝑆 ′ has an index 𝑘 ′ ⩽ 𝑘 in 𝑆 ′. Hence if 𝑗 ⩽ 𝑘 is connected to 𝑘 in sgℓ (𝑆) and 𝑣 𝑗

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

appears in 𝑆 ′ with index 𝑗 ′, we have the edge 𝑗 ′𝑘 ′ since 3ℓ−𝑘
′
⩾ 3

ℓ−𝑘
. In particular, if 𝑆 ′ corresponds

to a connected component of sgℓ (𝑆), the sequence graph sgℓ (𝑆 ′) is also connected.

When the sequence graph sgℓ (𝑆) is connected, we say that 𝑆 is a connected tuple rooted at 𝑋1

(see Fig. 8). Given a part 𝑋 of P, a morphism-tree in (𝐺,P, 𝑋) is a morphism-tree (𝑇,𝑚) in (𝐺,P)
such that every current path (𝑥1, . . . , 𝑥𝑖) satisfies that (𝑚(𝑥1), . . . ,𝑚(𝑥𝑖)) is a connected tuple rooted
at 𝑋 . In particular, all nodes 𝑥 at depth 1 satisfy𝑚(𝑥) ∈ 𝑋 . Given a morphism-tree (𝑇,𝑚) in (𝐺,P)
and a part 𝑋 of P, we denote by (𝑇,𝑚)𝑋 the subtree of (𝑇,𝑚) which consists of the root Y and all

the nodes 𝑥𝑖 of 𝑇 whose current path (𝑥1, . . . , 𝑥𝑖) satisfies that (𝑚(𝑥1), . . . ,𝑚(𝑥𝑖)) is a connected
tuple rooted at 𝑋 . The fact that this subset of nodes forms indeed a subtree follows from the fact

that connected tuples are closed by prefix (by Lemma 7.10), and hence by the parent relation. We

denote by𝑀𝑇ℓ (𝐺,P, 𝑋) the subtree𝑀𝑇ℓ (𝐺,P)𝑋 . We finally denote by𝑀𝑇 ′
ℓ (𝐺,P, 𝑋) any reduct of

𝑀𝑇ℓ (𝐺,P, 𝑋). The allowed reductions follow the same rules as in𝑀𝑇ℓ (𝐺,P) since the additional
𝑋 does not play any role in the automorphisms.

Lemma 7.11. If (𝑇,𝑚) is a morphism-tree in (𝐺,P) and 𝑋 is part of P, then for any reduction

(𝑇 𝑟 ,𝑚𝑟) of (𝑇,𝑚) in (𝐺,P), we have that (𝑇 𝑟 ,𝑚𝑟)𝑋 is a reduction of (𝑇,𝑚)𝑋 .

Proof. It suffices to consider the case of (𝑇 𝑟 ,𝑚𝑟) being an 𝑥, 𝑥 ′-reduction. Let 𝑓 be an auto-

morphism of (𝑇,𝑚) which swaps the equivalent nodes 𝑥, 𝑥 ′ and is the identity outside of their

descendants. Since 𝑓 preserves P, it maps the set of nodes corresponding to connected tuple rooted

at 𝑋 to itself. Hence the restriction of 𝑓 to (𝑇,𝑚)𝑋 is an automorphism and thus (𝑇 𝑟 ,𝑚𝑟)𝑋 is the

𝑥, 𝑥 ′-reduction of (𝑇,𝑚)𝑋 if 𝑥, 𝑥 ′ ∈ (𝑇,𝑚)𝑋 , and is equal to (𝑇,𝑚)𝑋 if 𝑥, 𝑥 ′ ∉ (𝑇,𝑚)𝑋 . □

Let𝑋1, . . . , 𝑋𝑝 be a set of distinct parts of P, and (𝑇1,𝑚1), . . . , (𝑇𝑝 ,𝑚𝑝) be a set of morphism-trees,

each (𝑇𝑖 ,𝑚𝑖) being in (𝐺,P, 𝑋𝑖), respectively. We define the pruned shuffle of the (𝑇𝑖 ,𝑚𝑖)’s as their
usual shuffle (𝑇,𝑚) in which some nodes are deleted or pruned. To decide if a node (𝑥1, . . . , 𝑥𝑖) of
𝑇 is pruned, we consider its current graph, that is the tuple graph induced by 𝐺 on the tuple of

vertices (𝑣1, . . . , 𝑣𝑖), where each 𝑣 𝑗 is𝑚(𝑥1, 𝑥2, . . . , 𝑥 𝑗) for 𝑗 ∈ [𝑖]. For every 𝑗 , let 𝑘 be the (unique)

index such that 𝑥 𝑗 ∈ 𝑉 (𝑇𝑘). If the local root of 𝑣 𝑗 in (𝑣1, . . . , 𝑣𝑖) is different from 𝑋𝑘 we say that 𝑥 𝑗
is irrelevant. By extension, a node (𝑥1, . . . , 𝑥𝑖) which has an irrelevant entry 𝑥 𝑗 is also irrelevant.

We prune off all the irrelevant nodes of (𝑇,𝑚) to form the pruned shuffle. The pruned ℓ-shuffle is

defined analogously from the ℓ-shuffle.

A node 𝑥 of𝑇𝑘 has local root𝑋𝑘 since its current path is a connected tuple rooted in𝑋𝑘 . Informally

speaking, we insist that every node (𝑥1, . . . , 𝑥𝑖) of the pruned shuffle with 𝑥𝑖 = 𝑥 still has local root

𝑋𝑘 . Crucially the pruned shuffle commutes with reductions, and the next lemma is the cornerstone

of the whole section.

Lemma 7.12. With the previous notations, if (𝑇 𝑟
1
,𝑚𝑟

1
) is a reduction in (𝐺,P) of (𝑇1,𝑚1), then the

pruned shuffle (𝑇 𝑟 ,𝑚𝑟) of (𝑇 𝑟
1
,𝑚𝑟

1
), (𝑇2,𝑚2), . . . , (𝑇𝑝 ,𝑚𝑝) is a reduction of the pruned shuffle (𝑇,𝑚)

of (𝑇1,𝑚1), . . . , (𝑇𝑝 ,𝑚𝑝).

Proof. It suffices to consider the case of (𝑇 𝑟
1
,𝑚𝑟

1
) being an 𝑥, 𝑥 ′-reduction of (𝑇1,𝑚1). Let 𝑓 be

an automorphism of (𝑇1,𝑚1) which swaps the equivalent nodes 𝑥, 𝑥 ′ and is the identity outside of

their descendants.

Consider the mapping 𝑔 from 𝑉 (𝑇) into itself which preserves the root Y and maps every node

𝑍 = (𝑧1, . . . , 𝑧𝑘) to 𝑍 ′ = (˜𝑓 (𝑧1), . . . , ˜𝑓 (𝑧𝑘)) where ˜𝑓 (𝑧𝑖) = 𝑓 (𝑧𝑖) if 𝑧𝑖 ∈ 𝑇 ∗
1
and

˜𝑓 (𝑧𝑖) = 𝑧𝑖 if 𝑧𝑖 ∉ 𝑇 ∗
1
.

We also define �̃�(𝑧𝑖) =𝑚 𝑗 (𝑧𝑖) if 𝑧𝑖 ∈ 𝑇 ∗
𝑗 . Note that the current graph of 𝑍 is the tuple graph induced

by 𝐺 on the tuple of vertices (�̃�(𝑧1), . . . , �̃�(𝑧𝑘)).
As we have seen in the proof of Lemma 7.6, 𝑔 is an automorphism of the tree 𝑇 . Moreover

𝑚(𝑍) = �̃�(𝑧𝑘) and𝑚(𝑔(𝑍)) = �̃�(˜𝑓 (𝑧𝑘)) belong to the same part of P since 𝑓 respects the partition

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:37

P. However, 𝑔 does not necessarily respect𝑚. For instance we could have 𝑧𝑘 = 𝑥 and 𝑧1 ∈ 𝑇 ∗
2
,

with𝑚1 (𝑥)𝑚2 (𝑧1) ∈ 𝐸 (𝐺) while𝑚1 (𝑥 ′)𝑚2 (𝑧1) ∉ 𝐸 (𝐺). This can happen since 𝑋1 and 𝑋2 need not

be homogeneous. However observe that in this case, 𝑋1𝑋2 is an edge in 𝐺P , and therefore the

local root of �̃�(𝑧𝑘) would be the same as the one of �̃�(𝑧1). But if 𝑍 is not a pruned node, the local

root of �̃�(𝑧𝑘) must be 𝑋1, and the one of �̃�(𝑧1) is 𝑋2. So this potential problematic node 𝑍 in fact

disappears thanks to the pruning. We now formally prove it.

Note that if a node 𝑍 = (𝑧1, . . . , 𝑧𝑖) is pruned, it has an entry 𝑧 𝑗 ∈ 𝑇 ∗
𝑘
such that the local root 𝑋 of

�̃�(𝑧 𝑗) in the tuple (�̃�(𝑧1), . . . , �̃�(𝑧𝑖)) is not 𝑋𝑘 . By construction
˜𝑓 (𝑧 𝑗) ∈ 𝑇 ∗

𝑘
, and the local root of

𝑚(˜𝑓 (𝑧 𝑗)) in the tuple (�̃�(˜𝑓 (𝑧1)), . . . , �̃�(˜𝑓 (𝑧𝑖))) is also 𝑋 . Thus the pruned nodes of 𝑇 are mapped

by 𝑔 to pruned nodes of𝑇 , so 𝑔 is bijective on the pruned shuffle tree (𝑇,𝑚). Consequently, to show
that 𝑔 is an automorphism of the pruned shuffle (𝑇,𝑚), we just have to show that it respects edges

and equalities.

Consider a node 𝑍1 = (𝑧1, . . . , 𝑧𝑖) of 𝑇 and a descendant 𝑍2 = (𝑧1, . . . , 𝑧𝑖 , 𝑧𝑖+1, . . . , 𝑧𝑘) of 𝑍1, we

have:

• If𝑚(𝑍1) =𝑚(𝑍2), we have four cases:
– If 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇 ∗

1
, we have𝑚1 (𝑧𝑖) = 𝑚1 (𝑧𝑘) and thus𝑚1 (𝑓 (𝑧𝑖)) = 𝑚1 (𝑓 (𝑧𝑘)) which implies

𝑚(𝑔(𝑍1)) =𝑚1 (𝑓 (𝑧𝑖)) =𝑚1 (𝑓 (𝑧𝑘)) =𝑚(𝑔(𝑍2)).
– If 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇 ∗

𝑗 with 𝑗 > 1, we have𝑚 𝑗 (𝑧𝑖) = 𝑚 𝑗 (𝑧𝑘) which implies𝑚(𝑔(𝑍1)) = 𝑚 𝑗 (𝑧𝑖) =
𝑚 𝑗 (𝑧𝑘) =𝑚(𝑔(𝑍2)).

– If 𝑧𝑖 ∈ 𝑇1 and 𝑧𝑘 ∈ 𝑇𝑗 with 𝑗 > 1, we have𝑚(𝑔(𝑍2)) =𝑚(𝑍2) =𝑚 𝑗 (𝑧𝑘) which belongs to

some part 𝑋 of P. Moreover, both𝑚(𝑔(𝑍1)) and𝑚(𝑍1) belong to the part 𝑌 containing

𝑚1 (𝑧𝑖) (and also𝑚1 (𝑓 (𝑧𝑖))). In particular, since𝑚(𝑍1) =𝑚(𝑍2), we have 𝑋 = 𝑌 . Therefore,

in the ℓ-sequence graph of (�̃�(𝑧1), . . . , �̃�(𝑧𝑘)) we have an edge 𝑖𝑘 since �̃�(𝑧𝑖) =𝑚(𝑍1) =
𝑚(𝑍2) = �̃�(𝑧𝑘), and thus the local root of �̃�(𝑧𝑖) and �̃�(𝑧𝑘) are the same. But this is a

contradiction since by the fact that 𝑍2 is not pruned, the local root of �̃�(𝑧𝑘) is 𝑋 𝑗 and the

local root of �̃�(𝑧𝑖) is 𝑋1.

– The last case 𝑧 𝑗 ∈ 𝑇1 and 𝑧𝑖 ∈ 𝑇𝑗 is equivalent to the third.

• When𝑚(𝑍1)𝑚(𝑍2) is an edge of 𝐺 , we have four cases:

– If 𝑧𝑖 , 𝑧𝑘 ∈ 𝑇1, since 𝑓 respects edges,𝑚1 (𝑓 (𝑧𝑖))𝑚1 (𝑓 (𝑧𝑘)) =𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)) is an edge

of 𝐺 .

– If 𝑧𝑖 , 𝑧𝑘 ∉ 𝑇1, by definition of 𝑔, we have𝑚(𝑔(𝑍1)) = 𝑚(𝑍1) and𝑚(𝑔(𝑍2)) = 𝑚(𝑍2), and
thus𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)) is an edge of 𝐺 .

– If 𝑧𝑖 ∈ 𝑇1 and 𝑧𝑘 ∈ 𝑇𝑗 with 𝑗 > 1, we have𝑚(𝑔(𝑍2)) = 𝑚(𝑍2) = 𝑚 𝑗 (𝑧𝑘) which belongs

to the part 𝑋 of P, and both𝑚(𝑔(𝑍1)) and𝑚(𝑍1) belong to the part 𝑌 containing𝑚1 (𝑧𝑖).
The crucial fact is that the local root of �̃�(𝑧𝑘) in (�̃�(𝑧1), . . . , �̃�(𝑧𝑘)) is 𝑋 𝑗 (since 𝑍2 is not

pruned and 𝑧𝑘 ∈ 𝑇𝑗) and the local root of �̃�(𝑧1) is 𝑋1. Thus 𝑋,𝑌 is a homogeneous pair

since otherwise 𝑖𝑘 would be an edge of the ℓ-sequence graph of (�̃�(𝑧1), . . . , �̃�(𝑧𝑘)), and
therefore �̃�(𝑧𝑘) and �̃�(𝑧1) would have the same local root. Therefore by homogeneity and

the fact that𝑚(𝑍1)𝑚(𝑍2) is an edge, we have all edges between 𝑋 and 𝑌 , and in particular

𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)) is an edge of 𝐺 .

– The last case 𝑧 𝑗 ∈ 𝑇1 and 𝑧𝑖 ∈ 𝑇𝑗 is equivalent to the third.

Note that𝑚(𝑔(𝑍1)) = 𝑚(𝑔(𝑍2)) ⇒ 𝑚(𝑍1) = 𝑚(𝑍2) since 𝑔 is an automorphism and there-

fore by iterating 𝑔, we can map 𝑔(𝑍1), 𝑔(𝑍2) to 𝑍1, 𝑍2. The same argument shows that if

𝑚(𝑔(𝑍1))𝑚(𝑔(𝑍2)) is an edge, then𝑚(𝑍1)𝑚(𝑍2) is also an edge.

Finally, consider any node 𝑍 = (𝑧1, . . . , 𝑧𝑘) of (𝑇,𝑚) such that 𝑧𝑘 = 𝑥 . By definition of the shuffle

and the fact that 𝑥, 𝑥 ′ are siblings, there is a node 𝑍 ′ = (𝑧1, . . . 𝑧𝑘−1, 𝑥 ′) in (𝑇,𝑚). By construction,

we have 𝑔(𝑍) = 𝑍 ′
and 𝑔(𝑍 ′) = 𝑍 and thus 𝑍, 𝑍 ′

are equivalent in (𝑇,𝑚). Therefore we can reduce

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:38 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

𝑋2 𝑋3

𝑋4

𝑋6 𝑋7

𝑋9

𝑋11

𝑋13

𝑋15

𝑋1

𝑋10

𝑋14

𝑋5

𝑋8

𝑋12

𝑋16

(𝐺,P14)

Fig. 9. Dynamic programming update (with the not-so-interesting ℓ = 1 so that the important threshold 3
ℓ

is manageably small). Right after the contraction of 𝑋8 and 𝑋12 into 𝑋16 in (𝐺,P15), we want to maintain
the new𝑀𝑇 ′

ℓ
(𝐺,P14, 𝑋) for all 𝑋 ∈ P14. The parts 𝑋𝑖 which are not 𝑋16 (red) nor blue are far enough from

𝑋16 (distance in 𝐺P14
> 3

ℓ), so that𝑀𝑇 ′
ℓ
(𝐺,P14, 𝑋𝑖) := 𝑀𝑇ℓ (𝐺,P15, 𝑋𝑖) does not need an update. For the red

and blue parts 𝑋𝑖 , we compute (𝑇,𝑚) the pruned shuffle of𝑀𝑇 ′(𝐺,P15, 𝑌) where 𝑌 runs through {blue and
green parts} ∪ {𝑋8, 𝑋12} (distance to 𝑋16 in𝐺P14

⩽ 2 · 3ℓ). We then set𝑀𝑇 ′
ℓ
(𝐺,P14, 𝑋𝑖) := reduct((𝑇,𝑚)𝑋𝑖

).

all such pairs 𝑍, 𝑍 ′
in (𝑇,𝑚) in order to find a reduction in which all elements of the subtree of 𝑥 ′

in 𝑇1 are deleted. This is exactly the pruned shuffle (𝑇 𝑟 ,𝑚𝑟). □

Again the previous lemma readily works with pruned ℓ-shuffles. The pruned shuffle operation is

the crux of the construction of𝑀𝑇ℓ (𝐺,P) using only local information.

Lemma 7.13. Let (𝐺,P) be a partitioned graph. Then the pruned ℓ-shuffle (𝑇,𝑚) of all𝑀𝑇ℓ (𝐺,P, 𝑋)
where 𝑋 ranges over the parts of P is exactly𝑀𝑇ℓ (𝐺,P).

Proof. We just have to prove that every tuple 𝑆 = (𝑣1, . . . , 𝑣𝑖) of nodes of𝐺 appears exactly once

as a node of 𝑇 . Consider a subtuple 𝑆 ′ of 𝑆 corresponding to a component of sgℓ (𝑆). Recall that
sgℓ (𝑆 ′) is connected. Moreover, if we denote by 𝑋𝑆′ the part of P which contains the first entry of

𝑆 ′, we have that 𝑆 ′ is a connected tuple rooted at 𝑋𝑆′ . Thus 𝑆
′
is a node of𝑀𝑇ℓ (𝐺,P, 𝑋𝑆′) and thus

𝑆 appears in the pruned shuffle as the shuffle of all its components. Moreover 𝑆 appears exactly

once in the shuffle since any entry 𝑣 𝑗 in the subtuple 𝑆 ′ must come from𝑀𝑇ℓ (𝐺,P, 𝑋𝑆′), otherwise
the pruning would have deleted it. □

We now state the central result of this section, directly following from Lemmas 7.12 and 7.13.

Lemma 7.14. Let (𝐺,P) be a partitioned graph. Then the pruned ℓ-shuffle of the reducts𝑀𝑇 ′
ℓ (𝐺,P, 𝑋),

where 𝑋 ranges over the parts of P, is a reduction of𝑀𝑇ℓ (𝐺,P).

We can now finish the proof by showing how our dynamic programming works.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:39

Theorem 7.15. Let P𝑖+1 and P𝑖 be two 𝑑-partitions of a graph 𝐺 where P𝑖 is obtained by merging

the parts 𝑋1, 𝑋2 of P𝑖+1. Given a family of reducts 𝑀𝑇 ′
ℓ (𝐺,P𝑖+1, 𝑋) for all parts 𝑋 in P𝑖+1, we can

compute a family of reducts𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑌) for all parts 𝑌 in P𝑖 in time only depending on ℓ and 𝑑 .

Proof. The first observation is that we only need to update a bounded number of reducts. Indeed

for every part 𝑋 which is at distance more than 3
ℓ
from 𝑋1 ∪ 𝑋2 in the graph 𝐺P𝑖

, we just set

𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) = 𝑀𝑇 ′

ℓ (𝐺,P𝑖+1, 𝑋) since connected tuples of vertices rooted at 𝑋 do not involve

parts with distance more than 3
ℓ
from 𝑋 . Since 𝐺P𝑖

has degree at most 𝑑 , the number of parts at

distance at most 3
ℓ
is at most 𝑑3

ℓ+1
.

Let us start with a time-inefficient method to compute𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) for all 𝑋 ∈ P𝑖 . We form the

pruned ℓ-shuffle (𝑇,𝑚) of all𝑀𝑇 ′
ℓ (𝐺,P𝑖+1, 𝑋) where𝑋 ranges over the parts of P𝑖+1. By Lemma 7.14,

(𝑇,𝑚) is a reduction of𝑀𝑇ℓ (𝐺,P𝑖+1), hence it is also a reduction of𝑀𝑇ℓ (𝐺,P𝑖) since P𝑖 is coarser.

Now for every part 𝑋 in P𝑖 , by Lemma 7.11, we have that (𝑇,𝑚)𝑋 is a reduction of𝑀𝑇ℓ (𝐺,P𝑖 , 𝑋).
Note that (𝑇,𝑚)𝑋 has size bounded by a function of ℓ and 𝑑 since its nodes are ℓ-shuffles of nodes

of the set of at most 𝑑3
ℓ+1

trees𝑀𝑇 ′
ℓ (𝐺,P𝑖+1, 𝑌), where the distance of 𝑌 to 𝑋 in 𝐺P𝑖

is at most 3
ℓ
.

So we can construct𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) by reducing further (𝑇,𝑚)𝑋 by any method.

The above method is inefficient in that it involves the computation of (𝑇,𝑚), but this is easily
turned into an efficient method as we only need to compute the pruned ℓ-shuffle (𝑇 ′,𝑚′) of all
𝑀𝑇 ′

ℓ (𝐺,P𝑖+1, 𝑌) where 𝑌 ranges over 𝑋1, 𝑋2, and any part which is at distance at most 2 · 3ℓ from
𝑋1 ∪ 𝑋2 in 𝐺P𝑖

. Indeed, any part 𝑋 of P𝑖 which is at distance at most 3
ℓ
from 𝑋1 ∪ 𝑋2 satisfies that

(𝑇 ′,𝑚′)𝑋 = (𝑇,𝑚)𝑋 and we can therefore compute 𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) for these parts 𝑋 in time only

depending on ℓ and 𝑑 . See Fig. 9 for an illustration. □

Finally we can prove Theorem 7.5.

Proof. We are given a sequence of 𝑑-partitions P𝑛, . . . ,P1 where P𝑛 is the finest partition, P1

is the coarsest partition, and every P𝑖 is obtained by a single contraction of P𝑖+1. We compute

𝑀𝑇 ′
ℓ (𝐺,P𝑖 , 𝑋) for all 𝑖 and for all parts 𝑋 of P𝑖 . We initialize𝑀𝑇 ′

ℓ (𝐺,P𝑛, {𝑣}) := 𝑀𝑇ℓ ({𝑣}) for all 𝑣
in 𝑉 (𝐺). By Theorem 7.15, we can apply dynamic programming and compute in linear FPT time

𝑀𝑇 ′
ℓ (𝐺,P1,𝑉 (𝐺)) which is exactly𝑀𝑇 ′

ℓ (𝐺), on which any depth-ℓ prenex formula can be checked

in time ℎ(ℓ), by Lemma 7.4. □

As a direct corollary, we get the following.

Corollary 7.16. The problems 𝑘-Independent Set, 𝑘-Clique, 𝑘-Vertex Cover, 𝑘-Dominating

Set, 𝑘-Subgraph Isomorphism are solvable in time 𝑓 (𝑘, 𝑑) · 𝑛 (where 𝑘 is the solution size) on 𝑑-

collapsible 𝑛-vertex graphs provided the 𝑑-sequence is given.

We observe that the non-elementary dependence of the function 𝑓 of Theorem 7.1 in the sentence

size |𝜙 | is very likely to be necessary. Indeed Frick and Grohe [21] showed that any FPT algorithm

for FO model checking on trees (of twin-width at most 2) requires a non-elementary dependence

in the formula size, unless FPT = AW[∗]. Let us also mention that we cannot expect polynomial

kernels of size 𝑘𝑂 (1)
on graphs of twin-width at most some constant 𝑑 for FO model checking of

formulas of size 𝑘 , actually even for 𝑘-Independent Set. Recall that twin-width is invariant by

complementation and disjoint unions. More precisely, the complete sum
8
of 𝑡 graphs 𝐺1, . . . ,𝐺𝑡

of twin-width at most 𝑑 has twin-width at most 𝑑 . So the complete sum of 𝑡 instances of the

NP-hard problemMax Independent Set on graphs of twin-width 𝑑 is an OR-composition (that

preserves the parameter 𝑘). Max Independent Set is indeed NP-hard on graphs of twin-width 𝑑 ,

for a sufficiently large fixed value of 𝑑 , since planar graphs have constant twin-width. Therefore

8
obtained from the disjoint union by adding every edge between two distinct graphs

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:40 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

a polynomial kernel would imply the unlikely containment NP ⊆ co-NP/poly [4]. We explore

polynomial kernels on classes of bounded twin-width in more depth in [10].

This result also has interesting consequences for polynomial-time solvable problems, such as

Constant Diameter. The fact that a graph𝐺 has diameter 𝑘 can be written as a first-order formula

of size function of 𝑘 . Besides, in graphs with only 𝑛 log𝑂 (1) 𝑛 edges, truly subquadratic algorithms

deciding whether the diameter is 2 or 3 would contradict the Exponential-Time Hypothesis [37]. One

can obtain a significant improvement on graphs of bounded twin-width, provided the contraction

sequence is either given or can be itself computed in linear time.

Corollary 7.17. Deciding if the diameter of an 𝑛-vertex graph is 𝑘 can be done in time 𝑓 (𝑘,𝑑) · 𝑛,
on 𝑑-collapsible graphs provided the 𝑑-sequence is given.

We finally observe that our FO model checking readily works for (general) binary structures

of bounded twin-width. The only notion that should be revised is the homogeneity. For a binary

structure with binary relations 𝐸1, . . . 𝐸ℎ , we now say that 𝑋 and 𝑌 are homogeneous if for all

𝑖 ∈ [ℎ], the existence of a pair 𝑢, 𝑣 ∈ 𝑋 ×𝑌 such that (𝑢, 𝑣) ∈ 𝐸𝑖 implies that for every 𝑥,𝑦 ∈ 𝑋 ×𝑌 ,
(𝑥,𝑦) ∈ 𝐸𝑖 . In particular this handles the case of bounded twin-width digraphs (and posets encoded

as digraphs).

8 STABILITY UNDER FO INTERPRETATIONS AND TRANSDUCTIONS
The question we address here is how twin-width can increase when we construct a graph 𝐻 from a

graph𝐺 . For instance, it is clear that twin-width is invariant when taking complement (exchanging

edges and non-edges). But for other types of constructions, such as taking the square (joining

two vertices if their distance is at most two) the answer is far less clear. A typical question in this

context consists of asking if the square of a planar graph has bounded twin-width. To put this in

a general framework, we consider interpretations of graphs via first-order formulas. Our central

result is that bounded twin-width is invariant under first-order interpretations.

The results in this section could as well be expressed in the language of directed graphs, or

matrices, but for the sake of simplicity, we will stick to undirected graphs. Let 𝜙 (𝑥,𝑦) be a prenex
first-order graph formula of depth ℓ with two free variables 𝑥,𝑦. More explicitly,

𝜙 (𝑥,𝑦) = 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄ℓ𝑥ℓ𝜙
∗

where for each 𝑖 ∈ [ℓ], the variable 𝑥𝑖 ranges over 𝑉 (𝐺), 𝑄𝑖 ∈ {∀, ∃}, while 𝜙∗
is a Boolean

combination in atoms of the form 𝑢 = 𝑣 and 𝐸 (𝑢, 𝑣) where 𝑢, 𝑣 are chosen in {𝑥1, . . . , 𝑥ℓ , 𝑥,𝑦}.
Given a graph 𝐺 , the graph 𝜙 (𝐺) has vertex set 𝑉 (𝐺) and edge set all the pairs 𝑢𝑣 for which

𝐺 |= 𝜙 (𝑢, 𝑣) ∧ 𝜙 (𝑣,𝑢). It is called the interpretation of𝐺 by 𝜙 . We choose here to make a symmetric

version of the interpretation, but we can also define the directed version. Adding the directed edge

𝑢𝑣 when 𝐺 |= 𝜙 (𝑢, 𝑣). This will not play an important role in our argument.

By extension, given a hereditary graph class G, 𝜙 (G) is the class of all induced subgraphs of

some 𝜙 (𝐺), for𝐺 ∈ G. Let us illustrate this notion with a striking conjecture of Gajarský et al. [24].

A class G is universal if there exists some formula 𝜙 such that 𝜙 (G) is the class of all graphs.
Conjecture 1 ([24]). FO model checking is FPT on the class G if G is not universal.

A simple example of a graph class wherein FO model checking is AW[∗]-hard is provided by

interval graphs. This illustrates the previous conjecture since one can obtain every graph as a

fixed first-order interpretation of interval graphs. To draw a comparison with another complexity

measure, note that interval graphs have Vapnik-Chervonenkis dimension at most two (i.e., the

neighborhood hypergraph has VC-dimension at most two). This shows in particular that bounded

VC-dimension is not preserved under first-order interpretations. The main result of this section,

supporting that twin-width is a natural and robust notion of complexity, is the following.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:41

Theorem 8.1. Any (𝜙,𝛾, ℎ)-transduction of a graph with twin-width at most 𝑑 has twin-width

bounded by a function of |𝜙 |, 𝛾 , ℎ, and 𝑑 .

As a direct consequence, map graphs have bounded twin-width since they can be obtained by FO

transductions of planar graphs (which have bounded twin-width). One can also use Theorem 8.1 to

show that 𝑘-planar graphs and bounded-degree string graphs have bounded twin-width. We first

handle the expansion and the copy operations of the transduction.

We recall that augmented binary structures are binary structures augmented by a constant number

of unary relations. The definition of twin-width for augmented binary relations is presented in

Section 5.1. We remind the reader that contraction sequences for augmented binary structures

forbid to contract two vertices not contained in the same unary relations.

Lemma 8.2. For every binary structure 𝐺 of twin-width at most 𝑑 , and non-negative integers 𝛾 and

ℎ, every augmented binary structure of 𝛾op ◦ℎop (𝐺) has twin-width at most 2
𝛾+ℎ (𝑑 + 2𝛾), where ℎop is

the ℎ-expansion, and 𝛾op is the 𝛾-copy operation.

Proof. We first argue that the introduction of the binary relation ∼ of 𝛾op preserves bounded

twin-width. Let 𝐺 = 𝐺𝑛, . . . ,𝐺1 = 𝐾1 be a 𝑑-sequence S of 𝐺 , where 𝐺𝑖 is obtained from 𝐺𝑖+1 by
contracting 𝑢𝑖 and 𝑣𝑖 into a new vertex 𝑧𝑖 . Let {(𝑣, 𝑗) | 𝑣 ∈ 𝑉 (𝐺)} be the vertex set of the 𝑗-th

copy𝐺 𝑗
of 𝐺 . Let𝐺 ′

be the binary relation obtained from 𝛾op (𝐺) by discarding its unary relations.

We suggest the following contraction sequence for 𝐺 ′
. First we contract (𝑢𝑛−1, 𝑗) and (𝑣𝑛−1, 𝑗) for

𝑗 going from 1 to 𝛾 . Basically we perform the first contraction of S in every copy of 𝐺 ′
. Then

we contract (𝑢𝑛−2, 𝑗) and (𝑣𝑛−2, 𝑗) for 𝑗 going from 1 to 𝛾 (second contraction of S). We continue

similarly up to the contractions (𝑢1, 𝑗) and (𝑣1, 𝑗) for 𝑗 going from 1 to 𝛾 . At this point the resulting

graph of 𝐺 ′
has only 𝛾 vertices, and we finish the contraction sequence arbitrarily. We note that,

throughout this process, the red degree is bounded by 𝑑 + 2𝛾 .

Now every graph 𝐻 ∈ 𝛾op ◦ℎop (𝐺) can be obtained by adding 𝛾 +ℎ unary relations to the binary

structure𝐺 ′
. By Lemma 5.1 (whose proof follows Theorem 4.1 without the apex), the augmented

binary structure 𝐻 has a contraction sequence (respecting the unary relations) with red degree

at most 2
𝛾+ℎ

tww(𝐺 ′) ⩽ 2
𝛾+ℎ (𝑑 + 2𝛾). Let us recall that this sequence mostly follows what we

described in the previous paragraph but skips the contraction of two vertices not satisfying the

same subset of unary relations. As a contraction sequence of an augmented binary structure, it

ends with at most 2
𝛾+ℎ

vertices (since the number of unary relations is 𝛾 + ℎ). □

To show Theorem 8.1 we shall now only prove that FO interpretations preserve bounded twin-

width.

Theorem 8.3. For every prenex first-order formula with two free variables 𝜙 (𝑥,𝑦) and every

bounded-twin-width class G of augmented binary structures, 𝜙 (G) also has bounded twin-width.

The idea of the proof is simply that if 𝐺 has twin-width 𝑑 , then the sequence of 𝑑-partitions

achieving the bound can be refined in a bounded way to form an 𝑓 (𝑑)-sequence for 𝜙 (𝐺). Let us
first make the following observation, similar to Lemma 7.4.

Lemma 8.4. Let 𝑢, 𝑣, 𝑣 ′ be vertices of an augmented binary structure 𝐺 . If (𝑢, 𝑣) and (𝑢, 𝑣 ′) are
equivalent nodes in𝑀𝑇ℓ+2 (𝐺), then for every prenex formula 𝜙 (𝑥,𝑦) of depth ℓ we have 𝐺 |= 𝜙 (𝑢, 𝑣)
if and only if 𝐺 |= 𝜙 (𝑢, 𝑣 ′).

Proof. Consider an arbitrary prenex first-order formula 𝜙 (𝑥,𝑦) = 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄ℓ𝑥ℓ𝜙
∗
where

𝜙∗
is quantifier-free. We label each node of𝑀𝑇ℓ+2 (𝐺) at depth 𝑖 + 1 by ∨ if 𝑄𝑖 = ∃, and ∧ if 𝑄𝑖 = ∀

for 𝑖 ⩽ ℓ , and label each leaf node (𝑎, 𝑏,𝑤1,𝑤2, . . . ,𝑤ℓ) by 1 if 𝜙∗ (𝑎, 𝑏,𝑤1,𝑤2, . . . ,𝑤ℓ) holds, and 0

otherwise. Notice that for each node (𝑎, 𝑏) of 𝑀𝑇ℓ+2, one can decide 𝐺 |= 𝜙 (𝑎, 𝑏) by evaluating

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:42 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

the sentence expressed as the labeled subtree of 𝑀𝑇ℓ+2 rooted at (𝑎, 𝑏). Now, the automorphism

swapping the equivalent siblings (𝑢, 𝑣) and (𝑢, 𝑣 ′) (and preserving the unary relations) implies

𝐺 |= 𝜙 (𝑢, 𝑣) if and only if 𝐺 |= 𝜙 (𝑢, 𝑣 ′). □

A consequence of Lemma 8.4 is that if (𝑢, 𝑣) and (𝑢, 𝑣 ′) are equivalent nodes in a reduction

(𝑇,𝑚) of𝑀𝑇ℓ+2 (𝐺), then the same conclusion holds. And, if 𝐺 has a partition P, by the fact that

reductions in (𝐺,P) are reductions in𝐺 , we also have that if (𝑢, 𝑣) and (𝑢, 𝑣 ′) are equivalent nodes
in a reduction (𝑇,𝑚) of𝑀𝑇ℓ+2 (𝐺,P), then 𝐺 |= 𝜙 (𝑢, 𝑣) if and only if 𝐺 |= 𝜙 (𝑢, 𝑣 ′).
The central definition here is that given a partition P of 𝐺 , two vertices 𝑢,𝑢 ′ of 𝐺 are said

(ℓ + 2)-indistinguishable if the nodes (𝑢) and (𝑢 ′) are equivalent siblings (of Y) in some reduction

(𝑇,𝑚) of𝑀𝑇ℓ+2 (𝐺,P). In particular, since an automorphism of (𝑇,𝑚) swap them, they belong to

the same part of P. We then form the graph 𝐸ℓ+2 (𝐺,P) on vertex set 𝑉 (𝐺) whose edges are all
the pairs 𝑢𝑢 ′ of (ℓ + 2)-indistinguishable vertices. It can be proved that 𝐸ℓ+2 (𝐺,P) is an equivalent

relation (i.e., a disjoint union of cliques), but we will not need this fact. Instead we consider the

partition 𝐼ℓ+2 (𝐺,P) whose parts are the connected components of 𝐸ℓ+2 (𝐺,P). Note that 𝐼ℓ+2 (𝐺,P)
refines P, and that if P ′

is a coarsening of P then 𝐼ℓ+2 (𝐺,P ′) is also a coarsening of 𝐼ℓ+2 (𝐺,P)
since every edge of 𝐸ℓ+2 (𝐺,P) is an edge of 𝐸ℓ+2 (𝐺,P ′). Crucially, 𝐼ℓ+2 (𝐺,P) does not refine the
𝑑-partition P too much.

At first glance, it is unclear why the connected components of 𝐸ℓ+2 (𝐺,P) can be bounded. We

use the fact that if (𝑣) and (𝑣 ′) are equivalent siblings in some reduction of𝑀𝑇ℓ+2 (𝐺,P, 𝑋), then
(𝑣), (𝑣 ′) are equivalent siblings in some reduction of𝑀𝑇ℓ+2 (𝐺,P) because the reduction and the

pruned shuffle commute by Lemma 7.12. The connected components derived from the former

relation can be easily bounded, which bounds the connected components derived from the latter

relation or equivalently the connected components of 𝐸ℓ+2 (𝐺,P).

Lemma 8.5. When P is a 𝑑-partition and 𝑋 is a part of P, the number of components of 𝐸ℓ+2 (𝐺,P)
inside 𝑋 is at most a function of 𝑑 and ℓ .

Proof. Let us consider any reduct (𝑇,𝑚) of 𝑀𝑇ℓ+2 (𝐺,P, 𝑋). Observe first that every current

graph of (𝑇,𝑚) consists of vertices which belong to parts 𝑌 such that the distance in𝐺P from 𝑋 to

𝑌 is at most 3
ℓ+2

. We denote this set of parts 𝑌 by P ′
. In particular (𝑇,𝑚) is a morphism-tree in

(𝐺 ′,P ′), where 𝐺 ′
is the induced restriction of 𝐺 to the vertices of P ′

. Note that the number of

parts of P ′
is bounded in terms of 𝑑 and ℓ , hence (𝐺 ′,P ′) is a graph which is partitioned into a

bounded number of parts. Therefore the analogue of Lemma 7.3 for partitioned graphs implies that

(𝑇,𝑚) has size bounded in 𝑑 and ℓ .

Now consider the graph 𝐻 on 𝑋 whose edges are all pairs 𝑣, 𝑣 ′ such that a (𝑣), (𝑣 ′)-reduction is

performed while reducing𝑀𝑇ℓ+2 (𝐺,P, 𝑋) into (𝑇,𝑚). The number of connected components of 𝐻

is exactly the number of nodes of depth 1 in (𝑇,𝑚) (and furthermore every component of 𝐻 is a

tree, but we do not use this).

Now we just have to show that every edge of 𝐻 is also an edge in 𝐸ℓ+2 (𝐺,P). This follows from
the fact that the pruned shuffle (𝑇 ′,𝑚′) of (𝑇,𝑚) and all𝑀𝑇ℓ+2 (𝐺,P, 𝑌) where 𝑌 ≠ 𝑋 is a reduction

of 𝑀𝑇ℓ+2 (𝐺,P), since reduction commutes with pruned shuffle (Lemma 7.12). In particular, for

every edge 𝑣𝑣 ′ of 𝐻 , there exists a (𝑣), (𝑣 ′)-reduction among the reductions performed to reduce

𝑀𝑇ℓ+2 (𝐺,P) to (𝑇 ′,𝑚′). Thus 𝑣𝑣 ′ is an edge of 𝐸ℓ+2 (𝐺,P). Therefore the number of components

of 𝐸ℓ+2 (𝐺,P) in 𝑋 is at most the number of components of 𝐻 . □

The key feature of the connected components of 𝐸ℓ+2 (𝐺,P) is that if 𝑣, 𝑣 ′ are in the same

connected component 𝑌 ′
, they are not distinguished by any vertex which is far from 𝑌 ′

in𝐺P with

a prenex formula of depth ℓ .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:43

Lemma 8.6. Let 𝜙 (𝑥,𝑦) be a prenex formula of depth ℓ . Let P be a 𝑑-partition of an augmented

binary structure𝐺 and 𝑋,𝑌 be two parts of P with pairwise distance at least 3
ℓ+2

in𝐺P . Let 𝑋 ′, 𝑌 ′
be

two parts of 𝐼ℓ+2 (𝐺,P) respectively in 𝑋 and 𝑌 . Then if 𝑢 ∈ 𝑋 ′
and 𝑣, 𝑣 ′ ∈ 𝑌 ′

, we have 𝐺 |= 𝜙 (𝑢, 𝑣) if
and only if 𝐺 |= 𝜙 (𝑢, 𝑣 ′).

Proof. We just have to prove it when 𝑣𝑣 ′ is an edge of 𝐸ℓ+2 (𝐺,P) since the property will

propagate to any pair of vertices in the whole component. We can therefore assume that there is a

reduction (𝑇,𝑚) of𝑀𝑇ℓ+2 (𝐺,P) in which (𝑣) and (𝑣 ′) are equivalent nodes. By Lemma 7.11, (𝑣)
and (𝑣 ′) are equivalent nodes in (𝑇,𝑚)𝑌 , which is a reduction of𝑀𝑇ℓ+2 (𝐺,P, 𝑌) since reductions
preserve connected tuples rooted at 𝑌 . Now consider the pruned (ℓ + 2)-shuffle (𝑇 ′,𝑚′) of (𝑇,𝑚)𝑌
and all𝑀𝑇ℓ+2 (𝐺,P, 𝑍) with 𝑍 ≠ 𝑌 . Note that (𝑇 ′,𝑚′) is a reduction of𝑀𝑇ℓ+2 (𝐺,P) by Lemma 7.12.

Moreover it contains the two sibling nodes (𝑢, 𝑣) and (𝑢, 𝑣 ′) which are equivalent by the fact

that (𝑣), (𝑣 ′) are equivalent in (𝑇,𝑚)𝑌 . Indeed, as usual, we just consider the automorphism 𝑓 of

(𝑇,𝑚)𝑌 which swaps (𝑣), (𝑣 ′), and extend it by identity to an automorphism 𝑔 of the pruned shuffle.

Finally, (𝑢, 𝑣) and (𝑢, 𝑣 ′) are equivalent in a reduction of𝑀𝑇ℓ+2 (𝐺,P), so𝐺 |= 𝜙 (𝑢, 𝑣) if and only if

𝐺 |= 𝜙 (𝑢, 𝑣 ′) by Lemma 8.4. □

Note that by symmetry, the previous result implies that for every 𝑢,𝑢 ′ ∈ 𝑋 ′
and 𝑣, 𝑣 ′ ∈ 𝑌 ′

, we

have 𝐺 |= 𝜙 (𝑢, 𝑣) if and only if 𝐺 |= 𝜙 (𝑢 ′, 𝑣 ′). In particular, 𝑋 ′, 𝑌 ′
is homogeneous in 𝜙 (𝐺). We can

now prove Theorem 8.3.

Proof. We need to show that given 𝐺 with twin-width 𝑑 and a formula 𝜙 (𝑥,𝑦), the twin-width
of 𝜙 (𝐺) is at most a function of 𝑑 and ℓ , the depth of 𝜙 . To show this, we consider a sequence

of 𝑑-partitions (P𝑖)𝑖∈[𝑛] of 𝐺 . We now refine it further by considering the sequence of partitions

𝐼𝑖 := 𝐼ℓ+2 (𝐺,P𝑖), for all 𝑖 ∈ [𝑛]. As we have seen, 𝐼𝑖 is coarser than 𝐼𝑖+1, and furthermore each part

of 𝐼𝑖 contains a bounded (in 𝑑, and ℓ) number of parts of 𝐼𝑖+1. Indeed a part of 𝐼𝑖 is contained in a

part of P𝑖 which contains at most two parts of P𝑖+1, each containing a bounded number (in 𝑑 and

ℓ) of parts of 𝐼𝑖+1 by Lemma 8.5.

At last, by Lemma 8.6, if two parts of 𝐼𝑖 belong respectively to two parts of P𝑖 which are further

than 3
ℓ+2

in 𝐺P𝑖
, then they are homogeneous in 𝜙 (𝐺). Hence (𝐼𝑖)𝑖∈[𝑛] is a nested sequence of

ℎ(𝑑, ℓ)-partitions of 𝐺 where each 𝐼𝑖 is a bounded refinement of 𝐼𝑖+1, so we can extend (𝐼𝑖)𝑖∈[𝑛] to a

ℎ′(𝑑, ℓ)-sequence of 𝜙 (𝐺), by Lemma 5.2. □

9 CONCLUSION
We have introduced the notion of twin-width. We have shown how to compute contraction se-

quences on several classes with bounded twin-width, and how to then decide first-order formulas

on these classes in linear FPT time.

Computing twin-width. The most pressing open question concerns the complexity of computing

the twin-width and contraction sequences on general graphs. We do not expect that computing

exactly the twin-width is tractable. However any approximation with a ratio only function of

twin-width would be good enough. More precisely, is there a polynomial-time or fixed-parameter

algorithm that outputs an 𝑓 (𝑑)-contraction sequence or correctly reports that the twin-width is at

least 𝑑? We observe that such an algorithm was obtained for totally ordered binary structures [8].

This raises the perhaps more general question of a weak dual for twin-width. For treewidth,

brambles provide an exact dual. How to certify that the twin-width is at least 𝑑? The best we can say

so far is that if for all the vertex-orderings the adjacency matrix admits a (2𝑑 +2)-mixed minor, then

the twin-width exceeds 𝑑 . A satisfactory certificate would get rid of the universal quantification

over the orderings of the vertex set.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:44 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Full characterization of “tractable” classes. We have made some progress on getting the full

picture of which hereditary classes admit an FPT algorithm for FO model checking. Let us call

them here tractable classes. Resolving Gajarský et al.’s conjecture (see Conjecture 1) may require

in particular to tackle the task of the previous paragraph. Bounded twin-width classes are not

universal, which supports a bit more the truth of the conjecture. Currently almost all the knowledge

on tractable classes is subsumed by three algorithms: Grohe et al.’s algorithm on nowhere dense

graphs [29], Gajarský et al.’s algorithm for FO interpretations of bounded-degree classes [24], and

our algorithm on bounded twin-width classes, when provided with 𝑂 (1)-sequences. As formulated

in the introduction, these results are incomparable. Is there a “natural” class which sits above

structurally nowhere dense and bounded twin-width classes, and would unify and generalize

these algorithms by being itself tractable? Is there an algorithmically-utilizable characterization of

tractable or non-universal classes?

As a complexity measure, twin-width can be investigated in various directions. We list a brief

collection of potentially fruitful lines of research.

Structured matrices. The definition of a 𝑘-mixed minor in a matrix𝑀 is a division of rows and

columns where every zone is mixed. If we use a 1,2-matrix instead of a 0,1-matrix to code the

adjacency matrix of a graph, the property of being mixed is equivalent to having rank strictly

greater than 1. Let us say that a matrix 𝑀 has 𝑟 -twin-width at most 𝑑 , if there is an ordering of

its rows and columns such that every (𝑑, 𝑑)-division has at least one zone with rank at most 𝑟 .

This notion indeed turns out crucial in handling ordered binary structures [8]. Let us note that,

by the Marcus-Tardos theorem, a matrix with bounded 0-twin-width has only linearly many non

zero entries. For adjacency matrices coded by 1 (edge) and 2 (non-edge), bounded 1-twin-width is

exactly bounded twin-width of the corresponding graph.

Expanders. Surprisingly, bounded-degree expanders can have bounded twin-width, hence cubic

graphs with bounded twin-width do not necessarily have sublinear balanced separators. We will

show that there are cubic expanders with twin-width 6 [5]. However, random cubic graphs have

unbounded twin-width. Does the dichotomy of having bounded or unbounded twin-width tell us

something meaningful on expander classes?

Small classes. In an upcoming work [5], we show that the class of graphs with twin-width at

most 𝑑 is a small class, that is, the number of such graphs on the vertex set [𝑛] is bounded by

𝑛!𝑓 (𝑑)𝑛 for some function 𝑓 . Is the converse true? That is, for every hereditary small class of graphs

is there a constant bound on the twin-width of its members? This question is settled by the negative

using a group-theoretic construction, in a subsequent paper [7].

Polynomial expansion. Do classes with polynomial expansion have bounded twin-width? If yes,

can we efficiently compute contraction sequences on these classes?Wewill show that 𝑡-subdivisions

of 𝑛-cliques have bounded twin-width if and only if 𝑡 = Ω(log𝑛) [5]. This is a first step in answering
the initial question.

Bounded twin-width of finitely generated groups. Given a (countably infinite) group Γ gener-

ated by a finite set 𝑆 , we can associate its Cayley graph𝐺 , whose vertices are the elements of Γ and

edges are all pairs {𝑥, 𝑥 · 𝑠} where 𝑠 ∈ 𝑆 . For instance, infinite 𝑑-dimensional grids are such Cayley

graphs. As a far-reaching generalization of the case of grids, one may conjecture that the class of all

finite induced subgraphs of𝐺 has bounded twin-width. We observe that this does not depend on

the generating set 𝑆 since all choices of 𝑆 are equivalent modulo first-order interpretation. Hence

bounded twin-width is indeed a group invariant [5]. However the conjecture is refuted in [7]. Thus

bounded twin-width non-trivially splits finitely generated groups. Is this dichotomy an existing

one?

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Twin-width I: tractable FO model checking 1:45

Additive combinatorics. To any finite subset 𝑆 of non-negative integers, we can associate a

Cayley graph 𝐺 by picking some (prime) number 𝑝 (much) larger than the maximum of 𝑆 , and

having edges 𝑥𝑦 if 𝑥 − 𝑦 or 𝑦 − 𝑥 is in 𝑆 modulo 𝑝 . Is the twin-width of 𝐺 a relevant complexity

measure for 𝑆?

Approximation algorithms. Last but not least, we should ask more algorithmic applications from

twin-width. It is noteworthy that, in all the particular classes of bounded twin-width presented in

the paper, most optimization problems admit good approximation ratios, or even exact polytime

algorithms. What is the approximability status of, say, Maximum Independent Set on graphs

of twin-width at most 𝑑? In [6] a polytime constant-approximation is presented for Minimum

Dominating Set on graphs of bounded twin-width given with an 𝑂 (1)-sequence.

REFERENCES
[1] J. Balabán and P. Hlinený. Twin-width is linear in the poset width. CoRR, abs/2106.15337, 2021.

[2] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algorithmic applications. Theor.

Comput. Sci., 511:54–65, 2013.

[3] A. Blumensath and B. Courcelle. On the monadic second-order transduction hierarchy. Logical Methods in Computer

Science, 6(2), 2010.

[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels. J. Comput.

Syst. Sci., 75(8):423–434, 2009.

[5] É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width II: small classes. In Proceedings of the 2021

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1977–1996, 2021.

[6] É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width III: Max Independent Set, Min Dominating

Set, and Coloring. In N. Bansal, E. Merelli, and J. Worrell, editors, 48th International Colloquium on Automata, Languages,

and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages

35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[7] É. Bonnet, C. Geniet, R. Tessera, and S. Thomassé. Twin-width VII: groups and the small conjecture. In preparation,

2021.

[8] É. Bonnet, U. Giocanti, P. O. de Mendez, P. Simon, S. Thomassé, and S. Toruńczyk. Twin-width IV: ordered graphs and

matrices. CoRR, abs/2102.03117, 2021.

[9] É. Bonnet, E. J. Kim, A. Reinald, and S. Thomassé. Twin-width VI: the lens of contraction sequences. Manuscript, 2021.

[10] É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant. Twin-width and polynomial kernels. CoRR,

abs/2107.02882, 2021.

[11] S. Bova, R. Ganian, and S. Szeider. Model checking existential logic on partially ordered sets. ACM Trans. Comput. Log.,

17(2):10:1–10:35, 2016.

[12] J. Cibulka and J. Kyncl. Füredi-Hajnal limits are typically subexponential. CoRR, abs/1607.07491, 2016.

[13] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded

clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

[14] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In 22nd IEEE Symposium on Logic in Computer Science

(LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 270–279, 2007.

[15] Z. Dvorák, D. Král, and R. Thomas. Testing first-order properties for subclasses of sparse graphs. J. ACM, 60(5):36:1–

36:24, 2013.

[16] K. Eickmeyer and K. Kawarabayashi. FO model checking on map graphs. In Fundamentals of Computation Theory -

21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings, pages 204–216, 2017.

[17] S. Feferman and R. L. Vaught. The first order properties of products of algebraic systems. Journal of Symbolic Logic,

32(2), 1967.

[18] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM J. Comput., 31(1):113–145,

2001.

[19] J. Fox. Stanley-Wilf limits are typically exponential. CoRR, abs/1310.8378, 2013.

[20] M. Frick andM. Grohe. Deciding first-order properties of locally tree-decomposable structures. J. ACM, 48(6):1184–1206,

2001.

[21] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log.,

130(1-3):3–31, 2004.

[22] H. Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of Mathematics, volume 107,

pages 105–135. Elsevier, 1982.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:46 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

[23] J. Gajarský, P. Hlinený, D. Lokshtanov, J. Obdrzálek, S. Ordyniak, M. S. Ramanujan, and S. Saurabh. FO model checking

on posets of bounded width. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,

CA, USA, 17-20 October, 2015, pages 963–974, 2015.

[24] J. Gajarský, P. Hlinený, J. Obdrzálek, D. Lokshtanov, and M. S. Ramanujan. A new perspective on FO model checking

of dense graph classes. ACM Trans. Comput. Log., 21(4):28:1–28:23, 2020.

[25] J. Gajarský, P. Hlinený, J. Obdrzálek, and S. Ordyniak. Faster existential FO model checking on posets. Logical Methods

in Computer Science, 11(4), 2015.

[26] J. Gajarský and S. Kreutzer. Computing shrub-depth decompositions. In C. Paul andM. Bläser, editors, 37th International

Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154

of LIPIcs, pages 56:1–56:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[27] J. Gajarský, S. Kreutzer, J. Nesetril, P. O. de Mendez, M. Pilipczuk, S. Siebertz, and S. Torunczyk. First-order interpreta-

tions of bounded expansion classes. ACM Trans. Comput. Log., 21(4):29:1–29:41, 2020.

[28] R. Ganian, P. Hlinený, D. Král, J. Obdrzálek, J. Schwartz, and J. Teska. FO model checking of interval graphs. Logical

Methods in Computer Science, 11(4), 2015.

[29] M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1–17:32,

2017.

[30] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proceedings of the Twenty-Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages

82–101, 2014.

[31] P. Hlinený, F. Pokrývka, and B. Roy. FO model checking on geometric graphs. Comput. Geom., 78:1–19, 2019.

[32] S. Kreutzer and A. Dawar. Parameterized complexity of first-order logic. Electronic Colloquium on Computational

Complexity (ECCC), 16:131, 2009.

[33] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–37, 2012.

[34] A. Marcus and G. Tardos. Excluded permutation matrices and the stanley-wilf conjecture. J. Comb. Theory, Ser. A,

107(1):153–160, 2004.

[35] J. Nesetril and P. O. de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics.

Springer, 2012.

[36] O. Pikhurko and O. Verbitsky. Logical complexity of graphs: a survey. Model theoretic methods in finite combinatorics,

558:129–179, 2011.

[37] L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In

Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 515–524, 2013.

[38] D. Seese. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science,

6(6):505–526, 1996.

[39] M. Vatshelle. New width parameters of graphs. 2012.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	1.1 A dynamic generalization of cographs
	1.2 How to compute the contraction sequences?
	1.3 How general are classes of bounded twin-width?
	1.4 FO model checking
	1.5 Organization of the paper

	2 Preliminaries
	2.1 Graph definitions and notations
	2.2 First-order logic, model checking, FO interpretations/transductions

	3 Sequence of contractions and twin-width
	4 First properties and examples of classes with bounded twin-width
	4.1 Complementation, induced subgraphs, and adding apices
	4.2 Bounded rank-width/clique-width, and d-dimensional grids

	5 The grid theorem for twin-width
	5.1 Twin-width of matrices, digraphs, and binary structures
	5.2 Partition coarsening, contraction sequence, and error value
	5.3 Matrix division and the Marcus-Tardos theorem
	5.4 Mixed minor and the grid theorem for twin-width
	5.5 Corners
	5.6 Mixed zones, cuts, and values
	5.7 Finding a division sequence with bounded mixed value
	5.8 Finding a contraction sequence with bounded error value

	6 Classes with bounded twin-width
	6.1 Pattern-avoiding permutations
	6.2 Posets of bounded width
	6.3 Proper minor-closed classes

	7 FO model checking
	7.1 morphism-trees and shuffles
	7.2 morphism-trees in graphs and reductions
	7.3 Pruned shuffles

	8 Stability under FO interpretations and transductions
	9 Conclusion
	References

